Dans VDI, le niveau croissant des performances entraîne toujours plus d’exigences sur le plan du câblage. La paire torsadée support privilégié ne suffit pas et cède sa place à la fibre optique dans de nombreuses applications :

- câblage vertical,
- liaison inter bâtiment,
- distances importantes.
1 - Les fondamentaux :

1.1 - Schéma général d’une liaison optique :

1.2 - Lois physiques de l’optique :

1.2.a - La propagation de la lumière :

Dans un milieu homogène et transparent (tel que l’eau, l’air …) la lumière se propage toujours en ligne droite.

Un rayon lumineux est
Un faisceau lumineux est

La longueur d’onde : mesure de l’oscillation d’une onde

La vitesse de propagation de la lumière dans le vide (milieu d’indice \(n = 1 \)) est :

La vitesse de propagation de la lumière dans un milieu transparent est :

\[v = \frac{c}{n} \]

(\(c \) : vitesse de la lumière dans le vide)

l’air \(n \approx 1 \); pour l’eau \(n = 1,33 \) ; pour le verre \(n = 1,5 \).

Un rayon lumineux peut être :

✓ réfléchi (ex : par un miroir - surface réfléchissante)
✓ ou réfracté (changement de direction en passant d’un milieu transparent à un autre).
1.2.b - La réflexion

1. Lois de Descartes pour un rayon arrivant sur une surface réfléchissante :

 a. 1ère loi : le rayon incident SI et le rayon réfléchi IR sont dans un même plan appelé plan d’incidence,

 b. 2ème loi : l’angle d’incidence θ_i et l’angle de réflexion θ_r sont égaux.

2. Loi du retour inverse de la lumière : le trajet de la lumière est indépendant de son sens de propagation. En changeant le sens des flèches de la figure, RI devient le rayon incident et IS devient le rayon réfléchi.

La réfraction

2 cas possibles :

Lorsqu’un rayon lumineux passe d’un milieu d’indice n_1 à un milieu d’indice n_2, le rayon réfracté, lorsqu’il existe, se trouve dans le plan d’incidence défini par le rayon incident et le rayon réfléchi.
SO est le rayon incident, θ_1 l’angle d’incidence, OR le rayon réfracté et θ_2 l’angle de réfraction. Il y a toujours un rayon réfléchi OR’ qui accompagne la réfraction.
1.2.c - La réfraction limite - réflexion totale:

Un milieu d’indice n_1 est **plus réfringent** qu’un milieu d’indice n_2 si $n_1 > n_2$.

La valeur de λ se calcule à l’aide de la relation :

2 - **La fibre optique** :

2.1 - Constitution :

Le cœur : Milieu diélectrique* intérieur, conducteur de lumière ou sera confiné la plus grande partie de l’énergie lumineuse véhiculé dans la fibre.

La gaine : entoure le cœur d’un milieu diélectrique* (en principe le même que le cœur) d’indice de réfraction plus faible. Les pertes des rayons lumineux se produisent dans la gaine.

Le revêtement : Assure une protection mécanique de la fibre. Nous distinguons le revêtement primaire qui entoure la gaine et le revêtement secondaire appliqué directement sur le revêtement primaire pour renforcer la protection de la fibre pendant son maniement.

Rappel

* **Diélectrique** : substance qui ne conduit pas le courant électrique.

Matériaux : Deux types :

- Silice : cœur et gaine en silice. Elles sont les plus utilisées.
- Plastique : cœur et gaine en plastique. Elles commencent à être employées car elles ont un coût de mise en œuvre très inférieur. Elles peuvent voir le jour en télécommunication pour le FTTH.
- Les fibres mixtes sont très rares.
2.2 - Principe :

Une fibre optique est un conducteur optique constitué d’un premier milieu, d’indice de réfraction \(n_1 \), appelé cœur, entouré d’un second milieu, d’indice de réfraction \(n_2 \) inférieur à \(n_1 \), appelé gaine ou manteau.

Comme nous le verrons plus tard il existe de type de fibres optiques :
- fibre optique monomode,
- fibre optique multimode.

3 - Les caractéristiques d’une fibre :

Une fibre optique est définie par :
- son ouverture numérique,
- son atténuation (db/Km)
- sa bande passante (Hz/km)

3.1 - Ouverture numérique :

L’ouverture numérique est une mesure définissant l’angle maximal d’injection d’un signal dans une fibre optique. Au-delà la fibre ne peut collecter la lumière.
3.2 - Affaiblissement :

3.2.a - La puissance optique :

\[
dB = 10 \log \frac{P_1}{P_2}
\]

<table>
<thead>
<tr>
<th>dB</th>
<th>% transmis (au dizième près)</th>
<th>% de Perte</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>0,1</td>
<td>97,7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.b - L'atténuation A :

\[
A = 10 \log \frac{P_{entrée}}{P_{sortie} (à 1 km)}
\]

- Absorption : présence d’impuretés ou humidité,
- Diffusion de Rayleigh : La diffusion Rayleigh est l’interaction entre la lumière et la matière. Elle est d’autant plus grande, que la longueur d’onde L est petite,

3.2.c - Le spectre lumineux

- La longueur d’onde caractérise la couleur de la lumière
- L’homme voit les couleurs dont les longueurs d’onde sont comprises entre 750 nm (Rouge) et 420 nm (Violet)
- La silice utilisée pour la fibre est transparente pour 3 couleurs’ seulement, et ces couleurs sont dans le domaine des Infra Rouges (non visibles)
3.2.d - Les fenêtres de transmission :

- 850 nm : $A = \ldots$

3.3 - Bande passante

C’est ce paramètre, directement lié aux phénomènes de dispersion qui induit les limites d’utilisation de la fibre optique.

Pour ne pas avoir un mélange d’informations et une perte, la fréquence d’émission est donc limitée ce qui a pour conséquence de réduire la bande passante.
4 - Les types de fibres optiques

4.1 - Dimensions des fibres optiques :

4.2 - Monomode :
Un seul mode c'est-à-dire un seul faisceau de lumière. Le mode fondamental est capable de se propager à la longueur d’onde de fonctionnement.

-
-

SAUT D'INDICE MONOMODE
4.3 - Multimode :
Permet la propagation de plusieurs modes (plusieurs trajets ou plusieurs faisceaux). Elle autorise jusqu'à 680 modes pour $\lambda = 850 \text{ nm}$.

Il existe deux familles pour la fibre optique multimode :

- Fibre multimode à saut d'indice : 20 à 100 MHz/km
- Fibre multimode à gradient d'indice 150 à 5000 MHz/km
- Fibre monomode: > 10 GHz/km

A ce jour seules les fibres à gradient d'indice sont commercialisées.

4.4 - Conditionnement des fibres

Fibre à structure libre :
Une ou plusieurs fibres sont placées « libres » à l’intérieur d’un tube. Ce type de fibre est à usage extérieur, elle sera donc particulièrement mise en œuvre dans les liaisons inter bâtiments.

Inc : encombrement, rigidité et mise en œuvre des connexions.

Fibre à structure serrée :
Une gaine plastique est directement appliquée sur la gaine optique.

Avantages : résistance aux impacts, légèreté, flexibilité et faible encombrement.

Application : Cordons de brassage (jarretières) ou câbles à l’intérieur des immeubles.
5 - Les avantages et inconvénients de la fibre :

5.1 - Les avantages :
✓
✓
✓
✓
✓
✓

5.2 - Les inconvénients :
✓
✓
✓

5.3 - Monomode ou multimode ?

<table>
<thead>
<tr>
<th>Monomode</th>
<th>Multimode</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

6 - Quelques exemples de câbles :

6.1 - Jarretières optiques (Cordons de brassage) :
6.2 - Câbles de rocades

Vidéo sur la fabrication de la fibre optique : http://www.jeromeblanc.net/Videos/Comment-c-fait-La-Fibre-Optique.avi

7 - Les composants d’extrémités :

7.1 - Les connecteurs optiques :

7.1.a - Le standard 2,5 mm :

- Fiche: termine, protège, positionne et rend maniable la fibre.
- Raccord : guide et verrouille la fiche en assurant la continuité optique.

7.1.b - Le « Small Form Factor » (SFF) :
Connecteurs d’une nouvelle génération avec l’objectif d’augmenter la densité des ports sur les équipements. Il n’y a pas de normalisation, c’est le libre choix parmi les systèmes proposés. Attention sur les équipements ils viennent s’enficher sur des modules SFP (Small Form-Factor Plug)

7.1.c - Finition PC et APC :
Deux types de finition pour les contacts des connecteurs pour les fibres monomodes :

- Réflexion dans le cœur
- Réflexion dans la gaine
- Angle de 8°
7.1.d - Les solutions :

ST :
• A baïonnette et donc à section ronde et normalisé ISO 11801,
• Fibres multimodes essentiellement
• En céramique, raccordement par fusion,
• Le plus utilisé car le premier créé.

SC :
• Push-pull à section rectangulaire et normalisé ISO 11801,
• Fibres multimodes et monomode,
• Plus stable aux éventuels mouvements du câble,
• Raccordement par fusion.

FC :
• A vis avec un ergot et donc à section ronde et normalisé ISO 11801,
• Fibres multimodes ou monomode
• En céramique, raccordement par fusion,
• Surtout utilisé en télécom, en audiovisuel et sur les instruments de mesure

MT-RJ
• Format SFF,
• Pas encore normalisé,
• Conçu pour le poste de travail,
• Raccordement par sertissage,
• S’installe par simple encliquetage.

LC :
• Avantages des connecteurs ST et SC au Format SFF,
• fibre monomode et finition APC,
• Raccordement sur terrain avec polissage manuel,
• Pas encore normalisé.

Pigtail :
• Connecteur déjà raccordé,
• Raccordement par épissure.

Ce sont les solutions les plus utilisées mais il en existe bien d’autres comme le VF 45 de 3M (très peu utilisé).

Vidéo sur la connectique (salle D123)
7.2 - L’épissure :

Il existe deux types d’épissure :

- l’épissure mécanique :
 Perte : 0,5 dB
 2 façons : Sertie ou collée

- l’épissure par fusion.
 Perte : 0,05 dB
 Onéreuse (outils)

\[A_{total} \text{ doit se situer dans les limites du budget optique.} \]

\[\text{Vidéo sur les câbliers et les épissures.} \]

7.3 - Les tiroirs et cassettes :

Exemples d’applications :

- Tiroirs : en baie de brassage pour des répartiteurs de campus, de Bâtiment ou d’étage,
- Cassette pour des acheminements en prolongement ou dérivation ;
7.4 - Les sources lumineuses :

Deux types :

-
-

Un des principaux problèmes pour la fibre optique est la bande passante qui dépend de plusieurs paramètres comme présenté précédemment. Cependant la bande passante peut également dépendre des conditions d’injections.

Avec l’arrivée des réseaux haut débit la Led est moins utilisée. La diode VCSEL permet d’injecter la lumière dans le centre du cœur ce qui pour effet de diminuer la dispersion modale est donc d’augmenter la bande passante. L’augmentation dépend tout de même de la qualité de la diode.

<table>
<thead>
<tr>
<th>EMETTEUR</th>
<th>DEL</th>
<th>LASER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode de propagation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenêtre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bande passante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensibilité à la température</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durée de vie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 - Règles d’ingénierie :

8.1 - Panorama des fibres

Si les discours commerciaux sont en pleine effervescence, les réalités techniques restent inchangées.

- Les fibres optiques multimodes sont classées par catégorie, et à chaque catégorie correspondent des performances différentes.
- La fibre monomode ne connaît pas de sous classes et demeure une solution totalement éprouvée et normalisée.
- Bande passante sous la forme de 2 chiffres

<table>
<thead>
<tr>
<th>Fibres Courantes</th>
<th>Fibre 50/125 µm</th>
<th>Fibre 62.5/125 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe de fibre</td>
<td>Bande passante en MHz/Km</td>
<td>Classe de fibre</td>
</tr>
<tr>
<td></td>
<td>850 nm</td>
<td>1300 nm</td>
</tr>
<tr>
<td>IEC</td>
<td>200 - 400</td>
<td>200</td>
</tr>
<tr>
<td>Non IEC</td>
<td>500 - 800</td>
<td>500</td>
</tr>
<tr>
<td>500 - 1200</td>
<td>500</td>
<td>1200</td>
</tr>
<tr>
<td>Autres Fibres</td>
<td>IEC</td>
<td>500 - 500</td>
</tr>
<tr>
<td></td>
<td>600 - 1200</td>
<td>600</td>
</tr>
</tbody>
</table>

Les «fibres courantes» correspondent à des standards du marché.
Les «autres fibres» correspondent à des produits spécifiques, généralement triés et leur disponibilité est donc moins courante.
8.2 - Évolution des normes système

8.2.a - La classification des fibres par catégorie :

Les nouvelles normes systèmes (ISO 11801 et EN50173) finalisent actuellement la définition de 4 catégories de fibres :

- 3 catégories de fibres multimodes :

<table>
<thead>
<tr>
<th>Type de fibre</th>
<th>Diamètre de cœur</th>
<th>Bande passante minimale MHz/km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mesure OFLBBW standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850 nm</td>
</tr>
<tr>
<td>OM1</td>
<td>50 µm ou 62,5 µm</td>
<td>200</td>
</tr>
<tr>
<td>OM2</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>OM3</td>
<td>50 µm</td>
<td>1500</td>
</tr>
</tbody>
</table>

La fibre OM1 : elle correspond à une fibre 62,5/125 µm « courante ».

La fibre OM2 : les fibres 50/125 µm « courantes » répondent à cette spécification (et la dépassent).

La fibre OM3 : est définie pour couvrir les besoins des futures liaisons à 10 Gbit/s. Cette spécification de fibre vise à atteindre ce débit sur des distances de 300 m à 850 nm (10GbaseS).

Cette fibre suscite de nombreux effets d’annonce de la part des « constructeurs ». Toutefois, à ce jour ces fibres ne peuvent être considérées comme un « standard du marché » et leur disponibilité réelle est sujette à caution. Par ailleurs, au jour de la publication de cette fiche, les normes 10 Gigabit Ethernet (850 nm, 1310 nm, série ou multiplexées en longueur d’onde) circulent toujours pour approbation. Tant qu’elles ne sont pas définitivement finalisées, le choix des fibres qui seront associées à ce protocole peut être encore amené à évoluer.

- 1 catégorie de fibre monomode :

La fibre OS1 : est la fibre monomode G652, la plus couramment utilisée dans les réseaux de télécommunication.
8.2.b - Quelle classification choisir ?

Le tableau ci-dessous fournit, en fonction du type de fibre sélectionné, la distance couverte, en mètres, par les différentes applications de réseau Ethernet.

<table>
<thead>
<tr>
<th>Type de réseau Ethernet</th>
<th>Caractéristiques</th>
<th>62.5/125 mm (200/500)</th>
<th>62.5/125 mm (50/125 mm (500/500))</th>
<th>50/125 mm (500/800)</th>
<th>50/125 mm (500/1200)</th>
<th>Fibre monomode</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Base FL</td>
<td>10 Mbit/s 850 nm</td>
<td>3 000 m</td>
<td>3 000 m</td>
<td>3 000 m</td>
<td>3 000 m</td>
<td>N.A (1)</td>
</tr>
<tr>
<td>100 Base FX</td>
<td>100 Mbit/s 1300 nm</td>
<td>5 000 m</td>
<td>5 000 m</td>
<td>5 000 m</td>
<td>5 000 m</td>
<td>N.A (1)</td>
</tr>
<tr>
<td>1000 Base SX</td>
<td>1 Gbit/s 850 nm</td>
<td>275 m</td>
<td>550 m</td>
<td>550 m</td>
<td>550 m</td>
<td>N.A</td>
</tr>
<tr>
<td>1000 Base LX</td>
<td>1 Gbit/s 1300 nm</td>
<td>550 m</td>
<td>550 m</td>
<td>> à 550 m</td>
<td>550 m</td>
<td>5 000 m</td>
</tr>
<tr>
<td>10 Gbase S(2)</td>
<td>10 Gbit/s 850 nm</td>
<td>33 m</td>
<td>82 m</td>
<td>82 m</td>
<td>300 m</td>
<td>N.A</td>
</tr>
<tr>
<td>10 Gbase L(2)</td>
<td>10 Gbit/s 1300 nm</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>10 000 m</td>
</tr>
<tr>
<td>10 Gbase LX4(2)</td>
<td>10 Gbit/s - 4 λ 1300 nm</td>
<td>300 m</td>
<td>300 m</td>
<td>> à 300 m</td>
<td>300 m</td>
<td>10 000 m</td>
</tr>
<tr>
<td>10 Gbase E(2)</td>
<td>10 Gbit/s 1550 nm</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>40 000 m</td>
</tr>
</tbody>
</table>

Remarques :
1. bien que la norme 802.3 ne prévoie pas ce type d’interface, il existe de nombreuses solutions industrielles sur le marché, souvent inter opérables, qui permettent de déporter des réseaux Ethernet à 10 ou 100 Mbit/s sur de la fibre monomode,
2. la spécification de cette application n’est pas encore finalisée.

- **Interprétation du tableau** :

8.2.c - En l’état, quelle fibre choisir ?

A ce jour, l’environnement normatif est encore mouvant. Les valeurs de bande passante définies pour les classes OM1, OM2 et OM3 sont encore sujettes à discussion dans les instances de normalisation, et les méthodes de mesure en condition d’injection « laser » (RML Restricted Mode Launch) (OM3) sont encore en cours de définition.

Voici ci-après quelques éléments d’aide à la décision :

- les fibres **62.5/125 mm (200-500)** : préconisées dès 1995, elles sont **conformes à la catégorie OM1**. Elles répondent aux impératifs des liaisons hauts débits type Gigabit Ethernet sur des distances limitées. Leur bande passante dans la fenêtre 850 nm en limite l’utilisation par conséquent pour les nouvelles installations, on leur préférera donc des fibres de la catégorie suivante,

- les fibres **50/125 mm (500-800) ou (500-1200)** : elles sont **conformes à la catégorie OM2** et de performances supérieures. Elles répondent aux impératifs des liaisons hauts débits type Gigabit Ethernet et supporteront les nouvelles applications 10 Gigabit Ethernet sur des distances limitées. **Depuis 19995, on privilégie l’usage de ce type de fibre dans les nouvelles installations,**

- les fibres OM3 ne correspondent pas encore, à ce jour, à un « standard du marché ».

La fibre monomode reste LA fibre de référence pour toutes les applications au-delà du Gigabit.
9 - **Règles de pose :**

9.1 - **Pose de fibre optique en Intérieur et en extérieur :**

Raccordement dans les répartiteurs par :

- ✔
- ✔

En Intérieur :
- ✔ Rayon de courbure,
- ✔ Structure serré généralement.

Quelques contraintes pour la distribution extérieure :

- ✔ Étanchéité (PEHD: Poly Ethylène Haute Densité)
- ✔ Ecart de température
- ✔ Rongeurs (tresses métalliques)
- ✔ Rayon de courbure (> 30 cm)
- ✔ Traction (à la pose < 100 daN)
- ✔ Ecrasement (< 30 daN/CM)

9.2 - **Pose dans les fourreaux :**

9.3 - **Tirage de câbles**

Coupe transversale (sol)
Quelques contraintes pour la distribution intérieure :

- Rayon de courbure
 - > 20 cm : distribution
 - > 5 cm : point d’accès / répartiteur

- Traction à la pose : < 100 daN
- Ecrasement < 20 daN/cm

10 - **Les mesures et controles** :

10.1 - **Le Budget optique**:

L’évaluation du budget optique de la liaison est indispensable avant sa mise en service.

10.2 - **La réflectométrie** :

La réflectométrie est un des moyens pour garantir le budget optique d’une liaison, mais elle peut relever bien plus d’informations. Elle de la fibre à observer, et d’analyser, à la même extrémité, l’intensité optique parcourant la fibre dans le sens inverse de la propagation.

Les paramètres à vérifier sont :

-
-
-

Mesurer la puissance avec un OTDR

Mise en place du test

1) Fibre de lancement
 200 m – 500 m pour MM
 500 m – 1’000 m pour SM

2) Fibre de lancement
 200 m – 500 m pour MM
 500 m – 1’000 m pour SM

Exemple d’une courbe OTDR
Au bilan deux types d'événement :

- les événements réfléchissants : discontinuité causée par un changement brut de milieu ou d’indice de réfraction. L’origine ?

- les événements non réfléchissants : pas de discontinuité. L’origine ?

La mesure est préconisée dans les deux sens dans le but de minimiser les erreurs :
10.3 - La photométrie :

Cela consiste à injecter un niveau de puissance connu de lumière à une extrémité de la fibre et de mesurer le niveau à l’autre extrémité.

\[
A \ (\text{dB}) = P_1 \ (\text{dBm}) - P_2 \ (\text{dBm})
\]

Une photométrie sera réalisée en TP

10.4 - Le contrôle

Les contrôles et mesures ont pour objet de délimiter les responsabilités de chaque intervenant dans une installation.

<table>
<thead>
<tr>
<th>ETAPE</th>
<th>Type de contrôle</th>
<th>Point de contrôle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Réception du câble Visuel + Proces Verbal des fournisseurs</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Avant tirage Réflectométrie fibre nue</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Après tirage, avant la pose des connecteurs et l’épissurage en ligne Réflectométrie fibre nue</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pendant la connectorisation et l’épissurage Visuel – fiches connecteurs</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>La recette Visuel + Réflectométrie fibre connectorisée</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Recette Visuel + mesures par prélèvement en option</td>
<td></td>
</tr>
</tbody>
</table>

Le détail de chaque étapes figure en annexe 8 et pour un complément, se référer à la documentation du CREDO « mesure et recette d’un câblage Optique » sur le site http://www.cercle-credo.fr

Voici le Procès Verbal de la jarretière optique mise en œuvre dans la baie D124.