Deriving Afrikaans Adpositions

University of KwaZulu-Natal, 19 May 2016

Erin Pretorius
Stellenbosch University & Utrecht University
erink@sun.ac.za

1. Introduction

This talk exploits the observation that there is no homogenous category P

The question of lexical specification and insertion is then especially interesting w.r.t. multifunctional elements

I will argue that, to account for the range of functions expressed by a multifunctional element, categories must be thought of as consisting of “smaller” ingredients

I will make specific suggestions about how this can be done

The empirical focus will be Afrikaans P elements that

- express spatial relations
- are multifunctional (cf. 1)

(1) Multifunctionality in the spatial P domain
(a) ...dat die yskas teen aan die muur staan. that the fridge against on the wall stands “...that the fridge is against the wall”
(b) ...dat die yskas teen die muur staan. that the fridge against the wall stands “...that the fridge is against the wall”

1 The research presented in this talk has been, at various points, supported by the South African National Research Foundation and EUROSA, in association with Erasmus Mundus.
2 I would like to thank my supervisors Norbert Corver, Marjo van Koppen, and Johan Oosthuizen for their ongoing support in this project.
3 I would also like to thank Theresa Biberauer for valuable feedback and conversation on various versions of the work presented here.
(c) ...dat Jan die bal teen die muur gooi.
that Jan the ball against the wall throws
“...that Jan is throwing the ball against the wall”

(Directional adposition)

(d) ...dat Jan die nuwe taalbeleid teen staan.
that Jan the new language-policy against stands
“...that Jan is resisting the new language policy”

(V-particle)

The aim is providing an analysis of spatial adpositions that makes a straightforward account of the multifunctionality of those elements possible.

The argument is that complex adpositions (cf. 2)

➢ provide evidence for head-movement in the P domain which
➢ should be generalised to simplex locative and directional adpositions and that
➢ this provides concrete evidence of the internal makeup of these categories

(2) (a) Jan sit sy geld [pp tussenin die boeke].
Jan puts his money between-in the books
“Jan is putting his money in between the books”

(Complex locative adposition)

(b) Jan loop [pp onderdeur die brug].
Jan walks under-through the bridge
“Jan is walking through under the bridge”

(Complex directional adposition)

Roadmap

2. Making space 6. Architecture of the system
3. Diagnostics 7. Deriving adpositions
5. What’s in a category?
2. Making space

This sections offers a brief introduction to spatial relations and the components involved in spatial expressions.

Spatial relation: A function that locates one entity (= DP_{FIGURE}) in some spatial relation to another entity (= DP_{GROUND}).

(3) (a) Location
John put the cup_{FIGURE} on the table_{GROUND}
(b) Direction
John put the cup_{FIGURE} onto the shelf_{GROUND}

The structural asymmetry between FIGURE and GROUND:

(4) (a) The bike is near the house.
(b) ?The house is near the bike.

Structurally

(5)

- The spatial properties of the GROUND are known and fixed;
- The spatial properties of the FIGURE are unknown, relative;
- The content of the relation between figure and ground is given by the conceptual component of the P element
- The nature of the function seems to be grammatical in nature

4 Talmy's adapted definitions of Figure and Ground (2000:312)
(i) FIGURE:
 A moving or conceptually movable entity whose path, site, or orientation is conceived as a variable, the particular value of which is the relevant issue.
(ii) GROUND:
 A reference entity, one that has a stationary setting relative to a reference frame, with respect to which the Figure's path, site, or orientation is characterized.

5 Cf. i.a. Van Riemsdijk (1990), Zeller (2001), and Svenonius (2003) for various (parallel) structural implementations of little-\(p \).
4. Diagnostics

This section provides diagnostics for the major “categories” that express spatial functions.

The main focus is on distinguishing axial parts from adpositions, as this distinction is relevant for deriving complex adpositions.

4.1 Axial Parts vs. adpositions

Cross-linguistically, axial parts are often homophonous with nouns:

(6)
(a) There was a kangaroo in the **front** of the car
(b) There was a kangaroo on the **front** of the car (Noun)

(7)
(a) There was a kangaroo in **front** of the car
(b) *There was a kangaroo on **front** of the car (AxPart)

Svenonius (2006)

In Afrikaans, axial parts are often homophonous with (a special class of “locative”) nouns (cf. 8) and also with adpositions (cf. 10)

(8)
(a) Jan gaan binne toe
Jan goes INSIDE to
“Jan is going inside” (Noun)

(b) Jan gaan huis/winkels/skool toe
Jan goes house/shops/school to
“Jan is going home/to the shops/to school” (Noun)

(9)
Jan hou die suiker **binne** in die yskas
Jan holds the sugar INTERIOR in the fridge
“Jan keeps the sugar inside of the fridge” (AxPart)

(10)
Jan sit die suiker **binne** die yskas
Jan puts the sugar IN the fridge
“Jan is putting the sugar in the fridge” (Adposition)
Jackendoff (1996) draws on work by David Marr (1982), connecting neuro-psychological aspects of visual object processing to giving linguistic expression to the space occupied by objects.

The “axial parts” of an object – its top, bottom, front, back, sides and ends – behave grammatically like parts of the object, but, unlike standard parts such as a handle or a leg, they have no distinctive shape. Rather, they are regions of the object (or its boundary) determined by their relation to the object’s axes. The up-down axis determined top and bottom, the front-back axis determines front and back, and a complex set of criteria distinguishing horizontal axes determines sides and ends. (Jackendoff 1996:14)

Svenonius (2006): axial part is a functional projection $\text{AXPART:} [P_{\text{LOC}}[\text{AXPART} \ [\text{DP}]])$

AXPART is the functional component of syntactic structure that renders an entity a referent (i.e. a dimensioned object in space)6

Modification: axial parts can be modified by degree/measure phrases, but adpositions cannot:

(11) (a) Daar was ’n gogga heel agter in die laai
there was a bug all.the.way back in the drawer
“There was a bug at the very back of the drawer”
(b) ...twee meter agter/onder die huis
two meters back/under the house
“two meters behind/under the house” (Axial parts)

(12) (a) *Daar was ’n gogga heel in die laai
there was a bug all.the.way in the drawer
(b) *Daar is ’n oulike koffiewinkel twee kilometer in die woud
there is a Nice coffee-shop two kilometers in the woods

(Adpositions)

Co-occurrence: Axial parts “stack” on locative/directional adpositions:

6This is not a new idea. Cf. e.g. Edwin Williams (1981), Zeller (2001), and Ian Roberts (forthcoming) where a functional projection above (lexical) N or P is referent-making in the sense of providing the requisite structure for embedding a conceptual entity in a grammatical matrix.

More generally, Ramchand & Svenonius’ (2014) concept of “existential closure” is also relevant here, where each functional projection effectively changes the existential nature of the syntactic object with which it combines in various ways that are relevant for that object’s role in the context of the clause.
(13) (a) ...dat Jan sy paspoort binne_{exp} in_{LOC} die laai sit that Jan his passport inside in the drawer puts “...that Jan is putting his passport inside of the drawer”

(b) *...dat Jan sy paspoort in binne/op/in die laai sit that Jan his passport in inside/on/in the drawer puts

4.2 V-particles vs. adpositions

Basically,

- adpositions form a constituent with the DP_{GROUND}
- V-particles form a constituent with the verb

Topicalisation: adpositions must be pied-piped when the DP_{GROUND} is topicalised (cf. 14); V-particles are topicalised with the verb (cf. 15)

(14) (a) Die kinders hang aan₁ die hek. the kids hang on the gate “The kids are hanging on the gate”

(b) [pp Aan₁ die hek] hang die kinders. on the gate hang the kids

(c) *die hek hang die kinders aan the gate hang the kids on

(15) (a) Die kinders sal die pakkie aan₂-stuur. the kids will the parcel.DIM on send “The kids will pass on the parcel”

(b) [vp Aan₂-stuur] sal die kinders die pakkie. on send will the kids the parcel.DIM

(c) *Stuur sal die kinders die pakkie aan₂ send will the kids the parcel.DIM on

Distribution: canonically, adpositions precede their DP complement (cf. 16); in embedded clauses (without V2 movement) V-particles are left-adjacent to the verb (cf. 17)

7 This statement does require defending, given the vast literature on the syntax of postpositional phrases in Dutch (cf. i.a. Van Riemsdijk 1990, Koopman 2000, Den Dikken 2010). It falls outside the scope of this talk to provide the necessary argumentation here; basically, however, the claim is that Afrikaans is not like Dutch in productively forming postpositional phrases and the only postpositions occur in the closed class of “true” circumpositional phrases van...af (“from”), na...toe (“to”), and met...langs (“via”).
Co-occurrence again: Elements functioning as axial parts, locative/directional adpositions, and V-particles can all co-occur in the same expression (cf. 18). This suggests they occupy different structural positions.

Some early accounts (e.g. Jackendoff 1990:45) suggest that this co-occurrence is evidence of P recursivity (19b).

Cf. Pretorius (2015a; 2015b) for discussion.
Analyses like (19b) cannot account for how heavily constrained P co-occurrence is:

→ Co-occurring P elements are rigidly ordered (20a-b)
→ There is an upper-limit to the number of co-occurring P elements (20c)

(20) (a) *...dat die man op bo die berg rond hardloop
that the man on top the mountain round runs

(b) */#...dat die man rond bo die berg op hardloop
that the man round top the mountain on runs

(c) ...dat die man bo op (*om) die berg rond hardloop
that the man top on around the mountain round runs

5. Functional range potential

Based on the distributional evidence in the previous section, there is no homogenous category P

This section introduces the notion of functional range potential (FRP) as a tool that brings us closer to an understanding of categories as non-primitive

Functional range potential (FRP): the set of functions which a multifunctional element has the capacity to express.

Based on FRP, Afrikaans P elements fall into six classes:

(21) Class A: range potential of only axial part
Class B: range potential of axial part and location
Class C: range potential of direction and V-particle
Class D: range potential of location, direction, and V-particle
Class E: range potential of location, direction, and V-particle
Class F: range potential of axial part, location, direction, and V-particle

Examples of each Class:

(22) Class A
...dat Jan totAXPART by die plaasdam draf
that Jan up.to at the farm-dam jogs
“that Jan is jogging up to the farm dam
Class B
(a) ...dat jou paspoort onder AXPART in the laai lê that your passport under in the drawer lies “that your passport is in the bottom of the drawer”
(b) ...dat Jan onder PLOC die brug slaap that Jan under the bridge sleeps “that Jan is sleeping under the bridge”

Class C
(a) ...dat die man na die plaas toe PDIR ry that the man after the farm to drives “…that the man is driving to the farm”
(b) ...dat Jan hom aan sy studies toe V-PART wy that Jan him to his studies to devote “…that Jan is devoting himself to his studies”

Class D
(a) ...dat Jan verby PDIR die plaashuis draf that Jan past the farmhouse jogs “that Jan is jogging past the farmhouse”
(b) ...dat Jan by die plaashuis verby V-PART draf that Jan at the farmhouse past jogs “that Jan is jogging past the farmhouse”

Class E
(a) ...dat Jan op PLOC die strand slaap that Jan on the beech sleeps “that Jan is sleeping on the beach”
(b) ...dat Jan op PDIR die berg klim that Jan up the mountain climbs “that Jan is climbing up the mountain”
(c) ...dat Jan teen die berg op V-PART klim that Jan against the mountain up climbs “that Jan is climbing up (the side of) the mountain”
Class F

(a) ...dat die yskas teen aan die muur staan
 that the fridge against on the wall stands
 “...that the fridge is against the wall”

(b) ...dat die yskas teen die muur staan
 that the fridge against the wall stands
 “...that the fridge is against the wall”

(c) ...dat Jan die bal teen die muur gooi
 that Jan the ball against the wall throws
 “...that Jan is throwing the ball against the wall”

(d) ...dat Jan die nuwe taalbeleid teen staan
 that Jan the new language-policy against stands
 “...that Jan is resisting the new language policy”

The table in (23) summarises the FRPs of Classes A-F.

- Columns represent the functions
- Shaded cells indicate the P element’s ability to express that function
Afrikaans P Elements
Organised by functional range potential

<table>
<thead>
<tr>
<th>AXIAL PART</th>
<th>ADPOSITION</th>
<th>V-PARTICLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_{LOC}</td>
<td>P_{DIR}</td>
</tr>
</tbody>
</table>

Class A
- na₂: near
- tot: up.to

Class B
- agter: back
- binne: “interior” inside
- bo: “top” above
- buite: “exterior” outside
- onder: under beneath
- tussen: in.between between
- langs: beside next.to +via
- van: of “origin”
- voor₂: “face” front

Class C
- af: down/off
- toe: to

Class D
- deur: through
- na₁: after
- om: around
- uit: out
- verby: past

Class E
- aan: “contact” (on)to to.vicinity
- by: at to.at to.at
- in: into
- op: on onto up
- oor: above over

Class F
- rond: “perimeter” around around
- teen: against to.against “opposite”
6. **What's in a category?**

Question: what is the categorial specification on a multifunctional element's lexical entry?

Chomsky (1996:60): lexical items take the form \{P, S, F\}, i.e. **listed associations** between

- \{P\} = phonological information
- \{S\} = semantic information
- \{F\} = formal syntactic information

Categorial information is \{F\}

Verbal (V-)particles are **typically** recycled from all sorts of categories:

(24) *Some Afrikaans particle verbs*

(a) uithaal
 out-take
 “to take out” Particle: *out* (adposition - P)

(b) slegsê
 bad-say
 “to insult” Particle: *sleg* (adjective - A)

(c) wegneem
 away-take
 “to remove” Particle: *weg* (adverb - Adv)

(d) fietsry
 bike-ride
 “to ride bikes” Particle: *fiets* (noun - N)

Ideally, we would like to be able to say something intelligent about

- The mechanisms by which multifunctional elements are licenced in more than one categorial context
- How these categorial contexts are related

Multifunctional elements could be

- specified for all the categories they express (**superset principle**)
- unspecified for category (**subset principle**)
Briefly, in favour of the superset principle:

→ If the **subset principle** is assumed for category specification on lexical entries, it cannot be explained why a multifunctional (=**categorically unspecified**) element expresses a very particular set of categories, and not others.

→ If the **superset principle** is assumed for category specification on lexical entries, it straightforward why a multifunctional (=**categorically overspecified**) element expresses a very particular set of categories, and not others.

To see just how specific multifunctional elements are in which categories they express, witness again the **pattern of multifunctionality** in (23):

- **NB**: there are **no gaps** in the paradigm

This can be expressed in terms of an **ABA constraint**:

Graphically,

(25)

<table>
<thead>
<tr>
<th>Function 1</th>
<th>Function 2</th>
<th>Function 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

Structurally,

(26)

```
Function 3  ↔ *A
  3  Function 2  ↔ B
    2  Function 1  ↔ A
      1
```

This is due to to the lexical specification of the elements A and B, and the principles governing the insertion procedure:
(27) Principles of insertion

(a) Insertion is cyclic and postsyntactic

(b) Superset principle
A lexical item qualifies for insertion iff it is specified for a superset of the features to be spelled out.

(Adapted from Caha 2007)

(c) Elsewhere condition:
Let E1 and E2 be competing elements that have D1 and D2 as their respective domains of application. If D1 is a proper subset of D2, E1 blocks the application of E2 in D1.

(Adapted from Kiparsky 1973)

Now suppose that the lexical entries A and B have the following specifications:

Scenario 1:

LEXICON

<table>
<thead>
<tr>
<th>Function 2</th>
<th>Function 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

SYNTAX

<table>
<thead>
<tr>
<th>Function 3</th>
<th>Function 2</th>
<th>Function 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Scenario 2:

Under no circumstances in this system is it possible to derive an ABA pattern in a paradigm.

Based on (23) above, the pattern of multifunctionality robustly supports an *ABA constraint for the Afrikaans spatial P system.

(28) *ABA constraint on Afrikaans spatial P

(a) If a form expresses axial part and V-particle, then it also expresses location and direction
(b) If a form expresses location and result, then it also expresses direction
(c) If a form that expresses location does not express direction, then neither does it express result
(d) If a form that expresses direction does not express location, then neither does it express axial part

From (28) it is possible to derive the space contiguity hypothesis

(29) Space contiguity hypothesis for Afrikaans
Multifunctionality targets contiguous regions in the sequence axial part-location- direction-result.
The six classes of Afrikaans P elements must therefore be lexically specified as follows:

(30)

(a) **Class A**
\[
\begin{array}{c}
< /na/; \text{VICINITY}; & \text{AXPART}\text{P} & > \\
\mid & \text{AXPART} & \\
\end{array}
\]

(b) **Class B**
\[
\begin{array}{c}
< /bo/; \text{UP}; & \text{P}\text{LOC}\text{P} & > \\
\mid & \text{P}\text{LOC} & \text{AXPART}\text{P} \\
\mid & \text{AXPART} & \\
\end{array}
\]

(c) **Class C**
\[
\begin{array}{c}
< /af/; \text{DOWN}; & \text{RES}\text{P} & > \\
\mid & \text{RES} & \text{P}\text{DIR}\text{P} \\
\mid & \text{P}\text{DIR} & \\
\end{array}
\]

(d) **Class D & E**
\[
\begin{array}{c}
< /op/; \text{UP}; & \text{P}\text{DIR}\text{P} & > \\
\mid & \text{P}\text{DIR} & \text{P}\text{LOC}\text{P} \\
\mid & \text{P}\text{LOC} & \text{AXPART}\text{P} \\
\mid & \text{AXPART} & \\
\end{array}
\]

(e) **Class F**
\[
\begin{array}{c}
< /oor/; \text{UP}; & \text{RES}\text{P} & > \\
\mid & \text{RES} & \text{P}\text{DIR}\text{P} \\
\mid & \text{P}\text{DIR} & \text{P}\text{LOC}\text{P} \\
\mid & \text{P}\text{LOC} & \text{AXPART}\text{P} \\
\mid & \text{AXPART} & \\
\end{array}
\]
Consider several insertion scenarios in which the same conceptual information \(\text{UP} \) is activated each time, but in which the syntactic context differs:

(31)

\[
\begin{array}{c}
< \text{/bo/}; \text{UP}; \\
P_{\text{LOC}} \text{AXPARTP} \\
P_{\text{DIR}} \text{AXPART}
\end{array}
\quad \leftrightarrow \quad
\begin{array}{c}
< \text{/oor/}; \text{UP}; \\
P_{\text{RES}} \text{P_{\text{DIRP}}} \\
P_{\text{LOC}} \text{AXPARTP} \\
P_{\text{DIR}} \text{AXPART}
\end{array}
\]

Scenarios:
- Syntax constructs \(\text{AXPART} \rightarrow \text{bo blocks oor} \)
- Syntax constructs \(\text{AXPART-P_{LOC}} \rightarrow \text{theoretically bo should block oor} \) but this does not always bear out (31). This is taken simply to be due to the conceptual information associated with the respective entries.\(^8\)
- Syntax constructs \(\text{AXPART-P_{LOC}} \rightarrow \text{P_{DIR} bo does not qualify for insertion} \)
- Syntax constructs \(\text{AXPART-P_{LOC}} \rightarrow \text{P_{DIR}-RES bo does not qualify for insertion} \)

\(^8\) The fact that \(\text{bo} \) and \(\text{oor} \) can both express location with equal felicity, as illustrated in (32), could be due to the fact these elements in fact associate with different conceptual information and are therefore not always in direct competition for expressing location – whichever element is more closely associated with the desired conceptual meaning in the context of a given derivation will be activated for matching during spellout. Cf. Biberauer & Roberts (2015) in connection with.
(32) (a) Die prent hang bo die yskas
 the picture hangs above the fridge
 “The picture is hanging above the fridge”

(b) Die prent hang oor die yskas
 the picture hangs over the fridge
 “The picture is hanging over the fridge”

Section summary

The pattern of multifunctionality in the Afrikaans P domain, highlighted in table (23), provides strong evidence for the syntactic hierarchy of functions in (33)

(33)

```
  result  ≈ category effect: V-particle
   /\                \
  RES direction  ≈ category effect: directional adposition
 /\                     \
P_DIR location  ≈ category effect: locative adposition
    /\                               \
   P_LOC axial part  ≈ category effect: axial part
       /\       \
      AXPART     ...
```

The notion of “category” as a primitive disappears when we assume that lexical elements are specified with a syntactic sub-tree that describes that element’s FRP

Together with the principles of insertion stated in (27), categories reduce to “overlapping subsets of hierarchically ordered features”, and an element exhibits behaviour associated with a particular category when it is actively expressing the subset of features associated with that category
7. The architecture of the system

Interim summary: What’s already in place:

- A late insertion model of the grammar
- The \{F\} component of lexical entries takes the form of a syntactic sub-tree which specifies the syntactic contexts into which an item may be inserted
- Insertion is governed by the superset principle & the elsewhere condition
- There are no categories; only category effects: an element behaves as a member of a given category depending on the set of features it expresses in a given context.
- Categories, therefore, reduce to overlapping subsets of syntactic features that are smaller than lexical entries

Non-terminal spellout is modelled using the *spanning* technique (following Svenonius 2011 and various others before and after)

Spanning:

NB: one exponent associates more than one terminal node

Following key aspects of Brody's (2000) Mirror Theory, spanning assumes

- Head-complement is the structural relation representing the main projection line
- Head-specifier is the structural relation representing the core predication (i.e. in which theta is assigned)
- Heads and complements may be lexicalised together (i.e. by the same exponent)
- Specifiers are spelled out separately (i.e. ignored for the purposes of spelling out the main projection line)

Finally, theta-roles are composite and therefore the same DP may move to saturate more than one specifier position.
DP Movement

→ The DP_{ground} is base-merged in comp-AXPART and must move to get theta if it is to become an argument. It will move through all the available spec-positions, until further movement is blocked by another externally merged DP.

→ The DP_{figure} is base-merged in spec-p. Since this is a theta-position, the DP need not move. However, it will move to saturate the next specifier position, if another DP is not externally merged to saturate that position.

9 That is to say, if the DP remains in its base position, it acquires no theta role and is interpreted at LF as an adjunct. In this system, the difference between an argument (of P or V) and an adjunct resides in the DP_{ground} remaining in situ (=adjunct) or moving to a specifier position of some kind (=argument).
8. Deriving Adpositions

This section implements the system set out in the previous sections to derive locative and directional adpositions in Afrikaans.

To do this, key insights about complex Ps – namely, which classes of P element systematically comprise the morphological components of a complex P – provide evidence for head-movement in the P-domain that is generalizable to simplex adpositions.

Two observations about complex Ps:

(35) Observation 1
Complex Ps can be locative or directional adpositions of which

(a) The initial element is always an axial element – either from Class A, B or F
(b) The final element is never an axial element – either from Class C, D, or E

(36) Observation 2
Complex Ps of which the morphologically final element

(a) Belongs to Class C or D, are directional
(b) Belongs to Class E are locative or ambiguous

For Example:
(37) (a) Morphologically final element belongs to Class C or D
(i) tussendeur between-through “through between” DIRECTIONAL
(ii) onderdeur under-through “through underneath” DIRECTIONAL
(iii) agterdeur back-through “through behind” DIRECTIONAL
(iv) agternaal back-after “after” DIRECTIONAL
(v) rondom round-around “around” DIRECTIONAL
(b) Morphologically final element belongs to Class E

(i) binne-in
inside-in
“inside/to inside” LOCATIVE/DIRECTIONAL

(ii) tussenin
between-in
“in between” LOCATIVE

(iii) agteraan
back-on
“attached to the back” LOCATIVE

(iv) teenaan
against-on
“against” LOCATIVE

(v) na2by
near-at
“near” LOCATIVE

(vi) bo-op
top-on
“on top/to on top” LOCATIVE/DIRECTIONAL

(viii) bo-oor
top-above/over
“above/over” LOCATIVE/DIRECTIONAL

Complex Ps are complex heads formed in syntax
Williams' 1981 *Right-hand head rule*: the rightmost element supplies the categorial properties

This obviously checks out:
- the rightmost element is an adposition (not an axial element), so the complex element is an adposition (not an axial element)
- the class of the rightmost element (i.e. whether it is locative, directional, or ambiguous) determines the class of the complex element (i.e. whether it is locative, directional, or ambiguous).

Complex head formation in syntax is traditionally modelled i.t.o. head-movement. Therefore,
- Locative complex adpositions are derived by \textit{AXPART}-to-\textit{P}_{\text{LOC}} head-movement (cf. 38);
Directional complex adpositions are derived by $AXPART$-to-P_{LOC}-to-P_{DIR} head-movement (cf. 39).

(38) (a) Jan sy geld $[P_{loc} tussenin die boeke]$.\(^\text{10}\)
Jan puts his money between-in the books
“Jan is putting his money in between the books”

(39) (a) Jan loop onderdeur die brug.
Jan walks under-through the bridge
“Jan is walking through under the bridge”

\(^{10}\) For independent reasons to do with the derivation of V-particles vs. homophonous adposition counterparts, it has to be assumed that a null element expresses little-p and that this node is not expressed by the adposition.
An important insight that comes from the derivations in (38-39) is that \textsc{axpart-to-\textsc{ploc-to-\textsc{pdir}} movement}, in an appropriately myopic system, occurs even these nodes are not expressed by separate exponents.

Thus,

- Simplex locative adpositions express both \textsc{axpart} and \textsc{ploc} (cf. 40)
- Simplex directional adpositions express \textsc{axpart}, \textsc{ploc}, and \textsc{pdir} (cf. 41)

(40) (a) Jan sit sy beker op die tafel
Jan puts his mug on the table
“Jan is putting his mug on the table”
(41) (a) Jan ry verby die plaashuis
 Jan drives past the farmhouse
 “Jan is driving past the farmhouse”

(b)

Section Summary:
Complex Ps systematically consist of two morphological sub-components
→ the left-hand component is always an axial element
→ the right-hand component is always a locative or directional adposition

The complex P is headed by the right-hand component

This evidences AXPART-to-\(P_{\text{LOC}}\)-to-\(P_{\text{DIR}}\) head-movement in the P domain

Derivational economy determines that AXPART-to-\(P_{\text{LOC}}\)-to-\(P_{\text{DIR}}\) head-movement occurs even with simplex Ps

Simplex locative and directional adpositions thus express the substructure AXPART-\(P_{\text{LOC}}\) and AXPART-\(P_{\text{LOC}}\)-to-\(P_{\text{DIR}}\) respectively, not merely the “highest” node in the function (i.e. \(P_{\text{LOC}}\) for locative adpositions and \(P_{\text{DIR}}\) for directional adpositions).

This supports the notion of “cumulative coding” where grammatical functions do not correspond with merely a single node, but rather with overlapping subsets of ordered syntactic nodes.
9. Summary & Concluding Remarks

Due to their FRP, Afrikaans P elements are categorised into Classes A-F

Due to robust pattern of multifunctionality in (13), it is possible to state an *ABA constraint on elements expressing spatial functions in Afrikaans and rank the relevant spatial functions

It is also possible to state the lexical specifications of each Class A-F

Due to the empirical facts of complex Ps, it is possible to determine that spatial functions are coded for in a cumulative manner

This is turn suggests that categories are not primitives, but rather that category effects arise due to the subset of nodes that an element expresses in a given syntactic context

Categories are thus better conceptualised as overlapping subsets of ordered syntactic features that are smaller than lexical entries

References

