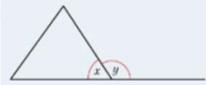

KS4 Knowledge Organiser

Topic 5: Angles and Trigonometry (HT) St LUK(E'S)

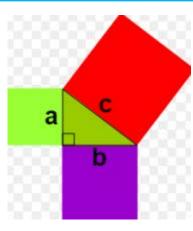
In a right-angled triangle, the longest side is called the hypotenuse and is opposite the right-angle.

The side opposite the angle θ is called the **opposite**.


The side that is next to angle θ is the **adjacent**.

When one side of a triangle is extended at the vertex, it forms an **exterior** angle.

 \boldsymbol{x} is the **interior** angle.


y is the **exterior** angle.

$$x + y = 180^{\circ}$$

The sum of the interior angles of a polygon with n sides = $(n-2) \times 180^{\circ}$

The sum of the **exterior** angles of a polygon is always 360°

Pythagoras' Theorem

$$a^2 + b^2 = c^2$$

To find hypotenuse: Square side a Square side b Add together Square root

To find shorter side:
Square side c
Square side a or b
Subtract a or b from c
Square root

SOH CAH TOA

Sine Ratio

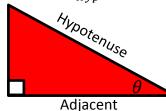
 $Hyp = \frac{Opp}{\sin\theta}$

 $\sin^{-1}\theta = \frac{Opp}{Hyp}$

Opposite

Hypotenuse

 $Opp = sin\theta \times Hyp$

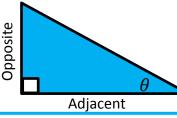


Cosine Ratio

$$Adj = cos\theta \times Hyp$$

$$Hyp = \frac{Adj}{COS\theta}$$

$$\cos^{-1}\theta = \frac{Adj}{Hyp}$$



Tangent Ratio

$$Opp = tan\theta \times Adj$$

$$Adj = \frac{Opp}{tan \,\theta}$$

$$\tan^{-1}\theta = \frac{Opp}{Adj}$$

V329

V330

V331

To get sin⁻¹, cos⁻¹ and tan⁻¹ press shift on the calculator and then the corresponding ratio.

θ	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	1/2	1	$\sqrt{3}$	

The exact sine, cosine and tangent of some angles are in this table.

<u>V257</u>