A Biophysical Perspective of IPCC Integrated Energy Modelling

ISBPE 2018, Wells College, Aurora, NY, USA

Graham Palmer
University of Melbourne

Overview

- Economic growth in Integrated assessment models (IAMs)
- KAYA identity
- A Biophysical perspective
- A proposed conceptual model
- Conclusions

Integrated Assessment Models (IAMs)

Highly simplified, stylized, numerical models Integrate energy, agriculture, carbon cycle and the economy Use economics as a basis for decision making IAMs are driven by exogenous scenarios

Kaya identity

Kaya identity

$$CO_2$$
 = Population x $\frac{GDP}{Population}$ $\frac{Energy}{x}$ $\frac{CO_2}{GDP}$ Energy

Impact = Population x Affluence x Technology

(Ehrlich & Holdren)

- Identities versus formulas
- Equation versus stylized depiction
- Dependencies
- Descriptive equations

Kaya identity

$$CO_2$$
 = Population x $\frac{GDP}{Population}$ x $\frac{Energy}{GDP}$ x $\frac{CO_2}{Energy}$
 CO_2 = Population x $\frac{Energy}{Population}$ x $\frac{CO_2}{Energy}$

- Kaya is a mathematical identity
- Does not describe a causal relationship
- Right hand side terms are not independent
- These issues are explicitly identified in the scenario literature (e.g SRES 2000)
- Useful decomposition tool
- Best understood at a macro level

The power of Kaya is that it supports a techo-optimist framing ...

$$CO_2$$
 = Population x $\frac{GDP}{Population}$ x $\frac{Energy}{GDP}$ x $\frac{CO_2}{Energy}$

Wealth is compatible with asymptotes towards abatement $zero$

... leading to oversimplified decarbonization plans ...

Can also be expressed as percent change

$$CO_2$$
 = Population x $\frac{GDP}{Population}$ x $\frac{Energy}{GDP}$ x $\frac{CO_2}{Energy}$

$$\triangle co_2 \approx \triangle Population + \triangle \frac{GDP}{Population} + \triangle \frac{Energy}{GDP} + \triangle \frac{CO_2}{Energy}$$

Global annual average 1970-2016

$$2.0\% \approx 1.5\% + 1.4\% + -0.8\% + -0.3\%$$

Historical change in world GDP per capita – World Bank

Historical world GDP per capita – World Bank

SA90, IS92, SRES, SSP scenarios - carbon intensity and income

1990-2100

Scenario drivers of GDP per capita growth

Labour utilization

- Demographics
- Labour participation

Multi-factor productivity (MFP) growth

- Labour quality (human capital, education)
- Capital quality
- Pure technical progress

Political

• Developing country convergence

- Circular versus linear system
- Closed versus open system
- Equilibrium versus disequilibrium
- Technical progress versus energy quality
- Economic growth is an emergent property
- Can only be understood at a macro scale
- Globally, \$76 trillion is sustained by 18 TW of power flows

Proposed conceptual model

From: Palmer (2018)

Kaya and standard economic assumptions in IAMs lead to a biased framing of energy transitions

The BPE perspective is that productivity and economic growth are emergent properties of the energy-economic system

The standard economic modelling approach (adopted in IAMs) does not capture the energy-economic nexus

But, BPE needs a consistent suite of tools to explain the energyeconomic nexus

Conclusions

References

- Blanco, G., Gerlagh, R., Suh, S., Barrett, J., de Coninck, H. C., Diaz Morejon, C. F., ... Zhou, P. (2014). Drivers, Trends and Mitigation. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 351–412. https://doi.org/10.2800/93693
- Dellink, R., Chateau, J., Lanzi, E., & Magné, B. (2017). Long-term economic growth projections in the Shared Socioeconomic Pathways. Global Environmental Change, 42, 200–214. https://doi.org/10.1016/j.gloenvcha.2015.06.004
- Garrett, T. J. (2011). Are there basic physical constraints on future anthropogenic emissions of carbon dioxide? Climatic Change, 104(3–4), 437–455. https://doi.org/10.1007/s10584-009-9717-9
- Girod, B., Hulme, M., Girod, B., Wiek, A., Mieg, H., & Hulme, M. (2009). The evolution of the IPCC 's emissions scenarios. Environ Sci Policy. Environmental Science & Policy, (October 2015). https://doi.org/10.1016/j.envsci.2008.12.006
- Palmer, G. (2018). A Biophysical Perspective of IPCC Integrated Energy Modelling. Energies, 11(4), 839. https://doi.org/10.3390/en11040839
- US Climate Change Program (2003). Strategic Plan of the US Climate Change Science Program (Final Report, July 2003), 1–211.