New Fish Feeding Deterrents, Including a Novel Sesquiterpenoid Heterogorgiolide, from the Brazilian Gorgonian Heterogorgia uatumani (Octocorallia, Gorgonacea)

Lenize F. Maia,† Rosângela de A. Epifanio,*,‡ Tegan Eve,§ and William Fenical‡

Received March 26, 1999

Studies of the Brazilian gorgonian octocoral Heterogorgia uatumani have resulted in the discovery of two metabolites that inhibit fish feeding under natural conditions. These are the previously reported eunicellane diterpenoid, (6E)-2α,9α-epoxyeunicella-6,11(12)-dien-3β-ol (1) and a new sesquiterpene lactone, heterogorgiolide (2). The structures of 1 and 2 were determined by spectroscopic methods and by comparison of spectral data with literature values. Field bioassays of the two compounds, at their natural concentrations, confirmed that they deter predation by a complex assemblage of reef fishes. This is an unusual observation showing that defenses are derived from both sesqui- and diterpenoid metabolites.

Secondary metabolites isolated from gorgonian octocorals (sea whips and sea fans) are structurally diverse and many exhibit biological activities. Since the polyps of the gorgonians lack physical defenses, the secondary metabolites from these animals have been generally hypothesized to serve as chemical defenses. During the past decade, laboratory and field experiments have shown that numerous gorgonians possess metabolites which are highly deterrent to generalist carnivorous fishes. Of the gorgonians studied in detail, several metabolites responsible for ichthyodeterrent activity have been isolated. Studies mainly involving gorgonians from the Caribbean Sea and from Guam, show that diverse compounds, including acetogenins, sesquiterpenes, and diterpenes, are the responsible metabolites. The Southern Atlantic Ocean, with its rich biodiversity, has yet to be well-investigated for its secondary metabolites, and their functions in defense, are few.

We report here the results of an investigation of the secondary metabolites and chemical defense of the gorgonian Heterogorgia uatumani Castro (Plexauridae, Gorgonacea, Octocorallia, Cladiida) collected in Ilha Grande Bay, Angra dos Reis, a region southwest of Rio de Janeiro, Brazil. This represents the first chemical study of H. uatumani, a gorgonian distributed in the tropical Atlantic Ocean from the southeast Caribbean Sea to the south Brazilian littoral zone.

Results and Discussion

H. uatumani was collected using SCUBA in March, 1994, at 10–12 m depth and immediately frozen. The freeze-dried animal was extracted with methanol and dichloromethane, and the combined extracts were fractionated by vacuum flash chromatography on Si gel to furnish a fraction (eluted with 30% ethyl acetate/isooctane) containing two major compounds. From this fraction, the major deterrent metabolites eunicellane diterpenoid 1 and heterogorgiolide (2) were subsequently purified by flash Si gel chromatography and by C8 reversed-phase HPLC.

* To whom correspondence should be addressed. E-mail: gqorose@um. uff.br.
† Núcleo de Pesquisas de Produtos Naturais, UFRJ, 21941-590, Rio de Janeiro, RJ, Brazil.
‡ Universidade Federal Fluminense.
§ Scripps Institution of Oceanography.
Notes

Table 1. NMR Data for Heterogorgiolide (2)

<table>
<thead>
<tr>
<th>C#/H#</th>
<th>δ 13C (DEPT)a</th>
<th>δ 1H (m, J in Hz)a</th>
<th>δ 1H (m, J in Hz)b</th>
<th>HMBC correlations (H#p,c)</th>
<th>J</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.0 (CH)</td>
<td>1.38 (dt, 3.6, 7.5)</td>
<td>1.30 (dd, 3.7, 7.3, 8.0)</td>
<td>2ab, 3</td>
<td>2ab</td>
<td>9b, 14</td>
</tr>
<tr>
<td>2a</td>
<td>17.1 (CH2)</td>
<td>0.71 (dt, 3.6, 6.0)</td>
<td>0.64 (dt, 3.7, 5.4)</td>
<td>1, 2b, 3</td>
<td>1, 2b</td>
<td>15ab</td>
</tr>
<tr>
<td>2b</td>
<td>0.83 (dd, 6.0, 7.5, 8.0)</td>
<td>0.75 (dd, 5.4, 8.0, 9.0)</td>
<td>1, 2a, 3</td>
<td>6ab, 15a</td>
<td>6ab</td>
<td>1, 6a</td>
</tr>
<tr>
<td>3</td>
<td>24.6 (CH)</td>
<td>2.02 (m)</td>
<td>1.93 (m)</td>
<td>1, 2ab, 15a</td>
<td>1, 2ab</td>
<td>15ab</td>
</tr>
<tr>
<td>4</td>
<td>153.3 (C)</td>
<td>3.36 (m)</td>
<td>3.31 (m)</td>
<td>6ab, 15ab</td>
<td>6ab</td>
<td>1, 9a, 14, 15ab</td>
</tr>
<tr>
<td>5</td>
<td>56.3 (CH)</td>
<td>2.35 (dd, 13.0, 18.0)</td>
<td>2.20 (ddq, 1.0, 12.1, 17.8)</td>
<td>5, 6ab, 13</td>
<td>5, 6a, 13</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>2.45 (m)</td>
<td>2.45 (m)</td>
<td>2.30 (ddq, 2.0, 7.0, 17.8)</td>
<td>5, 6a, 13</td>
<td>5, 6a, 13</td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>23.3 (CH)</td>
<td>2.13 (d, 14.0)</td>
<td>2.15 (d, 14.0)</td>
<td>9b</td>
<td>9b</td>
<td>1, 14</td>
</tr>
<tr>
<td>6b</td>
<td>51.4 (CH2)</td>
<td>2.48 (d, 14.0)</td>
<td>2.44 (d, 14.0)</td>
<td>1</td>
<td>1, 5, 9ab, 14, 2ab</td>
<td>2ab</td>
</tr>
<tr>
<td>9a</td>
<td>109.8 (C)</td>
<td>1.79 (dd, 1.0, 2.0)</td>
<td>6ab</td>
<td>6ab, 13</td>
<td>6ab</td>
<td>13</td>
</tr>
<tr>
<td>9b</td>
<td>0.52 (s)</td>
<td>0.45 (s)</td>
<td></td>
<td>9b</td>
<td>9b</td>
<td>6ab</td>
</tr>
<tr>
<td>10</td>
<td>38.6 (C)</td>
<td>8.2 (CH2)</td>
<td>1.82 (bs)</td>
<td>3, 5, 15b</td>
<td>3, 5, 15b</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>128.1 (C)</td>
<td>21.3 (CH2)</td>
<td>0.52 (s)</td>
<td>9b</td>
<td>9b</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>173.0 (C)</td>
<td>16.4 (CH2)</td>
<td>4.78 (bs)</td>
<td>5, 15a</td>
<td>5, 15a</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>50.7 (CH3)</td>
<td>5.00 (bs)</td>
<td>4.94 (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCH3</td>
<td>3.08 (s)</td>
<td>3.06 (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a δH and δ13C assignments made on the basis of HMBC experiments (CD3OD, 400 and 100 MHz, respectively). b δCDCl3, 300 MHz. c HMBC J CH = 8 Hz.

Figure 1. Selected nuclear Overhauser enhancements observed for heterogorgiolide (2).

(C), 153.3 (C) and 159.4 (C), and by two broad signals (1H each) at δ 4.78 and 5.00 in the 1H NMR spectrum. The presence of a 13C NMR carbonyl signal at δ 173.0, an infrared absorption at 1775 cm⁻¹ and an UV absorbance at 207 nm illustrated that 2 possessed an α,β-unsaturated γ-lactone. The presence of a methoxyl group was indicated by 13C and 1H NMR signals at δ 50.7 (CH3) and δ 3.08 (CH3, s), respectively. The downfield carbon chemical shift of the γ-lactone carbon [δ 109.8 (C)] indicated that the methoxyl group was part of a typical γ-methoxy-γ-lactone functionality. The presence of a cyclopropane ring was strongly suggested by the shielded signals at δ 0.71 (1H, dt, J = 3.6 and 6.0 Hz) and 0.83 (1H, ddd, J = 6.0, 7.5 and 8.0 Hz). The remaining five- and six-membered rings were subsequently confidently assigned by 1H-1H COSY and HMBC correlation data (Table 1). These data allowed the complete planar structure of heterogorgiolide to be assigned.

The relative stereochemistry of heterogorgiolide (2) was assigned by interpretation of 1H NMR coupling data (CDCl3, 300 MHz) and nuclear Overhauser enhancement experiments (Table 1 and Figure 1). The rigid conformation of heterogorgiolide readily allowed the assignment of all substituents, as well as the three-dimensional arrangement of the three rings present. HOMA-lytic couplings were observed between the C-6 axial, [δ 2.20 (1H, ddg, J = 1.0, 12.1, 17.8 Hz)], and equatorial [δ 2.30 (1H, ddq, J = 2.0, 7.0, 17.8 Hz)] protons and the H-13 methyl protons [δ 1.79 (1H, dd, J = 1.0 and 2.0 Hz)]. The H-5 α-axial orientation was suggested by its axial-equatorial and axial-axial couplings with H-6ab (7.0 and 12.1 Hz, respectively). NOE enhancements observed for H-2β, H-6β, and H-9β when the protons at δ 0.52 (3H, s) were irradiated, placed the bridgedhead methyl group in a β-axial position (Figure 1). The same correlations were observed for H-9α, C-9α, and for H-1 and H-2a when H-1 and H-3 were irradiated, respectively. These NOE enhancements indicated that the cyclopropane ring is in a cis relationship with H-14 and possesses a trans relationship to H-5. The methoxyl group was assigned to the β position on the basis of observed NOE correlations from the H-13 protons (C-13 methyl) to only the H-6α proton. Molecular modeling experiments showed that the observed NOE between the C-13 methyl group and H-6α proton requires that the methoxyl group be in the β or “up” axial position (Figure 1). The relative configurations of these groups are identical to those found in other linderane sesquiterpenes previously isolated from terrestrial plants.15-22

This is the first report of the isolation of a linderane sesquiterpenoid from a marine organism. Linderanes, on the other hand, are common metabolites of numerous plants. Two closely related linderane sesquiterpenoids, bearing α or β C-8/C-9 epoxides, have been isolated from Chloranthus glaber.16,17 In addition, various linderanes have also been isolated from Linderia strichnifolia18,19 Chloranthus japonicus,20-25 Chloranthus serratus,20,26,27 and C. glaber.16,28

The feeding deterrent properties of compounds 1 and 2 were determined using an in situ bioassay developed to assess feeding preferences of natural populations of carnivorous fish.9,10 Palatable, carageenan-based food pellets were prepared, and consumption was measured by placing food arrays directly on coral reefs. Control foods, without extracts or purified metabolites, were readily consumed in all cases. Experiments which compared control to treated foods, in which compounds 1 and 2 were incorporated at the same concentrations as they occur in the gorgonian tissues, showed that extracts of H. uatumani and terpenoids 1 and 2 were highly deterrent. Diterpenoid 1 and heterogorgiolide (2), at natural volumetric concentrations (0.5 and 0.8 mg/cm³), significantly inhibited feeding relative to controls with high statistical significance (Wilcoxon signed rank test, 1-tail, p = 0.0212 and p = 0.0068, respectively).28
Experimental Section

General Experimental Procedures. Reversed-phase (C₈) HPLC was carried out on a semi-preparative column (9.4 mm i.d.) using a Waters model 510 pump and a model 410 differential refractometer detector. Corrected melting points were observed on a Thomas-Hoover capillary apparatus. IR spectra (film, CHCl₃) were recorded on a Perkin-Elmer 243B spectrophotometer. Optical rotations were measured on a Perkin-Elmer 1413B spectrophotometer. Mass measurements were obtained on a HP 5989A spectrometer. UV spectra were obtained on a Shimadzu model 1601 spectrophotometer. NMR spectra were recorded on a Varian Unity-500 spectrometer (CD₃OD solutions) and on a Varian Unity-300 spectrometer (CDCl₃ solutions).

Extraction and Isolation. The gorgonian Hu. uatamani Castro (1.18 L volume) was collected using SCUBA in 1994 at a depth of 6–15 m, in Ilha Grande Bay, Angra dos Reis, south of Rio de Janeiro State. The specimens were stored frozen until extraction. The animals were freeze-dried and the tissues (100 g) were extracted at room temperature once with MeOH/CH₂Cl₂ (3:7) and twice with 100% CH₂Cl₂. After removal of the solvents from the combined extracts under reduced pressure, the solvents from the combined extracts were fractionated by flash chromatography [EtOAc:hexane (2:8)] to yield 20 fractions. Fraction 4 (2.5 g obtained) was refractionated by Si gel chromatography (EtOAc [0.2 of the 4.5 g obtained] was refractionated by Si gel chromatography). NMR spectra were recorded on Varian Unity-500 spectrometers (CD₃OD solutions) and on a Varian Unity-300 spectrometer (CDCl₃ solutions).

References and Notes