

MEPNOANTECKAR CHCTEMA XIMMYECKMX SAEMEHTOB

вторник, 1 октября 2019 г.

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe S Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn Rn Ra Rb Rg Cn Uut Uuq Uup Uuh Uus Uuo

Лямин Алексей Николаевич
Почётный работник образования РФ

кандидат педагогических наук, доцент, г. Киров

ПЕРИОДИЧЕСКИЙ ЗАКОН

утверждение атомно-молекулярной теории на рубеже XVIII—XIX в.в. сопровождалось бурным ростом открытий химических элементов; только за первое десятилетие XIX в. было открыто 14 новых элементов, так, английский химик Гемфри Дэви за один только год электролизом получил шесть новых элементов; к 1870 г. число известных химических элементов достигло 63;

существование такого количества элементов, весьма отличных по свойствам, требовало систематизации элементов; учёные, по сходству отдельных качеств, объединяли их в отдельные группы, однако причин изменения свойств не было установлено; в 1869 г. великим русским учёным Д. И. Менделеевым был открыт фундаментальный закон природы — периодический закон: свойства химических элементов и свойства образуемых ими простых и сложных соединений стоят в периодической зависимости от их атомного веса;

современная формулировка периодического закона: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда атомных ядер в следствии периодического повторения электронных конфигураций внешнего энергетического уровня

CUCTEMA XUMNYECKUX DIEMEHTOB

периодический закон не имеет математического выражения в виде какого-либо уравнения, а наглядно представлен системой химических элементов; современная форма системы химических элементов предполагает двумерную таблицу, в которой каждый элемент расположен в индивидуальной номерной ячейке, колонки таблицы представляют группы элементов, а строки представляют периоды элементов

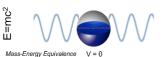
Group → ↓ Period	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86																	
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
	Lai	nthan	ides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
рник, 1 октя	бря 20	Actin i 19 г.	ides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

CUCTEMA XUMNYECKUX DIEMEHTOB

в России распространена короткопериодная форма таблицы периодической системы

0 1	occuu	pacne	sempane	па коро	ттопер	accinan	форта	maomaa	отперис	ou icenou cuem	207
ПЕРИОДЫ	РЯДЫ					ГРУПІ	ТЫ ЭЛЕМЕ	НТОВ			
ПЕРИОДЫ	глды	A B	A II B	A III B	A IV B	A V B	A VI B	A VII B	В	VIII	Α
1	1	Н 1,0	1					(H)		МЕНДЕЛЕЕВ Дмитрий Иванович (08.02.1834–02.02.1907)	Не 2 4,00
2	2	Li 6,9	4 БЕРИЛЛИЙ 9,01	БОР 10,81	С 6 12,01	A30T 14,01	О 8 16,00	F 9 19,00		Русский ученый-энциклопедист. В 1869— 1871 гг. изложил основы учения о перио- дичности, открыл периодический закон и разработал периодическую систему химических элементов. На основе систе-	Ne 10 20,18
3	3	Na 17 22,9		АІ 13 26,98	Si 14 28,09	Р 15 30,97	S 16 32,06	СІ 17 35,45		лимических элементов. На основе систе- мы впервые предсказал (1870) существо- вание и свойства нескольких ещё не от- крытых элементов.	Ar 18 39,95
4	4	К 19 39,11 калий		21 44,96 Sc скандий	22 47,90 Титан	23 50,94 ВАНАДИЙ	24 Cr 52,00 XPOM	25 54,94 Мп марганец		27 58,93 Со 28 КОБАЛЬТ 58,69 NI	
-	5	29 Cu 63,55 MEДI	65.39	Ga 31 69,72	Ge 32 72,59	Аѕ 33 74,92	Se 34 78,96	Br 35 79,90		,	Кг 36 83,80
5	6	Rb 37 85,4		39 Ү 88,91 иттрий	40 Zr 91,22 цирконий	41 92,91 НИОБИЙ	42 95,96 Мо молибден	43 Тс 97,91 технеций	44 Ru 101,07 РУТЕНИЙ	45 102,91 Rh 46 Pd 106,42 ПАЛЛАДИЙ	
3	7	47 107,87 А С	112.41	In 49 индий 114,82	Sn 50 118,71	Sb 51 121,76	Те 52 127,60	1 53 126,90 йод			Xe 54 131,30
6	8	Сs 55 132,9		57 138,91 La* лантан	72 178,49 Нf гафний	73 180,95 Та тантал	74 183,84 ВОЛЬФРАМ	75 186,21 Re РЕНИЙ	76 190,2 ОS ОСМИЙ	77 192,22 Ir 78 195,08 Pt платина	
O	9	79 196,97 А и 3ОЛОТО	200.59	ТІ 81 204,38	Рb 82 207,20	Ві 83 208,98	Ро 84 [209]	At 85 [210]			Rn 86 [222]
7	10	Fr 87 (223 ФРАНЦИЙ		89 [227] АС** актиний	104 Rf [261] РЕЗЕРФОРДИЙ	105 [262] Db дубний	106 [263] Sg сиборгий	107 [262] Вh БОРИЙ		109 Mt 110 Ds [266] мейтнерий [271] дармштадтий	
	11	111 R g [272]	1 1/801	Nh 113 [284]	FI 114 [289]	Мс 115 [288]	Lv 116 [292]	Тѕ 117 [294]			Од 118 [294]
высшие	оксиды	R ₂ O	RO	R_2O_3	RO ₂	R_2O_5	RO ₃	R_2O_7		RO_4	
ЛЕТУЧИЕ ВО СОЕДИН	ВЫСШИЕ ОКСИДЫ ІЕТУЧИЕ ВОДОРОДНЫЕ СОЕДИНЕНИЯ				RH₄	RH ₃	H ₂ R	HR			
*ЛАНТАН	ноиды	140,12	PAЗЕОДИМ НЕОДИ	144,24 [144,9	1] 150,36	Eu 63 G (ЕВРОПИЙ ГАДО	d 64 157,25 линий Тербий	65 58,93 Dy 66 диспрозий	164,93	r 68 Tm 69 Yb 17 167,26 Тулий иттербий	70 3,04 Lu 71 174,97 лютеций
**АКТИН	ноиды	232,04	Ра 91 U РОТАКТИНИЙ УРАН	92 238,03 Np [23 НЕПТУНИЙ	94 [244] ПЛУТОНИЙ	Am 95 [243] Cr америций кюрі	[247]	97 Cf 98 [247] КАЛИФОРНИЙ	[252]		102 9,1] Lr 103 _[260,1] лоуренсий

ТАБЛИЦА ЖИМИЧЕСКИХ ЭЛЕМЕНТОВ


1		550			32	Market Street			323 121	1923							18
1 H hydrogen					I	UPAC	Perio	lic Tak	ole of	the Ele	ement	s					2 He helium
1.000 1.0078, 1.0082]	2		Key:									13	14	15	16	17	4.0026
3 Li lithium 694 [6938, 6.997]	4 Be beryllium 9.0122		Symbo name conventional atomic w standard atomic w	ol 								5 B boron 10.81 [10.805, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007 [14.006, 14.008]	8 O oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 AI aluminium 26.982	14 Si silicon 20.005 [28.084, 28.086]	15 P phosphorus 30974	16 S sulfur 3206 p2.059,32.076]	17 CI chlorine 35.45 [35.446, 35.457]	18 Ar argon 39 25 (39.792, 39.963
19 K potassium 39.098	20 Ca calcium 40.078(4)	SC scandium	22 Ti Stanium 47.867	23 V vanadium 50.942	24 Cr chromium 51,996	25 Mn manganese 54.938	26 Fe iron 55.845(2)	27 Co cobalt 58.933	28 Ni nickel ss.ess	29 Cu copper 63.546(3)	30 Zn zinc 65.38(2)	31 Ga gallium 60.723	32 Ge germanium 72.630(8)	AS arsenic	34 Se selenium 78.971(8)	35 Br bromine 79904 [79.901, 79.907]	36 Kr krypton 83.798(2)
37 Rb rubidium 85.468	38 Sr strontium 87.62	39 Y yttrium 88.906	40 Zr zirconium 91.224(2)	41 Nb niobium 92.90s	Mo malybdenum 9595	43 TC technetium	44 Ru ruthenium	45 Rh modium	46 Pd paladium 106.42	47 Ag silver	48 Cd cadmium	49 In indium	50 Sn 5n 118.71	51 Sb antimony 121.76	52 Te tellurium 127.60(3)	53 iodine 126.90	54 Xe xenon 131.29
55 Cs caesium	56 Ba barium 197.33	57-71 lanthanoids	72 Hf hafnium 178.49(2)	73 Ta tantalum 180.95	74 W tungsten 18384	75 Re menium 186.21	76 Os osmium 190.23(3)	77 r iridium 192.22	78 Pt platinum 195.08	79 Au gold 19697	80 Hg mercury 200.59	81 TI thallium 204.30 [204.38, 204.39]	82 Pb lead 207.2	83 Bi bismuth 208.98	Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubrium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 MC moscovium	116 Lv Ivernorium	117 Ts tennessine	Og oganesso

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

57 La lanthanum	58 Ce cerium	59 Pr praseodymium 140.91	60 Nd neodymium	61 Pm promethium	62 Sm samarium 150.36(2)	63 Eu europium 15196	64 Gd gadolinium 157.25(3)	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er ertium 167.26	69 Tm thulium	70 Yb ytterbium 173.05	71 Lu lutetium
AC actinium	90 Th thorium	91 Pa protectinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr lawrendum

For notes and updates to this table, see www.iupac.org. This version is dated 1 December 2018. Copyright © 2018 IUPAC, the International Union of Pure and Applied Chemistry.

Rest Mass (Longitudinal Energy E_i)

United Nations International Year
Educational, Scientific and of the Periodic Table
Cultural Organization of Chemical Elements

ХИМИЧЕСКИЙ ЭЛЕМЕНТ

вид одноядерных частиц, которые могут существовать в виде свободных атомов или ионов, а также, входить в состав простых и сложных веществ

ХИМИЧЕСКИЙ ЭЛЕМЕНТ

в виде свободных атомов

 $He_{(\Gamma)}$, $N_{(\Gamma)}$, $Au_{(\Gamma)}$

символ

заряд ядра

радиус

поляризация

электроотрицательн.

молярная масса

в виде свободных **ионов**

 $Na^+_{(\Gamma)}$, $F^-_{(\Gamma)}$, $Ag^+_{(\Gamma)}$

символ

заряд иона

радиус

поляризация

электроотрицат.

молярная масса

в составе простых веществ

 $O_{3(r)}$, $Hg_{(x)}$, $K_{(TB)}$

формула

аллотропия

электроотрицат.

физические свойства

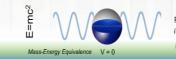
химические свойства

молярная масса

в составе **сложных веществ**

 $\mathsf{CN}_{2(\Gamma)}$, $\mathsf{H}_2\mathsf{O}_{(\mathsf{ж})}$, $\mathsf{BN}_{(\mathsf{TB})}$

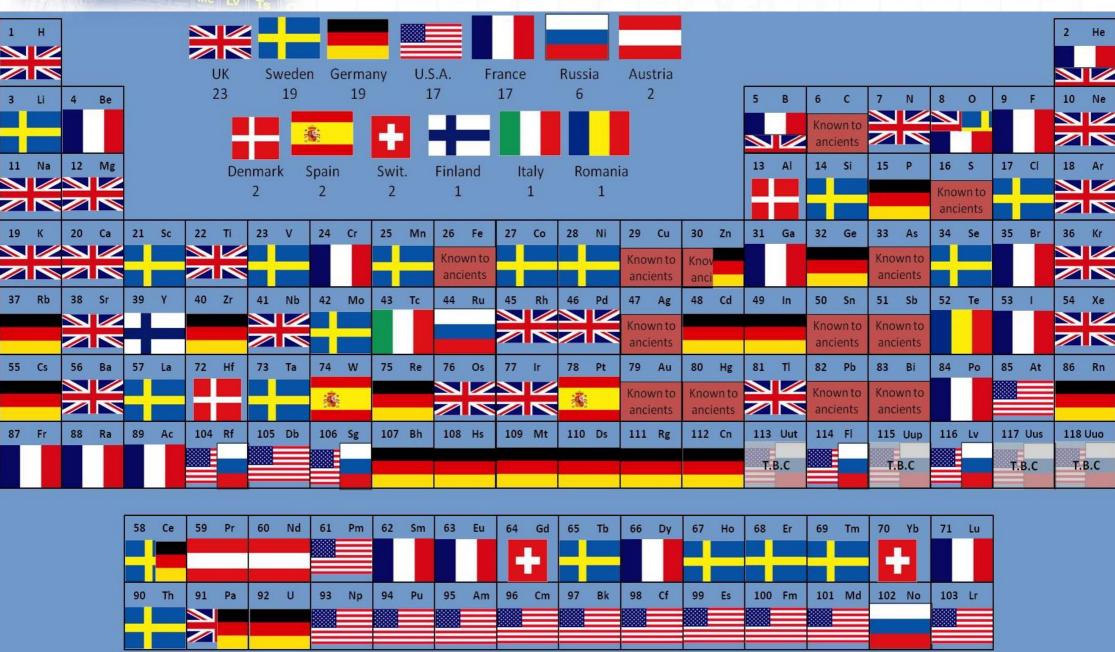
формула


изомерия

электроотрицательн.

физические свойства

химические свойства


молярная масса

IDNOPHTET OTKPUTHS XNMNYECKHX DIEMEHTOB

СТРУКТУРА ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ

ПЕРИОД — горизонтально расположенная последовательность элементов с одним количеством энергетических уровней, равным номеру периода;

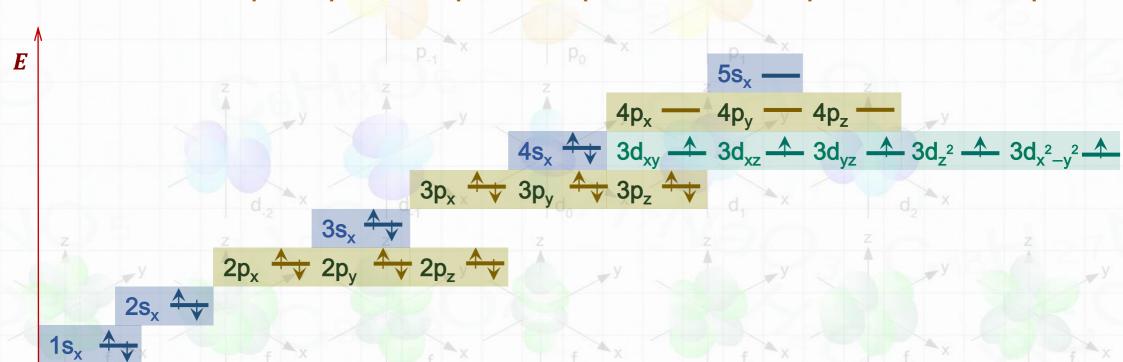
ГРУППА — вертикально расположенная последовательность элементов с одинаковым количеством валентных электронов равным номеру группы;

						Г	рупп	Ы				
			- 11	III	IV	٧	VI	VII		V	III 85	28.085
	1	1 Н 1,008 Водород			120			(H)	30	31	32	2 He 4,00 Гелий
п	2	3 Li 6,94 Литий	4 Be 9,01 Бериллий	5 10,81 В Бор	6 12,01 С Углерод	7 14,00 N Азот	8 16,00 О Кислород	9 19,00 F Фтор	Zinc	Ga	llium C	10 Ne 20,1 Неон
е	3	11 Na 22,99 Натрий	12 Mg 24,31 Магний	13 26,98 AI Алюминий	14 28,09 Si Кремний	15 30,97 Р Фосфор	16 32,06 S Cepa	17 35,45 СІ Хлор	1 48	49	50	18 Ar 39,9 Аргон
p	4	19 K 39,10 Калий	20 Са 40,08 Кальций	21 SC 44,96 Скандий	22 Ті 47,90 Титан	23 V 50,94 Ванадий	24 Сг 52,00 Хром	25 Mn 54,94 Марганец	26 Fe 55,85 Железо	27 Со 58,93 Кобальт	28 Ni 58,69 Никель	OII Tin
И		29 63,55 Си Медь	30 65,39 Zn Цинк	31 69,72 Ga Галлий	32 72,59 Ge Германий	33 74,92 AS Мышьяк	34 78,96 Se Селен	35 79,90 Br Бром	80	81	82	36 Kr 83,8 Криптон
o д	5	37 Rb 85,47 Рубидий	38 Sr 87,62 Стронций	39 Y 88,91 Иттрий	40 Zr 91,22 Цирконий	41 Nb 92,91 Ниобий	42 Мо 95,94 Молибден	43 Тс 98,91 Технеций	44 Ru 101,07 Рутений	45 Rh 102,91 Родий	46 Pd 106,42 Палладий	Pb
ы		47 107,87 Ад Серебро	48 112,41 Cd Кадмий	49 114,82 In Индий	50 118,69 Sn Олово	51 121,75 Sb Сурьма	52 127,60 Те Теллур	53 126,90 I Иод	112	113	11.	54 Хе 131,2 Ксенон
	6	55 Cs 132,91 Цезий	56 Ва 137,33 Барий	57 La * 138,91 Лантан	72 Hf 178,49 Гафний	73 Та 180,95 Тантал	74 W 183,85 Вольфрам	75 Re 186,21 Рений	76 OS 190,2 Осмий	77 Ir 192,22 Иридий	78 Pt 195,08 Платина	
		79 196,97 Au Золото	80 200,59 Нg Ртуть	81 204,38 ТІ Таллий	82 207,2 Pb Свинец	83 208,98 Ві Висмут	84 [209] Ро Полоний	85 [210] Аt Астат			86)	86 Rn [222 Радон
	7	87 Fr [223] Франций	88 Ra 226 Радий	89 АС ** [227] Актиний	104 Rf [261] Резерфордий	105 Db [262] Дубний	106 Sg [266] Сиборгий	107 Bh [264] Борий	108 HS [269] Хассий	109 Mt [268] Мейтнерий	110 Ds [271] Дармштадтий	
		111 [280] Rg Рентгений	112 [285] Сп Коперниций	113 [286] Nh Нихоний	114 [289] FI Флеровий	115 [290] МС Московий	116 [293] LV Ливерморий	117 [294] Тѕ Теннесий	sprosium 62.570	Holmium	Er	118 Од [29 Оганесо

ПОДГРУППА — часть группы элементов, характеризующаяся одинаковым количеством электронов на внешнем энергетическом уровне;

элементы – аналоги расположены в одной подгруппе периодической системы, имеют одинаковое строение внешних электронных орбиталей при различных значениях N и, следовательно, проявляют сходные химические свойства

http://lyaminchemistry.ucoz.ru/ 8


принципы распределения электронов

электронный энергетический уровень, энергетический уровень — совокупность электронов с одинаковым размером, но разной формой электронного облака;

электронный энергетический подуровень— совокупность электронов с одинаковым значением энергии и одинаковой формой электронного облака, но разной ориентацией электронных орбиталей в пространстве;

структура энергетических уровней:

 $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^25d^14f^{14}5d^{2-10}6p^67s^26d^15f^{14}6d^{2-10}7p^6\dots$

ИНФОРМАЦИЯ ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ

№ ПЕРИОДА — количество энергетических уровней элемента;

№ ГРУППЫ — количество электронов на внешнем уровне атома элемента;

№ ЭЛЕМЕНТА — количество электронов и протонов в атоме элемента;

внешние, валентные, электроны элементов главных подгрупп заполняют ns- и np-подуровни внешнего энергетического уровня; внешние, валентные, электроны элементов побочных подгрупп заполняют n-1d- и ns-подуровни внешнего энергетического уровня;

			_		г	РУППЫ	ЭЛЕМ	ЕНТОВ			
ПЕРИОДЫ	РЯДЫ	I	II	III	IV	V	VI	VII		VIII	
I	1	Н 1 Водород 1,008	11	111	T V		VI	(H)		VIII	Не 2 Гелий 4,003
II	2	Li 3 Литий 6,941	Be 4 Бериллий 9,0122	В 5 Бор 10,811	С 6 Углерод 12,011	N 7 Азот 14,007	О 8 Кислород 15,999	Г 9 Фтор 18,998			Ne 10 HeoH 20,179
III	3	Na 11 Натрий 22,99	Mg 12 Магний 24,312	Al 13 Алюминий 26,092	Si 14 Кремний 28,086	Р 15 Фосфор 30,974	S 16 Cepa 32,064	СІ 17 хлор 35,453			Ar 18 Apron 39,948
IV	4	К 19 Калий 39,102	Са кальций 40,08	Скандий 44,956	22 Ті Титан 47,956	23 V Ванадий 50,941	24 Сг хром 51,996	25 Мп Марганец 54,938	Железо Кол	Со 28 Ni ьбат ,933 58,7	
1 V	5	²⁹ Си медь 63,546	30 Zn Цинк 65,37	Ga 31 Галлий 69,72	Ge 32 Германий 72,59	As 33 Мышьяк 74,922	Se 34 Селен 78,96	Br 5ром 79,904			Kr 36 Криптон 83,8
V	6	Rb Рубидий 85,468	Sr 38 Стронций 87,62	39 Ү Иттрий 88,906	40 Zr Цирконий 91,22	41 Nb Ниобий 92,906	42 Мо молибден 95,94	43 Тс Технеций [99]	Рутений Р	Rh 96 Pd 0дий Палладий 106,4	
V	7	47 Ag Серебро 107,868	⁴⁸ Сd Кадмий 112,41		Sn 50 Олово 118,69	Sb 51 Сурьма 121,75	Te 52 Теллур 127,6	I 53 Йод 126,95			Хе 54 Ксенон 131,3
VI	8	Сs 55 Цезий 132,905	Ва 56 Барий 137,34	57 La* Лантан 138,906	72 Hf Гафний 178,49	73 Та тантал 180,948	74 W Вольфрам 183,85	75 Re Рений 186,207		Ir ⁷⁸ Pt идий Платина 2,22 195,09	
VI	9	79 Au 3олото 196,967	80 Нg Ртуть 200,59	Tl 81 Таллий 204,37	Рb 82 Свинец 207,19	Ві 83 висмут 208,98	Ро 84 Полоний [210]	Аt 85 Астат [210]			Rn 86 Радон [222]
VII	10	Fr 87 Франций [223]	Ra Радий [226]	89 Ас** Актиний [227]	104 Rf Резерфордий [261]	105 Db Дубний [262]	106 Sg Сиборгий [263]	107 Bh Борий [262]	108 Hs 109] Хассий Мейтн [265]	Mt ерий	
* ЛАНТАН	оиды		азеодим Не 140,908 14	Vd 61 Pn одим 4,24 Промети [145	й Самарий			Гb 66 Dy бий Диспрозий 926 162,5	і Гольмий Эрбий	Тулий Иттер	
** АКТИНС	оиды	⁹⁰ Th ⁹¹ торий 232,038	Ра ⁹² отактиний [231] 23	U ⁹³ N] Уран Нептуни 8,29 [237	й Плутоний	⁹⁵ Am ⁹⁶ Америций [243]	Кюрий Берк	k ⁹⁸ Сf лий ^{Калифорний} 47] [251]	й Эйнштейний Фермий	101 Md 102 N Менделевий Нобе. [258] [25	лий Лоуренсий

количество протонов равно порядковому номеру элемента; количество электронов в ионе элемента определяется номером элемента с прибавлением количества отрицательных зарядов или вычитанием количества положительных зарядов иона;

количество нейтронов соответствует молярной массе элемента за вычетом количества протонов

ПЕРИОДИЧЕСКИ ИЗМЕНЯЮЩИЕСЯ СВОЙСТВА ЭЛЕМЕНТОВ

http://lyaminchemistry.ucoz.ru/

ЭФФЕКТИВНЫЙ ЗАРЯД ЯДРА

 $oldsymbol{Z}_e$ заряд от ядра, реально действующий на электрон в результате эффекта проникновения и эффекта экранирования другими электронами частицы;

эффект экранирования— уменьшение воздействия на электрон положительного заряда из-за наличия других электронов, которые, заслоняя ядро и отталкиваясь, ослабляют притяжение к ядру данного электрона; экранирование растёт с увеличением числа энергетических слоёв;

экранированию противоположен эффект проникновения, обусловленный тем, что электроны часть времени находятся вблизи ядра; эффект проникновения увеличивает прочность связи электрона с ядром;

Джоном Кларком Слейтером, 22.12.1900 г. Оук-Парк, штат Иллинойс, США – 25.07.1976 г., штат Флорида, были предложены правила для определения эффективного заряда ядра:

$$Z_e = Z - S$$

где: Z_e — положительное число, величина которого зависит от постоянной экранирования S, определяющей степень экранирования заряда ядра Z электронами;

ЭФФЕКТИВНЫЙ ЗАРЯД ЯДРА ПО СЛЕЙТЕРУ

для нахождения постоянной экранирования все электроны делят на группы, каждая из которых имеет свою константу экранирования, а именно:

электроны, находящиеся на внешних, по отношению к искомому электрону орбиталях, не участвуют в экранировании;

каждому электрону, входящему в одну группу с данным электроном, придаётся вклад 0,35 за исключением группы 1s, для которой 0,30;

электроны любой группы нижележащих энергетических уровней дают вклад 1,00 за исключением случая, когда рассматривается электрон группы nsnp, тогда каждый электрон n-1 уровня даёт вклад 0,85;

атом $_6$ Li имеет два 1s – электрона и один 2s – электрон, постоянная экранирования одного 1s – электрона и эффективный заряд ядра, действующий на 1s – электрон равен: $S = 1 \cdot 0.30 = 0.30$; $Z_e = 3 - 0.30 = 2.70$;

постоянная экранирования двух 1s—электронов атома лития и эффективный ядерный заряд, действующий на внешний 2s—электрон, составит:

$$S = 2 \cdot 0.85 = 1.70; Z_e = 3 - 1.70 = 1.30;$$

OПРЕДЕЛЕНИЕ ЭФФЕКТИВНОГО ЗАРЯДА ЯДРА

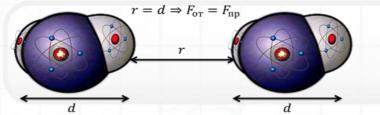
у атома ₆C два 1s – электрона, два 2s – электрона и два 2p – электрона, эффективный заряд ядра, действующий на внешний 2р – электрон атома углерода составит:

$$S = 2 \cdot 0.85 + 3 \cdot 0.35 = 2.75; Z_e = 6 - 2.75 = 3.25;$$

у атома ₁₆S два 1s – электрона, восемь 2s2p – электронов, два 3s – электрона и четыре 3р – электрона, эффективный заряд, действующий на внешний 3р – электрон, составит:

$$S = 2 \cdot 1,00 + 8 \cdot 0,85 + 5 \cdot 0,35 = 10,55;$$
 $Z_e = 16 - 10,55 = 5,45;$

для атома ₂₉Cu эффективный заряд, действующий на внешний 4s – электрон равен:

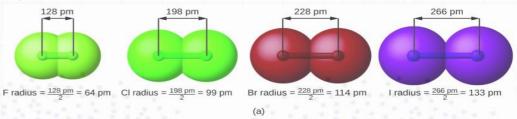

$$S = 10 \cdot 1,00 + 17 \cdot 0,85 + 1 \cdot 0,35 = 24,80; Z_e = 29 - 24,80 = 4,20;$$

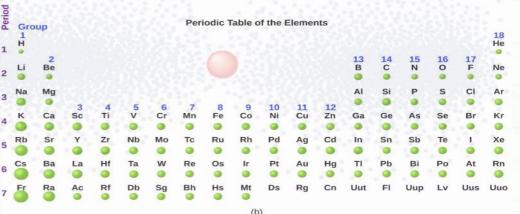
для атома ₄₇Ag эффективный заряд, действующий на внешний 5s – электрон равен:

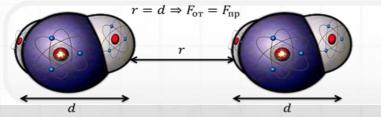
$$S = 28 \cdot 1,00 + 18 \cdot 0,85 = 43,30; Z_e = 47 - 43,30 = 3,70;$$

для атома ₇₉Au эффективный заряд, действующий на внешний 6s – электрон равен:

$$S = 60 \cdot 1,00 + 18 \cdot 0,85 = 75,30; Z_e = 79 - 75,30 = 3,70$$

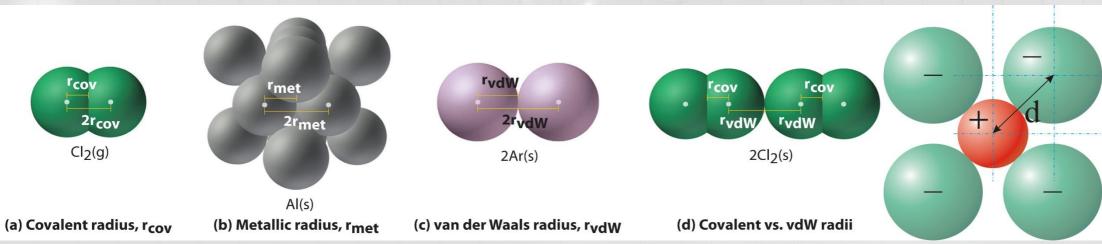



АТОМНЫЕ И ИОННЫЕ РАДИУСЫ


согласно положениям квантовой механики, атомы и ионы не имеют чётких границ, но вероятность найти электрон, связанный с ядром данной частицы, на определённом расстоянии от ядра быстро убывает с увеличением расстояния; поэтому атому приписывают некоторый определённый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности, порядка 90 %, т.н. электронное облако или электронная орбиталь;

в зависимости от типа связи между атомами различают:

- Ван-дер-Ваальсовы атомные радиусы;
- ковалентные радиусы;
- ионные радиусы;
- металлические радиусы


ATOMHЫЕ И ИОННЫЕ РАДИУСЫ

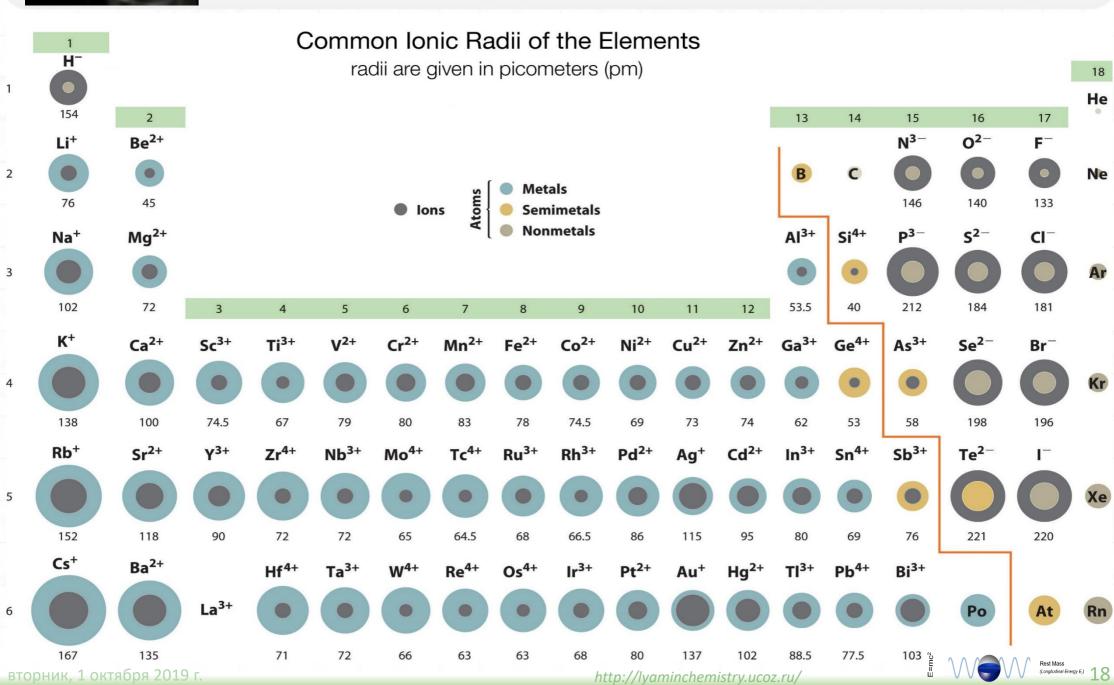
ковалентные радиусы равны половине длины одинарной ковалентной связи X—X, например, в случае галогенов ковалентный радиус— это половина межядерного расстояния в молекулах Hal_2 ;

за металлический радиус принимается половина кратчайшего межядерного расстояния в кристаллической структуре металла; металлический радиус зависит от числа ближайших соседей атома в структуре — координационное число K;

Ван-дер-Ваальсовы радиусы определяют эффективные размеры атомов, эти радиусы равны половине межъядерного расстояния между ближайшими одинаковыми ядрами, не связанными между собой ковалентной связью в молекулярных кристаллах;

ионные радиусы используют для приближенных оценок кратчайших межъядерных расстояний в ионных кристаллах, предполагая, что эти расстояния равны сумме соответствующих ионных радиусов элементов, образующих вещество

изменение атомных и ионных радиусов


уменьшение

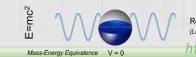
эффективный заряд ядра, влияя на притяжение валентных электронов в частице, влияет и на радиус атома; очевидно, чем больше эффективный заряд ядра у частиц с одинаковым числом энергетических уровней, тем меньше их радиус; с увеличением количества энергетических уровней атомный радиус увеличивается;

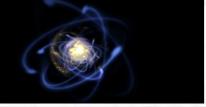
- внутри группы радиусы атомов и ионов с одинаковым зарядом увеличиваются с возрастанием порядкового номера элемента, т.к. растёт число энергетических уровней, при этом в главных подгруппах такое увеличение происходит в большей степени, чем в побочных подгруппах;
- уменьшение радиусов у d- и f-элементов в периодах называется d- и f-сжатием, т. н. лантаноидное сжатие и актиноидное сжатие в силу эффекта проникновения; следствием f-сжатия является выравнивание радиусов электронных аналогов d-элементов пятого и шестого периодов;
- для элемента ионный радиус возрастает с увеличением отрицательного заряда и уменьшается с увеличением положительного заряда; радиус аниона больше радиуса катиона, поскольку у аниона избыток электронов, а у катиона их недостаток:
- у Fe, Fe²⁺, Fe³⁺ эффективный радиус равен: 0,126; 0,078 **и** 0,067 нм соответственно,
- у Si⁴⁻, Si, Si⁴⁺ эффективный радиус равен: 0,198; 0,118 и 0,040 нм соответственно

АТОМНЫЕ И ИОННЫЕ РАДИУСЫ

NNUAENHON RN793HE

энергия отрыва электрона или положительной ионизации


 $E_{uoh.}$, $\Delta H_{uoh.}$, I [кДж/моль] unu [эВ/атом] (1 эВ/атом = 100 кДж/моль);


минимальная энергия, необходимая для бесконечного удаления электрона (ионизации) от свободного атома, молекулы или иона в его низшем энергетическом (основном) состоянии:

$$\beta = \beta^+ + e^- - E; \quad E_{\text{ион.}}, I \equiv -\Delta H_{\text{ион.}};$$

на энергию ионизации атома наиболее существенное влияние оказывают: эффективный заряд ядра, являющийся функцией числа электронов в атоме, экранирующих ядро и расположенных на более глубоко лежащих внутренних орбиталях, и межэлектронное отталкивание среди валентных электронов; радиальное расстояние от ядра до максимума зарядовой плотности наружного, наиболее слабо связанного с атомом и покидающего его при ионизации, электрона; проникающая способность этого электрона;

на энергию ионизации оказывают влияние также и менее значительные факторы: квантовомеханическая обменная энергия, спиновая и зарядовая корреляция и др.; энергия ионизации всегда имеет эндоэнергетическое (положительное) значение



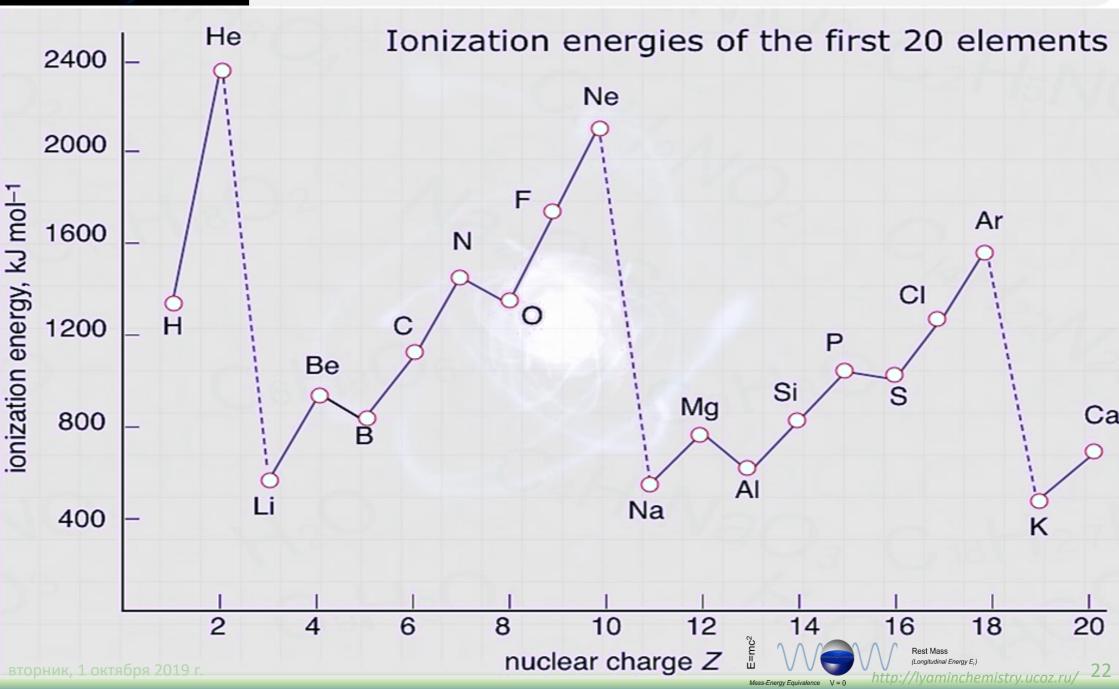
NNUAENHON RN193HE

					ΔH	uoн. '	I [кД	ļж/м	оль]	= -	$E_{uoh.}$	[кДж	к/мо	ль]				
Period					-:			_										
Pe	Gro	up			Fir	st Ioni	zation	Energ	gies of	Some	Elem	nents (l	kJ/mo	1)				
[1																	18
1	Н																	He
	1310	2											13	14	15	16	17	2370
2	Li	Ве											В	С	N	0	F	Ne
	520	900											800	1090	1400	1310	1680	2080
3	Na	Mg											Al	Si	Р	S	CI	Ar
	490	730	3	4	5	6	7	8	9	10	11	12	580	780	1060	1000	1250	1520
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	420	590	630	660	650	660	710	760	760	730	740	910	580	780	960	950	1140	1350
5	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	400	550	620	660	670	680	700	710	720	800	730	870	560	700	830	870	1010	1170
6	Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	380	500	540	700	760	770	760	840	890	870	890	1000	590	710	800	810		1030

Fr Ra ... 510

N3MEHEHNE SHEPFNN NOHN3AUNN

в периодах с увеличением порядкового номера энергия ионизации элемента возрастает, что вызвано сжатием электронного уровня вследствие увеличения эффективного заряда ядра, но


$$E_{uoh.}$$
 (B 2s²2p¹) < $E_{uoh.}$ (Be 2s²),

$$E_{uoh.}$$
 (O 2s²2p⁴) $< E_{uoh.}$ (N 2s²2p³);

- \cdot нелинейно повышается энергия ионизации у элементов с конфигурацией ns^2 и np^3 устойчивый наполовину и полностью заполненный подуровень;
- скачкообразно повышается энергия ионизации в побочных группах у элементов после La с заполненным электронным f-подуровнем, т.к. внешний электрон, в силу эффекта проникновения, часть времени проводит близ ядра под плотным f-подуровнем;
- атомы щелочных металлов (ns^1) имеют самые низкие E_{uoh} ;
- атомы инертных газов (ns^2np^6) имеют наибольшие E_{uoh}

N3MEHEHNE 3HEPINN NOHN3AUNN

СРОДСТВО К ЭЛЕКТРОНУ

свойство атомов, ионов или молекул образовывать прочную связь с электроном

$$E_{c.\mathfrak{z}}$$
, $\Delta H_{c.\mathfrak{z}}$, ε [кДж/моль] **или** [\mathfrak{z} В/атом] ($\mathfrak{1}\mathfrak{z}$ В/атом = $\mathfrak{1}\mathfrak{0}\mathfrak{0}$ кДж/моль);

энергией сродства́ атома к электрону, или сродство́м к электрону (ε), называют энергию, выделяющуюся в процессе присоединения электрона к свободному атому в его основном состоянии или молекуле с превращением частицы в отрицательный ион:

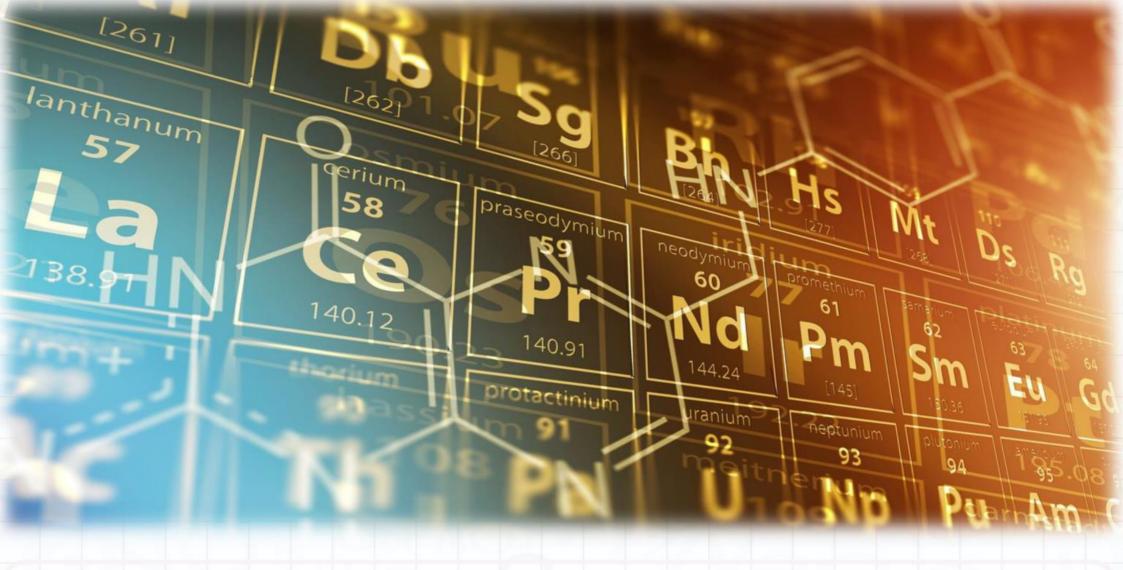
$$\exists + e^- = \exists^- + E_{\text{c.3.}}; \quad E_{\text{c.3.}}, \varepsilon \equiv -\Delta H_{\text{c.3.}};$$

сродство́ атома к электрону численно равно, но противоположно по знаку, энергии ионизации соответствующего изолированного однозарядного аниона:

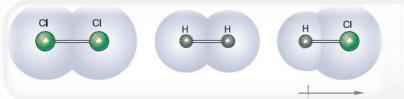
$$\boldsymbol{E}_{\text{C.Э.}}(\boldsymbol{\vartheta}) = -\boldsymbol{E}_{\text{MOH}}(\boldsymbol{\vartheta}^{-})$$

ИЗМЕНЕНИЕ СРОДСТВА К ЭЛЕКТРОНУ

	Li	Be	В	С	N	0	F	Ne
электронная конфигурация	2s ¹	2s ²	2s ² p ¹	2s ² p ²	2s ² p ³	2s ² p ⁴	2s ² p ⁵	2s ² p ⁶
$\Delta oldsymbol{H}_{ ext{c.э.}}$, э $ ext{B} = -oldsymbol{E}$, э $ ext{B}$	-0,58	0,19	-0,33	-1,12	0,27	-1,47	-3,45	0,22
	Na	Mg	Al	Si	Р	S	CI	Ar
электронная конфигурация	3s ¹	3s ²	3s ² p ¹	3s ² p ²	3s ² p ³	3s ² p ⁴	3s ² p ⁵	3s ² p ⁶
$\Delta oldsymbol{H}_{ ext{c.э.}}$, эВ $=-oldsymbol{E}$, эВ	-0,34	0,32	-0,50	-1,39	-0,78	-2,08	-3,61	0,37
	K	Ca	Ga	Ge	As	Se	Br	Kr
электронная конфигурация	4s ¹	4s ²	$d^{10}s^2p^1$	$d^{10}s^2p^2$	$d^{10}s^2p^3$	d ¹⁰ s ² p ⁴	d ¹⁰ s ² p ⁵	d ¹⁰ s ² p ⁶
$\Delta oldsymbol{H}_{ ext{c.э.}}$, эВ $=-oldsymbol{E}$, эВ	-0,30	0,40	-0,39	-1,74	-1,07	-2,02	-3,36	0,42


сродство атома к электрону характеризуется и отрицательными, и положительными значениями; наибольшим сродством к электрону обладают p-элементы VII-A группы; наименьшее сродство к электрону у атомов элементов с конфигурацией s^2 (Be, Mg, Zn) и s^2p^6 (Ne, Ar) или с наполовину заполненными p-орбиталями (N, P, As);

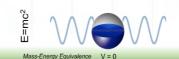
 $\Delta H_{c,\mathfrak{d}}$, $\boldsymbol{\varepsilon}$ [кДж/моль] $= -E_{c,\mathfrak{d}}$ [кДж/моль]

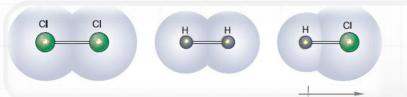


ИЗМЕНЕНИЕ СРОДСТВА К ЭЛЕКТРОНУ

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ЖИМИЧЕСКОГО ЭЛЕМЕНТА

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ

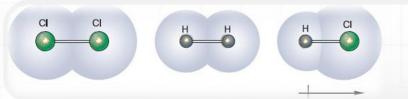

χ, — фундаментальное свойство частицы; количественная характеристика способности ядра элемента в частице смещать к себе общие электронные пары; условная величина, характеризующая способность элемента приобретать отрицательный заряд (притягивать электроны);


в настоящее время существует более 20-ти различных шкал значений электроотрицательности и для определения их значений существуют различные методы, результаты которых хорошо согласуются друг с другом, за исключением относительно небольших различий, и, во всяком случае, внутренне непротиворечивы;

теоретическое определение электроотрицательности было предложено американским физиком Малликеном (Mulliken), Робертом Сандерсоном, исходя из того, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону:

$$\chi(\mathfrak{I}) = \frac{\boldsymbol{E}_{\text{ион.}}(\mathfrak{I}) + \boldsymbol{E}_{\text{ср.эл.}}(\mathfrak{I})}{2}$$

где: $E_{\text{ион.}}$ и $E_{\text{ср.эл.}}$ — соответственно энергия ионизации элемента и его сродство к электрону

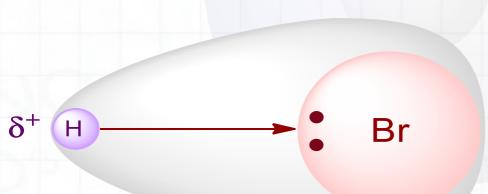

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ

в настоящее время широко используют шкалу Оллреда и Рокоу (Олреда — Рохова), базирующуюся на электростатической силе, действующей на внешний электрон частицы, в которой электроотрицательность химического элемента рассчитывают по уравнению:

$$\chi(3) = \frac{0,359Z^*}{r^2} + 0,744$$

VIII a	VII a	VI a	Va	IV a	III a	II b	Ιb		VIII b		VII b	VI b	V b	IV b	III b	II a	lа
Не		ļу	плред	по Ол	нтов	леме	сти э	льно	іцате	отри	ектро	ые эл	ельнь	ОСИТ	Отн		H 2,10
Na	F	0	N	С	В											Ве	Li
Ne	4,10	3,50	3,07	2,50	2,02											1,47	0,97
۸	CI	S	Р	Si	Al											Mg	Na
1,47 1,74 2,10 2,60 2,83 Ar															1,23	1,01	
Kr	Br	Se	As	Ge	Ga	Zn	Cu	Ni	Со	Fe	Mn	Cr	V	Ti	Sc	Ca	K
Ni	2,74	2,48	2,20	2,02	1,82	1,66	1,76	1,75	1,75	1,64	1,60	1,56	1,45	1,32	1,20	1,04	0,91
Va	- 1	Те	Sb	Sn	In	Cd	Ag	Pd	Rh	Ru	Тс	Мо	Nb	Zr	Υ	Sr	Rb
Xe	2,21	2,01	1,82	1,72	1,49	1,46	1,42	1,35	1,45	1,42	1,36	1,30	1,23	1,22	1,11	0,99	0,89
Dn	At	Ро	Bi	Pb	TI	Hg	Au	Pt	Ir	Os	Re	W	Та	Hf	La	Ba	Cs
Rn	1,96	1,76	1,67	1,55	1,44	1,44	1,42	1,44	1,55	1,52	1,46	1,40	1,33	1,23	1,08	0,97	0,86
															Λο.	Do	Er

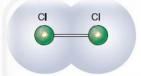
где: Z^* – эффективный заряд ядра по Слэйтеру; r – атомный ковалентный радиус элемента.

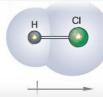

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ

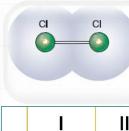
современное понятие об электроотрицательности химических элементов было введено в период бурного развития квантовой химии как средства описания молекулярных образований в 1932 г. американским химиком Лайнусом Полингом, который в числе прочих исследований ввёл собственную шкалу значений электроотрицательности элементов;

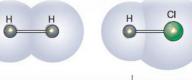
Полинг предложил для количественной характеристики электроотрицательности использовать термодинамические данные об энергии связей A-A, B-B и A-B соответственно: E_{cs} (AA), E_{cs} (BB) и E_{cs} (AB);

величина, характеризующая способность ядра к поляризации ковалентных связей, называется электроотрицательностью;


$$A^{\delta+}-B^{\delta-}$$



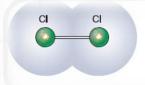

SJEKTPOOTPHUATEJBHOCTB TO TOJNHIY


используя эмпирическое выражение:

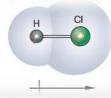
$$0.208\sqrt{\Delta \boldsymbol{E}_{\text{CB}}(AB)} = |\boldsymbol{\chi}(A) - \boldsymbol{\chi}(B)|$$

где: $\Delta E_{cв.}$ – разность расчётного значения и эмпирического значения энергии связи, χ – значения электроотрицательности химических элементов; множитель 0,208 возникает при переводе значений энергии из ккал/моль в эВ;

принимая для водорода произвольное значение электроотрицательности равное 2,2, Полинг получил удобную шкалу относительных числовых безразмерных значений электроотрицательности химических элементов, которая охватывает значения от 0,70 для франция до 3,98 для фтора; за фтором по убывающей следует кислород 3,44; далее хлор 3,16 и азот 3,04; щелочные и щелочноземельные металлы имеют наименьшие значения электроотрицательности, а галогены имеют наибольшие значения электроотрицательности; у амфотерных элементов значения электроотрицательности находятся в середине общего интервала значений

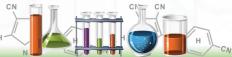


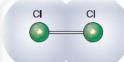
SJEKTPOOTPHUATEJBHOCTB 110 110JUHFY


						-					•							
	Ĭ	II	III	IV	V	VI	VII	VIII	IX	X	ΧI	XII	XIII	XIV	XV	XVI	XVII	XVIII
4	Н	Оті	носи	тель	ная з	элекг	проо	mpul	цате	гльно	сть	элем	ентс	в по	Поли	нгу	Н	Ц۵
	2,20																2,20	He
2	Li	Be	0	ECO (-		6	200	H	6	6 0		В	C	N	0	F	No
2	0,98	1,57							P	-(11)		HO	2,04	2,55	3,04	3,44	3,98	Ne
2	Na	Mg		7	(Và	!						1	Al	Si	Р	S	CI	۸
3	0,99	1,31			N. T.								1,61	1,90	2,19	2,58	3,16	Ar
1	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
4	0,82	1,00	1,36	1,54	1,63	1,66	1,55	1,83	1,88	1,91	1,90	1,65	1,81	2,01	2,18	2,55	2,96	3,00
_	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	- 1	Xe
5	0,82	0,95	1,22	1,33	1,60	2,16	1,90	2,20	2,28	2,20	1,93	1,69	1,78	1,96	2,05	2,10	2,66	2,60
6	Cs	Ba	*	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
O	0,79	0,89		1,30	1,50	2,36	1,90	2,20	2,20	2,28	2,54	2,00	1,62	2,33	2,02	2,00	2,20	2,20
7	Fr	Ra	*	Df	Dh	Sa	Rh	Не	N/I+	Dc	Pa	Cn	Nh	EI	Mc	Lv	Te	0

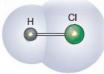
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
4	0,82	1,00	1,36	1,54	1,63	1,66	1,55	1,83	1,88	1,91	1,90	1,65	1,81	2,01	2,18	2,55	2,96	3,00
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
၁	0,82	0,95	1,22	1,33	1,60	2,16	1,90	2,20	2,28	2,20	1,93	1,69	1,78	1,96	2,05	2,10	2,66	2,60
6	Cs	Ba	*	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
О	0,79	0,89		1,30	1,50	2,36	1,90	2,20	2,20	2,28	2,54	2,00	1,62	2,33	2,02	2,00	2,20	2,20
7	Fr	Ra	*	Df	Dh	20	Dh	Ц۵	N // 4	Do	Da	Cn	NIb	FI	Ma	Lvz	Ts	Oa
′	0,70	0,90	*	Rf	Db	Sg	DII	Hs	IVIL	DS	Ry	CII	Nh	ГІ	Мс	Lv	15	Og
	'																	
		344			S. 22 S20		10 10 10			2/2		N 152						

Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Ce Lu La 1,10 1,12 1,13 1,14 1,13 1,17 1,20 1,20 1,10 1,22 1,23 1,24 1,25 1,10 1,27 Cf Th Pa U Np Pu Am Cm Bk Es Fm Md No Lr Ac 1,10 1,30 1,38 1,36 1,28 1,13 1,28 1,30 1,30 1,30 1,30 1,30 1,30 1,29 1,50 H₂ Zn Cr Fe Cd Li Cs Rb K Ba Ca Na Mg Be Al Mn H₂ Co Ni Sn Pb Fe H₂ Cu Ag H₂O Hg Pt Au

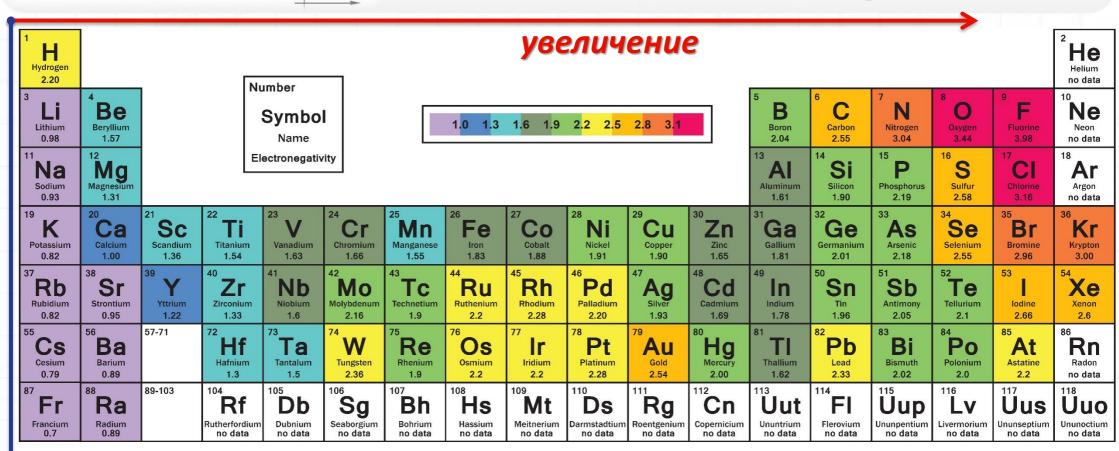

изменение электроотрицательности


- в периоде, с увеличением эффективного заряда ядра, электроотрицательность химических элементов возрастает;
- в главной подгруппе, с увеличением количества электронных энергетических уровней и уменьшением эффективного заряда ядра, электроотрицательность химических элементов убывает;
- в побочной подгруппе, в связи с лантаноидным сжатием, электроотрицательность химических элементов не изменяется или несколько увеличивается

K<Ba<Na<Ca<La<Mg<Mn<Be<Al<V<Cu~

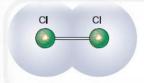

Si<Sn<B<Sb<Te<As<P<H<Pb<Au<C≈

Se<S<I<Br<N<CI<O<F

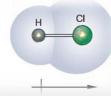


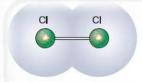
N3MEHEHNE 3JEKTPOOTPULATEJBHOCTN

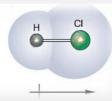
енртени


Lanthanide Series

> Actinide Series


57	_a	⁵⁸ Ce	Pr Pr	Nd	Pm	Sm	Eu	Gd Gd	Tb	Dy 66	Но	Er	⁶⁹ Tm	⁷⁰ Yb	Lu
10000000	thanum		Praseodymium	The state of the s	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium 1.27
1000000	1.10	1.12	1.13	1.14	1.13	1.17	1.2	1.2	1.22	1.23	1.24	1.24	1.25	1.1	
89		90	91	92	93	94	95		97	98	99	100	101	102	103
F	AC	l n	Pa	U	NP	Pu	AM	Cm	BK	CT	LS	rm-	Ma	NO	Lr
Ac	tinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	1.1	1.3	1.5	1.38	1.36	1.28	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	no data




ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ МАЛЛИКЕНА

строго говоря, элементу нельзя приписать постоянную электроотрицательность; значение электроотрицательности химического элемента зависит от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов; в последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа электронной орбитали, участвующей в образовании связи, и от того, занята ли орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной; одним из наиболее развитых в настоящее время подходов является подход Малликена Роберта Сандерсона; в основу этого подхода легла идея выравнивания электроотрицательностей атомов химических элементов при образовании химической связи между ними; в многочисленных исследованиях были найдены зависимости между электроотрицательностями Малликена и важнейшими физико-химическими свойствами неорганических соединений большинства элементов периодической системы; очень плодотворной оказалась и модификация метода, основанная на перераспределении электроотрицательности в молекулах органических соединений

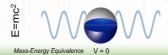
N3MEHEHNE SJEKTPOOTPNUATEJBHOCTN

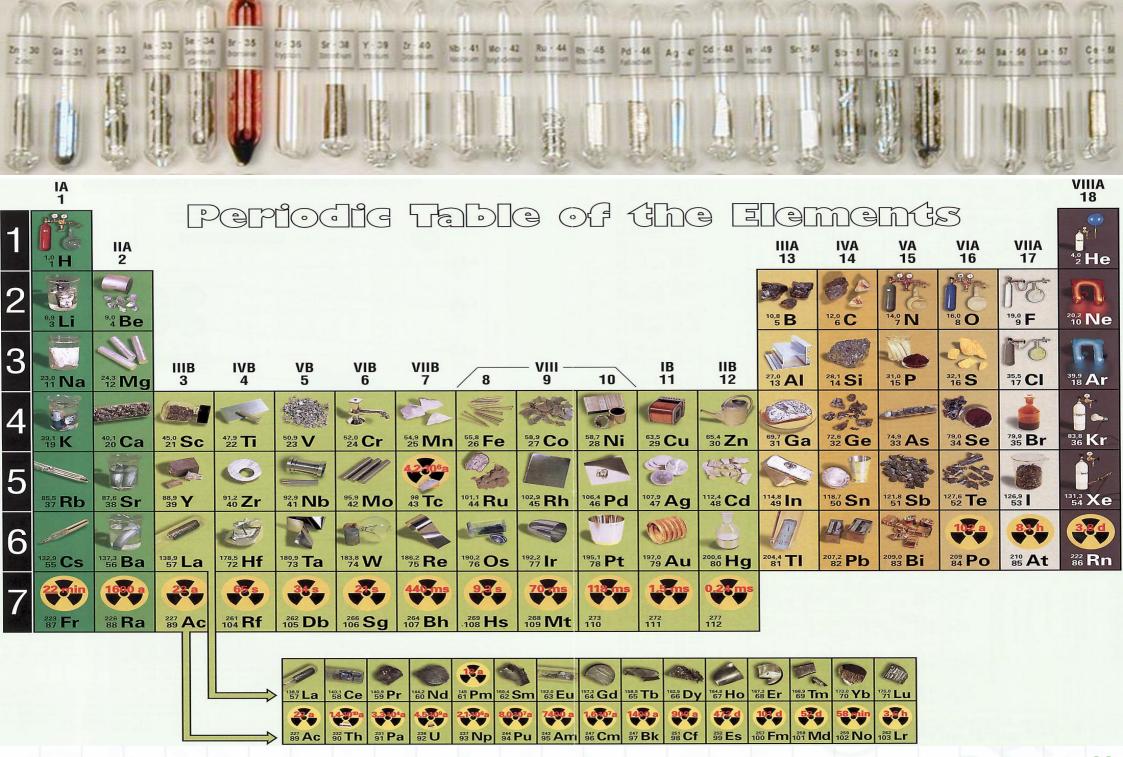
с увеличением степени окисления элемента значение его электроотрицательности увеличивается:

$$S^{-2} < S^0 < S^{+2} < S^{+4} < S^{+6}$$

с увеличением заряда иона значение его электроотрицательности возрастает:

$$H^- < H < H^+$$


с изменением гибридного состояния меняется электроотрицательность элемента в соединении:

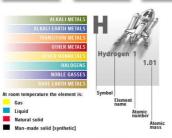

$$...$$
sp³ < sp² < sp

$$H_3C H_2C=$$
 $HC=$ $N=C CI_3C F_3C-$

sp ³		

$$\chi$$
 2,5

применение соединений элементов



order of atomic mass, they showed regular (periodical) repeating properties. He formulated his discovery in a periodic table of elements, now regarded as the backbone of modern chemistry.

The crowning achievement of Mendelevey's periodic table lay in his prophecy of then, undis elements. In 1869, the year he published his periodic classification, the elements gallium, germanium and scandium were unknown. Mendelevey left spaces for them in his table and even predicted their atomic masses and other chemical properties. Six years later, gallium was discovered and his predictions were found to be accurate. Other discoveries followed and their chemical behaviour matched that predicted by Mendelevey.

This remarkable man, the youngest in a family of 17 children, has left the scientific community with a classification system so powerful that it became the cornerstone in chemistry teaching and the prediction of new elements ever since. In 1955, element 101 was named after him: Md. Mendelevium.

Ga

Br

Rb

Lanthanide Series

Actinide

1 октября 2019 г

Mo

Rf

http://lyaminchemistry.ucoz.ru

CNACNEO 3A PAEOTY! ЖЕЛАЮ УДАЧИ! Лямин Алексей Николаевич http://lyaminchemistry.ucoz.ru/

http://lyaminchemistry.ucoz.ru/

вторник, 1 октября 2019 г.