

COMMAND SET----Rev 1.0

VIZIC

TECHNOLOGIES

SMART GPU 2

4.3” TOUCH

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 1

SMART GPU 2– Intelligent Embedded Graphics, Audio and Touch Processor.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 2

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 3

Table of Contents:

Description.…...6

Board Features………..8

SmartGPU 2 Board Explained…...9

1. Host Interface..10

1.1 Command Protocol : Flow Control...10
1.2 Serial Set-up…………………...11
1.3 Power-up and Reset…...11
1.4 Splash Screen on Power Up..12
1.5 Understanding the computer’s graphic coordinate system…………………...12

2. SMART GPU Command Set software Interface Specification..............................13
2.1 General Commands...14
2.1.1 Initialize Smart GPU 2 -55hex U ascii..15

2.2 Master Commands...16
2.2.1 Erase Screen - 45hex - E ascii…………………………………….…….…….17
2.2.2 Set Erase Background Colour - 43hex - C ascii……………………….…….18
2.2.3 Display Orientation – 4Fhex - O ascii…………………………………….......19
2.2.4 Display Brightness - 42hex - B ascii……………………………………….….20
2.2.5 BaudRate Change – 58hex - X ascii……………………………………….…21
2.2.6 Sleep – 5Ahex - Z ascii………………………….……………………………..22
2.2.7 Calibrate Touch – 54hex - T ascii………………………………………….….23
2.2.8 Software Reset – 52hex - R ascii………………………………………….….25

2.3 Geometry Commands...26
2.3.1 Put Pixel – 50hex - P ascii………………………………………………….….27
2.3.2 Draw Line – 4Chex - L ascii……………………………………………….…..28
2.3.3 Draw Rectangle – 52hex - R ascii……………………………………….……29
2.3.4 Draw Round Rectangle – 4Fhex - O ascii……………………………………31
2.3.5 Draw Gradient Rectangle – 47hex - G ascii…………………………….…...33
2.3.6 Draw Arc – 41hex - A ascii……………………………………...……….…….35
2.3.7 Draw Circle – 43hex - C ascii………………………………………………….37
2.3.8 Draw Ellipse – 45hex - E ascii………………………………………………...39
2.3.9 Draw Triangle – 54hex - T ascii………………………………………….……41

2.4 Text/String Commands..43
2.4.1 Put Letter – 4Chex - L ascii…………………………………………………….44
2.4.2 Print Number – 4Ehex - N ascii.………………………………………….……46
2.4.3 Display String – 53hex - S ascii…………………………………………….…48

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 4

2.4.4 Display String SD – 46hex - F ascii……………………………………….….50
2.4.5 Strings Configuration - 43hex - C ascii…………………………………….…53
2.5 Image Commands..55
2.5.1 Draw Image/Icon – 49hex - I ascii…………………………………..……...57
2.5.2 Image BMP SD – 42hex - B ascii…………………………….……….…....59
2.5.3 Image JPG SD – 4Ahex - J ascii…………………………………………...62
2.5.4 Memory Read – 4Dhex - M ascii……………………………………………65
2.5.5 Screenshot BMP – 53hex - S ascii…………………………………………67

2.6 Video Commands..68
2.6.1 Allocate Video SD – 41hex - A ascii………………………………….……70
2.6.2 Play Video SD – 4Ahex - J ascii…………………………………….……..72
2.6.3 Set Frame Video SD – 46hex - F ascii……………………………………74
2.6.4 De-Allocate Video SD – 44hex - D ascii……………………………….....75

2.7 Audio Commands...76
2.7.1 Initialize/De-initialize DACs/Audio – 49hex - I ascii……………….……..77
2.7.2 Play WAV File – 50hex - P ascii…………………………………………...78
2.7.3 Pause WAV File – 57hex - W ascii……………………………………..…80
2.7.4 Advance WAV File – 41hex - A ascii……………………………………...81
2.7.5 Stop WAV File – 53hex - S ascii…………………………………………...82
2.7.6 Set Volume WAV – 56hex - V ascii………………………………………..83
2.7.7 Get Playing State – 47hex - G ascii……………………………………….84
2.7.8 Audio Boost WAV File – 42hex - B ascii………………………………….85

2.8 Touch Commands...86
2.8.1 Get Touchscreen – 53hex - S ascii………………………………………..87
2.8.2 Get Touch Icons – 49hex - I ascii……………………………………….....89

2.9 FAT Data Management/Data Logger Commands...............................91
2.9.1 List Dirs and Files –4Chex – ‘L’ ascii…………………………………….93
2.9.2 Get Name of Item Number# –47hex – ‘G’ ascii………………………...94
2.9.3 Get Dir Path –48hex – ‘H’ ascii…………………………………………...95
2.9.4 New Dir/File – 4Ehex - ‘N’ ascii…………………………………………...96
2.9.5 Open Directory/Folder –44hex – ‘D’ ascii………………………………..97
2.9.6 Open File –4Fhex – ‘O’ ascii………………………………………………99
2.9.7 Read File –52hex – ‘R’ ascii……………………………………………...101
2.9.8 Write File –57hex – ‘W’ ascii……………………………….……………103
2.9.9 Set/Get Pointer –50hex – ‘P’ ascii………………………………………105
2.9.10 Sync File –53hex – ‘S’ ascii…………………………………………….107
2.9.11 Test Error-EOF File –51hex – ‘Q’ ascii………………………………..108
2.9.12 Close File –43hex – ‘C’ ascii……………………………………………109
2.9.13 Truncate File –56hex – ‘V’ ascii………………………………………..110
2.9.14 Erase Dir/File –45hex – ‘E’ ascii………………………………………..111
2.9.15 Dir/File Rename/Move –4Dhex – ‘M’ ascii…………………………….112
2.9.16 Set/Get Time and Date Dir/File –54hex – ‘T’ ascii……………………114

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 5

2.9.17 Get Dir/File Info –49hex – ‘I’ ascii………………………………………116
2.9.18 Get Free and Total Space –46hex – ‘F’ ascii…………………………118

2.10 RTC Real Time Clock Commands..119
2.10.1 RTC Setup –53hex – ‘S’ ascii……………………………………….…...120
2.10.2 RTC Set/Get Time and Date –50hex – ‘P’ ascii………………….……122

2.11 EEPROM-FLASH Commands...124
2.11.1 Init/Clear EEPROM Buffer–49hex – ‘I’ ascii……………………………126
2.11.2 Read Bytes from EEPROM Buffer–52hex – ‘R’ ascii…………………127
2.11.3 Write Bytes to EEPROM Buffer–57hex – ‘W’ ascii……………………129
2.11.4 Fill Buffer with EEPROM Page#–46hex – ‘F’ ascii……………………130
2.11.5 Save Buffer to EEPROM Page#–53hex – ‘S’ ascii……………………131
2.11.6 Erase EEPROM Page#–45hex – ‘E’ ascii……………………………..132
2.11.7 Compare Buffer to EEPROM Page#–43hex – ‘C’ ascii………………133

2.12 OBJECTS Commands..134
2.12.1 Object Checkbox–43hex – ‘C’ ascii…………………………………….135
2.12.2 Object Button–42hex – ‘B’ ascii…………………………………………137
2.12.3 Object Switch–54hex – ‘T’ ascii…………………………………………139
2.12.4 Object Progress Bar–50hex – ‘P’ ascii…………………………………141
2.12.5 Object Scroll Bar–53hex – ‘S’ ascii……………………………………..143
2.12.6 Object Slider–4Chex – ‘L’ ascii………………………………………….145
2.12.7 Object Window–57hex – ‘W’ ascii………………………………………147

3. Development hardware tools...150

4. Development software tools..151

Proprietary Information..152

Disclaimer of Warranties & Limitation of Liability...152

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 6

Smart GPU 2:

Intelligent Embedded Graphics, Audio and Touchscreen Processor.

Description:

 The Smart GPU 2 is a
powerful easy to use,
intellectual property, embedded
graphics, audio and
touchscreen processor in a
state-of-the-art ARM Cortex-
M3 chip; this is mounted on a
board with a touchscreen color
LCD. It's aimed to help
developers to create advanced
Graphical User Interfaces
(GUIs) in a very easy way. It
features high end FAT format
data management functions
(Data Logger) to create even

more advanced applications in just minutes, not days. The Smart GPU 2 processor
doesn’t need any configuration or programming on itself, it’s a slave device that only
receives orders, reducing and facilitating dramatically the code size, complexity and
processing load in the master host processor.

The Smart GPU 2 offers a simple yet effective serial interface UART to any

host micro-controller/microprocessor that can communicate via a serial port(8051,
PIC, ATMEL, FREESCALE, STMICRO, ARM, CORTEX, ARDUINO, raspberry PI,
FPGA MBED, etc. even PCs(RS232)). All graphics, audio and touchscreen related
functions are sent using simple commands via the serial interface.

The main goal of the Smart GPU 2 processor it’s to bring a very easy way to

add colour, audio and touch interfacing to any application or project without the need
of having experience in handling LCDs and graphics algorithms. The Smart GPU 2
it's a low power/very high performance processor, it integrates the
FAT/FAT12/FAT16 or FAT32 universal PCs file System for data storage (read/write),
supporting up to 32 GB of storage with a microSD/HC card, NO special format is
required.

SmartGPU2 chip is also sold as “bare chip” for high end applications
and can be adapted to drive any LCD with parallel 8080 interface.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 7

The next image clearly explains the roles played by the user host main
processor and the Smart GPU 2 processor:

Instead of loading all the Geometry, Images, audio, video, SD FAT memory
access, etc. processing to the main host processor, the Smart GPU 2 does the
entire job and stuff in parallel with the user microcontroller/microprocessor by
receiving simple orders or commands.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 8

Board Features:

 4.3“, 480x272 pixels resistive touchscreen LCD, capable of
displaying 262,144 colours.

 Easy 5 pin interface to any host device: VCC, TX, RX, GND,
RESET.

 On-board uSD/uSDHC card adaptor, FAT(windows PC)
Support up to 32GB for storing images and text, Data
Logger functions (read-write) and LFN(long File Names).

 BMP and JPG images support.

 Video and Audio(CD quality) capable.

 Integrated 2 channel DACs outputs can play stereo audio.

 Integrated Touch screen driver, 12 bit accuracy touch.

 5 general purpose Icons on touchscreen panel.

 Integrated RTC - Real Time Clock with battery back-up.

 PWM controlled display brightness.

 Sleep mode.

 UART/USART Baud Rate speeds from 9600bps up to
2000000bps, 8 bits, no parity, 1 stop bit.

 5V and 3V3 I/O compatible, 3V3 power supply.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 9

Smart GPU 2 Board – EXPLAINED

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 10

1.-Host Interface

The Smart GPU 2 is a slave peripheral device and it provides a bidirectional
serial interface to a host controller via its USART(Universal Serial Asynchronous
Receiver - Transmitter).

Any microcontroller or processor (AVR, PIC, BASICstamp, XXDUINO, raspberry

PI, 8051, MBED, FPGA, ARM, STmicro, etc) or PC(by serial interface RS232) as host,
can communicate to the device over this serial interface from 9600bps up to
2000000bps.

The Smart GPU 2 doesn't need to be configured in any way; it's a plug-and-play

device, could be used by students, up to industrial and professional applications, its
compatible with any device and existing development board with a USART/UART.

The serial protocol is universal and very easy to implement.
Serial Data Format: 8 Bits, No Parity, 1 Stop Bit.
BaudRate: 9600 bps (default; could be changed).
Serial data is true and not inverted.

1.1 Command Protocol : Flow Control

The Smart GPU 2 Intelligent Graphics Processor Unit is a slave device and all
communication and events must be initiated first by the host. Commands consist of a
sequence of data bytes beginning with the command/function byte.

When a command is sent from host to the device, this process the command and
when the operation is completed, it will always return a response*. The device will send
back a single acknowledge byte called the ACK (4Fhex, ‘O’ ascii), in the case of
success, or NAK (46hex, ‘F’ ascii), in the case of failure or not recognized command.

* Commands having specific responses may send back varying numbers of bytes, depending upon the command and
response. It will take the device a certain amount of time to respond, depending on the command type and the
operation that has to be performed.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 11

1.2 Serial Set-up

The Smart GPU 2 is configured to be always initialized at a standard baud rate
of 9600 bps. So the first command that the host sends to the Smart GPU 2 must be at
that speed.

Always after any power-up or reset, the Smart GPU 2 must be initialized by

sending the uppercase ascii character ‘U’ (55hex) at 9600bps. This will initialize all the
processor, and when done it will respond with an ACK byte (4Fhex, ‘O’ascii).

If the Smart GPU 2 respond with a NAK(46hex, ‘F’ascii), Host must try to send

the uppercase ascii character ‘U’ (55hex) again until a valid ACK is received, meaning
this that Smart GPU 2 is ready and running.

Once the chip is initialized, user can change the baud rate speed to a total of 8

different speeds up to 2Mbps.

Remember:
The SMART GPU 2 always initializes the micro SD card after a valid ‘U’ character is received. If a micro SD card is
detected the ACK ‘O’ will be response almost immediately, however if no micro SD card is detected, the ACK ‘O’
could be delayed while the SMART GPU 2 retries to initialize a micro SD card, however if no micro SD card is
detected after several tries, the SMART GPU 2 will send the ACK ‘O’ and the processor will function normally without
the SD card functions.

1.3 Power-up and Reset

When the Smart GPU 2 device comes out of a power up or external reset, a
200ms delay before sending any command must be met, do not attempt to
communicate with the module before this period.

 If no valid uppercase ascii character ‘U’ (55hex) is sent before 3 seconds, the
Smart GPU 2 logo will automatically show up, host still can send the uppercase ascii
character ‘U’ (55hex) to initialize the processor even if the logo has already appeared.

Remember:
The host transmits the upper case character (‘U’, 55hex) as the first command so the device to start communication.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 12

1.4 Splash Screen on Power Up

The Smart GPU 2 will wait up to 3 seconds with its screen in black, for the host to
transmit the Initial command (‘U’, 55hex). If the host has not transmitted this initial
command the module will display its splash screen. If the host has transmitted only the
initial command and has received a valid ACK, the screen will remain in black. This wait
period of the splash screen to appear, is to allow the user initialize the Smart GPU 2
before the welcome screen appears when it is undesired.

1.5 Understanding the Computer's graphic coordinate
system

As well as a computer monitor’s coordinate system, the Smart GPU 2 uses the
same universal coordinate system, on computer’s there’s only one positive coordinate
quadrant, and there’s no negative numbers or points. This quadrant is represented as
follows:

The upper left corner is 0,0 if we go right the X values increases, as we go down

the Y values increase.

This image shows a LANDSCAPE orientation of
the screen, the upper left corner is 0,0
(zero,zero). The maximum values of the SMART
GPU 2 in LANDSCAPE mode are X:479,Y:271.

 This image shows a PORTRAIT orientation of
the screen, the upper left corner is 0,0
(zero,zero). The maximum values of the SMART
GPU 2 in PORTRAIT mode are X:271,Y:479.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 13

2. SMART GPU 2 Command Set - Software Interface
Specification

2. Command Set

As mentioned before the command interface between the Smart GPU 2 and the
host processor is via the serial interface USART/UART.

A list of very easy to learn commands provide complete access to all the
available functions. Commands and responses can be a single byte or a byte package.
All commands always return a response, either a single ACK, or data followed by an
ACK.

Remember all commands start with a uppercase letter (ascii).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 14

2.1 General Commands

Briefly Summary of Commands in this section:

• Initialize SMART GPU 2 – 55hex ‘U’

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 15

2.1.1 Initialize SMART GPU 2 - 55hex - U ascii

Commands (host) 1 byte

 1.- 0x55 (hex), U (ascii).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command is needed only once to
initialize communication with the
SMARTGPU2 after any power-up or reset,
remember to wait at least 200ms after any
power up or reset before sending this
command.

Example (sent commands) Example 1:
<55> Initializes SMART GPU 2.

All data is hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 16

2.2 Master Commands

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘M’-4Dhex,
as they are Master commands, followed by the next parameters/bytes.

• Erase Screen – 45hex ‘E’
• Set Erase Background Colour – 43hex ‘C’
• Display Orientation – 4Fhex ‘O’
• Display Brightness – 42hex ‘B’
• BaudRate Change – 58hex ‘X’
• Sleep – 5Ahex ‘Z’
• Calibrate Touch – 54hex ‘T’
• Software Reset – 52hex ‘R’

The colour parameter needed on the Set Erase Background Colour command,

consist of 16bits (2 bytes) RGB565:

R4R3R2R1R0G5G4G3 G2G1G0B4B3B2B1B0

That is:

5bits for red, 6 bits for green, 5bits for blue.

High byte colour: R4R3R2R1R0G5G4G3

Low byte colour: G2G1G0B4B3B2B1B0

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 17

2.2.1 Erase Screen - 45hex - E ascii

Commands (host) 2 bytes

 1.- 0x4D (hex), M (ascii). *Master command
2.- 0x45 (hex), E (ascii).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description Command needed to erase the entire screen,
the display will be draw with the background
colour if it is set before, if not, default
background colour on reset or power on is
black.

Example (sent commands) Example 1:
<4D, 45> - Erase screen with currently set
background colour.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 18

2.2.2 Set Erase Background Colour - 43hex - C ascii

Commands (host) 4 bytes

 1.- 0x4D (hex), M (ascii). *Master command
2.- 0x43 (hex), C (ascii).
3.- High byte colour.
4.- Low byte colour.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description Command needed to set background, the
colour consist of 16bits (2 bytes) RGB565:

R4R3R2R1R0G5G4G3G2G1G0B4B3B2B1B0
That is:
5bits for red, 6 bits for green, 5bits for blue.
High byte : R4R3R2R1R0G5G4G3
Low byte : G2G1G0B4B3B2B1B0

 Once this command is sent, each time that
the device receives the Erase Command, the
screen will be draw with this background
colour. Default background colour on reset or
power on is black.

Example (sent commands) Example 1:
<4D,43,FF,FF> Sets Background Colour to
white (FFFF).

Example 2:
<4D,43,F8,00> Sets Background Colour to
red (F800).

Example 3:
<4D,43,00,1F> Sets Background Colour to
blue (001F).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 19

2.2.3 Display Orientation – 4Fhex - O ascii

Commands (host) 3 bytes

 1.- 0x4D (hex), M (ascii). *Master command
2.- 0x4F (hex), O (ascii).
3.- HorizontalR(landscape): 00(hex) or
 VerticalL(portrait): 01(hex) or
 HorizontalL(landscape): 02(hex) or
 VerticalT(portrait): 03(hex).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description Command needed to set display orientation
mode, landscape or portrait. Default display
orientation mode on reset or power on is
HorizontalR 00(hex).

Example (sent commands) Example 1:
<4D,4F,01> Set VerticalL mode.

Example 2:
<4D,4F,02> Set HorizontalL mode.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 20

2.2.4 Display Brightness - 42hex - B ascii

Commands (host) 3 bytes

 1.- 0x4D (hex), M (ascii). *Master command
2.- 0x42 (hex), B (ascii).
3.- Brightness value (0-100) (0 hex-64 hex).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description Command needed to adjust the display
brightness, 0(0hex) stands for none,
100(64hex) stands for maximum brightness.

Default brightness on reset or power on is
100(64hex).

Example (sent commands) Example 1:
<4D,42,00> Set minimum brightness (leds off).

Example 2:
<4D,42,64> Set maximum brightness.

Example 3:
<4D,42,32> Set half brightness.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 21

2.2.5 BaudRate Change – 58hex - X ascii

Commands (host) 6 bytes

 1.- 0x4D (hex), M (ascii). *Master command
2.- 0x58 (hex), X (ascii).
3.- Baud Rate High Byte.
4.- Baud Rate Medium High Byte.
5.- Baud Rate Medium Low Byte.
6.- Baud Rate Low Byte.

Responses (device) 1 byte when fail, 2 bytes when success

 1.- 0x4F (hex), O (ascii) – success ACK at actual
baud rate.
--Delay of 500ms.
2.- 0x4F (hex), O (ascii) – success ACK at new
baudrate.

or

1.- 0x46 (hex), F (ascii) – fail NAK at actual baud
rate.

Description Command needed to set a different baud rate, the
command sent by the host must be at the actual
baud rate that is being used; if the command is
invalid a NAK will be responded by the SMART GPU
and the baud rate will not be modified.

 If the command is accepted an ACK will be received
at the actual baud rate then SMART GPU will change
to the new baud rate during 500ms and then it will
send another ACK at the new baud rate selected.

 Only when an ACK has been received by the host,
the next commands must be sent at the new baud
rate defined.

Default reset - power on baud rate is 9600.

Example (sent commands) Example 1:
<4D,58,00,01,C2,00> Set 115200 bps baud.

Example 2:
<4D,58,00,1E,84,80> Set 2000000 bps baud.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 22

2.2.6 Sleep – 5Ahex - Z ascii

Commands (host) 3 bytes

 1.- 0x4D (hex), M (ascii). *Master command
2.- 0x5A (hex), Z (ascii).
3.- Sleep On: 01(hex).
 Sleep Off: 00(hex).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description Command needed to set sleep mode. It takes
150ms to get in/out sleep mode after
command is accepted. During sleep mode the
screen turns completely white, the LCD
oscillator and voltage generator turns off, but
the memory is conserved. To save more
power combine this command with Display
Brightness set to zero.

Example (sent commands) Example 1:
<4D,5A,01> Set sleep mode On.

Example 2:
<4D,5A,00> Set sleep mode Off.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 23

2.2.7 Calibrate Touch – 54hex - T ascii

Commands (host) 3 bytes

 1.- 0x4D (hex), M (ascii). *Master command
2.- 0x54 (hex), T (ascii).
3.- 0x43 (hex), C (ascii). Calibrate.
 0x53 (hex), S (ascii). Save Values.
 0x44 (hex), D (ascii). Delete Values.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command helps user to Calibrate touch,
save calibration values to flash, and delete-
restore factory touch calibration values from
flash. It’s recommended to perform any
calibration process with a stylus, not fingers.

 The SmartGPU 2 contains saved in flash 4
values that are the factory calibration values to
get a correct touch reading on screen when user
press the panel. User can update those values by
saving new calibration values, or can restore
factory values by calling the Delete Values
command.

 When the user calls the command
Calibrate(M,T,C) , the SmartGPU will execute the
next process to calibrate touchscreen:

1.-Screen will turn red.(means calibration process
 begin).
2.-Screen will turn black.
3.-A white dot will be printed on one corner of the
 screen, user must touch this point and hold
 while the screen turns green, release point
 Immediately after the screen turns green.
4.-Screen turns green. (means calibration of
 First point is done).
5.-Screen will turn black.
6.-A second white dot will be printed on one
 corner of the screen, user must touch this point
 and hold while the screen turns blue, release
 point immediately after the screen turns blue.
7.-Screen turns blue. (means calibration of
 Second point is done).

8.-Screen will turn black.(means end of process).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 24

9.-Finally the SmartGPU will store on RAM the
new 4 working calibration values obtained with
touch on points pressing.

 User can now call some drawing with touch
routine to check If the calibration was
successfully and the values are correct.

 When the above calibration process is
executed, calibration values are only stored on
RAM, this means that if a reset or power off is
performed, those values will be lost, so once that
user performs a calibration process and its sure
that the values are correct, values can be saved
with the command Save Values(M,T,S) from
RAM to non-volatile memory FLASH, This way
even if a reset or power off is performed, values
will remain saved.

 Last command Delete-restore factory calibration
values(M,T,D) deletes any saved values by user
to non-volatile memory FLASH, and restores
the factory calibration values to SmartGPU2
touchscreen.

A common touchscreen calibration procedure will
be:

1.-Delete Values(M,T,D).(get default factory
 values).
2.-Perform calibration process(M,T,C).
3.-Test updated values with some routine of
 drawing points on screen with the received
 touch coordinates(points).
4.-If user is happy with the new updated working
 calibration values go to 5, if not, go to 2.
5.-Save to flash working calibration values(M,T,S)

Example (sent commands) Example 1:
<4D,54,43> Run calibration process.

Example 2:
<4D,54,53> Save Values to Flash.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 25

2.2.8 Software Reset – 52hex - R ascii

Commands (host) 2 bytes

 1.- 0x4D (hex), M (ascii). *Master command
2.- 0x52 (hex), R (ascii).

Responses (device) None

Description This command performs total software
RESET on the SmartGPU2, it has the same
effect as a hardware RESET by the RST pin.

 After this command is called, user must have
to initialize the SmartGPU2 with the initialize
SmartGPU command (‘U’).

Example (sent commands) Example 1:
<4D,52> Reset SmartGPU 2.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 26

2.3 Geometry Commands

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘G’-47hex, as
they are Geometry commands, followed by the next parameters/bytes.

• Put Pixel – 50hex ‘P’
• Draw Line – 4Chex ‘L’
• Draw Rectangle – 52hex ‘R’
• Draw Round Rectangle – 4Fhex ‘O’
• Draw Gradient Rectangle – 47hex ‘G’
• Draw Arc – 41hex ‘A’
• Draw Circle – 43hex ‘C’
• Draw Ellipse – 45hex ‘E’
• Draw Triangle – 54hex ‘T’

The colour parameter needed on all of those commands, consist of 16bits (2 bytes) RGB565:

R4R3R2R1R0G5G4G3 G2G1G0B4B3B2B1B0

That is:

5bits for red, 6 bits for green, 5bits for blue.

High byte colour: R4R3R2R1R0G5G4G3

Low byte colour: G2G1G0B4B3B2B1B0

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 27

2.3.1 Put Pixel – 50hex - P ascii

Commands (host) 8 bytes

 1.- 0x47 (hex), G (ascii). *Geometry Command.
2.- 0x50 (hex), P (ascii).
3.- X high byte.
4.- X low byte.
5.- Y high byte.
6.- Y low byte.
7.- High byte colour.
8.- Low byte colour.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command draws a simple dot on the
screen at the given X(16bit) and Y(16bit)
coordinates. Colour format is the same
RGB565.

Example (sent commands) Example 1:
<47,50,00,32,00,3C,07,E0> Put a Green Pixel
at X:50(dec), Y:60(dec).

All data is in hex. Note: Maximum X or Y
acceptable size value depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 28

2.3.2 Draw Line – 4Chex - L ascii

Commands (host) 12bytes

 1.- 0x47 (hex), G (ascii). *Geometry Command.
2.- 0x4C (hex), L (ascii).
3.- X1 high byte.
4.- X1 low byte.
5.- Y1 high byte.
6.- Y1 low byte.
7.- X2 high byte.
8.- X2 low byte.
9.- Y2 high byte.
10.- Y2 low byte.
11.- High byte colour.
12.- Low byte colour.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command draws a simple line on the
screen with the two given points: X1(16bit),
Y1(16bit) and X2(16bit),Y2(16bit). Colour
format is the same RGB565.

Example (sent commands) Example 1:
<47,4C,00,0A,00,0F,01,2C,00,C8,00,1F>
Draws a Blue line from X1:10(dec),Y1:15(dec)
to X2:300(dec),Y2:200(dec).

All data is in hex. Note: Maximum Xs or Ys
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 29

2.3.3 Draw Rectangle – 52hex - R ascii

Commands (host) 13 bytes

 1.- 0x47 (hex), G (ascii). *Geometry Command.
2.- 0x52 (hex), R (ascii).
3.- X1 high byte.
4.- X1 low byte.
5.- Y1 high byte.
6.- Y1 low byte.
7.- X2 high byte.
8.- X2 low byte.
9.- Y2 high byte.
10.- Y2 low byte.
11.- High byte colour.
12.- Low byte colour.
13.- Fill: 0x00(hex) No Fill Geometry or
 0x01(hex) Fill Geometry.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command draws a simple rectangle on
the screen with the two given points: X1(16bit),
Y1(16bit) and X2(16bit),Y2(16bit). Colour
format is the same RGB565.

Example (sent commands) Example 1:
<47,52,00,46,00,32,00,C8,00,96,F8,1F,00>
Draws a no filled purple rectangle from
X1:70(dec),Y1:50(dec) to X2:200(dec),
Y2:150(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 30

Example 2:
<47,52,00,46,00,32,00,C8,00,96,F8,1F,01>
Draws a filled purple rectangle from
X1:70(dec),Y1:50(dec) to X2:200(dec),
Y2:150(dec).

All data is in hex. Note: Maximum Xs or Ys
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 31

2.3.4 Draw Round Rectangle – 4Fhex - O ascii

Commands (host) 15 bytes

 1.- 0x47 (hex), G (ascii). *Geometry Command.
2.- 0x4F (hex), O (ascii).
3.- X1 high byte.
4.- X1 low byte.
5.- Y1 high byte.
6.- Y1 low byte.
7.- X2 high byte.
8.- X2 low byte.
9.- Y2 high byte.
10.- Y2 low byte.
11.- Radius high byte.
12.- Radius low byte.
13.- High byte colour.
14.- Low byte colour.
15.- Fill: 0x00(hex) No Fill Geometry or
 0x01(hex) Fill Geometry.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command draws a simple round rectangle
on the screen with the two given points:
X1(16bit), Y1(16bit) and X2(16bit), Y2(16bit), with
given Radius(16bit). Colour format is the same
RGB565.

*Note that the next conditions must meet to
command success:

1.- (Radius * 2) < (y2-y1)
+
2.- (Radius * 2) < (x2-x1)

If above conditions are not meet, command will
fail with NAK ‘F’

Example (sent commands) Example 1:
<47,52,00,46,00,32,00,C8,00,96,00,14,F8,1F,00>
Draws a no filled rounded purple rectangle from
X1:70(dec), Y1:50(dec) to X2:200(dec),
Y2:150(dec) and Radius:20(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 32

All data is in hex. Note: Maximum Xs or Ys
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 33

2.3.5 Draw Gradient Rectangle – 47hex - G ascii

Commands (host) 15 bytes

 1.- 0x47 (hex), G (ascii). *Geometry Command.
2.- 0x47 (hex), G (ascii).
3.- X1 high byte.
4.- X1 low byte.
5.- Y1 high byte.
6.- Y1 low byte.
7.- X2 high byte.
8.- X2 low byte.
9.- Y2 high byte.
10.- Y2 low byte.
11.- High byte first colour.
12.- Low byte first colour.
13.- High byte second colour.
14.- Low byte second colour.
15.- Direction: 0x00(hex) Horizontal.
 0x01(hex) Vertical.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command draws a simple gradient
rectangle on the screen with the two given points:
X1(16bit), Y1(16bit) and X2(16bit),Y2(16bit). The
first colour and second colour are mix as they
approach the middle of the rectangle. Colour
format is the same RGB565.

Example (sent commands) Example 1:
<47,47,00,00,00,00,01,3F,00,EF,07,E0,FF,E0,00>
Draws a horizontal green + yellow gradient
rectangle from X1:00(dec), Y1:00(dec) to
X2:319(dec), Y2:239(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 34

Example 2:
<47,47,00,32,00,3C,01,2C,00,C8,00,1F,F9,E0,00>
Draws a horizontal blue + red gradient rectangle
from X1:50(dec), Y1:60(dec) to X2:300(dec),
Y2:200(dec).

Example 3:
<47,47,00,32,00,3C,01,2C,00,C8,00,1F,F9,E0,01>
Draws a vertical blue + red gradient rectangle from
X1:50(dec), Y1:60(dec) to X2:300(dec),
Y2:200(dec).

All data is in hex. Note: Maximum Xs or Ys
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 35

2.3.6 Draw Arc – 41hex - A ascii

Commands (host) 14 bytes

 1.- 0x47 (hex), G (ascii). *Geometry Command.
2.- 0x41 (hex), A (ascii).
3.- X high byte.
4.- X low byte.
5.- Y high byte.
6.- Y low byte.
7.- Radius in X high byte.
8.- Radius in X low byte.
9.- Radius in Y high byte.
10.- Radius in Y low byte.
11.- Arc quadrant to draw.
12.- High byte colour.
13.- Low byte colour.
14.- Fill: 0x00(hex) No Fill Geometry or
 0x01(hex) Fill Geometry.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command draws a simple arc quadrant
on the screen with center on the given point:
X(16bit), Y(16bit), RADIUSX(16bit) and
RADIUSY(16bit) values. Colour format is the
same RGB565.

The arc quadrants are:

Radius values must be always different than zero.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 36

Example (sent commands) Example 1:
<47,41,00,A0,00,78,00,64,00,50,01,FF,E0,00>
Draws a no filled yellow Arc in quadrant 1, with
center in X:160(dec), Y:120(dec),
RADIUSX:100(dec) and RADIUSY:80(dec).

Example 2:
<47,41,00,A0,00,78,00,64,00,50,03,FF,E0,00>
Draws a no filled yellow Arc in quadrant 3, with
center in X:160(dec), Y:120(dec),
RADIUSX:100(dec) and RADIUSY:80(dec).

Example 3:
<47,41,00,A0,00,78,00,64,00,50,02,FF,E0,01>
Draws a filled yellow Arc in quadrant 2, with
center in X:160(dec), Y:120(dec),
RADIUSX:100(dec) and RADIUSY:80(dec).

All data is in hex. Note: Maximum Xs or Ys acceptable
size values depend on display orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 37

2.3.7 Draw Circle – 43hex - C ascii

Commands (host) 11 bytes

 1.- 0x47 (hex), G (ascii). *Geometry Command.
2.- 0x43 (hex), C (ascii).
3.- X high byte.
4.- X low byte.
5.- Y high byte.
6.- Y low byte.
7.- Radius high byte.
8.- Radius low byte.
9.- High byte colour.
10.- Low byte colour.
11.- Fill: 0x00(hex) No Fill Geometry or
 0x01(hex) Fill Geometry.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command draws a simple circle on the
screen with center on the given point:
X(16bit),Y(16bit) and RADIUS(16bit) value.
Colour format is the same RGB565.

Radius value must be always different than zero.

Example (sent commands) Example 1:
<47,43,00,96,00,78,00,50,FF,E0,00> Draws a
no filled yellow circle with center X:150(dec),
Y:120(dec) and RADIUS:80(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 38

Example 2:
<47,43,00,96,00,78,00,50,FF,E0,01> Draws a
filled yellow circle with center X:150(dec),
Y:120(dec) and RADIUS:80(dec).

All data is in hex. Note: Maximum Xs or Ys
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 39

2.3.8 Draw Ellipse – 45hex - E ascii

Commands (host) 13 bytes

 1.- 0x47 (hex), G (ascii). *Geometry Command.
2.- 0x45 (hex), E (ascii).
3.- X high byte.
4.- X low byte.
5.- Y high byte.
6.- Y low byte.
7.- Radius in X high byte.
8.- Radius in X low byte.
9.- Radius in Y high byte.
10.- Radius in Y low byte.
11.- High byte colour.
12.- Low byte colour.
13.- Fill: 0x00(hex) No Fill Geometry or
 0x01(hex) Fill Geometry.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command draws a simple ellipse on the
screen with center on the given point: X(16bit),
Y(16bit), RADIUSX(16bit) and RADIUSY(16bit)
values. Colour format is the same RGB565.

Radius values must be always different than zero.

Example (sent commands) Example 1:
<47,45,00,A0,00,78,00,96,00,64,FF,E0,00>
Draws a no filled yellow ellipse, with center in
X:160(dec), Y:120(dec), RADIUSX:150(dec)
and RADIUSY:100(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 40

Example 2:
<47,45,00,A0,00,78,00,32,00,64,FF,E0,01>
Draws a filled yellow ellipse, with center in
X:160(dec), Y:120(dec), RADIUSX:50(dec) and
RADIUSY:100(dec).

All data is in hex. Note: Maximum Xs or Ys
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 41

2.3.9 Draw Triangle – 54hex - T ascii

Commands (host) 17 bytes

 1.- 0x47 (hex), G (ascii). *Geometry Command.
2.- 0x54 (hex), T (ascii).
3.- X1 high byte.
4.- X1 low byte.
5.- Y1 high byte.
6.- Y1 low byte.
7.- X2 high byte.
8.- X2 low byte.
9.- Y2 high byte.
10.- Y2 low byte.
11.- X3 high byte.
12.- X3 low byte.
13.- Y3 high byte.
14.- Y3 low byte.
15.- High byte colour.
16.- Low byte colour.
17.- Fill: 0x00(hex) No Fill Geometry or
 0x01(hex) Fill Geometry.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command draws a simple triangle on the screen with
the given points: X1(16bit),Y1(16bit), X2(16bit),Y2(16bit) and
X3(16bit),Y3(16bit). Colour format is the same RGB565.

Example (sent commands) Example 1:

<47,54,00,32,00,3C,00,64,00,C8,00,E6,00,78,F8,00,00>

Draws a no filled red triangle with given points: X1:50(dec),
Y1:60(dec), X2:100(dec), Y2:200(dec) and X3:230(dec),
Y3:120(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 42

Example 2:

<47,54,00,32,00,3C,00,64,00,C8,00,E6,00,78,F8,00,01>

Draws a filled red triangle with given points: X1:50(dec),
Y1:60(dec), X2:100(dec), Y2:200(dec) and X3:230(dec),
Y3:120(dec).

All data is in hex. Note: Maximum Xs or Ys acceptable size
values depend on display orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 43

2.4 Text/String Commands

The SMART GPU 2 is capable of generate 13 different sizes of fonts, with
transparent or colour background, font type is Helvetica Neue.

 The command Display String requires two points that forms an imaginary text
box that helps delimit the text writing to certain area; it is helpful when the user only
wants to display text only on some area of the screen.

 Smart GPU 2 can also manage text files, so any file with .txt extension can be
easily opened and displayed with selected size and colour.

A maximum of 32GBs micro SD memory card is supported, allowing storing
thousands of text files.

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘S’-53hex, as
they are String commands, followed by the next parameters/bytes.

• Put Letter – 4Chex ‘L’
• Print Number – 4Ehex ‘N’
• Display String – 53hex ‘S’
• Display String SD – 46hex ‘F’
• Strings Configuration – 43hex ‘C’

The colour parameter needed on all those commands, consist of 16bits (2 bytes) RGB565:

R4R3R2R1R0G5G4G3 G2G1G0B4B3B2B1B0

That is:

5bits for red, 6 bits for green, 5bits for blue.

High byte colour: R4R3R2R1R0G5G4G3

Low byte colour: G2G1G0B4B3B2B1B0

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 44

2.4.1 Put Letter – 4Chex - L ascii

Commands (host) 7 bytes

 1.- 0x53 (hex), S (ascii). *String Command.
2.- 0x4C (hex), L (ascii).
3.- X coord high byte.
4.- X coord low byte.
5.- Y coord high byte.
6.- Y coord low byte.
7.- letter to display in (0xXX) hex (ascii
equivalent).

Responses (device) Up X (2 bytes) + 1 byte ACK

 1.- Up X high byte
2.- Up X low byte
3.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

*Up X stands for Updated X position.

Description This command displays a given char or letter
on the screen with the given point: X(16bit),
Y(16bit) as top left corner. It returns the
Updated X, this is useful to know where X
position to print the next characters and avoid
characters overlapping.

 Text size, text colour, text background colour,
and filled of unfilled background must be set
with the Strings Config Command, Defaults
are Size 0, White text colour, Black
background colour and unfilled background.

Colour format is the same RGB565.

Example (sent commands) Example 1:
<53,4C,00,14,00,1E,41> Draws an ‘A’ letter,
with top left corner at X:20(dec),Y:30(dec).
With Default settings.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 45

Example 2:
<53,4C,00,14,00,1E,41> Draw an ‘A’ letter,
with top left corner at X:20(dec),Y:30(dec).
Filled Background colour is Set and Font Size
was changed to Size 3.

Example 3:
<53,4C,00,14,00,1E,41> Draw an ‘A’ letter,
with top left corner at X:20(dec),Y:30(dec),
Background colour was changed to RED,
Filled Background colour is Set and Font Size
was changed to Size 3.

All data is in hex. Note: Maximum X or Y
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 46

2.4.2 Print Number – 4Ehex - N ascii

Commands (host) 10 bytes

 1.- 0x53 (hex), S (ascii). *String Command.
2.- 0x4E (hex), N (ascii).
3.- X coord high byte.
4.- X coord low byte.
5.- Y coord high byte.
6.- Y coord low byte.
7.- Float Number High Byte.
8.- Float Number Medium High Byte.
9.- Float Number Medium Low Byte.
10.-Float Number Low Byte.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description This command displays/prints a received
float number(4 bytes), at the received top left
X(16bit) and Y(16bit) coordinates, the number
is printed with the minimum notation possible,
this means that zeros will be cut, as an
example a zero(0x00000000) will be printed as
“0” instead of “0.000000”. If number to print
doesn’t fit on the screen with the given X, Y
coordinates or current font size, number will be
discarded and command will fail with NAK ‘F’.

 Text size, text colour, text background colour,
and filled of unfilled background must be set
with the Strings Config Command, Defaults
are Size 0, White text colour, Black
background colour and unfilled background.

Colour format is the same RGB565.

Example (sent commands) Example 1:
<53,4E,00,0A,00,0F,47,F1,20,00> Draws an
“123456” number, with top left corner at
X:10(dec),Y:15(dec). With Font4 settings.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 47

Example 2:
<53,4E,00,0A,00,0F,41,49,3F,7D> Draws an
“12.578” number, with top left corner at
X:10(dec),Y:15(dec). With Font4 settings.

Example 3:
<53,4E,00,0A,00,0F,4E,01,83,9D> Draws an
“543221568” number, with top left corner at
X:10(dec),Y:15(dec). With Font4 settings.

Example 4:
<53,4E,00,0A,00,0F,C1,BB,A7,87> Draws an
“-23.4568” number, with top left corner at
X:10(dec),Y:15(dec). With Font4 settings.

All data is in hex. Note: Maximum X or Y
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 48

2.4.3 Display String – 53hex - S ascii

Commands (host) 10 bytes + string + 1byte(NULL)

 1.- 0x53 (hex), S (ascii). *String Command.
2.- 0x53 (hex), S (ascii).
3.- X1 coord high byte.
4.- X1 coord low byte.
5.- Y1 coord high byte.
6.- Y1 coord low byte.
7.- X2 coord high byte.
8.- X2 coord low byte.
9.- Y2 coord high byte.
10.- Y2 coord low byte.
11 up to N.- string text (hex) ascii equivalent.
N+1.- 0x00 (hex) NULL ascii.

Responses (device) SPC(2 bytes) + 1 byte ACK

 1.- SPC high byte
2.- SPC low byte
3.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

*SPC stands for Successfully Printed Chars.

Description This command displays a string on the screen on an
imaginary text box, with the given points: X1(16bit),
Y1(16bit) as top left corner, and X2(16bit), Y2(16bit) as
bottom right corner.

 The text or string is automatically adjusted to fit in this
defined text box, if the text is longer to fit in the text box,
it will stop discarding all the rest of the String. The
command always return the SPC(successfully printed
bytes), this way user can determine how many of the
chars fitted and were printed on the received text box.

 The maximum size of string to receive in one same
call is 5000 bytes + NULL character. The host must
always send the NULL(0x00 hex) character after the
string to indicate end of string.

 Text size, text colour, text background colour, and
filled of unfilled background must be set with the
Strings Config Command, Default are Size 0, White
text colour, Black background colour and unfilled
background.

Colour format is the same RGB565.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 49

Example (sent commands) Example 1:
<53,53,00,14,00,28,00,87,00,64,text...,00> Draws a
string/text with top left corner at X1:20(dec),
Y1:40(dec), and bottom right corner X2:135(dec),
Y2:100(dec). Font Size was changed to Size 3.

text= String test over Smart GPU processor

Note: the black dotted box is just to exemplify the imaginary
defined text box, it is not actually drawn.

Example 2:
<53,53,00,14,00,28,00,87,00,64,text...,00> Draws a
string/text with top left corner at X1:20(dec),
Y1:40(dec), and bottom right corner X2:135(dec),
Y2:100(dec). Background colour was changed to
MAGENTA, Filled Background colour is Set and Font
Size was changed to Size 3.

text= String over Smart GPU processor

All data is in hex. Note: Maximum X or Y acceptable
size values depend on display orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 50

2.4.4 Display String SD – 46hex - F ascii

Commands (host) 14 bytes + text file name + 1byte(NULL)

 1.- 0x53 (hex), S (ascii). *String Command.
2.- 0x46 (hex), F (ascii). –from SD .txt File
3.- X1 coord high byte.
4.- X1 coord low byte.
5.- Y1 coord high byte.
6.- Y1 coord low byte.
7.- X2 coord high byte.
8.- X2 coord low byte.
9.- Y2 coord high byte.
10.- Y2 coord low byte.
11.- Start Character (position) high byte.
12.- Start Character (position) low byte.
13.- Characters to Read (from position) high byte.
14.- Characters to Read (from position) low byte.
11 up to N (file name).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) SPC(2 bytes) + 1 byte ACK

 1.- SPC high byte
2.- SPC low byte
3.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

*SPC stands for Successfully Printed Chars.

Description This command calls a text file stored on the micro SD card and
displays the contained text on an imaginary text box created with
the given points: X1(16bit), Y1(16bit) as top left corner and
X2(16bit), Y2(16bit) as bottom right corner.

 The text or string is automatically adjusted to fit in this defined
text box, if the text is longer to fit in the text box, it will stop
discarding all the rest of the String. The command always return
the SPC(successfully printed bytes), this way user can determine
how many of the chars fitted and were printed on the received text
box.

 The Start Character parameter means, the number of bytes that
will be jumped from the start of the file, including spaces. If this
parameter is zero (0x0000)hex, the file will be read and displayed
from the beginning.

 The Characters to Read parameter means: the number of bytes
that will be read up from the Start character position. When this
parameter is zero (0x0000)hex, mini SmartGPU will try to read all

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 51

the file contents up from the given Start Character position and
display the text while it fits on the given text box.

 The maximum number of characters to read from a file in one call
is 5000 bytes (characters).

 The file name must be up to 250 characters. Only numbers
and letters are recommended to name the file, some special
characters are not allowed and may not work.

 Always a NULL character (0x00)hex must follow the last
character of the file name, in order to indicate to mini SMART GPU
the end of this file name, the name to receive must not include
the .txt extension, just bare file name.

 Text size, text colour, text background colour, and filled of unfilled
background must be set with the Strings Config Command,
Default are Size 0, White text colour, Black background colour and
unfilled background.

Colour format is the same RGB565.

Example
(sent commands)

 The next examples consider a .txt file previously stored on
the micro SD memory card, named “text1.txt”.

Here’s a picture of the contents of the .txt file:

Example 1:
<53,46,00,14,00,32,00,8C,00,A0,00,00,00,00,74,65,78,74,31,00>
Opens the “text1.txt” file of the SDcard with top left corner at
X1:20(dec), Y1:50(dec) and bottom right corner at X2:140(dec),
Y2:160(dec), Start Character 0x0000, Characters to Read
0x0000(means all contents). Text colour was changed to GREEN.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 52

Example 2:
<53,46,00,14,00,32,00,8C,00,A0,00,00,00,1E,74,65,78,74,31,00>
Opens the same “text1.txt” file of the SDcard with top left corner at
X1:20(dec), Y1:50(dec) and bottom right corner at X2:140(dec),
Y2:160(dec), Start Character 0x0000, Characters to Read
30(dec)0x001E(hex). Text colour was changed to WHITE and Font
Size was changed to Size 3.

Example 3:
<53,46,00,14,00,32,00,8C,00,A0,00,0B,00,0E,74,65,78,74,31,00>
Opens the same “text1.txt” file of the SDcard with top left corner at
X1:20(dec), Y1:50(dec) and bottom right corner at X2:140(dec),
Y2:160(dec), Start Character 11(dec) 0x000B(hex), Characters to
Read 14(dec) 0x000E(hex). Text colour was changed to WHITE
and Font Size was changed to Size 3.

 Just Remember: the “Start Character” is the pointer start
position of the .txt file, the “Characters to Read” is the
number of positions that will be read from the Start Character
pointer position of the .txt file.

 All data is in hex. Note: Maximum X or Y acceptable size values
depend on display orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 53

2.4.5 Strings Configuration - 43hex - C ascii

*This command is divided in 4 sub-commands, each one is explained next:

Commands (host) X bytes

 Set Text Colour
1.- 0x53 (hex), S (ascii). *String Command.
2.- 0x43 (hex), C (ascii). – Config.
3.- 0x54 (hex), T (ascii).
4.- High byte text colour.
5.- Low byte text colour.

Set Text Background Colour
1.- 0x53 (hex), S (ascii). *String Command.
2.- 0x43 (hex), C (ascii). – Config.
3.- 0x42 (hex), B (ascii).
4.- High byte background colour.
5.- Low byte background colour.

Set Text Font Size
1.- 0x53 (hex), S (ascii). *String Command.
2.- 0x43 (hex), C (ascii). - Config
3.- 0x53 (hex), S (ascii).
4.- 0xXX – Text Size: 0x00(hex) to 0x0C(hex).

Set Text Background FILLED/UNFILLED
1.- 0x53 (hex), S (ascii). *String Command.
2.- 0x43 (hex), C (ascii). – Config.
3.- 0x46 (hex), F (ascii).
4.- 0x00 (hex) – Unfilled or
 0x01 (hex) – Filled.

Responses (device) 1 byte – all commands.

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description Up above are described the needed
commands/parameters to set each one of the
strings configurations, those are: Text Colour,
Background Colour, Text Size and Filled/Unfilled
Background.

 Once one of those commands is sent, next calls
to Put Letter, Display String and Display String
SD will be displayed at the new set parameters by
the user with this commands.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 54

 Defaults at reset/power on are:
-WHITE Text Colour.
-BLACK Background Colour.
-FONT0 Text Size.
-UNFILLED Background fill/unfill.

Colour format is the same RGB565.

Example (sent commands)

Example 1:
<53,43,54,FF,E0> Set Text colour to YELLOW
(0xFFE0).

Example 2:
<53,43,42,06,E0> Set Text Background colour to
GREEN(0x06E0).

Example 3:
<53,43,53,02> Set Text Size to FONT2.

Example 4:
<53,43,46,01> Set Text Background fill to FILLED.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 55

2.5 Image Commands

The SMART GPU 2, unlike other graphic development tools in the market, is the
only embedded graphic processor capable of managing files directly in
FAT/FAT12/FAT16 or FAT32 file systems without any special program/interface or
micro SD rare formats. It is fully compatible with any PC.

 Smart GPU 2 can manage images, so any file with .bmp or .jpg extension will be
easily opened and displayed.

A maximum of 32GBs micro SD memory card is supported, allowing storing
thousands of full screen images.

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘I’-49hex, as
they are Image commands, followed by the next parameters/bytes.

• Draw Image/Icon – 49hex ‘I’
• Image BMP SD – 42hex ‘B’
• Image JPG SD – 4Ahex ‘J’
• Memory Read – 4Dhex ‘M’
• Screenshot BMP – 53hex ‘S’

A complete tutorial on how to load images to the SD card is explained on the
“SmartGPU2LCD320x240Datasheet.pdf” file, at the SD card file management
section.

The colour parameter needed on Draw Image/Icon command consist of 16bits (2 bytes)

RGB565:

R4R3R2R1R0G5G4G3 G2G1G0B4B3B2B1B0

That is:

5bits for red, 6 bits for green, 5bits for blue.

High byte colour: R4R3R2R1R0G5G4G3

Low byte colour: G2G1G0B4B3B2B1B0

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 56

The SMART GPU 2 contains a 230,400bytes (1,843,200bits) internal memory,

that stores the current display image on the screen, the command Memory Read,
allows the host to be able to read this internal memory in order to know the value of the
pixels or what is being displayed in some area or the full screen at that particular
moment.

 The colour convention for this memory read command is RGB888, instead of the
RGB565, this is in order to avoid quality and colour depth loss, and also the images that
are read from the SD card are in RGB888 convention.

The colour parameter needed on Memory Read command consist of 24bits (3 bytes) RGB888:

R7R6R5R4R3R2R1R0 G7G6G5G4G3G2G1G0 B7B6B5B4B3B2B1B0

That is:

8bits for red, 8 bits for green, 8bits for blue.

High byte colour: R7R6R5R4R3R2R1R0

Medium byte colour: G7G6G5G4G3G2G1G0

Low byte colour: B7B6B5B4B3B2B1B0

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 57

2.5.1 Draw Image/Icon – 49hex - I ascii

Commands (host) 10 bytes + pixel number x 2

 1.- 0x49 (hex), I (ascii). *Image Command.
2.- 0x49 (hex), I (ascii).
3.- X1 coord high byte.
4.- X1 coord low byte.
5.- Y1 coord high byte.
6.- Y1 coord low byte.
7.- X2 coord high byte.
8.- X2 coord low byte.
9.- Y2 coord high byte.
10.- Y2 coord low byte.

Now send pixel by pixel:
11.- High byte colour pixel 1.
12.- Low byte colour pixel 1.
13.- High byte colour pixel 2.
14.- Low byte colour pixel 2.
15.- High byte colour pixel 3.
16.- Low byte colour pixel 3.
….
Last- High byte colour pixel n((X2-X1+1)*(Y2-
Y1+1)).
Last- Low byte colour pixel n((X2-X1+1)*(Y2-
Y1+1)).

Remember: each pixel is composed by two
bytes following the same RGB565 convention.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Any of those two commands will not be sent
until the host finish to send all the width(X2-
X1+1)*height(Y2-Y1+1) pixels of the image or
icon.

Description This command draws an icon/ image on the
screen starting at the given points(top left
corner): X1(16bit), Y1(16bit) and ending on the
(bottom right corner)X2(16bit), Y2(16bit).

 Colour format for each pixel is the same
RGB565.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 58

Example (sent commands) Example 1:
<49,49,00,1E,00,28,00,BD,00,9F,
Pix1H,Pix1L,Pix2H,Pix2L,…,PixNH,PixNL>
Draws an image of 160x120 pixels with top left
corner: X1:30(dec),Y1:40(dec) and bottom
right corner: X2:189(dec), Y2:159(dec).

Example 2:
<49,49,00,00,00,00,00,9F,00,77,
Pix1H,Pix1L,Pix2H,Pix2L,…,PixNH,PixNL>
Draws an image of 160x120 pixels with top left
corner: X1:0(dec),Y1:0(dec) and bottom right
corner: X2:159(dec), Y2:119(dec).

 All data is in hex. Note: See that X2 is the sum
of X1+(width in pixels - 1), the -1 in the pixels
is because pixel number 0 also count. Also
Y2 is the sum of Y2+(height in pixels – 1)
because the same reason as X2.

 User must be careful not to exceed the
Maximum X1, Y1, x2, y2 acceptable
parameters(depending orientation) of the
screen in order to avoid unwanted distorted
images.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 59

2.5.2 Image BMP SD – 42hex - B ascii

Commands (host) 6 bytes + image name + 1byte(NULL)

 1.- 0x49 (hex), I (ascii). *Image Command.
2.- 0x42 (hex), B (ascii).
3.- X coord high byte (left corner).
4.- X coord low byte.
5.- Y coord high byte (top corner).
6.- Y coord low byte.
7 up to N (file name).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command calls an image stored on the micro
SD card and displays it with the given point:
X(16bit), Y(16bit) as top left corner.

 If the image is 320x240 pixels this point must be
0,0 if not, the image won’t fit on the screen and
command will fail(depends orientation).

 Any size of image could be called, however
user is responsible that the image fits on the
screen with the X,Y top left corner adjustment.

 The file name must be up to 250 characters.
Only numbers and letters are recommended to
name the file, some special characters are not
allowed and may not work.

 Always a NULL character (0x00)hex must follow
the last character of the file name, in order to
indicate to SMART GPU the end of this file name,
the name to receive must not include the .bmp
extension.

Example (sent commands)
Example 1:
<49,42,00,00,00,00,4B,4F,41,4C,41,00>
Opens the 320X240pixels “KOALA.bmp” file with
top left corner at X:00(dec), Y:00(dec) and displays
it on the screen.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 60

Example 2:
<49,42,00,00,00,00,4A,65,6C,6C,79,38,30,00>
Opens the 160x120 pixels “Jelly80.bmp” file with
top left corner at X:00(dec), Y:00(dec) and displays
it on the screen.

Example 3:
<49,42,00,28,00,1E,4A,65,6C,6C,79,38,30,00>
Opens the 160x120 pixels “Jelly80.bmp” file with
top left corner at X:40(dec), Y:30(dec) and displays
it on the screen.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 61

Example 4:
<49,42,00,28,00,1E,66,72,61,63,74,61,6C,00>
Opens the 160x120 pixels “fractal.bmp” file with
top left corner at X:40(dec), Y:30(dec) and displays
it on the screen.

 For example: An Image of size 160x120, could
not be called to be displayed on X>160(dec)
and Y>120(dec), because it won't fit on the
screen, and command will fail. As mentioned
before, user is responsible of calling images
with top left corners that ensures that the
image will fit on the display.

All data is in hex. Note: Maximum X or Y
acceptable size values depend on display
orientation and image file size on pixels.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 62

2.5.3 Image JPG SD – 4Ahex - J ascii

Commands (host) 7 bytes + image name + 1byte(NULL)

 1.- 0x49 (hex), I (ascii). *Image Command.
2.- 0x4A (hex), J (ascii).
3.- X coord high byte (left corner).
4.- X coord low byte.
5.- Y coord high byte (top corner).
6.- Y coord low byte.
7.- Scale Factor(1/1, 1/2, 1/4, 1/8).
8 up to N (file name).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command calls an image stored on the micro
SD card and displays it with the given point:
X(16bit), Y(16bit) as top left corner.

 This command is very similar to the BMP SD
command, differences are that this command calls
JPG images and accepts a scale factor of
1/1(0x00), 1/2(0x01), 1/4(0x02), 1/8(0x03).

 The scale factor characteristic is suitable to
generate image thumb nails in a Graphic User
Interface.

 Any size of image could be called, however
user is responsible that the image fits on the
screen with the X,Y top left corner adjustment.

 The file name must be up to 250 characters.
Only numbers and letters are recommended to
name the file, some special characters are not
allowed and may not work.

 Always a NULL character (0x00)hex must follow
the last character of the file name, in order to
indicate to SMART GPU the end of this file name,
the name to receive must not include the .jpg
extension.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 63

Example (sent commands) Example 1:
<49,4A,00,00,00,00,00,4B,4F,41,4C,41,00>
Opens the 320X240pixels “KOALA.bmp” file with
top left corner at X:00(dec), Y:00(dec), scale factor
1/1(0x00) and displays it on the screen.

Example 2:
<49,4A,00,00,00,00,01,4A,65,6C,6C,79,38,30,00>
Opens the 320x240 pixels “Jelly80.bmp” file with
top left corner at X:00(dec), Y:00(dec), scale factor
1/2(0x01) and displays it on the screen.

Example 3:
<49,4A,00,28,00,1E,01,4A,65,6C,6C,79,38,30,00>
Opens the 320x240 pixels “Jelly80.bmp” file with
top left corner at X:40(dec), Y:30(dec), scale factor
1/2(0x01) and displays it on the screen.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 64

Example 4:
<49,4A,00,28,00,1E,01,66,72,61,63,74,61,6C,00>
Opens the 320x240 pixels “fractal.bmp” file with
top left corner at X:40(dec), Y:30(dec) , scale
factor 1/2(0x01) and displays it on the screen.

 For example: An Image of size 160x120(scale
factor 1/1), could not be called to be displayed
on X>160(dec) and Y>120(dec), because it
won't fit on the screen, and command will fail,
however if user select scale factor 1/2, image
will fit. As mentioned before, user is
responsible of calling images with top left
corners and scale factors that ensures that the
image will fit on the display.

All data is in hex. Note: Maximum X or Y
acceptable size values depend on display
orientation, image file size on pixels and selected
scale factor.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 65

2.5.4 Memory Read – 4Dhex - M ascii

Commands (host) 10 bytes

 1.- 0x49 (hex), I (ascii). *Image Command.
2.- 0x4D (hex), M (ascii).
3.- X1 coord high byte.
4.- X1 coord low byte.
5.- Y1 coord high byte.
6.- Y1 coord low byte.
7.- X2 coord high byte.
8.- X2 coord low byte.
9.- Y2 coord high byte.
10.- Y2 coord low byte.

Responses (device) pixel number multiplied by 3(R,G,B)

 1-N- pixels defined by the X1(16bit), Y1(16bit),
and X2(16bit), Y2(16bit) window.

N+1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Remember: each pixel is composed by three
bytes following the RGB888 convention.

Description This command reads the internal memory of
the SMART GPU 2 that is currently displayed,
defined by the given points(top left corner):
X1(16bit), Y1(16bit) and (bottom right corner):
X2(16bit), Y2(16bit).

Example (sent commands)
The next examples are considered to be
executed when the next full screen image
is being displayed on the SMART GPU
screen.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 66

Example 1:
<49,4D,00,00,00,00,00,4F,00,3B> Reads the
contents of the SMART GPU memory from the
top left corner: X1:00(dec),Y1:00(dec) and
bottom right corner: X2:79(dec), Y2:59(dec),
and returns the next image of 80x60 pixels,
sent as RGB each pixel.

Example 2:
<49,4D,00,28,00,1E,00,77,00,59> Reads the
contents of the Mini SMART GPU memory
from the top left corner: X1:40(dec),
Y1:30(dec) and bottom right corner:
X2:109(dec), Y2:89(dec), and returns the next
image of 80x60 pixels, sent as RGB each
pixel.

Example 3:
<49,4D,00,50,00,00,00,77,00,3B> Reads the
contents of the Mini SMART GPU memory
from the top left corner: X1:80(dec),
Y1:00(dec) and bottom right corner:
X2:119(dec), Y2:59(dec), and returns the next
image of 40x60 pixels, sent as RGB each
pixel.

All data is in hex. NOTE: Maximum X1, Y1,
X2, Y2 acceptable size values depend on
display orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 67

2.5.5 Screenshot BMP – 53hex - S ascii

Commands (host) 2 bytes

 1.- 0x49 (hex), I (ascii). *Image Command.
2.- 0x53 (hex), S (ascii).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command reads the internal memory of
the SMART GPU 2 that is currently displayed,
creates a file named “ScreenshotXXX.bmp” on
the microSD card, and appends the read
memory data from screen to the file, creating a
.BMP format file.

 In other words, this command creates a .bmp
file with the current contents displayed on
SmartGPU 2 screen.

 Once the command is received, the
SmartGPU2 will attempt to create a
consecutive file names: “Screenshot000.bmp”,
“Screenshot0001.bmp”, etc. The file will be
created on the current directory path, if a
“ScreenshotXXX.bmp” file already exists, the
SmartGPU will add 1 to the file name and
create the new screenshot file.

 User can later call the created images with
the IMAGE BMP SD command.

Example (sent commands) Example 1:
<49,53> Take a screenshot of SmartGPU 2
display and store as a .bmp file called
“Screenshot000.bmp”

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 68

2.6 Video Commands

The SMART GPU 2, unlike other graphic development tools in the market, is the
only embedded graphic processor capable of managing files directly in
FAT/FAT12/FAT16 or FAT32 file systems without any special program/interface or
micro SD rare formats. It is fully compatible with any PC.

 Smart GPU 2 can manage video; files with custom extension .vid will be easily
opened and played.

A maximum of 32GBs micro SD memory card is supported, allowing storing
several frames of full screen videos.

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘V’-56hex, as
they are Video commands, followed by the next parameters/bytes.

• Allocate Video SD – 41hex ‘A’
• Play Video SD – 50hex ‘P’
• Set Frame Video SD – 46hex ‘F’
• De-allocate Video SD – 44hex ‘D’

A complete tutorial on how to load Videos to the SD card is explained on the
“SmartGPU2VideoCreation.pdf” file, at the SD card file management section.

 The SmartGPU 2 uses a special file format to display videos, the extension of the file
must be *.vid, however this isn’t a Microsoft generic standard *.vid file, the .vid video
files that SmartGPU 2 can play must contain and be created as follows:

-Header of the Video File 12 bytes.
-Frames data (videoWidth x videoHeight x totalVideoFrames x 2) bytes.

The 12 bytes Header of a .vid file that SmartGPU 2 can play is composed as next:

-Video Width in pixels – 2 bytes
-Video Height in pixels – 2 bytes
-Frames per Second – 2 bytes
-Total Video Frames – 2 bytes
-Reserved for future use – 2 bytes
-Capital Letter ‘V’ – 1 byte
-Capital Letter ‘I’ – 1 byte

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 69

The Frames data of a .vid file that SmartGPU 2 can play is composed of VideoWidth x
VideoHeight x totalVideoFrames x 2 bytes, that is:

-Each pixel of video data is composed by 2 bytes with the RGB 565 convention:

R4R3R2R1R0G5G4G3 G2G1G0B4B3B2B1B0

That is:

5bits for red, 6 bits for green, 5bits for blue.

High byte colour: R4R3R2R1R0G5G4G3

Low byte colour: G2G1G0B4B3B2B1B0

-The size of each video frame is the multiplication of VideoWidth x Video Height x 2.

 As an example:

 A video file of a resolution of 320 x 240 pixels, 23 frames per second and duration of
3 minutes, will be in size: 635,904,012bytes, ~635Mbytes:

-Header = 12 bytes
-Frame Size = 320x240x2 = 153600 bytes
-Frames per second = 23 frames
-Video duration = 3 minutes x 60 seconds = 180 seconds
-Video Total Frames = 23 x 180 frames

So if we multiply (320x240x2 x 180 x 23) + 12 = 635,904,012 bytes.

 Is recommended to have blocks of videos of a maximum size of 6 minutes, if more
minutes are needed, user can create a video file sequence and call the videos one after
each other: “video1.vid”, “video2.vid”, etc.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 70

2.6.1 Allocate Video SD – 41hex - A ascii

Commands (host) 2 bytes + Video name + 1byte(NULL)

 1.- 0x56 (hex), V (ascii). *Video Command.
2.- 0x41 (hex), A (ascii).
3 up to N (file name).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) 8 bytes + 1 byte ACK/NAK

 1.- Video Width high byte.
2.- Video Width low byte.
3.- Video Height high byte.
4.- Video Height low byte.
5.- Video Frames per Second high byte.
6.- Video Frames per Second low byte.
7.- Video Total Frames high byte.
8.- Video Total Frames low byte.
9.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command allocates a Video stored in the
microSD card on the SmartGPU 2 buffer to later
perform play frames and advance/set frame
operations, this command can also be seen as an
“open a file for reading operations”,

 This command must always be called prior to
any “Play Video” / “Set Frame Video”
command, as those commands require an
already allocated video to be performed
successfully.

 The response of this command is very useful as
once the video is successfully allocated/opened,
user can know the width, height, frames per
second, and total frames of the video for next
video command calls.

 The file name must be up to 250 characters.
Only numbers and letters are recommended to
name the file, some special characters are not
allowed and may not work.

 Always a NULL character (0x00)hex must follow
the last character of the file name, in order to
indicate to SMART GPU the end of this file name,
the name to receive must not include the .vid
extension.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 71

Example (sent commands) Example 1:
<56,41,77,69,6C,64,6C,69,66,65,00> Allocates the
“wildlife.vid” video file in the SmartGPU 2 buffer.

Example 2:
<56,41,6E,61,74,75,72,65,00> Allocates the
“nature.vid” video file in the SmartGPU 2 buffer.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 72

2.6.2 Play Video SD – 4Ahex - J ascii

Commands (host) 8 bytes

 1.- 0x56 (hex), V (ascii). *Video Command.
2.- 0x50 (hex), P (ascii).
3.- X coord high byte (left corner).
4.- X coord low byte.
5.- Y coord high byte (top corner).
6.- Y coord low byte.
7.- Frames to Play high byte.
8.- Frames to Play low byte.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command calls a video previously allocated on
the SmartGPU 2 and displays it on the screen with the
given point: X(16bit), Y(16bit) as top left corner, If the
video is 320x240 pixels this point must be 0,0 if not, the
video won’t fit on the screen and command will
fail(depends orientation).

 User can determine the maximum acceptable X and
Y values with the information obtained when the video
was allocated, the next conditions must always be met:

In Horizontal orientations:
 X + VideoWidth <= 320
 Y + VideoHeight <= 240

In Vertical orientations:
 X + VideoWidth <= 240
 Y + VideoHeight <= 320

 Any size of video could be called, however user is
responsible that the video fits on the screen with
the X,Y top left corner adjustment.

 The parameter Frames to Play, means the desired
frames to play on the screen up from the current video
position, each time this “Play Video SD” command is
called, the current video frame position will advance in
frames the Frames to Play parameter.

 If the Frames to Play parameter exceed the Total
Video Frames obtained with “Allocate Video SD”, the
SmartGPU2 will play only the remaining frames and will
return a NAK as response.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 73

Example (sent commands) Example 1:
<56,50,00,00,00,00,00,64> Plays 100(dec) frames from
a video allocated on the SmartGPU 2 buffer, with top
left corner at X:00(dec), Y:00(dec).

Example 2:
<56,50,00,32,00,50,00,64> Plays 100(dec) frames from
a video allocated on the SmartGPU 2 buffer, with top
left corner at X:50(dec), Y:80(dec).

For example: An Video of size 160x120, could not
be called to be displayed on X>160(dec) and
Y>120(dec), because it won't fit on the screen, and
command will fail. As mentioned before, user is
responsible of calling Videos with top left corners
that ensures that the Video will fit on the display.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 74

2.6.3 Set Frame Video SD – 46hex - F ascii

Commands (host) 4 bytes

 1.- 0x56 (hex), V (ascii). *Video Command.
2.- 0x46 (hex), F (ascii).
3.- Frame to Set high byte.
8.- Frame to Set low byte.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command advances-rewinds a video
previously allocated on the SmartGPU 2 buffer, the
parameter Frame to Set will set the desired frame
to start when a “Play Video SD” command is
called.

 If Frame to set parameter is sent as 0(dec), it
means the video will play from the frame 0 or
beginning.

 The maximum acceptable value of Frame to Set
parameter is the total video frames - 1.

 If the Frame to Set parameter exceeds Total
Video Frames – 1 obtained with “Allocate Video
SD”, the command will fail with NAK as response.

Example (sent commands) Example 1:
<56,46,00,64> Set the frame start position to
100(dec) for the next “play Video SD” command
(advances video to frame 100).

Example 2:
<56,46,00,00> Set the frame start position to
0(dec) for the next “play Video SD” command
(rewinds video to frame 0).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 75

2.6.4 De-Allocate Video SD – 44hex - D ascii

Commands (host) 2 bytes

 1.- 0x56 (hex), V (ascii). *Video Command.
2.- 0x44 (hex), D (ascii).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command de-allocates a previously
allocated video on the SmartGPU 2 buffer, this
command can also be seen as “close an open
video file” and frees the buffer.

 This command must always be called when
the previously allocated video isn’t needed
anymore and prior to allocate another video on
the buffer.

Example (sent commands) Example 1:
<56,44> De-Allocates a video file in the SmartGPU
2 buffer.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 76

2.7 Audio Commands

The SMART GPU 2, unlike other graphic development tools in the market, is the
only embedded graphic processor capable of managing files directly in
FAT/FAT12/FAT16 or FAT32 file systems without any special program/interface or
micro SD rare formats. It is fully compatible with any PC.

 Smart GPU 2 can manage Audio files, so any file with .wav extension will be
easily opened and played.

A maximum of 32GBs micro SD memory card is supported, allowing storing
thousands of songs/audio files.

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘A’-41hex, as
they are Audio commands, followed by the next parameters/bytes.

• Initialize/De-initialize DACs/Audio – 49hex ‘I’
• Play WAV File – 50hex ‘P’
• Pause WAV File – 57hex ‘W’
• Advance WAV File – 41hex ‘A’
• Stop WAV File – 53hex ‘S’
• Set Volume WAV – 56hex ‘V’
• Get Playing State – 47hex ‘G’
• Audio Boost – 42hex ‘B’

A complete tutorial on how to load Audio Files to the SD card is explained on the
“SmartGPU2LCD320x240Datasheet.pdf” file, at the SD card file management
section.

The SMART GPU 2 can play any RIFF-WAVE format sound files known as
Microsoft wave file in LPCM: 8/16 bits, Mono or Stereo sound, and up to 48KHz
sampling rate (CD Quality). Any other format of sound files (mp3,acc,wma,etc)
must be converted to the .wav format.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 77

2.7.1 Initialize/De-initialize DACs/Audio – 49hex - I ascii

Commands (host) 3 bytes

 1.- 0x41 (hex), A (ascii). *Audio Command.
2.- 0x49 (hex), I (ascii).
3.- DACs state: OFF 0x00(hex) or
 ON 0x01(hex).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description Command needed to turn ON or turn OFF the audio
DACs outputs (refer to datasheet to learn more about
audio DACs).

 This command must always be called prior to any
Audio Command, as this command initializes and
turns ON the entire audio engine.

 If no more Audio operations are needed, user can
turn OFF DACs audio outputs to save power.

 Default reset or power on state of the Audio DACs
outputs is 0x00(hex) DACs OFF.

Example (sent commands) Example 1:
<41,49,01> Turn ON audio DACs outputs.

Example 2:
<41,49,00> Turn OFF audio DACs outputs.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 78

2.7.2 Play WAV File – 50hex - P ascii

Commands (host) 2 bytes + file name + 1byte(NULL)

 1.- 0x41 (hex), A (ascii). *Audio Command.
2.- 0x50 (hex), P (ascii).
3 up to N (file name).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) 2 bytes + 1 byte ACK/NAK

 1.- File duration in seconds high byte.
2.- File duration in seconds low byte.
3.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description When this command is sent and successfully
executed(ACK ‘O’ received) a Wav file stored in the
microSD card will begin playing audio on the
AL(Audio Left channel) and AR(Audio Right channel),
it’s highly recommended to place two 100uF-400uF
capacitors in each output to decouple output
voltage(refer to datasheet for recommended circuitry).

 The SmartGPU 2 automatically will read and
sample the audio file(22100Hz, 44100Hz, etc.)
according to the WAV header file. If the file is MONO,
both channels will have the same output, if file is
STEREO, channels will have different output.

 The response of this command is very useful as
once the audio file begins playing, user can know the
total file duration in seconds or the time that the
SmartGPU 2 will be playing the audio file.

 The file will continue playing until it finish, user can
send any other command meanwhile the audio file is
being played. If this same “Play WAV File” command
is sent while the SmartGPU 2 is already playing
audio, command will be just ignored(NAK) and audio
will continue playing.

 The file name must be up to 250 characters. Only
numbers and letters are recommended to name
the file, some special characters are not allowed
and may not work.

 Always a NULL character (0x00)hex must follow the
last character of the file name, in order to indicate to
SMART GPU the end of this file name, the name to
receive must not include the .wav extension.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 79

Example (sent commands) Example 1:
<41,50,73,6F,75,6E,64,00> Play the audio file
“sound.wav” stored on the microSD card.

Example 2:
<41,50,72,6F,63,6B,00> Play the audio file “rock.wav”
stored on the microSD card.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 80

2.7.3 Pause WAV File – 57hex - W ascii

Commands (host) 2 bytes

 1.- 0x41 (hex), A (ascii). *Audio Command.
2.- 0x57 (hex), W (ascii).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description When command is successfully executed (ACK), it
simply toggles between pause and play audio states.

 This command is only valid when an audio file is
being played, otherwise will always return NAK.

Example (sent commands) If File is playing:
Example 1:
<41,57> Pause Audio File.

Example 2:
<41,57> Resume/Play Audio File.

If File isn’t playing:
Example 1:
<41,57> Command ignored - NAK.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 81

2.7.4 Advance WAV File – 41hex - A ascii

Commands (host) 4 bytes

 1.- 0x41 (hex), A (ascii). *Audio Command.
2.- 0x41 (hex), A (ascii).
3.- File second high byte.
4.- File second low byte.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command advances/rewinds the currently
playing audio file, to the desired File Second
parameter.

 If File Second parameter is sent as 0(dec), it
means the audio file will play from the second 0 or
beginning.

 The maximum acceptable value of File Second
parameter is the file duration in seconds.

 If the File Second parameter exceeds file duration
in seconds obtained with “Play WAV File”, the
command will fail with NAK as response and audio
file will stop playing.

 To avoid strange/undesired sound output while the
audio file is being advanced or rewind, user can set
first “Pause WAV File” command to toggle pause,
then advance/rewind file, and finally set again ”Pause
WAV FIle” to resume file playing.

 This command is only valid when an audio file is
being played, otherwise will always return NAK.

Example (sent commands) Example 1:
<41,41,00,64> Advance Audio File to second
100(dec).

Example 2:
<41,41,00,00> Rewind Audio File to second 00(dec).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 82

2.7.5 Stop WAV File – 53hex - S ascii

Commands (host) 2 bytes

 1.- 0x41 (hex), A (ascii). *Audio Command.
2.- 0x53 (hex), S (ascii).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description When command is successfully executed (ACK), it
simply stops a currently playing audio file.

Example (sent commands) Example 1:
<41,53> Stop Audio File.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 83

2.7.6 Set Volume WAV – 56hex - V ascii

Commands (host) 3 bytes

 1.- 0x41 (hex), A (ascii). *Audio Command.
2.- 0x56 (hex), V (ascii).
3.- Volume to set 0-100(dec) 0x00-0x64(hex).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description Command needed to adjust the audio volume
output, 0(0hex) stands for none, 100(64hex) stands
for maximum audio volume.

Default audio volume on reset or power on is
100(64hex).

Example (sent commands) Example 1:
<41,56,32> Set Audio Volume to 50(dec) Half power.

Example 2:
<41,56,00> Set Audio Volume to 00(dec) No sound.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 84

2.7.7 Get Playing State – 47hex - G ascii

Commands (host) 2 bytes

 1.- 0x41 (hex), A (ascii). *Audio Command.
2.- 0x47 (hex), G (ascii).

Responses (device) 1 byte + 1 byte ACK/NAK

 1.- Playing State: 0x00(hex) Active or
 0x01(hex) Not Active.
2.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This is one of the most simple yet effective
commands on SmartGPU 2, this command replies
the currently playing audio state, 0x00(hex) for not
playing, and 0x01(hex) for active playing.

 With this command user can know if a previously
called audio file with “Play WAV File” command, is
still being playing or already ended.

 Note that the “Pause WAV File” is the unique
command that can stop audio sound and this "Get
Playing State" command will still return an Active
Playing State.

Example (sent and received
commands)

Example 1:
<41,47> 00,4F. No audio file is playing.

Example 2:
<41,47> 01,4F. An audio file is being played.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 85

2.7.8 Audio Boost WAV File – 42hex - B ascii

Commands (host) 3 bytes

 1.- 0x41 (hex), A (ascii). *Audio Command.
2.- 0x42 (hex), B (ascii).
3.- Boost State: OFF 0x00(hex) or
 ON 0x01(hex).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description Command needed to turn ON or turn OFF the audio
output boost (refer to datasheet to learn more about
this feature).

 The OFF boost state is recommended for
headphones, and the ON boost state is
recommended for external amplifiers or speakers with
amplifier.

 Default reset or power on state of the Audio Boost
is 0x00(hex) boost OFF.

 This command could be called anytime, however is
recommended to be called in a non-playing state to
avoid clicks in the audio outputs.

Example (sent commands) Example 1:
<41,42,01> Turn ON audio boost.

Example 2:
<41,42,00> Turn OFF audio boost.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 86

2.8 Touch Commands

The integrated touch controller on the SMART GPU 2 chip, it’s an accurate 12 bit
ADC reader, very accurate and perfectly debugged to avoid unwanted touch points.

 This touch controller manages a resistive touch screen that is capable of
handling finger touch and stylus pen touch, however for a precision drawing it’s
recommended the use of stylus.

 The touch screen also contain 5 general purpose Icons drawn on the bottom
corner, any touch on those Icons are processed on the touch controller and sent by the
SMART GPU 2 as touch on Icon, instead of just another coordinate touch.

 Never operate the touch with sharp objects or pens that are not designed for
touch screens.

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘T’-54hex, as
they are Touch commands, followed by the next parameters/bytes.

• Get Touchscreen – 53hex ‘S’
• Get Touch icons – 49hex ‘I’

To calibrate the touchscreen, please refer to the command:

 • Calibrate Touch – 54hex ‘T’

This command is under Master Commands section.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 87

2.8.1 Get Touchscreen – 53hex - S ascii

Commands (host) 1 byte

 1.- 0x54 (hex), T (ascii). *Touch command.
2.- 0x53 (hex), S (ascii).

Responses (device) 4 bytes + 1 byte ACK/NAK

 1.- X coord high byte.
2.- X coord low byte.
3.- Y coord high byte.
4.- Y coord low byte.
5.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command performs a reading on the
touchscreen panel and responds immediately
the current reading in that specific time.

 When the command is called and a valid
touch point on the touchscreen is
read/obtained, the SmartGPU 2 will respond
with the X(16bit) and Y(16bit) coordinates of
the touch point followed by an ACK(means
valid touchscreen point).

 If during the command call, no valid touch
on the touchscreen panel is present,
SmartGPU 2 will respond X and Y coordinates
as zeros: 00,00,00,00(hex), followed by a
NAK(means no valid touchscreen point and
coordinates values must be discarded).

 Unlike other touch devices/systems that
wait until a touchscreen point is obtained,
Smart GPU 2 responses immediately in order
to release the main processor and not freeze
the system with a getchar()/reply loop, this
way the application program can perform other
tasks and ask periodically for a touchscreen
point.

 If a simple wait until valid point / touch on
screen is needed, user can call this command
repeatedly until an ACK with valid coordinates
is obtained.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 88

Example (sent and received
commands)

Example 1:
<54,53> 01,15,00,56,4F – A valid touch point
is obtained with X:277(dec), Y:86(dec)
coordinates.

Example 2:
<54,53> 00,96,00,32,4F – A valid touch point
is obtained with X:150(dec), Y:50(dec)
coordinates.

Example 3:
<54,53> 00,00,00,00,46 – Not valid touch
point is obtained(means no touch on screen),
X:00(dec) and Y:00(dec) coordinates must be
discarded.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 89

2.8.2 Get Touch Icons – 49hex - I ascii

Commands (host) 1 byte

 1.- 0x54 (hex), T (ascii). *Touch command.
2.- 0x49 (hex), I (ascii).

Responses (device) 1 byte + 1 byte ACK/NAK

 1.- Icon Name First Capital Letter.
2.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command performs a reading on the
touchscreen panel and responds immediately
the current reading in that specific time.

 When the command is called and a valid
touch on the touchscreen Icons is
read/obtained, the SmartGPU 2 will respond
with the Name First Capital Letter of the Icon
followed by an ACK(means valid touch on
Icon).

 If during the command call, no valid touch
on the touchscreen Icons is present,
SmartGPU 2 will respond ‘N’(ascii) followed by
a NAK(means no valid touch on Icons).

Possible responses:
If no touch:
‘N’ - None – 4E, 46

Touch on Home Icon:
‘H’ - Home – 48, 4F

Touch on Message Icon:
‘M’ - Message – 4D, 4F

Touch on Book Icon:
‘B’ - Book – 42, 4F

Touch on Phone Icon:
‘P’ – Phone – 50, 4F

Touch on Song/Note Icon:
‘S’ - Song – 53, 4F

 If a simple wait until valid point / touch on
screen is needed, user can call this command
repeatedly until an ACK with a different than
‘N’ None Icon is obtained.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 90

Example (sent and received
commands)

Example 1:
<54,49> 48,4F – A valid touch on “Home” Icon
is obtained.

Example 2:
<54,49> 50,4F – A valid touch on “Phone” Icon
is obtained.

Example 3:
<54,49> 4E,46 – Not valid touch on Icon is
obtained(means no touch on screen panel),
Icon letter must be discarded.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 91

2.9 FAT Data Management/Data Logger Commands

The new Smart GPU 2 includes full Data management functions, create files/dirs,
open files/dirs, read files, write files, etc.

 Those full Data Logger functions enable full possibilities with the Smart GPU 2,
as it is now more complete than ever. User can create easy and advanced Data Logger
+ graphic applications.

 The SmartGPU 2 also support nested folders management and up to 4
simultaneous open files for read-write operations, those open files can be allocated
to Workspace Blocks, the SmartGPU 2 contains workspace block 0 to workspace
block 3, the command “Open File” is used to assign a file to a workspace block#, only
one object/file can be allocated at the same time in the same workspace block, the
command “Close File” frees the workspace block.

 Note that all commands of this section always respond 2 types of ACKs, first one
is FAT access execution(File ACK/NAK List) and second one is ACK ‘O’ or NAK ‘F’.

 Never remove micro SD card during “write” operations on micro SD card, data
could be corrupted and damaged.

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘F’-46hex, as
they are FAT commands, followed by the next parameters/byes.

• List Dirs and Files –4Chex ‘L’
• Get name Item# –47hex ‘G’
• Get Dir Path –48hex ‘H’
• New Dir/File –4Ehex ‘N’
• Open Dir –44hex ‘D’
• Open File –4Fhex ‘O’
• Read File –52hex ‘R’
• Write File –57hex ‘W’
• Set/Get Pointer –50hex ‘P’
• Sync File –53hex ‘S’
• Test Error-EOF –51hex ‘Q’
• Close File –43hex ‘C’
• Truncate File –56hex ‘V’
• Erase Dir/File –45hex ‘E’
• Dir/File Rename/move –4Dhex ‘M’
• Set/Get Time and Date Dir/File –54hex ‘T’
• Get Dir/File Info –49hex ‘I’
• Get Free and Total Space –46hex ‘F’

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 92

File ACK List:

As Mentioned before, those FAT Data Management commands always respond
2 ACKs, first ACK is for File Operation, and second ACK is for command success.

The next list of bytes, are the possible ACKs that could be obtained from any File

Operation:

Byte received Meaning Description

0x00 (hex) OK Success.

0x01 (hex) DISK ERROR Hard error in low level disk I/O
layer.

0x02 (hex) INTERNAL ERROR Assertion failed.

0x03 (hex) NOT READY Physical drive cannot work.

0x04 (hex) NO FILE Could not find the file.

0x05 (hex) NO PATH Could not find the path.

0x06 (hex) INVALID NAME Path name invalid format.

0x07 (hex) DENIED Access denied or full directory.

0x08 (hex) EXIST Access denied to prohibited access.

0x09 (hex) INVALID OBJECT File object is invalid.

0x0A (hex) WRITE PROTECTED Physical drive is write protected.

0x0B (hex) INVALID DRIVE No Drive/microSD card is inserted.

0x0C (hex) NOT ENABLED The volume has no work area.

0x0D (hex) NO FILESYSTEM There’s no valid FAT volume.

0x11 (hex) NOT ENOUGH CORE The LFN working buffer could not
be allocated.

0x12 (hex) TOO MANY OPEN
FILES

No more files can be opened.

0x13 (hex) INVALID
PARAMETER

Given parameters are invalid.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 93

2.9.1 List Dirs and Files –4Chex – ‘L’ ascii

Commands (host) 2 bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x4C (hex), L (ascii). (List Dirs and Files)

Responses (device) Number of Dirs(2 bytes) + Number of
Files(2 bytes) + 1 byte File ACK + 1 byte
Command ACK

 1.- Number of Directories (high byte).
2.- Number of Directories (low byte).
3.- Number of Files (high byte).
4.- Number of Files (low byte).
5.- 0xXX (hex) - Refer to “File ACK List”.
6.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The List Dirs/Files command read and count
all directories and files under the current
microSD card directory path and returns the
number of found Items.

 Each time the User changes the directory
path is recommended to call this command to
know the items under the new path.

 This is one of the simplest yet effective
commands available on the Smart GPU 2 FAT
Data Management functions.

Example (sent and received
commands)

Example 1:
<46,4C> 00,0B,00,20,00,4F –List Items, we
got 11(dec) Dirs, and 32(dec) Files, this
means we have those 43 Items files on the
current microSD path.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 94

2.9.2 Get Name of Item Number# –47hex – ‘G’ ascii

Commands (host) 5 bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x47 (hex), G (ascii). (Get Name)
3.- Dir/File Item: 0x44 (hex), D (ascii) Dir Item
 or 0x46 (hex), F (ascii) File Item.
4.- Item Number (high byte).
5.- Item Number (low byte).

Responses (device) Dir/File Name + 1 byte NULL + 1 byte File
ACK + 1 byte Command ACK

 1 up to N.- Dir/File Name.
N+1.- 0x00(hex), NULL(ascii).
N+2.- 0xXX (hex) - Refer to “File ACK List”.
N+3.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description This command returns the file name of the
received item Number could be a Directory
Item or a File Item; the item Number
parameter must be less than the previously
found Number of Dirs/Files with the “List
Files” Command.

 By using the “List Files” command combined
with this “Get Name Item#” command, the user
can have a detailed list of all the item and
names contained under the current microSD
directory path.

Example (sent commands) Example 1:
<46,47,46,00,01> –Get name of File item
01(dec).

Example 2:
<46,47,44,00,0A> –Get name of Dir item
10(dec).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 95

2.9.3 Get Dir Path –48hex – ‘H’ ascii

Commands (host) 2 bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x48 (hex), H (ascii). (Get Path)

Responses (device) Directory path name + 1 byte NULL + 1
byte File ACK + 1 byte Command ACK

 1 up to N.- Directory path name.
N+1.- 0x00(hex), NULL(ascii).
N+2.- 0xXX (hex) - Refer to “File ACK List”.
N+3.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description This command returns the current microSD
card folder/directory path address. This
command let the user know under which
nested folder or the root path is performing
operations.

 This command returns the path name in the
following convention, ending with the ‘/’
character, followed by the 0x00(hex) NULL
character:

0:/directory1/directory2/

 Is recommended to call this command each
time that the user opens/enter a new directory.

Example (sent and received
commands)

Example 1:
<46,48> 30,3A,2F,00,00,4F –Get current
directory path name: the current directory path
name is root path “ 0:/ ”.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 96

2.9.4 New Dir/File – 4Ehex - ‘N’ ascii

Commands (host) 3 bytes + Dir or File name with “.ext” +

1byte(NULL).

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x4E (hex), N (ascii). (New Dir/File)
3.- Dir/File Item: 0x44 (hex), D (ascii) Dir Item
 or 0x46 (hex), F (ascii) File Item.
4 up to N (file name including extension).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) 1 byte File ACK + 1 byte Command ACK

 1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description This Command creates a new Directory or File
based on the received Dir/File Item parameter,
command fails with EXIST(0x08) if the Directory or
File already exists.

 After Directory is created, its contents are
empty, to open the new created directory, use the
“Open Dir” command.

 After file is created, contents of the new file will
be 0 bytes.

 The Dir/file name must be up to 250
characters. Only numbers and letters are
recommended to name the file, some special
characters are not allowed and may not work.

 Always a NULL character (0x00)hex must follow
the last character of the Dir/File name, in order to
indicate to SMART GPU the end of this name, In
case of new File Item, the name to receive
must include the .xxx desired extension.

Example (sent commands) Example 1:
<46,4E,46,30,31,32,33,2E,74,78,74,00> Creates
new file named “0123.txt”, that doesn’t exist.

Example 2:
<46,4E,44,41,42,43,00> Create a new directory
named “ABC”, that doesn’t exist.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 97

2.9.5 Open Directory/Folder –44hex – ‘D’ ascii

Commands (host) 2 bytes + Dir name + 1byte(NULL).

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x44 (hex), D (ascii). (Open Dir)
3 up to N (file name including extension).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) 1 byte File ACK + 1 byte Command ACK

 1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description This Command Opens a Directory/Folder under current
directory path on microSD card.

 After Open Dir command is executed and succeeds
(ACK), the current directory path name will add the new
open directory name.

 To go inside a Directory, just call this command and give
the “directory name” as Dir name parameter.

 To go outside a Directory or to parent folder(1 level), just
call this command and give the “..” as Dir name parameter.

 SmartGPU 2 can also go directly inside or outside a
nested Directory by giving the full path name
“0:/Folder1/Folder2/directory name” as Dir name
parameter.

 Once the user has changed the directory path by going
inside or outside folders, is recommended to call the
command “Get Dir Path” to the exactly current directory
path.

Example (sent commands) Example 1:
*Current directory path is “0:/” root path.
<46,44,30,31,32,33,00> Open a Directory called “0123”,
under the current directory path.
*After command succeeds Current directory path is now
“0:/0123 “.

Example 2:
*Current directory path is “0:/ABC”.
<46,44,30,31,32,33,00> Open a Directory called “0123”
under the current directory path.
*After command succeeds Current directory path is now
“0:/ABC/0123”.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 98

Example 3:
*Current directory path is “0:/ABC”.
<46,44,2E,2E,00> Go to parent Directory “..” (goes up one
level).
*After command succeeds Current directory path is now
“0:/” root path.

Example 4:
*Current directory path is “0:/ABC/0123”.
<46,44,2E,2E,00> Go to parent Directory “..”(goes up one
level).
*After command succeeds Current directory path is now
“0:/ABC”.

Example 5:
*Current directory path is “0:/ABC/0123”.
<46,44,30,3A,2F,00> Go directly to root “0:/”.
*After command succeeds Current directory path is now
“0:/”.

Example 6:
*Current directory path is any path.
<46,44,30,3A,2F,41,42,43,2F,30,31,32,33,2F,58,59,5A,00>
Go directly to “0:/ABC/0123/XYZ” directory.
*After command succeeds Current directory path is now
“0:/ABC/0123/XYZ”.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 99

2.9.6 Open File –4Fhex – ‘O’ ascii

Commands (host) 4 bytes + file name with “.ext” + 1byte(NULL).

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x4F (hex), O (ascii). (Open File)
3.- Workspace Block# 0x00(hex) – 0x03(hex).
4.- Open Mode:
 0x01 (hex)- Read Only
 0x02 (hex)- Write Only
 0x03 (hex)- Read +Write
5 up to N (file name including extension).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) 1 byte File ACK + 1 byte Command ACK

 1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description This Command Opens/Allocates a file on the
Workspace Block# parameter, the file access
depends on the “Open Mode” parameter:

- Read Only: Specifies read access to the object,
file data can only be read, not write.

- Write Only: Specifies write access to the object,
file data can only be write, not read.

- Read+Write: Specifies read+write access to the
object, file data can be write or read.

 After Open File command is executed and
succeeds(ACK), the file object workspace block
is valid. The file object workspace block is used
for subsequent read/write operations to identify
the file.

 Only one file can be open at the same time in
the same Workspace block, always be sure close
a Workspace block file object before opening a
new one in it, if another file is already allocated in
the Workspace block and a call to “Open File” is
executed in that same Workspace block, the old
file is discarded and replaced by the new one,
any unsaved changes on the old file will be lost.

 To save changes to file without closing it use “Sync
File”, to save and close an open file object use “Close
File” function. If the modified/written file is not saved or
closed, the file data can be collapsed.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 100

Example (sent commands) Example 1:
<46,4F,01,02,30,31,32,33,2E,74,78,74,00> Open
file “0123.txt” in Workspace block 0x01, for write
only access.

Example 2:
<46,4F,00,01,41,42,43,2E,77,78,6C,00> Open
file “ABC.wxl” in Workspace block 0x00 for read
only access.

Example 2:
<46,4F,03,03,30,31,32,33,2E,74,78,74,00> Open
file “0123.txt” in Workspace block 0x03 for
read+write access.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 101

2.9.7 Read File –52hex – ‘R’ ascii

Commands (host) 5 bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x52 (hex), R (ascii). (Read File)
3.- Workspace Block# 0x00(hex) – 0x03(hex)
4.- Bytes to Read (High byte).
5.- Bytes to Read (Low byte).

Responses (device) N Data bytes + 2 bytes (Successfully Read
Bytes) + 1 File ACK + 1 Command ACK

 1 up to N.- File Data bytes.(N= Bytes to Read)
N+1.- Successfully Read bytes (High byte).
N+2.- Successfully Read bytes (Low byte).
N+3.- 0xXX (hex) - Refer to “File ACK List”.
N+4.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The “Read File” command reads binary data
from a previously allocated File(“Open File”) in
a Workspace block, set with access for “Read
Only” or “Read+Write” mode.

 After the command succeeded,
Successfully Read bytes should be checked
to detect the end of file. In case of
Successfully Read bytes < Bytes to Read, it
means the read/write pointer reached end of
the file during read operation.

 This command always will try to read the
Bytes to Read parameter, however note that
even Successfully Read bytes < Bytes to
Read, this command will always return the
requested Byte to Read bytes, that is: if
Successfully Read bytes < Bytes to Read
then the SmartGPU 2 will complete/fill
requested data bytes with 0x00(hex).
Successfully Read bytes parameter will be
the number of returned valid read bytes, the
rest will be just 0x00(hex).

 Always after calling this command, the file
pointer will increase the number of
Successfully Read bytes from the last
pointer position.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 102

 If no File is allocated in the Workspace
block# received parameter during a “Read
File” command, this command will fail with
INVALID OBJECT, as an attempt to read data
from an empty Workspace block was done.

Example (sent commands) Example 1:
<46,52,01,00,0A> Read 10(dec) bytes from
the Workspace block 0x01 file object. (file
pointer will increase 10 positions after this
command).

Example 2:
<46,52,02,13,88> Read 5000(dec) bytes from
the Workspace block 0x02 file object. (file
pointer will increase 5000 positions after this
command).

Example 3:
<46,52,00,FF,FF> Read 65535(dec) bytes
from the Workspace block 0x00 file object. (file
pointer will increase 65535 positions after this
command).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 103

2.9.8 Write File –57hex – ‘W’ ascii

Commands (host) 5 bytes + N Data bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x57 (hex), W (ascii). (Write File)
3.- Workspace Block# 0x00(hex) – 0x03(hex).
4.- Bytes to Write (High byte).
5.- Bytes to Write (Low byte).
6 up to N.- File Data bytes. (N= Bytes to Write).

*Max Bytes to Write parameter is 512 (dec).

Responses (device) 2 bytes (Successfully Written Bytes) + 1
File ACK + 1 Command ACK

 1.- Successfully Written bytes (High byte).
2.- Successfully Written bytes (Low byte).
3.- 0xXX (hex) - Refer to “File ACK List”.
4.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The Write File command writes data to a
previously allocated File(“Open File”) in a
Workspace block, set with access “Write Only”
or “Read+Write” mode.

 After the command succeeded, Successfully
Written bytes should be checked to detect disk
full. In case of Successfully Written bytes <
Bytes to Write, it means the volume get full
during write operation.

 Be sure to perform a Sync File or Close File
command periodically after a write cycle to
save data and avoid data corruption. Always
after calling this command, the file pointer will
increase the number of Successfully Written
bytes from the last pointer position.

 The maximum accepted Bytes to Write
parameter in one call is 512 bytes, if this
number is exceed, the command will fail with
INVALID PARAMETER.

 If no File is allocated in the Workspace
block# received parameter during a “Write File”
command, this command will fail with INVALID
OBJECT, as an attempt to Write data to an
empty Workspace block was done.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 104

Example (sent commands) Example 1:
<46,57,02,00,0A,(data to write)> Write 10(dec)
bytes to the Workspace block 0x02 file object.
(file pointer will increase 10 positions after this
command).

Example 2:
<46,57,01,02,00,(data to write)> Write 512(dec)
(MAX in one call) bytes to the Workspace block
0x01 file object. (file pointer will 512 increase
positions after this command).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 105

2.9.9 Set/Get Pointer –50hex – ‘P’ ascii

*This command is divided in 2 sub-commands, each one is explained next:

Commands (host) X bytes

 Set File Pointer position:
1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x50 (hex), P (ascii). (File Pointer)
3.- Workspace Block# 0x00(hex) – 0x03(hex)
4.- 0x53 (hex), S (ascii). (Set)
5.- Position high byte.
6.- Position medium high byte.
7.- Position medium low byte.
8.- Position low byte.

Get File Pointer position:
1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x50 (hex), P (ascii). (File Pointer)
3.- Workspace Block 0x00(hex) – 0x03(hex).
4.- 0x47 (hex), G (ascii). (Get)

*Note that the Position parameter Set or Get is
an Unsigned Long data type (4 bytes).

Responses (device) X bytes

 Set File Pointer position:
1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Get File Pointer position:
1.- Position high byte.
2.- Position medium high byte.
3.- Position medium low byte.
4.- Position low byte.
5.- 0xXX (hex) - Refer to “File ACK List”.
6.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The Set/Get Pointer command moves the
file read/write pointer of a Workspace block file
object, or returns the current file pointer of the
Workspace block file object. It can also be
used to increase the file size when writing
data(cluster pre-allocation).

 When the pointer is Set to a given number
parameter, it moves the file pointer
counting from file origin to the received
number, doesn’t care current position.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 106

 When an offset above the file size is
specified in write mode, the file size is
increased to the offset(cluster pre-allocation);
data contained in the expanded area is
undefined. This is suitable to append data to a
file in a quick manner, for fast write operation.

 Note that Each time a “Read File” or
“Write File” operation is performed; the file
pointer advances the read or written bytes.

 To know if the pointer of a Workspace
block file object is at the end when reading
or writing, user can call the “Test EOF”
command.

 If no File is allocated in the Workspace
block# received parameter during a “Set
Pointer” command, this command will fail with
INVALID OBJECT, as an attempt to Set/Get
pointer from an empty Workspace block was
done.

Example (sent and received
commands)

Example 1:
<46,50,01,53,00,00,00,0A> 00,4F - Set
Workspace block 0x01 contained File pointer
to 10(dec) position (origin to number).

Example 2:
<46,50,02,53,00,04,E6,7C> 00,4F - Set
Workspace block 0x02 contained File pointer
to 321148(dec) position (origin to number).

Example 3:
<46,50,00,47> 00,00,00,0A,00,4F - Get
Workspace block 0x00 contained File pointer
position, obtained pointer position is 10(dec).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 107

2.9.10 Sync File –53hex – ‘S’ ascii

Commands (host) 3 bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x53 (hex), S (ascii). (Sync File)
3.- Workspace Block# 0x00(hex) – 0x03(hex)

Responses (device) 1 byte File ACK + 1 byte Command ACK

 1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The Sync File command is similar to a give a
click on a classic “save changes” button in a
PC software, this command save any changes
in the Workspace block file object without
closing the file, it is left opened and user can
continue Read/Write operations to the
Workspace block file object. This command is
suitable for applications that require open files
for a long time in write mode, such as data
logger, and this avoids data corruption.

 Performing Sync File or data save of
periodic or immediately after file write can
minimize the risk of data loss due to a sudden
blackout or an unintentional disk removal.
However a call to Sync File command
immediately before Close File command has
no advantage because Close File performs
Sync File in it. In other words, the difference
between those functions is that the Workspace
block file object is invalidated/closed or not.

 If no File is allocated in the Workspace
block# received parameter during a “Sync File”
command, this command will fail with INVALID
OBJECT, as an attempt to sync data to an
empty Workspace block was done.

Example (sent commands) Example 1:
<46,53,01> Sync/Save changes to Workspace
block 0x01 file object.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 108

2.9.11 Test Error-EOF File –51hex – ‘Q’ ascii

Commands (host) 4 bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x51 (hex), Q (ascii). (Test File)
3.- Workspace Block# 0x00(hex) – 0x03(hex)
4.- Test Type: 0x52, R (ascii) Error test or
 0x45, E (ascii) End Of File test.

Responses (device) 1 byte + 1 byte File ACK + 1 byte
Command ACK

 1.- Test result 0x00 (hex) or 0x01 (hex).
2.- 0xXX (hex) - Refer to “File ACK List”.
3.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The Test Error - EOF File command checks
for any error in a file within the given
Workspace block#, in the other side, it checks
for an End of File in the Workspace block#
received parameter.

 The Error Test helps user to know about
any write error operation.

 The End of File Test helps the user to know
if the Workspace block file object pointer is at
the end of the file when writing or reading from
a file.

 If no File is allocated in the Workspace
block# received parameter during a “Test
Error-EOF File” command, this command will
fail with INVALID OBJECT, as an attempt to
test an empty Workspace block was done.

Example (sent commands) Example 1:
<46,51,01,52> Test for an Error on the
Workspace block 0x01 file object.

Example 2:
<46,51,01,45> Test for an End of File on the
Workspace block 0x01 file object.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 109

2.9.12 Close File –43hex – ‘C’ ascii

Commands (host) 3 bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x43 (hex), C (ascii). (Close File)
3.- Workspace Block# 0x00(hex) – 0x03(hex)

Responses (device) 1 byte File ACK + 1 byte Command ACK

 1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The Close File command closes a
Workspace block# file object. If any data has
been written to the file, the cached information
of the file is written back to the disk. After the
command succeeded, the Workspace block
file object is no longer valid and it can be
discarded. If the modified file is not closed, the
file data can be collapsed.

 Be sure to always close a Workspace block
file object before opening a new one in the
same Workspace block to avoid losing data.

 If no File is allocated in the Workspace
block# received parameter during a “Close
File” command, this command will fail with
INVALID OBJECT, as an attempt to Close an
empty Workspace block was done.

Example (sent commands) Example 1:
<46,43,02> Save and Close the file contained
under the Workspace block 0x02 file object.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 110

2.9.13 Truncate File –56hex – ‘V’ ascii

Commands (host) 3 bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x56 (hex), V (ascii). (Truncate File)
3.- Workspace Block# 0x00(hex) – 0x03(hex)

Responses (device) 1 byte File ACK + 1 byte Command ACK

 1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The Truncate File command cuts data
contents from the received Workspace block#
file object up from the current pointer
position, it means that up from the current
pointer position, all data in the file will be
truncated and file size will be reduced.

 If no File is allocated in the Workspace
block# received parameter during a “Truncate
File” command, this command will fail with
INVALID OBJECT, as an attempt to Truncate
data from an empty Workspace block was
done.

Example (sent commands) Example 1:
<46,56,01> Truncate file data contents of the
file contained under the Workspace block
0x01, data up from the current file pointer
position will be cut, file size will be reduced
after this command.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 111

2.9.14 Erase Dir/File –45hex – ‘E’ ascii

Commands (host) 3 bytes + Dir or File name with “.ext” +

1byte(NULL).

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x45 (hex), E (ascii). (Erase Dir/File)
3.- 0x4F Security un-lock byte.
3 up to N (Dir/File name including extension).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) 1 byte File ACK + 1 byte Command ACK

 1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description This Command Erases/Deletes an existing
Directory or File from the microSD card current
directory path. The Security un-lock byte, it’s a
simple security byte that avoids unwanted delete
operations.

 When deleting a Directory, it must be empty or
command will fail.

 When deleting a File, it must be closed and not
allocated under any Workspace block to avoid
any data corruption.

 If Directory or File to erase doesn’t exist during
an Erase Dir/File command, this will fail with
INVALID NAME.

Example (sent commands) Example 1:
<46,45,4F,30,31,32,33,2E,74,78,74,00> Erase
File “0123.txt”.

Example 2:
<46,45,4F,41,42,43,2E,77,78,6C,00> Erase File
“ABC.wxl”.

Example 3:
<46,45,4F,72,6F,63,6B,00> Erase the Dir “rock”.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 112

2.9.15 Dir/File Rename/Move –4Dhex – ‘M’ ascii

Commands (host) 2 bytes + Dir/File OLD name with “.ext” +

1byte(NULL) + Dir/File NEW name with “.ext” +
1byte(NULL).

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x4D (hex), M (ascii). (Rename/Move Dir/File)
3 up to N (OLD Dir/File name including extension).
N+1.- 0x00 (hex) NULL ascii(end of OLD name).
N+2 up to M (NEW Dir/File name including extension).
M+1.- 0x00 (hex) NULL ascii(end of NEW name).

Responses (device) 1 byte File ACK + 1 byte Command ACK

 1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description This Command can rename or move a Directory or
File, both operations can also be achieved in the
same command call.

 If Directory or File to rename/move doesn’t exist
during a Dir/File Rename/Move command, this will
fail with NO FILE.

Example (sent commands) Rename Examples:
Example 1:
<46,4D,31,32,33,2E,74,78,74,00,34,35,36,2E,74,78,
74,00> Rename a File named “123.txt” to “456.txt”,
under the current directory path.

Example 2:
<46,4D,30,3A,2F,31,32,33,2E,74,78,74,00,30,3A,2F,
34,35,36,2E,74,78,74,00> Rename a File named
“123.txt” to “456.txt” under the root “0:/” path.

Move Examples:
Example 1:
<46,4D,30,3A,2F,46,6F,6C,64,65,72,31,2F,46,6F,6C,
64,65,72,32,2F,46,6F,6C,64,65,72,33,00,30,3A,2F,46,
6F,6C,64,65,72,33,00> Move a directory from
“0:/Folder1/Folder2/Folder3” to “0:/Folder3” path.

Example 2:
<46,4D,30,3A,2F,31,32,33,2E,74,78,74,00,30,3A,2F,
46,6F,6C,64,65,72,2F,31,32,33,2E,74,78,74,00>
Move a File from “0:/123.txt” to “0:/Folder/123.txt”
path.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 113

Rename + Move Examples:
Example 1:
<46,4D,30,3A,2F,46,6F,6C,64,65,72,31,2F,46,6F,6C,
64,65,72,32,00,30,3A,2F,46,6F,6C,64,65,72,58,00>
Rename and Move a directory and its contents from
“0:/Folder1/Folder2” to “0:/FolderX” path.

Example 2:
<46,4D,30,3A,2F,31,32,33,2E,74,78,74,00,30,3A,2F,
46,6F,6C,64,65,72,2F,34,35,36,2E,74,78,74,00>
Rename and Move a File from “0:/123.txt” to
“0:/Folder/456.txt” path.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 114

2.9.16 Set/Get Time and Date Dir/File –54hex – ‘T’ ascii

*This command is divided in 2 sub-commands, each one is explained next:

Commands (host) X bytes

 Set Dir/File Time and Date:
1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x54 (hex), T (ascii). (Dir/File Time & Date)
3.- 0x53 (hex), S (ascii). (Set)
4.- Hours 0-23(dec).
5.- Minutes 0-59(dec).
6.- Seconds 0-59(dec).
7.- Day 1-31(dec).
8.- Month 1-12(dec).
9.- Year upper byte 1980-2107(dec).
10.- Year lower byte
11 up to N (Dir/File name including extension).
N+1.- 0x00 (hex) NULL ascii.

Get Dir/File Time and Date:
1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x54 (hex), T (ascii). (Dir/File Time & Date)
3.- 0x47 (hex), G (ascii). (Get)
4 up to N (Dir/File name including extension).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) X bytes

 Set Dir/File Time and Date:
1.- 0xXX (hex) - Refer to “File ACK List”.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Get Dir/File Time and Date:
1.- Hours 0-23(dec).
2.- Minutes 0-59(dec).
3.- Seconds 0-59(dec).
4.- Day 1-31(dec).
5.- Month 1-12(dec).
6.- Year upper byte 1980-2107(dec).
7.- Year lower byte
8.- 0xXX (hex) - Refer to “File ACK List”.
9.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The Set/Get Time Date command simply
Sets or Gets the last modified Time and Date
timestamp of a Directory or File.

 Note that the “New Dir/File” and “Write
File” commands update the timestamp of
the created/modified Directory or File.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 115

 FAT commands time and date related
functions uses the RTC Real Time Clock
data to correctly set timestamps, if this is
needed, the RTC must be enabled prior to
execute those FAT functions.

Example (sent and received
commands)

Example 1:
<46,54,53,11,1E,14,13,03,07,DD,31,32,33,2E,
74,78,74,00> 00,4F - Set Time “17:30:20” and
Date “19 March 2013”, to the File “123.txt”.

Example 2:
<46,54,53,11,1E,14,13,03,07,DD,46,6F,6C,64,
65,72,00> 00,4F - Set Time “17:30:20” and
Date “19 March 2013”, to the Directory
“Folder”.

Example 3:
<46,54,47,31,32,33,2E,74,78,74,00>
11,1E,14,13,03,07,DD,00,4F – Get Time and
Date of the File “123.txt”, data obtained is
Time “17:30:20” and Date “19 March 2013”.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 116

2.9.17 Get Dir/File Info –49hex – ‘I’ ascii

*This command is divided in 2 sub-commands, each one is explained next:

Commands (host) 3 bytes + Dir or File name with “.ext” +
1byte(NULL).

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x49 (hex), I (ascii). (Dir/File Info)
3.- 0x53 (hex), S (ascii). Size or
 0x46 (hex), F (ascii). FAT Attribute
4 up to N (Dir/File name including extension).
N+1.- 0x00 (hex) NULL ascii.

Responses (device) X bytes

 Get Dir/File Size:
1.- Size high byte.
2.- Size medium high byte.
3.- Size medium low byte.
4.- Size low byte.
5.- 0xXX (hex) - Refer to “File ACK List”.
6.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

*The size of a Directory is always Zero 0x00000000.

Get Dir/File Attribute:
1.- 0xXX(hex) - FAT Attribute.
2.- 0xXX (hex) - Refer to “File ACK List”.
3.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The Get Dir/File Info command simply asks for
Information about the received Directory or File, this
Information can be the Size in bytes or FAT
Attribute.

 The possible FAT Attributes can be one or a
logical “OR” combination of the next bytes:

0x01 – Read Only
0x02 – Hidden file
0x04 – System
0x08 – Volume label
0x10 – Directory
0x20 – Archive.

Example (sent and received
commands)

Example 1:
<46,49,53,31,32,33,2E,74,78,74,00>
00,00,15,DA,00,4F - Get Size of File “123.txt”,
obtained file size is 5594(dec) bytes ~ 5Kb.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 117

Example 2:
<46,49,53,41,42,43,2E,74,78,74,00>
00,45,87,AB,00,4F - Get Size of File “ABC.txt”,
obtained file size is 4556715(dec) bytes ~ 4.5Mb.

Example 3:
<46,49,46,31,32,33,2E,74,78,74,00> 21,00,4F - Get
FAT Attribute of File “123.txt”, obtained Attribute is
0x21(hex), the logical OR of 0x20 Archive and 0x01
Read only, so the file is a Read-only Archive.

Example 4:
<46,49,46,31,32,33,2E,74,78,74,00> 23,00,4F - Get
FAT Attribute of File “123.txt”, obtained Attribute is
0x23(hex), the logical OR of 0x20 Archive , 0x01
Read only and 0x02 Hidden File, so the file is a
Read-only hidden Archive.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 118

2.9.18 Get Free and Total Space –46hex – ‘F’ ascii

Commands (host) 2 bytes

 1.- 0x46 (hex), F (ascii). *FAT command.
2.- 0x46 (hex), F (ascii). (Free and Total Space)

Responses (device) 10 bytes

 Free Space:
1.- Size in Kb high byte.
2.- Size in Kb medium high byte.
3.- Size in Kb medium low byte.
4.- Size in Kb low byte.

Total Space:
5.- Size in Kb high byte.
6.- Size in Kb medium high byte.
7.- Size in Kb medium low byte.
8.- Size in Kb low byte.

ACKs:
9.- 0xXX (hex) - Refer to “File ACK List”.
10.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

*Note that the Size parameters are Unsigned Long
data types (4 bytes).

Description This command simply asks for the available FREE
Space and the TOTAL Space of the microSD card
Flash Memory, the sizes are returned in Kbytes
units.

 To get the USED Space, the following formula can
be applied:

 USED Space = TOTAL Space – FREE Space

Example (sent and received
commands)

Example 1:
<46,46> 00,3A,EE,40,00,3A,F0,00,00,4F Get FREE
and TOTAL space of the microSD card flash
memory, obtained sizes are: FREE Space:
3862080Kb(dec) and TOTAL Space:
3862528Kb(dec).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 119

2.10 RTC Real Time Clock Commands

The new Smart GPU 2 includes an embedded RTC Real Time Clock to support
full Time-Date calendar functions, also Data Logger applications that require a precise
timestamp.

 The real-time clock is an independent timer that counts every second and keeps
information about date(day, month, year) and time(hours, minutes, seconds). The next
RTC Timer Functions enable full possibilities with the Smart GPU 2, as it is now more
complete than ever. User can create full real time Graphic User Interfaces and
Datalogger applications with clock-calendar functions with the accuracy that only a RTC
provides.

 The SmartGPU 2 has an internal and ready to run RTC, however to lower
production costs, the RTC Crystal hasn’t been mounted on the board, a 32.768 Khz
Crystal can be soldered to the OSC32 external pads to enable full SmartGPU 2 RTC
support. Also to avoid the RTC lose time and date data each time main VCC power is
removed or shut down from the chip, a Standard 3V coin backup battery can be
connected to the pads noted as VBat and GND pin on the board, this way the RTC will
continuously running even the SmartGPU 2 chip is power off and RTC time and date
data will be conserved.

 Please refer to “SmartGPU2LCD320x240datasheet.pdf” file for more
detailed information about RTC recommended circuit.

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘R’-52hex, as
they are RTC commands, followed by the next parameters/bytes.

• RTC Setup – 53hex ‘S’
• RTC Set/Get Time and Date – 50hex ‘P’

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 120

2.10.1 RTC Setup –53hex – ‘S’ ascii

Commands (host) 2 bytes

 1.- 0x52 (hex), R (ascii). *RTC command.
2.- 0x53 (hex), S (ascii).

Responses (device) 2 bytes

 1.- RTC State: 0x00 Stopped or
 0x01 Configured and Running.
2.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The RTC Setup command setups, Initializes
and runs the RTC clock, once the command
was sent, the first response byte RTC State of
this command will tell the new/current RTC
state.

 Each time the SmartGPU chip comes out
from a power off/shutdown state and no
backup battery is placed on VBat pad, this
command must be called in order to setup,
initialize and run the RTC for the first time.

 Once the RTC is setup and running,
consecutive calls to this command will always
return 0x01(running) in the RTC State reply
parameter, as the RTC is already setup and
running.

 Is recommended to call this command at the
beginning of the application program: If the
RTC is Stopped, SmartGPU 2 chip will try to
initialize and setup the RTC if a crystal is
mounted on the board, once some
milliseconds have passed, if the RTC wasn’t
successfully initialized, SmartGPU 2 will reply
0x00(stopped) as RTC State parameter. If the
RTC is already configured and running: and
this command is called, SmartGPU 2 will
check RTC internal state and simply ignore the
command returning 0x01(running) as RTC
State reply parameter.

 When an application needs time and date,
clock and calendar functions, the RTC
must be enabled, also the FAT commands
time and date related functions uses the
RTC data to correctly set timestamps.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 121

Example (sent and received
commands)

Example 1:
<52,53> 00,4F – Setup RTC, obtained data is
0x00(stopped), the RTC couldn’t be initialized
due to lack of 32.768Khz crystal.

Example 2:
<52,53> 01,4F – Setup RTC, obtained data is
0x01(running), the RTC is setup and running.

Example 3:
<52,53> 01,4F – Try to Setup an already
initialized RTC, obtained data is
0x01(running), the RTC is already running.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 122

2.10.2 RTC Set/Get Time and Date –50hex – ‘P’ ascii

*This command is divided in 2 sub-commands, each one is explained next:

Commands (host) X bytes

 Set RTC Time and Date:
1.- 0x52 (hex), R (ascii). *RTC command.
2.- 0x50 (hex), P (ascii). (RTC Parameters)
3.- 0x53 (hex), S (ascii). (Set)
4.- Hours 0-23(dec).
5.- Minutes 0-59(dec).
6.- Seconds 0-59(dec).
7.- Day 1-31(dec).
8.- Month 1-12(dec).
9.- Year upper byte 1980-2107(dec).
10.- Year lower byte

Get RTC Time and Date:
1.- 0x52 (hex), R (ascii). *RTC command.
2.- 0x50 (hex), P (ascii). (RTC Parameters)
3.- 0x47 (hex), G (ascii). (Get)

Responses (device) X bytes

 Set RTC Time and Date:
1.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Get RTC Time and Date:
1.- Hours 0-23(dec).
2.- Minutes 0-59(dec).
3.- Seconds 0-59(dec).
4.- Day 1-31(dec).
5.- Month 1-12(dec).
6.- Year upper byte 980-2107(dec).
7.- Year lower byte
8.- 0x4F (hex), O (ascii) – success ACK.
 0x46 (hex), F (ascii) – fail NAK.

Description The RTC Set/Get Time and Date command
simply Sets or Gets the RTC current Time and
Date data.

 Default RTC values are:
 -Time “05:05:05”
 -Date “19 March 2013”

 Note that if a “RTC Set/Get Time and
Date” command is called when the RTC is
stopped or hasn’t been initialized, retrieved
data will be invalid and must be discarded.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 123

Example (sent and received
commands)

Example 1:
<52,50,53,11,05,0A,13,03,07,DD> 4F - Set
Time “17:05:10” and Date “19 March 2013”, to
the RTC data/current Time and Date.

Example 2:
<52,50,47> 11,05,0A,13,03,07,DD,4F – Get
current RTC Time and Date, obtained RTC
data is “17:05:10” and Date “19 March 2013”.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 124

2.11 EEPROM-FLASH Commands

The Smart GPU 2 includes an embedded EEPROM like-FLASH 16Kb storage,
this is mapped as 8 Pages of 2048 bytes, this EEPROM-FLASH is useful to store non-
volatile data when an application require to maintain data even if power is removed from
the system.

 The next image shows the EEPROM-FLASH memory map and the Internal 2048
bytes RAM Buffer for Read-Write Operations:

 The internal 2048 RAM buffer is used to perform single byte read-write
operations, once data is ready to be saved, contents of all EEPROM RAM Buffer must
be saved on the EEPROM-FLASH Page 0 – 7. A typical EEPROM-FLASH usage
procedure example is described next:

*Consider that Page0 contains data that it needs to be copied to Page2:
1.-Init/Clear all EEPROM RAM Buffer(2048b) with 0xFF.
2.-Fill all EEPROM RAM Buffer(2048b) with Contents of Page 0(2048b).
3.-Data is ready to be saved from EEPROM RAM Buffer to EEPROM Page2.
4.-Erase EEPROM Page2(2048b).
5.-Save data from EEPROM RAM Buffer(2048b) to EEPROM Page2(2048b).
6.-Compare EEPROM RAM Buffer contents(2048b) to EEPROM Page2 contents(2048b).
7.-Contents must be the same of EEPROM Page0 and EEPROM Page2.

User must take in account that all the “Fill RAM Buffer with EEPROM PageX” ,

“Save RAM Buffer to EEPROM PageX”, “compare Buffer VS PageX”, “Erase PageX”
are 2048bytes operations, this means that all PageX is copied to all the Buffer, all Buffer
contents are Saved to the PageX, all Buffer contents are compared VS PageX and all
PageX contents are erased depending on the called command.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 125

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘E’-45hex, as
they are EEPROM-FLASH commands, followed by the next
parameters/bytes.

• Init/Clear EEPROM Buffer – 49hex ‘I’
• Read Bytes from EEPROM Buffer – 52hex ‘R’
• Write Bytes to EEPROM Buffer – 57hex ‘W’
• Fill Buffer with EEPROM Page# – 46hex ‘F’
• Save Buffer to EEPROM Page# – 53hex ‘S’
• Erase EEPROM Page# – 45hex ‘E’
• Compare Buffer to EEPROM Page# – 43hex ‘C’

*EEPROM-FLASH Erase-Write Endurance is 10 000 Cycles.
*EEPROM-FLASH Minimum Data Retention is >15 years.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 126

2.11.1 Init/Clear EEPROM Buffer –49hex – ‘I’ ascii

Commands (host) 2 bytes

 1.- 0x45 (hex), E (ascii). *EEPROM command.
2.- 0x49 (hex), I (ascii).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This command Initializes to 0xFFs all the
EEPROM RAM Buffer 2048bytes.

 As user may know, an erased EEPROM
Page is filled with 0xFFs, not 0x00s, so by
Initializing the EEPROM RAM Buffer to 0xFFs
and then comparing this EEPROM RAM buffer
with an EEPROM Page, user can determine if
the Page is clean/erased or not.

 During Read, Write, Erase, Compare, etc.
EEPROM Functions/Commands, user may not
call any other command rather than EEPROM
commands, as the EEPROM RAM Buffer data
is only valid during calls to EEPROM only
functions, if any other function/command
different than EEPROM related is called,
EEPROM RAM Buffer will be discarded and
data in it will be lost.

Example (sent and received
commands)

Example 1:
<45,49> 4F – Initialize RAM Buffer, after this
command succeeds, all contents of EEPROM
RAM Buffer are 0xFFs (2048 bytes).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 127

2.11.2 Read Bytes From EEPROM Buffer –52hex – ‘R’ ascii

Commands (host) 6 bytes

 1.- 0x45 (hex), E (ascii). *EEPROM command.
2.- 0x52 (hex), R (ascii).
3.- EEPROM RAM Buffer Address High Byte.
4.- EEPROM RAM Buffer Address Low Byte.
5.- Bytes To Read High Byte.
6.- Bytes To Read Low Byte.

Responses (device) DRB(N bytes) + SRB(2 bytes) + ACK/NAK(1
byte).

 1-N.- DRB(Data Read Bytes).
N+1.-SRB(Successfully Read Bytes) High byte
N+2.-SRB(Successfully Read Bytes) Low byte
N+3.-0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command Reads Data from the EEPROM
RAM Buffer starting from the EEPROM RAM
Buffer Address(0-2047) and reading the Bytes
To Read parameter, this could be from 1-2048
bytes.

 After the command succeeded, Successfully
Read bytes should be checked to detect the valid
data bytes. In case of Successfully Read bytes
< Bytes to Read, it means the read pointer
reached end of the EEPROM RAM Buffer during
read operation. This command always will try to
read the Bytes to Read parameter, however note
that even Successfully Read bytes < Bytes to
Read, this command will always return the
requested Byte to Read bytes, that is: if
Successfully Read bytes < Bytes to Read then
the SmartGPU 2 will complete/fill requested data
bytes with 0x00(hex). Successfully Read bytes
parameter will be the number of returned valid
read bytes, the rest will be just 0x00(hex).

 During Read, Write, Erase, Compare, etc.
EEPROM Functions/Commands, user may not
call any other command rather than EEPROM
commands, as the EEPROM RAM Buffer data is
only valid during calls to EEPROM only functions,
if any other function/command different than
EEPROM related is called, EEPROM RAM Buffer
will be discarded and data in it will be lost.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 128

Example (sent and received
commands)

Example 1:
<45,52,00,00,00,0A> (10 Bytes Data),00,0A,4F –
Read 10(dec) Bytes of EEPROM RAM Buffer Data
starting from Address 0(dec).

Example 2:
<45,52,00,0A,00,32> (50 Bytes Data),00,32,4F –
Read 50(dec) Bytes of EEPROM RAM Buffer Data
starting from Address 10(dec).

Example 3:
<45,52,07,F8,00,0A> (10 Bytes Data),00,08,4F –
Read 10(dec) Bytes of EEPROM RAM Buffer Data
starting from Address 2040(dec), Successfully
Read Bytes Is minor than Bytes To Read, this
means that the only valid data are the first 8(dec)
bytes, the other 2 bytes are just 0x00s, this is
because starting address is 2040(dec) and the
maximum address is 2047(dec).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 129

2.11.3 Write Bytes to EEPROM Buffer –57hex – ‘W’ ascii

Commands (host) 6 bytes + N bytes: Bytes To Write

 1.- 0x45 (hex), E (ascii). *EEPROM command.
2.- 0x57 (hex), W (ascii).
3.- EEPROM RAM Buffer Address High Byte.
4.- EEPROM RAM Buffer Address Low Byte.
5.- Bytes To Write High Byte.
6.- Bytes To Write Low Byte.
7-N – Data Bytes.

Responses (device) SWB(2 bytes) + ACK/NAK(1 byte).

 1.-SWB(Successfully Written Bytes) High byte.
2.-SWB(Successfully Written Bytes) Low byte.
3.-0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command Writes Data to the EEPROM
RAM Buffer starting from the EEPROM RAM
Buffer Address(0-2047) and writing the Bytes To
Write parameter, this could be from 1-2048 bytes.

 After the command succeeded, Successfully
Written bytes should be checked to detect the
amount of valid written data bytes. In case of
Successfully Written bytes < Bytes to Write, it
means the EEPROM RAM Buffer address pointer
overflowed position 2047.

 Note that EEPROM RAM Buffer Address +
Bytes to Write parameters must always be less
than or equal to 2048 bytes, if the sum of those
parameters is more than 2048 bytes, command
will fail.

 During Read, Write, Erase, Compare, etc.
EEPROM Functions/Commands, user may not
call any other command rather than EEPROM
commands, as the EEPROM RAM Buffer data is
only valid during calls to EEPROM only functions,
if any other function/command different than
EEPROM related is called, EEPROM RAM Buffer
will be discarded and data in it will be lost.

Example (sent commands) Example 1:
<45,57,00,0A,00,32,(data)> Write 100(dec) Bytes
to the EEPROM RAM Buffer starting from Address
10(dec).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 130

2.11.4 Fill Buffer with EEPROM Page# –46hex – ‘F’ ascii

Commands (host) 3 bytes

 1.- 0x45 (hex), E (ascii). *EEPROM command.
2.- 0x46 (hex), F (ascii).
3.- EEPROM Page #(number).

Responses (device) 1 byte

 1.-0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command Fills all the EEPROM RAM
Buffer 2048 bytes with the contents of a received
EEPROM Page Number(2048 bytes).

 This Command could be seen also as “Copy
EEPROM Page to EEPROM RAM Buffer”. Page
parameter can be 0-7.

 During Read, Write, Erase, Compare, etc.
EEPROM Functions/Commands, user may not
call any other command rather than EEPROM
commands, as the EEPROM RAM Buffer data is
only valid during calls to EEPROM only functions,
if any other function/command different than
EEPROM related is called, EEPROM RAM Buffer
will be discarded and data in it will be lost.

Example (sent commands) Example 1:
<45,56,02> Fill EEPROM RAM Buffer with
contents of EEPROM Page 2.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 131

2.11.5 Save Buffer to EEPROM Page# –53hex – ‘S’ ascii

Commands (host) 3 bytes

 1.- 0x45 (hex), E (ascii). *EEPROM command.
2.- 0x53 (hex), S (ascii).
3.- EEPROM Page #(number).

Responses (device) 1 byte

 1.-0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command Saves all the current contents of
EEPROM RAM Buffer 2048 bytes to the received
EEPROM Page Number(2048 bytes).

 This Command could be seen also as “Store in
non-volatile flash memory/EEPROM Page, all the
current contents of EEPROM RAM Buffer”. Page
parameter can be 0-7.

 During Read, Write, Erase, Compare, etc.
EEPROM Functions/Commands, user may not
call any other command rather than EEPROM
commands, as the EEPROM RAM Buffer data is
only valid during calls to EEPROM only functions,
if any other function/command different than
EEPROM related is called, EEPROM RAM Buffer
will be discarded and data in it will be lost.

Example (sent commands) Example 1:
<45,53,04> Save EEPROM RAM Buffer contents
to EEPROM Page 4.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 132

2.11.6 Erase EEPROM Page# –45hex – ‘E’ ascii

Commands (host) 3 bytes

 1.- 0x45 (hex), E (ascii). *EEPROM command.
2.- 0x45 (hex), E (ascii).
3.- EEPROM Page #(number).

Responses (device) 1 byte

 1.-0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command Simply Erases all contents of the
received EEPROM Page Number(2048 bytes),
Note that Erased contents of an EEPROM Page
are 0xFFs.

Example (sent commands) Example 1:
<45,45,05> Erase EEPROM Page 5 (0xFFs).

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 133

2.11.7 Compare Buffer to EEPROM Page# –43hex – ‘C’ ascii

Commands (host) 3 bytes

 1.- 0x45 (hex), E (ascii). *EEPROM command.
2.- 0x43((hex), C (ascii).
3.- EEPROM Page #(number).

Responses (device) 1 byte Result + 1 byte ACK/NAK

 1.- 0x00-Contents Differ or
 0x01-Contents are Equal.
2.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command Simply Compares all the current
EEPROM RAM Buffer contents to the contents of
the received EEPROM Page Number(2048 bytes).

 If contents differ, the SmartGPU 2 will reply 0x00,
if contents are equal, it will reply 0x01.

Example (sent and received
commands)

Example 1:
<45,43,06> -01,4F- Compare EEPROM Page 6
with EEPROM RAM Buffer contents, received
0x01; contents are equal.

Example 2:
<45,43,01> -00,4F- Compare EEPROM Page 1
with EEPROM RAM Buffer contents, received
0x00; contents differ.

All data is in hex.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 134

2.12 OBJECTS Commands

The Smart GPU 2 integrates a series of hardware drawing assisted objects,
those objects help user to create easy GUI controls like Scroll Bars, Progress Bars,
Buttons, etc.

 The next objects are currently supported:

-Checkbox.
-Button with or without text.
-Binary Switch ON/OFF.
-Progress Bar with text indicator.
-Scroll Bar with steps.
-Sliders Vertical and Horizontal.
-Windows with X(close) button and text.

 Without those hardware objects, simple working panels or settings pages would
be not so easy to construct, however by simple calling commands, those objects auto-
adjust and center text/steps, letting the user take care in main application instead of
expending hours by designing those objects.

Briefly Summary of Commands in this section:

*All of Those next commands always begin with the byte ‘O’-4Fhex, as
they are OBJECTS commands, followed by the next parameters/bytes.

• Object Checkbox – 43hex ‘C’
• Object Button – 42hex ‘B’
• Object Switch – 54hex ‘T’
• Object Progress Bar – 50hex ‘P’
• Object Scroll Bar – 53hex ‘S’
• Object Slider – 4Chex ‘L’
• Object Window – 57hex ‘W’

*some objects have size limitations or minimum accepted sizes, those are
explained in each object command description.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 135

2.12.1 Object Checkbox –43hex – ‘C’ ascii

Commands (host) 9 bytes

 1.- 0x4F (hex), O (ascii). *OBJECT command.
2.- 0x43((hex), C (ascii).
3.- X coord high byte.
4.- X coord low byte.
5.- Y coord high byte.
6.- Y coord low byte.
7.- Checkbox Size high byte.
8.- Checkbox Size low byte.
9.- Active State (check/un-check).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command generates-draws a Checkbox
object with the received top left X(16bit) and
Y(16bit) coordinates, the parameter Checkbox
size(16bit), will determine size in pixels of the
object in X and Y axis.

 This is a simple but useful object to create GUIs
that need checkboxes.

 *Minimum “Checkbox size” accepted parameter
is 15(dec), which means that the smallest
Checkbox that can be created is 15x15 pixels.

Example (sent commands) Example 1:
<4F,43,00,0A,00,05,00,10,00> Create a checkbox
(un-checked) of size 16(dec)x16(dec), starting on
the top left corner X:10(dec), Y:5(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 136

Example 2:
<4F,43,00,0A,00,05,00,64,01> Create a checkbox
(checked) of size 100(dec)x100(dec), starting on
the top left corner X:10(dec), Y:5(dec).

All data is in hex. Note: Maximum X or Y
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 137

2.12.2 Object Button –42hex – ‘B’ ascii

Commands (host) 11 bytes + Text on Button + 1byte(NULL)

 1.- 0x4F (hex), O (ascii). *OBJECT command.
2.- 0x42((hex), B (ascii).
3.- X1 coord high byte.
4.- X1 coord low byte.
5.- Y1 coord high byte.
6.- Y1 coord low byte.
7.- X2 coord high byte.
8.- X2 coord low byte.
9.- Y2 coord high byte.
10.- Y2 coord low byte.
11.- Active State (selected/un-selected).
12 – N.- Button Text
N+1.- 0x00(hex) NULL character.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command generates-draws a
Selected/Unselected button object with the received
X1(16bit), Y1(16bit), X2(16bit), Y2(16bit)
coordinates, the Button text will be automatically
centered and font is adjusted in size to fit the Button,
if the Button is too Small to hold a large text inside it,
this will be discarded. Buttons without text can also
be created by passing only the 0x00(hex) NULL
Character as “Text on Button” parameter.

 *Minimum Button Size accepted parameters are
20(dec)x20(dec), that means that the smallest
Button that can be created is 20x20 pixels.
 (X2-X1) >= 20 and (Y2-Y1) >= 20.

Example (sent commands) Example 1:
<4F,42,00,0A,00,14,00,C8,00,64,01,54,65,78,74,00>
Draw a Selected(0x01) button with the coordinates:
X1:10(dec), Y1:20(dec), X2:200(dec), Y2:100(dec),
and the word “Text” inside.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 138

Example 2:
<4F,42,00,0A,00,14,00,C8,00,64,00,54,65,78,74,00>
Draw a Unselected(0x00) button with the
coordinates: X1:10(dec), Y1:20(dec), X2:200(dec),
Y2:100(dec), and the word “Text” inside.

Example 3:
<4F,42,00,0A,00,14,00,C8,00,64,01,00> Draw a
Selected(0x01) button with the coordinates:
X1:10(dec), Y1:20(dec), X2:200(dec), Y2:100(dec),
without any word or text inside.

All data is in hex. Note: Maximum X or Y acceptable
size values depend on display orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 139

2.12.3 Object Switch –54hex – ‘T’ ascii

Commands (host) 9 bytes

 1.- 0x4F (hex), O (ascii). *OBJECT command.
2.- 0x54((hex), T (ascii).
3.- X coord high byte.
4.- X coord low byte.
5.- Y coord high byte.
6.- Y coord low byte.
7.- Switch Size high byte.
8.- Switch Size low byte.
9.- Active State (On/Off).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command generates-draws an On/Off
Switch object with the received top left X(16bit)
and Y(16bit) coordinates and received Switch
Size(16bit), the resulting Switch will measure
“Switch Size” pixels in X axis and “Switch Size”/2
pixels in Y axis.

 This is a simple but useful object to create GUIs
that need switches.

 *Minimum “Switch size” accepted parameter is
40(dec), which means that the smallest switch that
can be created is 40x20 pixels.

Example (sent commands) Example 1:
<4F,54,00,0A,00,0A,00,64,00> Draw an Off(0x00)
state Switch object starting at the top left corner:
X:10(dec), Y:10(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 140

Example 2:
<4F,54,00,0A,00,0A,00,64,01> Draw an On(0x01)
state Switch object starting at the top left corner:
X:10(dec), Y:10(dec).

All data is in hex. Note: Maximum X or Y
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 141

2.12.4 Object Progress Bar –50hex – ‘P’ ascii

Commands (host) 11 bytes

 1.- 0x4F (hex), O (ascii). *OBJECT command.
2.- 0x50((hex), P (ascii).
3.- X1 coord high byte.
4.- X1 coord low byte.
5.- Y1 coord high byte.
6.- Y1 coord low byte.
7.- X2 coord high byte.
8.- X2 coord low byte.
9.- Y2 coord high byte.
10.- Y2 coord low byte.
11.- Progress/Percentage 0x00(hex) – 0x64(hex).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command generates-draws a Progress Bar
object with the received X1(16bit), Y1(16bit),
X2(16bit), Y2(16bit) coordinates, the progress bar
will be automatically filled with GREEN colour up
to the received “Progress/Percentage” parameter,
the text will be automatically centered and the font
is adjusted in size to fit the Progress Bar, if the
Progress Bar is too Small to hold text inside it, this
will be discarded.

 *Minimum Progress Bar accepted parameters
are 25(dec)x25(dec), that means that the smallest
Progress Bar that can be created is 25x25 pixels.
 (X2-X1) >= 25 and (Y2-Y1) >= 25.

Example (sent commands) Example 1:
<4F,50,00,0A,00,0A,00,C8,00,64,16> Draw a
Progress Bar object with the coordinates:
X1:10(dec), Y1:10(dec), X2:200(dec),
Y2:100(dec), and 22(dec) as
Progress/Percentage.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 142

Example 2:
<4F,50,00,0A,00,0A,00,C8,00,64,50> Draw a
Progress Bar object with the coordinates:
X1:10(dec), Y1:10(dec), X2:200(dec),
Y2:100(dec), and 80(dec) as
Progress/Percentage.

All data is in hex. Note: Maximum X or Y
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 143

2.12.5 Object Scroll Bar –53hex – ‘S’ ascii

Commands (host) 14 bytes

 1.- 0x4F (hex), O (ascii). *OBJECT command.
2.- 0x53((hex), S (ascii).
3.- X1 coord high byte.
4.- X1 coord low byte.
5.- Y1 coord high byte.
6.- Y1 coord low byte.
7.- X2 coord high byte.
8.- X2 coord low byte.
9.- Y2 coord high byte.
10.- Y2 coord low byte.
11.- Bar Position (must be < Divisions).
12.- Divisions.
13.- Orientation: 0x00-Horizontal or
 0x01-Vertical.
14.- Active State(selected/un-selected).

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command generates-draws a Scroll Bar
object with the received X1(16bit), Y1(16bit),
X2(16bit), Y2(16bit) coordinates, the “Divisions”
parameter will determine actual Bar Size, the “Bar
Position” determines where to draw the Bar, the
Scroll Bar can be Vertical or Horizontal and
selected or un-selected.

 This is a simple but useful object to create GUIs
that need Scroll Bars.

 *Minimum Scroll Bar accepted parameters are
25(dec)x25(dec), that means that the smallest
Scroll Bar that can be created is 25x25 pixels.
 (X2-X1) >= 25 and (Y2-Y1) >= 25, Bar Position
must be always less than Divisions, Bar Position <
Divisions, and it’s also recommended to set small
numbers to “Divisions” (<= 10).

Example (sent commands) Example 1:
<4F,53,00,00,00,00,00,A0,00,70,04,0A,00,00>
Draw a Horizontal(0x00), Un-selected(0x00) Scroll
Bar object with the coordinates: X1:0(dec),
Y1:0(dec), X2:160(dec), Y2:112(dec), Bar
Position:4(dec), Divisions:10(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 144

Example 2:
<4F,53,00,00,00,00,00,70,00,A0,01,02,01,01>
Draw a Vertical(0x01), Selected(0x01) Scroll Bar
object with the coordinates: X1:0(dec), Y1:0(dec),
X2:112(dec), Y2:160(dec), Bar Position:1(dec),
Divisions:2(dec).

All data is in hex. Note: Maximum X or Y
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 145

2.12.6 Object Slider –4Chex – ‘L’ ascii

Commands (host) 13 bytes

 1.- 0x4F (hex), O (ascii). *OBJECT command.
2.- 0x4C((hex), L (ascii).
3.- X1 coord high byte.
4.- X1 coord low byte.
5.- Y1 coord high byte.
6.- Y1 coord low byte.
7.- X2 coord high byte.
8.- X2 coord low byte.
9.- Y2 coord high byte.
10.- Y2 coord low byte.
11.- Slider Position (must be < Divisions).
12.- Divisions.
13.- Orientation: 0x00-Horizontal or
 0x01-Vertical.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command generates-draws a Slider object
with the received X1(16bit), Y1(16bit), X2(16bit),
Y2(16bit) coordinates, the “Divisions” will be
automatically draw in the Slider area, if the Slider
area is too small to fit all the Divisions, those will
be discarded and not drawn, the “Slider Position”
determines where to draw the Slider, finally the
Slider Bar can be Vertical or Horizontal.

 This is a simple but useful object to create GUIs
that need Sliders.

 *Minimum Slider Size accepted parameters are
25(dec)x25(dec), that means that the smallest
Slider Object that can be created is 25x25 pixels.
 (X2-X1) >= 25 and (Y2-Y1) >= 25, Slider Position
must be always less than Divisions, Slider Position
< Divisions.

Example (sent commands) Example 1:
<4F,4C,00,0A,00,0A,00,A0,00,40,04,0A,00> Draw
a Horizontal(0x00), Slider object with the
coordinates: X1:10(dec), Y1:10(dec), X2:160(dec),
Y2:64(dec), Slider Position:4(dec),
Divisions:10(dec).

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 146

Example 2:
<4F,4C,00,0A,00,0A,00,40,00,A0,04,0A,01> Draw
a Vertical(0x01), Slider object with the
coordinates: X1:10(dec), Y1:10(dec), X2:64(dec),
Y2:160(dec), Slider Position:4(dec),
Divisions:10(dec).

All data is in hex. Note: Maximum X or Y
acceptable size values depend on display
orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 147

2.12.7 Object Window –57hex – ‘W’ ascii

Commands (host) 12 bytes + Window Text + 1byte(NULL)

 1.- 0x4F (hex), O (ascii). *OBJECT command.
2.- 0x57((hex), W (ascii).
3.- X1 coord high byte.
4.- X1 coord low byte.
5.- Y1 coord high byte.
6.- Y1 coord low byte.
7.- X2 coord high byte.
8.- X2 coord low byte.
9.- Y2 coord high byte.
10.- Y2 coord low byte.
11.- Window Font Size
12.- Active State: 0x00(hex) Un-selected Trans,
 0x01(hex) Selected Trans,
 0x02(hex) Selected Gray,
 0x03(hex) Selected White.
13 – N.- Window Text
N+1.- 0x00(hex) NULL character.

Responses (device) 1 byte

 1.- 0x4F (hex), O (ascii) – success ACK or
 0x46 (hex), F (ascii) – fail NAK.

Description This Command generates-draws an:
-Un-selected header with Transparent center
-Selected header with Transparent center
-Selected header with Gray center
-Selected header with White center
 Window object with the received X1(16bit),
Y1(16bit), X2(16bit), Y2(16bit) coordinates, the
Window header will be automatically fitted with the
received “Window Font Size”.

 The parameters selected/un-selected and
transparent/colour windows let user draw window
objects that require backgroundcolours(gray/white)
or when the transparent center is needed, this
allows the user to switch states of the window from
selected to unselected without overwriting the
contents of the entire window.

 *Minimum Window Size accepted parameters are
50(dec)x50(dec), that means that the smallest
Window object that can be created is 50x50 pixels.
 (X2-X1) >= 50 and (Y2-Y1) >= 50.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 148

Example (sent commands)
Example 1:
<4F,57,00,0A,00,0A,01,20,00,A0,02,02,57,69,6E,64,
6F,77,00> Draw a Selected header with Gray
center(0x02) Window object with the coordinates:
X1:10(dec), Y1:10(dec), X2:288(dec), Y2:160(dec),
and the word “Window” with font 2(dec) as header
text.

Example 2:
<4F,57,00,0A,00,0A,01,20,00,A0,02,03,57,69,6E,64,
6F,77,00> Draw a Selected header with White
center(0x03) Window object with the coordinates:
X1:10(dec), Y1:10(dec), X2:288(dec), Y2:160(dec),
and the word “Window” with font 2(dec) as header
text.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 149

Example 3:
<4F,57,00,0A,00,0A,01,20,00,A0,02,01,57,69,6E,64,
6F,77,00> Draw a Selected header with Transparent
center(0x01) Window object with the coordinates:
X1:10(dec), Y1:10(dec), X2:288(dec), Y2:160(dec),
and the word “Window” with font 2(dec) as header
text.(this kind of transparent window is used when window center data

needs to be kept and not overwritten).

Example 4:
<4F,57,00,0A,00,0A,01,20,00,A0,02,00,57,69,6E,64,
6F,77,00> Draw a Unselected header with
Transparent center(0x00) Window object with the
coordinates: X1:10(dec), Y1:10(dec), X2:288(dec),
Y2:160(dec), and the word “Window” with font
2(dec) as header text.(this kind of transparent window is used

when window center data needs to be kept and not overwritten).

All data is in hex. Note: Maximum X or Y acceptable
size values depend on display orientation.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 150

3 Development Hardware tools

SmartGPU2 is compatible with any system that contains a USART/Serial port, a
common device with this feature is the Arduino board, SmartGPU2 is fully compatible
with all Arduino and Arduino-like boards, however as most of those boards supply only
~150mA in their 3.3V power output, then Vizic Technologies designed the
SmartSHIELD, this board takes 5V of the boards and regulates the output to 3.3V via its
internal circuitry sourcing up to 1000mA of current, with this any Vizic tool can be
powered without current issues.

Also the smartSHIELD simplifies the connection of any Vizic tool to Arduino-like

boards, this is because a single bus is required to connect all the tools instead of
individual jumper wires.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 151

4 Development software tools

In order to make even easier the learning about how to communicate with the
SmartGPU 2 processor, FREE software could be downloaded and used in any PC.

This software simulates most of the functions of the SmartGPU 2 chip by

connecting it to the PC through the USB-UART SX Bridge, this connection enables real
live graphics processing.

 This software greatly reduces the time of learning the commands, and helps the
user to understand how commands are created as it shows the sent and received
commands by the PC<->SmartGPU 2 Chip.

For detailed information about this please download it from the website
under the smartGPU2 LCD480x320 page.

For detailed information about the USB-UART SX Bridge, please visit our
web site.

For detailed information about the SmartSHIELD, please visit our web site.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 152

VIZIC TECHNOLOGIES. COPYRIGHT 2013.
THE DATASHEETS AND SOFTWARE ARE PROVIDED "AS IS." VIZIC EXPRESSLY
DISCLAIM ANY WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT.

IN NO EVENT SHALL VIZIC BE LIABLE FOR ANY INCIDENTAL, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA,
HARM TO YOUR EQUIPMENT, COST OF PROCUREMENT OF SUBSTITUTE
GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENCE THEREOF), ANY CLAIMS FOR
INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR COSTS.

Proprietary Information:

The information contained in this document is the property of Vizic
Technologies and may be the subject of patents pending or granted, and must
not be copied or disclosed without prior written permission.

Vizic Tech endeavors to ensure that the information in this document is
correct and fairly stated but does not accept liability for any error or omission.
The development tools of Vizic products and services are continuous and
published information may not be up to date. It is important to check the current
position with Vizic Technologies at the web site.

All trademarks belong to their respective owners and are recognized and

acknowledged.

Disclaimer of Warranties & Limitation of Liability:

Vizic Technologies makes no warranty, either expresses or implied with

respect to any product, and specifically disclaims all other warranties, including,
without limitation, warranties for merchantability, non-infringement and fitness
for any particular purpose.

Information contained in this publication regarding device applications and
the like is provided only for your convenience and may be superseded by
updates. It is your responsibility to ensure that your application meets with your
specifications.

SMART GPU 2 4.3” TOUCH Command Set

Vizic Technologies ©2014 153

In no event shall Vizic be liable to the buyer or to any third party for any
indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business
opportunity) arising out of or relating to any product or service provided or to be
provided by Vizic Tech, or the use or inability to use the same, even if Vizic has
been advised of the possibility of such damages.

Use of Vizic’ devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless
Vizic Technologies from any and all damages, claims, suits, or expenses
resulting from such use. No licenses are conveyed, implicitly or otherwise, under
any Vizic Technologies intellectual property rights.

www.VIZICTECHNOLOGIES.COM

