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Identifying topological insulators and semimetals often focuses on their surface states, using spectroscopic
methods such as angle-resolved photoemission spectroscopy or scanning tunneling microscopy. In contrast,
studying the topological properties of topological insulators from their bulk-state transport ismore accessible in
most labs but seldom addressed. We show that, in the quantum limit of a topological insulator, the
backscattering between the only two states on the Fermi surface of the lowest Landau band can be forbidden
at a critical magnetic field. The conductivity is determined solely by the backscattering between the two states,
leading to a resistance dip that may serve as a signature for topological insulator phases.More importantly, this
forbidden backscattering mechanism for the resistance dip is irrelevant to details of disorder scattering. Our
theory can be applied to revisit the experiments on Pb1−xSnxSe, ZrTe5, and Ag2Te families, and will be
particularly useful for controversial small-gap materials at the boundary between topological and normal
insulators.
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Introduction.—Three-dimensional topological insulators
[1–3] are characterized by topologically protected 2D
surface states. Most works focus on the surfaces, because
they are also outposts for more exotic topological phases
[4–7] that are of potential application in next-generation
electronic devices. However, in most samples, the bulk
electrons overwhelm the surface electrons as the major
carriers in the transport. Identifying topological insulators
by detecting the bulk-state transport is an appealing topic of
fundamental interest.
In a strong magnetic field, the 3D bulk states of a

topological insulator quantize into 1D Landau bands. The
lowest Landau band may inherit the topological informa-
tion. In 2D, the crossing of the lowest Landau levels (not
bands) has been used as a signature for the quantum spin
Hall phase [8,9]. But in 3D, how the lowest Landau band
can be used to distinguish a topological insulator is seldom
addressed. In this work, we study the resistance of a 3D
topological insulator in parallel magnetic fields and when
only the lowest Landau band is occupied, i.e., in the
quantum limit [Fig. 1(b)]. We find that for topological
insulator phases, the backscattering in the quantum limit
can be completely suppressed at a critical magnetic field.
This suppression is irrelevant to the nature of the impurity
scattering, and only depends on the spinor eigenstate of the
lowest Landau band. As the backscattering is forbidden, the
transport time diverges, and the resistivity shows a dip. This
resistance dip resulting from the forbidden backscattering is

absent in the trivial insulator phase, and thus can be used as
a signature for the topological insulator phases. The
mechanism of the forbidden backscattering is an eigenstate
property and thus is new and different from the mechanism
of Landau level crossing, which is a spectrum property.
Also, this forbidden backscattering is absent in topological
semimetals [10–12]. Our theory is in good agreement with
a recent experiment [Figs. 1(c) and 1(d)] and can be very
useful for controversial small-gap materials at the boundary
between topological insulators and normal insulators.
Model and the quantum limit.—We start with a well-

accepted k · p Hamiltonian for the bulk states in a topo-
logical insulator [3,19,20]:

H0¼Ckþ

2
6664

Mk 0 iVnkz −iV⊥k−
0 Mk iV⊥kþ iVnkz

−iVnkz −iV⊥k− −Mk 0

iV⊥kþ −iVnkz 0 −Mk

3
7775; ð1Þ

where Mk ¼ M0 þM⊥ðk2x þ k2yÞ þMzk2z , Ck ¼ C0þ
C⊥ðk2x þ k2yÞ þ Czk2z , and kx, ky, kz are the wave vectors,
Mi, Vi, and Ci are model parameters. With bothM0M⊥<0
and M0Mz < 0, the model describes a 3D strong topo-
logical insulator with topologically protected surface states
at all surfaces. Although a simple k · p model, it has been
shown effective in the theories that work well for experi-
ments, such as giving proper descriptions for the
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topological surface states [21–23] and explaining the neg-
ative magnetoresistance in topological insulators [24–28].
In a strong magnetic field B along the z direction, the

energy spectrum quantizes into a series of 1D Landau
bands [Figs. 1(a) and 1(b)]. The energies of the lowest
two Landau bands, denoted as 0þ and 0−, are E0� ¼
C0 þ Czk2z þ C⊥=l2

B �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ V2

nk2z
p

, where the magnetic
length lB ≡ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

, −e is the electron charge, and the
mass term

m ¼ M0 þMzk2z þM⊥=l2
B: ð2Þ

The gap between the lowest Landau bands can be deter-
mined by m with kz ¼ 0.
In the following, we will focus on an electron-doped

quantum limit where the Fermi energy crosses only the
0þ Landau band, whose eigenstate is found to be

j0;þ; kx; kzi ¼

2
6664

0

−i sinðθ=2Þ
0

cosðθ=2Þ

3
7775j0; kx; kzi; ð3Þ

where we have defined

cos θ≡ −mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðVnkzÞ2

p ; ð4Þ

and j0; kx; kzi denotes the state of a usual zeroth Landau
level timing a plane wave along the z direction [10].
Forbidden backscattering.—The electronic transport in

solids is more or less affected by the backscattering. In
particular, the backscattering plays a dictating role in the
present 1D Landau band, because there are only two states
at the Fermi energy, as indicated by kF and −kF in Fig. 1.
The backscattering between these two states is character-
ized by the scattering matrix element between them. Using
the spinor eigenstate in Eq. (3), the modular square of the
scattering matrix element between the kF and −kF states is
found to be proportional to the form factor

IS ¼ cos2 θjkz¼kF : ð5Þ

IS vanishes when m ¼ 0, which means that the back-
scattering between state kF and state −kF is forbidden.
According to Eq. (2),m vanishes at a critical magnetic field
Bc determined by M0 þMzk2F þM⊥eBc=ℏ ¼ 0, where kz
becomes the Fermi wave vector kF at the Fermi energy. For
a topological insulator, M0Mz < 0 and M0M⊥ < 0, so Bc
has finite solutions at which the backscattering is com-
pletely suppressed. Later, we will show that this forbidden
backscattering can lead to a dip in the resistance as a
function of the magnetic field, which can be probed in
experiments and can give a signature for topological
insulator phases. We emphasize that this forbidden back-
scattering is an eigenstate property and thus is new and
different from the mechanism of Landau level crossing
[8,9], which is a spectrum property.
Zero point in form factor.—Now, we analyze the zero

points of IS, at which the backscattering is forbidden. For a
fixed carrier density n, the Fermi wave vector kF depends
on B in terms of kF ¼ 2π2ℏn=eB [10], so m becomes

m ¼ M0 þMz

�
2π2ℏn

e

�
2 1

B2
þM⊥

e
ℏ
B: ð6Þ

Depending on the signs of M0, Mz, M⊥, we have three
phases: (i) Strong topological insulator, M0Mz < 0 and
M0M⊥ < 0. (ii) Weak topological insulator, M0Mz < 0
andM0M⊥ ≥ 0, orM0Mz ≥ 0 andM0M⊥ < 0. (iii) Trivial
insulator, M0Mz ≥ 0 and M0Mz ≥ 0. Figure 2 shows m in
Eq. (6) and the corresponding IS as functions of B for the
three phases. Every time m has a zero point, IS also has a
zero point. For the trivial insulator phase, IS has no zero
point. For both the weak and strong topological insulator
phases, IS has one zero point in the quantum limit. For a
strong topological insulator, IS may have two zero points
(Fig. 2, row 1, column 3), in which case our theory may not
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FIG. 1. In the quantum limit of a 3D topological insulator, the
backscattering between the only two states at the Fermi energy can
be forbidden at a critical magnetic field, leading to a resistance dip.
(a) The zero-field energy spectrum vs kz of a 3D topological
insulator at kx ¼ ky ¼ 0. (b) In a strong magnetic field, the lowest
Landau energy bands of the 3D topological insulator vs kz. The
Fermi energy EF crosses only the 0þ Landau band. kF and −kF
stand for the only two states at the Fermi energy. (c) The
magnetoresistance of Pb1−xSnxSe adapted from Ref. [13].
(d) The calculated magnetoresistance using Eq. (14) (see Sec. S2B
of Ref. [14] for details). The abbreviation “sos” means spin-orbit
scattering. The parameters are M0 ¼ −0.01 eV, Mz ¼ 0,
M̃⊥ ¼ 18 eVÅ2, α1 ¼ 100 eVT, and α2 ¼ 0.0025 eVT−2.
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apply to the lower one, because it may not be within the
quantum limit for realistic model parameters. In addition,
above a critical valueMc

z , there is no zero point (Fig. 2, row
1, columns 4 and 5). But the correspondingMc

z is too large
(205 eVÅ2 for the material we discuss) to be regarded
as reasonable; e.g., Mz ¼ 3.35 eVÅ2, 9.25 eVÅ2, and
22.12 eVÅ2 for Bi2Se3, Bi2Te3, and Sb2Te3 [20].
Considering that Mz is usually less that 100 eVÅ2, it is
safe to have the higher zero point of IS. Therefore, we
conclude that the zero point of IS is only possible for either
strong or weak topological insulator phases, in which the
backscattering may be forbidden in the quantum limit.
Zeeman effect.—Above, we ignored the Zeeman effect,

which we will show only quantitatively, but not qualita-
tively, changes the zero point ofm and IS. The Hamiltonian
of the Zeeman part reads

Hz ¼
μB
2

2
6664
gvzBz gvpB− 0 0

gvpBþ −gvzBz 0 0

0 0 gczBz gcpB−

0 0 gcpBþ −gczBz

3
7775; ð7Þ

where μB is the Bohr magneton and gv;cz;p are Landé g factors
for valance or conduction bands along the z direction and in
the x-y plane, respectively. With the Zeeman effect, the

mass term is corrected to m ¼ M0 þMzk2z þM⊥ðe=ℏÞBþ
Bðgcz − gvzÞμB=4, so the Zeeman effect is to correct M⊥ to
M̃⊥ ¼ M⊥ þ ðgcz − gvzÞμBℏ=4e. Figure 3 shows that the
Zeeman effect does not change the physical picture in
Fig. 2 much, but it shifts the zero point of IS to lower
magnetic fields.
Conductivity in the quantum limit.—Now we show how

the resistivity is dictated by the backscattering (see details
in Ref. [14]). Along the direction of the magnetic field,
there is no Hall effect, so the resistivity is the inverse of
the conductivity, i.e., ρzz ¼ 1=σzz. In the quantum limit, the
conductivity is contributed only by band 0þ, and can be
explicitly expressed in terms of the transport time τ�kF at the
two states �kF on the Fermi surface [10,12]

σzz ¼
e2

h
ℏvFΛ
2πl2

B

�
τþkF
ℏ

þ τ−kF
ℏ

�
; ð8Þ

where −e is the electron charge, Λ is a value to correct
the van Hove singularity at the band edge [10], and the
Fermi velocity can be found as ℏvF ¼ ∂E0þ=∂kzjkF . The
transport time τ�kF can be found as [12,29]

ℏ
τ�kF

¼ 4π
X
k0xk0z

hjUkz¼�kF;k0z
0;0 j2iΛδðk

0
z � kFÞ
ℏvF

; ð9Þ

where k0z ¼∓ kF for kz ¼ �kF, so the transport time
depicts the backscattering from kF to −kF, and vice
versa. U�kF;∓kF

0;0 are the scattering matrix elements between
the states kF and −kF, and h…i means averaging over
impurity configurations. Assume a general form of random
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FIG. 2. The mass term m and form factor IS as functions of the
magnetic field B for M0 < 0 and different M⊥ and Mz. Red,
yellow, and green backgrounds indicate the quantum limit for a
carrier density of 6 × 1016=cm3. Without loss of generality, we
have assumed M0 < 0, so M⊥ > 0 and Mz > 0 means a strong
topological insulator, M⊥ ≤ 0 and Mz ≤ 0 means a trivial
insulator, M⊥ ≤ 0 and Mz > 0 means a weak topological
insulator (001), and M⊥ > 0 and Mz ≤ 0 means a weak topo-
logical insulator (110). The parameters are M0 ¼ −0.01 eV;
Mz ¼ −27, 0, 27, 820, 1200 eVÅ2 from left to right; and
M⊥ ¼ −13.5, 0, 13.5 eVÅ2 from bottom to top.
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FIG. 3. The same as Fig. 2, but with the Zeeman effect, which
shifts the zero point to a lower magnetic field. The parameters are
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impurities UðrÞ ¼ P
iUðr −RiÞ, where Ri are the posi-

tions of randomly distributed impurities and the function
Uðr −RiÞ depicts the impurity potential energy. Using the
eigenstate in Eq. (3), the matrix element of the scattering
between kF and −kF can be expressed as

hjUkz¼kF;k0z¼−kF
0;0 j2i ¼ IShjU0;0j2i; ð10Þ

where IS is the form factor in Eq. (5) and the rest depends
on the specific form of UðrÞ in real space. Equation (10)
shows that no matter the form of the real-space part, the
scattering matrix element and the inverse of the transport
time always vanish when IS vanishes. By understanding
this and combining the above equations, the resitivitity can
be expressed as

ρzz ¼ IS=σ0; ð11Þ

where σ0 is the conductivity independent of the spinor inner
product part. For different types of scattering potential, σ0
takes different forms. But the form factor IS in Eq. (11)
dictates that a topological insulator always has a resistance
dip, regardless of σ0.
We can test the argument with a systematic calculation

of σzz, in the presence of the Gaussian [12] and screened
Coulomb [30,31] potentials, which are two common
choices when describing the impurity scattering. For the
Gaussian potential (see Ref. [14] for details),

σ0 ¼
e2

h
ðℏvFÞ2ð2d2 þ l2

BÞ
V impl2

B
e4d

2k2F ; ð12Þ

where d is the acting range of the Gaussian impurities,
and V imp measures the impurity density and scattering
strength. As d → 0, the conductivity reduces to σ0 ¼
ðe2=hÞðℏvFÞ2=V imp. For the screened Coulomb potential
(see Ref. [14] for details),

σ0 ¼
e2

h
ℏvFΛε

π2nimpe2l4
B
; ð13Þ

where ε is the dielectric constant and nimp is the impurity
density. Figure 4 and Fig. S2 of Ref. [14] show the
resistivity in the presence of the Gaussian and screened
Coulomb potentials. They both show clear dips in the
resistivity for some weak topological phases (Mz ≤ 0 and
M̃⊥ > 0 in row 1, columns 1 and 2) and strong topological
insulator phases (Mz ∈ ½0;Mc

z � and M̃⊥ > 0 in row 1,
column 3). More importantly, the positions of the minima
on the B axis does not change for different potentials.
Spin-orbit scattering.—The spin-orbit scattering can

improve the above picture and lead to a better fitting to
the experiment. The spin configuration of our basis is j↑i1,
j↓i2, j↑i3, j↓i4. We find that the off-diagonal spin-orbit

scattering that couple 2 to 4 can change the result by lifting
the exact forbidden backscattering (see Sec. S2B of
Ref. [14]). This lifting can lead to a better fitting to a
recent experiment on the topological insulator material
Pb1−xSnxSe [13], which shows an unexpected suppression
of the resistance in strong magnetic fields, as shown in
Figs. 1(c) and 1(d). Specifically, in Fig. 1(d), we include the
spin-orbit coupling in the screened Coulomb scattering
potential. As a result, the resistivity is found to be

ρzz ¼
hπ

e3v0FΛB

�
α1

IS
B
þ α2ð1 − ISÞB2

�
; ð14Þ

where the α1 term is due to the spin-independent scattering
and diagonal spin-orbit scattering, and the α2 term is due to
the off-diagonal spin-orbit scattering. In experiments,
they can serve as fitting parameters. By choosing proper
α1 and α2, a −40% change is obtained at the dip of the
resistance, consistent with the experiment, as shown in
Figs. 1(c) and 1(d).
Experimental implications.—Although Pb1−xSnxSe is

claimed to be a topological insulator, the interpretation
in Ref. [13] adopted a theory for Weyl semimetal in delta
scattering potentials [10,11], where the spinor wave func-
tion of the lowest Landau band takes the form

j0; kx; kzi ¼
�

0

j0i

�
jkx; kzi: ð15Þ
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The spin part of the scattering matrix element is always 1,
so a Weyl semimetal does not support the mechanism of
the forbidden backscattering as the topological insulator
does. In contrast, our theory gives a proper explanation and
favors the experimentally observed resistance dip as a
signature for weak topological insulators.
The resistance dip may not be observed in the Bi2Se3

family, because their large M0=M̃⊥ ratios require inacces-
sible magnetic fields for the dip (Table S1 of Ref. [14]). Our
mechanism of forbidden backscattering is irrelevant to the
details of impurities, and thus will be particularly useful for
those controversial small-gap materials at the boundary
between topological and normal insulators, such as the
Ag2Te [32] and ZrTe5 [33,34] families, where controver-
sies have built up over the years. In 2D, the quantum spin
Hall phase may be probed by other approaches, such as
interference effects [35], but this has nothing to do with our
proposal in 3D.
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