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Berry phase physics is closely related to a number of topological states of matter. Recently discovered
topological semimetals are believed to host a nontrivial π Berry phase to induce a phase shift of�1=8 in the
quantum oscillation (þ for hole and − for electron carriers). We theoretically study the Shubnikov–de Haas
oscillation of Weyl and Dirac semimetals, taking into account their topological nature and inter-Landau
band scattering. For a Weyl semimetal with broken time-reversal symmetry, the phase shift is found to
change nonmonotonically and go beyond known values of �1=8 and �5=8, as a function of the Fermi
energy. For a Dirac semimetal or paramagnetic Weyl semimetal, time-reversal symmetry leads to a discrete
phase shift of �1=8 or �5=8. Different from the previous works, we find that the topological band
inversion can lead to beating patterns in the absence of Zeeman splitting. We also find the resistivity peaks
should be assigned integers in the Landau index plot. Our findings may account for recent experiments in
Cd2As3 and should be helpful for exploring the Berry phase in various 3D systems.
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The Shubnikov–de Haas oscillation of resistance in a
metal arises from the Landau quantization of electronic
states under strong magnetic fields. The oscillation can
be described by the Lifshitz-Kosevich formula [1]
cos½2πðF=Bþ ϕÞ�, where B is the magnitude of magnetic
field, and the oscillation frequency F and phase shift ϕ can
provide valuable information about the Fermi surface
topography of materials. It is widely believed that an
energy band with linear dispersion carries an extra π
Berry phase [2,3], leading to phase shifts of ϕ ¼ 0 and
�1=8 in 2D and 3D, respectively, compared with�1=2 and
�5=8 for parabolic energy bands without the Berry phase
(þ for hole and − for electron carriers). Topological
semimetals [4–8] provide a new platform to study the
nontrivial Berry phase in 3D. They have linear dispersion
near the Weyl nodes at which the conduction and valence
bands touch. TheWeyl nodes host monopoles connected by
Fermi arcs, and have been discovered in the Dirac semi-
metals Na3Bi [9–11] and Cd3As2 [12–19], and the Weyl
semimetals TaAs family [20–29] and YbMnBi2 [30].
Exploring the π Berry phase in 3D semimetals remains

difficult [31–46]. To extract the phase shift, the Landau
indices, i.e., where F=Bþ ϕ takes integers n, need to be
identified first from the magnetoresistivity. A plot of n vs
1=B then extrapolates to the phase shift on the n axis.
However, the first step in 3D is highly nontrivial. In 3D, a
magnetic field quantizes the energy spectrum into a set of
1D bands of Landau levels. There may be multiple Landau
bands on the Fermi surface and scattering among them.
This situation never occurs for discrete Landau levels in
2D. It is not intuitive to determine the Landau indices in 3D
without a sophisticated theoretical analysis of the resistivity
of the Landau bands. Both the resistivity peaks [31,32,
34–37,39] and valleys [41,42,45,47] have been used to

identify the Landau indices in different experiments. The
treatments can introduce a system error of π, comparable
with the π Berry phase under quest, and partially lead to a
wide range of the phase shifts away from the anticipated
�1=8 in the experiments (see Sec. S1 of Ref. [48]).
In this Letter, we calculate the resistivity in both

longitudinal and perpendicular magnetic fields for topo-
logical Weyl and Dirac semimetals. We clarify explicitly
that the resistivity peaks appear near Landau band edges
and correspond to integer Landau indices. For time-reversal
symmetry broken Weyl semimetals, we find that the phase
shift can go beyond known values of �1=8 or �5=8 and
nonmonotonically approach a wide range between �7=8
and �9=8 near the Lifshitz point, and these values may be
misinterpreted as �1=8 in experiments. For Dirac semi-
metals or Weyl semimetals with time-reversal symmetry,
the combined phase shift takes the discrete values of either
�1=8 or�5=8. Moreover, a new beating pattern, due to the
topological band inversion rather than Zeeman splitting, is
found. Our findings may explain the positive phase shifts
of electron carriers in recent experiments, and should be
helpful for experiments involving the Berry phase and
monopole physics in various 3D systems.
Model.—We start from a two-node Hamiltonian for a

Weyl semimetal [49,55,56]

H ¼ Aðkxσx þ kyσyÞ þMðk2w − k2Þσz; ð1Þ

where (σx, σy, σz) are the Pauli matrices, the wave vector
k ¼ ðkx; ky; kzÞ, and A, M, and kw are model parameters.
The energy dispersion of the model is Ek

� ¼
�½M2ðk2w − k2Þ2 þ A2ðk2x þ k2yÞ�1=2, with � for the con-
duction and valence bands, respectively. The model hosts

PRL 117, 077201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

12 AUGUST 2016

0031-9007=16=117(7)=077201(5) 077201-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.077201
http://dx.doi.org/10.1103/PhysRevLett.117.077201
http://dx.doi.org/10.1103/PhysRevLett.117.077201
http://dx.doi.org/10.1103/PhysRevLett.117.077201


two Weyl nodes at (0, 0, �kw) [Fig. 1(a)], and has been
demonstrated to carry all of the topological semimetal
properties [49]. In particular, the Fermi arcs, i.e., the kz-
dependent topological edge states, can be solved analyti-
cally from the model with an open boundary condition [50],
in contrast to the k · σ model [57–59]. The topological
properties of the model arise from the σz term [60], with
which the model can smoothly change from linear
dispersion near the Weyl nodes to parabolic dispersion
at high Fermi energies.
Quantum oscillation in linear and parabolic limits.—In

the presence of a z-direction magnetic field B, the energy
spectrum splits into a series of 1D bands of Landau levels
[49,50] [see Figs. 1(b)–1(c)], which give rise to the
quantum oscillation. We focus on the bulk states, as the
oscillation via surface states requires ultrathin films [61]
and can be ignored in the work. We calculate the resistivity
in two direction configurations following linear response
theory [51,52,62,63] (see Sec. S2 of Ref. [48] for the
calculation details). In the longitudinal configuration,
resistivity is measured along the z direction (denoted as
ρzz), and in the transverse configuration resistivity is
measured along the x direction (ρxx). The magnetoresis-
tivity in the linear and parabolic dispersion limits can be
found analytically to take the general form

ðρ − ρ0Þ=ρ0 ¼ C expð−λDÞ cos ½2πðF=Bþ ϕÞ�; ð2Þ
where subscripts xx and zz are suppressed for simplicity,
ρ0 is the zero-field resistivity, λD is the Dingle factor, and C
is a constant coefficient. The analytic expressions for the
frequency F and phase shift ϕ are listed in Table I for
the two limits. We can analytically obtain the expected
−1=8 in the linear limit and −5=8 in the parabolic limit for
electron carriers. Note that the frequency in the linear limit
depends not on the effective mass, but on A in the
velocity term.
Resistivity peaks and integer Landau indices.—In

experiments, due to sophisticated data patterns, the oscil-
lation may not be well fitted by the Lifshitz-Kosevich form
in Eq. (2). Instead, the peak or valley positions on the B axis
are assigned integer Landau indices n, then ϕ and F can be
fitted from a plot of n and 1=B [see inset of Fig. 1(d)].
However, whether the peaks [31,32,34–37,39] or valleys
[41,42,45,47] should be assigned indices is still under
debate. Our results explicitly clarify that the resistivity
peaks of both ρxx and ρzz appear near Landau band edges and
correspond to integer Landau indices. As shown in Fig. 1,
peak 5 in (d) appears when the Fermi energy is close to the
band edge of the 5th Landau band [Fig. 1(b)], valley 5.5
appears when the Fermi energy lies somewhere between
the fifth and sixth bands [Fig. 1(c)]. The numerical results
using the peaks as integers in the Landau index plot are
shown in Fig. 2. As shown in Fig. 2(c), in the limits EF → 0
and∞, the numerical fitting can recover the analytic results
of −1=8 and −5=8 phase shifts, respectively.
Why both ρzz and ρxx show peaks near the band edges

can be explained as follows. In theory, the resistivity
components are evaluated from the conductivity compo-
nents [53,64]. In the longitudinal configuration, the resis-
tivity ρzz ¼ 1=σzz, where σzz is the conductivity along the z
direction. Near the band edges, because of vanishing
velocities, the conductivity σzz shows valleys, so ρzz shows
peaks. In the transverse configuration, ρxx ¼ σyy=
ðσ2yy þ σ2xyÞ, and the longitudinal and field-induced Hall
conductivities are found as (see Sec. S3 of Ref. [48] for the
calculation)

σyy ¼
σ0ð1þ δÞ
1þ ðμBÞ2 ; σyx ¼

μBσ0
1þ ðμBÞ2

�
1 −

δ

ðμBÞ2
�
; ð3Þ

where σ0 is the zero-field conductivity and δ ≪ 1 repre-
sents the oscillation part. The δ term in σyx is from the
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FIG. 1. (a) The conduction and valence bands of the Weyl
semimetal as a function of kz at kx ¼ ky ¼ 0. [(b) and (c)] In
the z-direction magnetic field, the Landau bands when n ¼ 5
and 5.5 [see dash lines in (d)]. (d) An example of the
numerically calculated resistivities ρxx and ρzz as functions
of 1=B. Inset: The Landau index plot and linear fitting (line)
using n ¼ F=Bþ ϕ to the peaks in ρxx and ρzz. In this case,
F ¼ 3.927� 0.003 and ϕ ¼ −1.052� 0.007. The parameters
are kw ¼ 0.1 nm−1, A ¼ 0.5 eV nm, M ¼ 5 eV nm2, and the
Fermi energy EF ¼ 0.055 eV.

TABLE I. The analytical expressions for the frequency F and
phase shift ϕ in the resistivity formula Eq. (2) in the linear and
parabolic dispersion limits for electron carriers. We define
E0
F ≡ EF þMk2w.

Longitudinal ρzz Transverse ρxx
Parabolic Linear Parabolic Linear

F ℏE0
F=2eM ℏE2

F=2eA
2 ℏE0

F=2eM ℏE2
F=2eA

2

ϕ −5=8 −1=8 −5=8 −1=8
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disorder scattering and was seldom considered before. A
consequence of the δ term in σyx is that ρxx ≈ ð1þ δÞ=σ0,
up to the leading order of δ. As both ρxx and σyy are
proportional to 1þ δ, their peaks are aligned for the
arbitrary ratio of σyx to σyy (but the oscillation is too weak
to be observed when σyx ≪ σyy). This is a new finding as a
result of the disorder scattering δ term in the Hall
conductance. Meanwhile, the σzz valleys are aligned with
the σyy peaks, because σzz originates from diffusion and is
proportional to the scattering times, while σyy results from
hopping (i.e., off-diagonal velocities and scattering times
that couple different Landau bands) and is inversely
proportional to the scattering times [49,52,65]. Stronger
scattering (i.e., shorter scattering times) can suppress
diffusion but enhance hopping. In summary, the peak
positions satisfy the relation ρzz ∼ σ−1zz ∼ σyy ∼ ρxx, so both
ρzz and ρxx show peaks near the Landau band edges and
share the same phase shift.
Anomalous phase shift near the Lifshitz point.—For a

Fermi energy between the linear and parabolic dispersion
limits, the phase shift is expected to change from one limit
to the other. However, we find the crossover can be
nonmonotonic. We numerically calculate the frequency
and phase shift by fitting the Landau index plot [see inset of
Fig. 1(d)] for arbitrary Fermi energy EF. Figure 2 shows the
numerical results for F and ϕ. In Figs. 2(a) and 2(b), the
comparison between the analytical [see Eq. (5) and its
vicinity] and numerical results for F justifies our numerical
scheme. Note that F converges because it depends only on
A near the Weyl nodes and only on M at higher Fermi
energies. In Fig. 2(c), the numerical results recover the
analytical ϕ ¼ −1=8 in the linear limit (EF → 0) and −5=8
in the parabolic limit (EF → ∞). For convenience, we
define two energy parameters,

EA ¼ Akw; EM ¼ Mk2w: ð4Þ
For EM ≠ EA, the ϕ-EF curves break due to the formation
of beating patterns, which we discuss later. In Fig. 2(c),
when EA < EM, the phase shift does not monotonically
transit from −1=8 to −5=8, but drops below −5=8 in an
intermediate regime around the so-called Lifshitz transition
point (at which EF ¼ EM). In either the linear or parabolic
limit, the energy spectrum is a simple function of k2z , and an
integral of kz gives the extra �1=8 phase compared with
that in 2D. Away from the two limits, this simple k2z
dependence is violated [54], which is probably the reason
for the anomalous phase shift. We can analytically show the
phase shift of −9=8 at the Lifshitz point when EM ¼ EA
(see Sec. S4 of Ref. [48]), consistent with that in Fig. 2(c).
This value is equivalent to −1=8, which is usually believed
to arise from the π Berry phase when the Fermi sphere
encloses a single Weyl node. However, in this case, the
Fermi sphere encloses two Weyl nodes with a Fermi energy
at the Lifshitz point. When EA > EM, there is no non-
monotonicity in ϕ − EF.

AWeyl semimetal and its time-reversal partner can form
a Dirac semimetal, whose model can be built by HðkÞ in
Eq. (1) and its time-reversal partner H�ð−kÞ, where the
asterisk refers to a complex conjugate. This model can also
serve as a building block for Weyl semimetals that respect
time-reversal symmetry but break inversion symmetry
[20–29]. For this case, there is no anomalous Hall effect.
The change of phase shift of H�ð−kÞ is opposite to that
ofHðkÞ, and the two give rise to a combined phase shift. If
we describe the oscillation of HðkÞ by cos½2πðF=B−
α − 1=8Þ�, then that of H�ð−kÞ is cos½2πðF=Bþ
α − 1=8Þ�, and the oscillation of the Dirac semimetal
behaves like cosð2παÞ cos½2πðF=B − 1=8Þ�. According to
Fig. 2(c), α can vary over 1, so cosð2παÞ may be negative,
giving an extra π phase shift. In this case, the combined
phase shift of the Dirac semimetal may take two discrete
values, −1=8 when α ∈ ½0; 1=4� and ½3=4; 1� or −5=8 when
α ∈ ½1=4; 3=4�, as shown in Fig. 3(b). The combined phase
shift tends to be −1=8 near the Weyl nodes and −5=8 at
higher Fermi energies. Near the Lifshitz point, the com-
bined phase shift may jump between the two values. The
scattering betweenHðkÞ andH�ð−kÞ is fully considered in
the calculation and adheres to the preceding argument.
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FIG. 2. For the Weyl semimetal with broken time-reversal
symmetry. (a) The frequency F obtained numerically (scatters)
and analytically (solid curves) vs the Fermi energy EF for
(a) different A at a fixed M; and (b) for different M at a fixed
A. (c) The phase shift ϕ vs EF for different EA ¼ Akw and a fixed
EM ¼ Mk2w ¼ 0.05 eV. The curves break because F and ϕ
cannot be fitted when beating patterns form. The insets indicate
the location of Fermi energy. The vertical dashed lines mark the
Lifshitz point. kw ¼ 0.1 nm−1 throughout the work.
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The anomalous phase shift in Figs. 2 and 3 probably has
been observed in the experiments. The electron and hole
carriers are supposed to yield negative and positive phase
shifts, respectively [31]. However, the phase shift in the
Dirac semimetal Cd3As2 experiments are found to take
positive values for electron carriers [32,34,39,41]. One
possible explanation is that the actual values of the phase
shift in the experiments are around −7=8 to −5=8, and
hence look like 1=8 to 3=8 because of the 2π periodicity.
According to our numerical results, the combined phase
shift takes these values from around the Lifshitz point to
higher Fermi energies, which is also consistent with the
carrier density in the experiments. In Table II, we suggest
the counterparts for the experimental values of the phase
shift. Nevertheless, a comparison with the TaAs family is
difficult, because there are too many bands on the Fermi
surface.
Beating pattern from topological band inversion.—

Figure 3(a) also shows that the Dirac semimetal and each
of its Weyl components develop beating patterns. They
are not from the Zeeman splitting, but inherited from the
band inversion of the Weyl semimetal [see Fig. 1(a)].

Consequently, some Landau bands have more than one
extreme point [see Figs. 1(b)–1(c)]. We can also show
that each extreme point gives rise to a resistivity peak.
Then, for each Weyl component, the oscillation may have
two frequencies and develop beating patterns. We find
the frequency analytically. For EF below EA and EM,
F ¼ F0 ≡ E2

Fℏ=2A
2e; for EF between EA and EM,

F ¼
�
Fþ and F0; EM < EF < EA;

Fþ and F−; EA < EF < EM;
ð5Þ

and for EF above EA and EM, F ¼ Fþ, where F� ¼
ðℏ=eÞðE2

F − E2
MÞ=fA2 − 2MEM � ½ð2MEFÞ2 − ð2MEAÞ2þ

A4�1=2g. Equation (5) indicates that the beating pattern
forms only when the Fermi energy EF is between EM and
EA. Here, the beating pattern arises because of the
topological nature of the semimetal, different from the
Zeeman splitting [39,40,66], nested Fermi surfaces [34],
and orbital quantum interference [67].
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