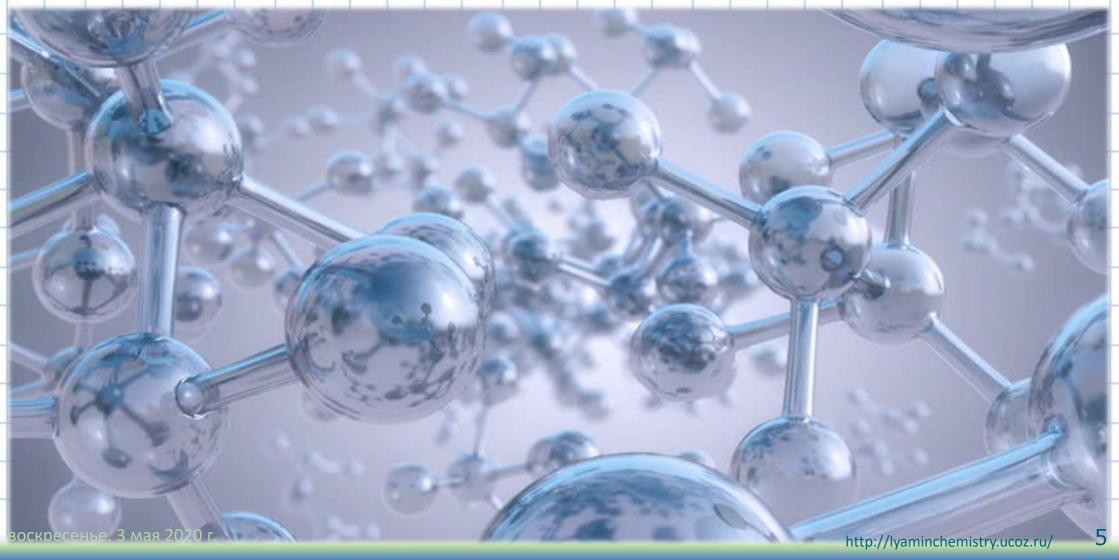


КИНЕТИЧЕСКИЕ УРАВНЕНИЯ

кинетические характеристики односторонних реакций:

Порядок реакции	Выражение для константы скорости	Уравнение кинетической прямой	Время полураспада
нулевой $oldsymbol{v}_r = -rac{doldsymbol{c}}{d au} = oldsymbol{k}$	$\int -d\mathbf{C} = \int \mathbf{k} d\mathbf{\tau} ; \mathbf{k}\mathbf{\tau} = \mathbf{C}_0 - \mathbf{C}$	$C = C_0 - k\tau$	$ \tau = \frac{C_0 - C}{k}; C = \frac{C_0}{2}; \tau_{1/2} = \frac{C_0}{2k} $
n ервый $oldsymbol{v}_r = -rac{doldsymbol{c}}{d au} = oldsymbol{k}oldsymbol{C}$	$\int \frac{-dC}{C} = \int k d\tau; k\tau = \ln \frac{C_0}{C}$	$lnC = lnC_0 - k\tau$	$\tau = \frac{\ln \binom{C_0}{C}}{k}; \ \tau_{1/2} = \frac{\ln 2}{k}; \ \tau_{1/2} = \frac{0.693}{k}$
второй $v_r = -\frac{dC}{d\tau} = kC^2$ $C_{\rm A} = C_{\rm B} = C$	$\int \frac{-dC}{C^2} = \int kd\tau; k\tau = \frac{C_0 - C}{C_0 C}$	$\frac{1}{C} = \frac{1}{C_0} + k\tau$	$\tau = \frac{\frac{1}{c} - \frac{1}{c_0}}{k}; \ \tau_{1/2} = \frac{1}{kC_0}; \frac{1}{c} - \frac{1}{C_0} = \frac{1}{C_0 \tau_{1/2}} \tau$
второй $v_r = -\frac{dc}{d\tau} = kC_{\mathrm{A}}C_{\mathrm{B}}$ $C_{\mathrm{A}} \neq C_{\mathrm{B}}$	$\int \frac{-dC}{C_{A}C_{B}} = \int kd\tau;$ $k\tau = \left(\frac{1}{C_{0A} - C_{0B}}\right) ln\left(\frac{C_{0B}C_{A}}{C_{0A}C_{B}}\right)$	$ln\left(\frac{C_{\rm A}}{C_{\rm B}}\right) = ln\left(\frac{C_{\rm 0A}}{C_{\rm 0B}}\right) + \left(C_{\rm 0B}\right)$	$_{\rm A}-C_{0_{\rm B}})k au$
третий $v_r = -\frac{dc}{d\tau} = kC^3$ $C_{\rm A} = C_{\rm B} = C_{\rm C} = C$	$\int \frac{-dC}{C^3} = \int kd\tau; k\tau = \frac{C_0^2 - C^2}{2C_0^2C^2}$	$\frac{1}{C^2} = \frac{1}{C_0^2} + 2k\tau$	$ \tau = \frac{\frac{1}{c^2} - \frac{1}{c_0^2}}{2k}; \tau_{1/2} = \frac{3}{2kC_0^2}; \frac{1}{C^2} - \frac{1}{C_0^2} = \frac{3}{C_0^2 2\tau_{1/2}} $
n -ый $oldsymbol{v}_r = -rac{doldsymbol{c}}{d au} = oldsymbol{k} oldsymbol{C}^n$	$\int \frac{-dC}{C^n} = \int k d\tau$ $k\tau = \frac{1}{n-1} \left(\frac{C_0^{n-1} - C^{n-1}}{C_0^{n-1} C^{n-1}} \right)$	AMERICAN STREET	$\frac{1}{(n-1)} \left(\frac{C_0^{n-1} - C^{n-1}}{C_0^{n-1} C^{n-1}} \right); \ \tau_{1/2} = \frac{2^{n-1} - 1}{k(n-1)C_0^{n-1}}$ $\frac{\tau'_{1/2}}{\tau'_{0}} + 1; \ n = \frac{\ln \left(\frac{\tau_{1/x}}{\tau'_{1/x}} \right)}{\ln \left(\frac{C'_0}{C_0} \right)} + 1$



РАЗЛОЖЕНИЕ АЗОТНОГО АНГИДРИДА

Скорость реакции разложения пентаоксида диазота: $2N_2O_{5(r)} \xrightarrow{55^{\circ}C}$ 4NO $_{2(r)}$ + O $_{2(r)}$ при температуре 55° С равна 0,075 моль м⁻³·с⁻¹;

вычислите значения скорости реакции по отдельным компонентам;

ВОССТАНОВЛЕНИЕ ОКСИДА АЗОТА(II)

В газовой фазе при 1000 К оксид азота(II) реагирует с водородом с образованием газа без цвета и запаха; экспериментально измерена скорость взаимодействия при следующих исходных концентрациях реагентов:

$oldsymbol{\mathcal{C}_{(\mathrm{NO})_0}}$ моль \cdot л $^{-1}$	0,012	0,012	0,024	0,012	0,024	0,036
$C_{(H_2)_0}$ моль л $^{-1}$	0,002	0,004	0,002	0,006	0,006	0,002
$oldsymbol{v}_r$ моль \cdot л $^{-1}$ \cdot мин $^{-1}$	0,2	0,4	0,8	0,6	2,4	1,8

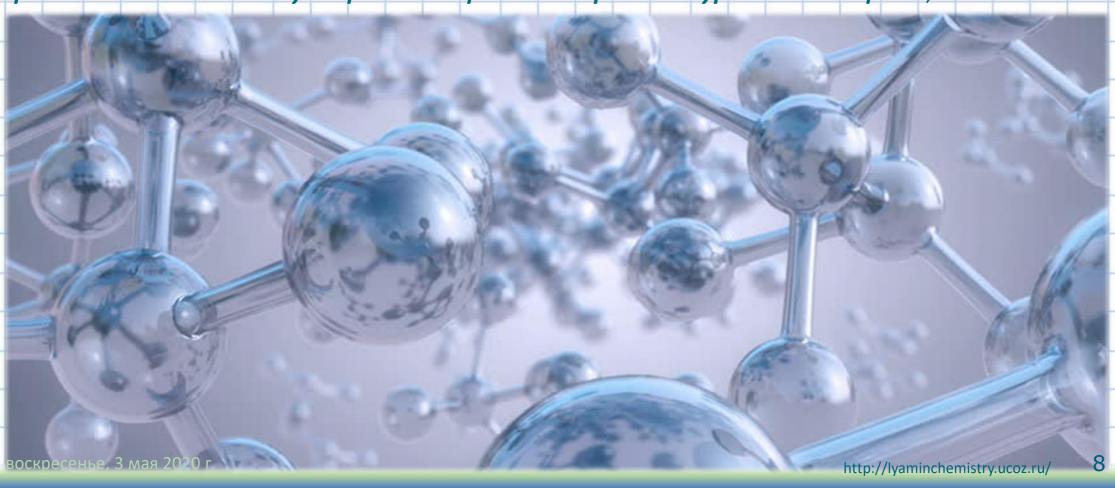
определите кинетическое уравнение реакции и вычислите скорость реакции при 1000 К

если: a)
$$C_{(NO)_0} = C_{(H_2)_0} = 0,024$$
 моль·л $^{-1}$; b) $C_{(NO)_0} = 0,05$ моль·л $^{-1}$; $C_{(H_2)_0} = 0,01$ моль·л $^{-1}$;

Водный раствор хлорида фенилдиазония при 323 К гидролизуется в соответствии с кинетическим уравнением первого порядка с константой скорости $0.071~{\rm Muh}^{-1}$;

рассчитать время полураспада и определить время процесса при заданных условиях, чтобы исходная концентрация соли, равная 0.01 моль 1.01, уменьшилась до 0.001 моль 1.01;

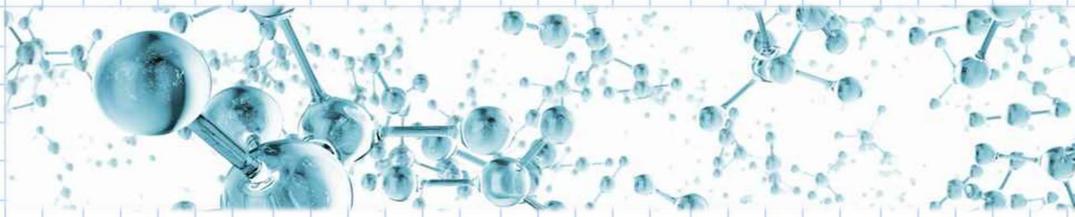
Гидролиз некоторого инсектицида в воде происходит в соответствии с кинетическим уравнением первого порядка с константой скорости k=1,45 год $^{-1}$ при 12° С. Часть этого инсектицида ливнем была смыта с полей в озеро и составила среднюю концентрацию $5,0\times10^{-4}$ кг·м $^{-3}$. Считая температуру озера 12° С, вычислите: а) концентрацию инсектицида в озере спустя ровно год; б) количество дней, необходимое для уменьшения концентрации ядохимиката в озере до $3,0\times10^{-4}$ кг·м $^{-3}$;


ГИДРОЛИЗ САХАРА

В ходе изучения процесса гидролиза сахарозы в большом избытке 0,1 М соляной кислоты при 298 К были получены следующие данные:

т мин	0	45	120	240	480
$C_{(C_6H_{12}O_6)}$ моль м $^{-3}$	56,0	55,3	54,2	52,5	49,0

определить кинетический порядок данной реакции,


рассчитать константу скорости гидролиза и время полураспада сахарозы;

РАЗЛОЖЕНИЕ

разложение диоксида-дихлорида серы описывается кинетическим уравнением первого порядка, а константа скорости разложения при 293 К составляет $k=2,2\times10^{-5}~c^{-1}$; определите: а) минимальное время, за которое концентрация SO_2CI_2 в реакционной смеси уменьшится в 8 раз по сравнению с исходной; б) во сколько раз уменьшится концентрация диоксида-дихлорида серы через 5 мин. после начала реакции;

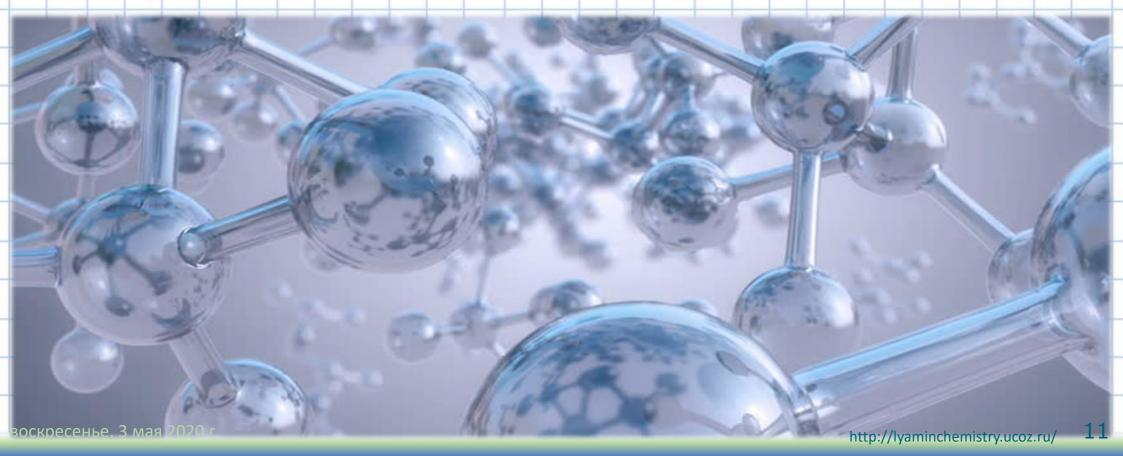
пентаоксид диазота разлагается с образованием тетраоксида диазота согласно кинетическому уравнению первого порядка; при $T=300~{\rm K}~k=0,002~{\rm мин}^{-1}$; определите долю N_2O_5 в процентах, которая прореагирует за 2 ч.

РАДИОАКТИВНЫЙ РАСПАД

Содержание радиоактивного углерода ¹⁴С в останках мамонта отвечает 1 распаду в минуту. Углерод, выделенный из живого организма, показывает 13,6 распадов в минуту (в расчёте на 1 г ¹⁴С), а период полураспада ¹⁴С составляет около 5700 лет;

определить время гибели мамонта

Исследование α-радиоактивного изотопа полония показало, что за 14 дней его радиация уменьшилась на 6,85 %; определить период полураспада данного изотопа полония и рассчитать, в течение какого времени он разлагается на 90 %



РАЗЛОЖЕНИЕ АРСИНА

При $T=543~{
m K}~{
m газ}$ арсин разлагается согласно кинетическому уравнению первого порядка с образованием твёрдого мышьяка и газообразного водорода; за время прохождения реакции общее давление в системе изменяется следующим образом: ${
m ч}^{-1}$

τ ч	0,0	5,5	6,5	8,0
$m{p}_{oбuu}$ $ imes 10^{-2}$ Па	977,73	1074,33	1090,77	1113,75

определите константу скорости искомой реакции;

РАЗЛОЖЕНИЕ ЭТИЛДИАЗОЭТАНОАТА

Кинетику реакции разложения этилдиазоэтаноата водой в кислой среде исследовали путём определения объёма выделившегося азота в разные моменты времени:

т мин	8	22	92	∞
$V_{(N_2)} \times 10^6 \text{m}^3$	6	14,3	32,4	37,27

определить константу скорости данного процесса, учитывая что он описывается

кинетическим уравнением первого порядка;

РЕАКЦИЯ ОМЫЛЕНИЯ

Омыление этилметаноата описывается кинетическим уравнением второго порядка; при $T=298~\mathrm{K}$ константа скорости реакции составляет 5,4 м 3 кмоль $^{-1}$ мин $^{-1}$, а исходные концентрации раствора едкого натра и эфира равны 0,02 кмоль м $^{-3}$; определите концентрацию спирта в смеси через 10 мин после начала реакции;

 $0,01\ \mathrm{M}$ раствор этилэтаноата при $T=293\ \mathrm{K}$ омыляется $0,002\ \mathrm{M}$ раствором едкого натра за $23\ \mathrm{MH}$ на $10\ \%$;

определите минимальное время, за которое данный раствор эфира прореагирует на 10 % с 0,004 M раствором щёлочи;

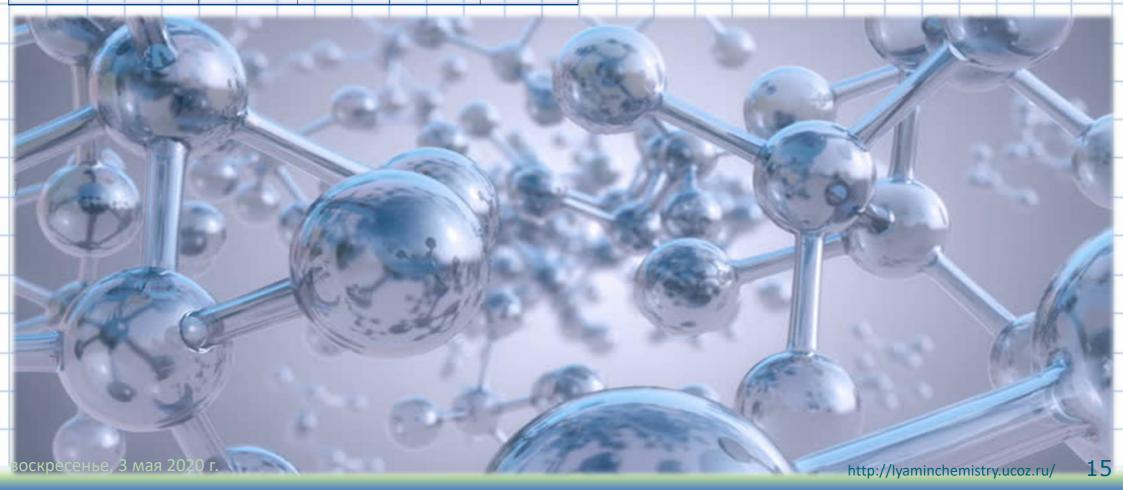
ЛЕКАРСТВЕННЫЕ СРЕДСТВА

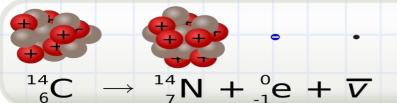
Константа скорости процесса разложения антибиотика в воде, описываемого кинетическим уравнением второго порядка, при 20° С равна 0,012 м³·моль-¹·год-¹; определить: а) какова будет концентрация антибиотика в растворе по прошествии 13 недель, если начальная его концентрация составляла 0,5 кмоль·м-³; б) через сколько лет концентрация антибиотика достигнет 9 моль·м-³;

При исследовании взаимодействия 0,2 M раствора хлорбензола и 0,2 M раствора аллилбромида в метиловом спирте при $T=303~\mathrm{K}$, согласующегося с кинетическим уравнением второго порядка, были получены следующие данные:

т мин	60	180	320	400
С _(H₅C₃Br) моль∙м ⁻³	194,12	183,34	172,26	166,33

определить константу скорости моль $^{-1}$ ·л·мин $^{-1}$ данного процесса;




РАЗЛОЖЕНИЕ АЦЕТОНА

Разложение ацетона идёт с выделением синтез-газа и газа, который используют для ускорения созревания плодов; результаты исследование кинетики данной реакции по изменению общего давления системы представлены в таблице:

т мин	0,00	6,50	13,00	19,00
$p_{\rm A} imes 10^3~{ m H} \cdot { m M}^{-2}$	41,59	54,39	65,05	74,91

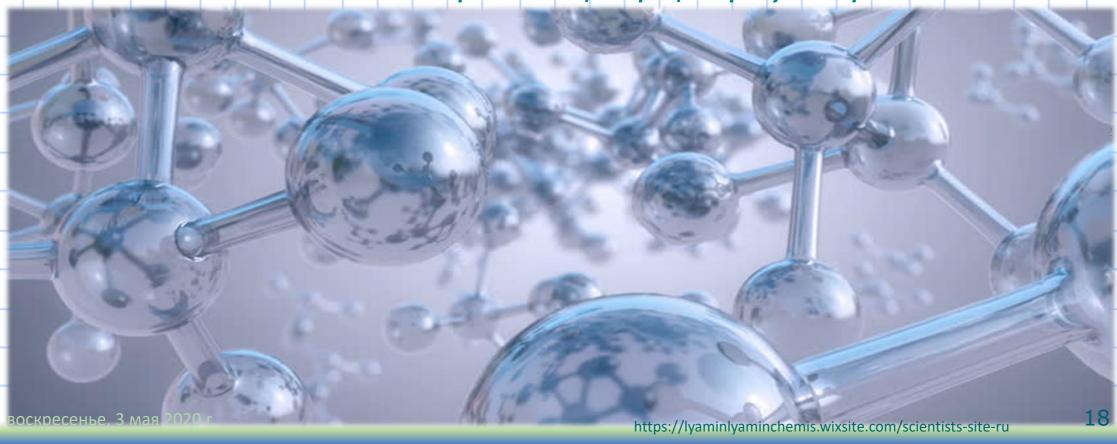
определите кинетический порядок и константу скорости данной реакции;

ВОЗРАСТ ЛАДЬИ ВИКИНГОВ

Скорость распада углерода-14 в живом организме составляет 13,6 распадов в минуту на $1\ \Gamma^{14}$ С, а период полураспада 14 С составляет около 5700 лет; в 1983 г. была исследована скорость радиоактивного распада 14 С в двух кусках дерева, из которого была построена ладья древних викингов; скорость распада составила 12 распадов в минуту на $1\ \Gamma^{14}$ С; определите: 1) сколько времени прошло с тех пор, когда было срублено дерево, из которого викинги построили корабль, принимая, что скорость распада углерода была измерена с погрешностью $\pm 0,2$ распада в 1 мин, рассчитайте погрешность определения возраста дерева; 2) соотношение изотопов 12 С \div 14 С, участвующих в биогенном круговороте Θ_2 , если природное содержание 12 С составляет 98,9%, а $1\ \text{год} = 365\ \text{дням}$.

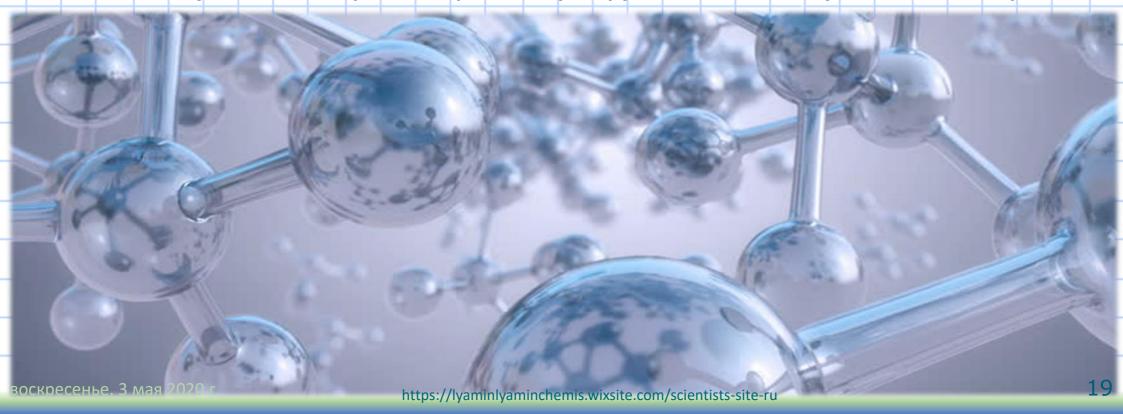
ГРЕНЛАНДСКИЙ ГНЕЙС

Природный стронций образован стабильными изотопами: 84 Sr - 0,56%; 86 Sr - 9,86%; 87 Sr - 7,00%; 88 Sr - 82,58%; рубидий в природе содержит 72,17% стабильного изотопа 85 Rb и 27,83% радиоактивного изотопа 87 Rb с $\tau_{1/2} =$ 4,7×10 10 лет; при радиоактивном распаде изотопов рубидия-87 образуются изотопы стронция-87; приведите уравнение кинетической зависимости образования 87 Sr из 87 Rb; составьте уравнение расчёта возраста гренландского гнейса — метаморфическая горная порода, главными минералами которой являются плагиоклаз, кварц и калиевый полевой шпат микроклин или ортоклаз; представляет собой похожий на гранит камень с чередующимися светлыми и тёмными полосами и слоями, если из масс-спектрометрических данных известно соотношение изотопов 87 Sr \div 86 Sr и 87 Rb \div 86 Sr для этого гнейса.

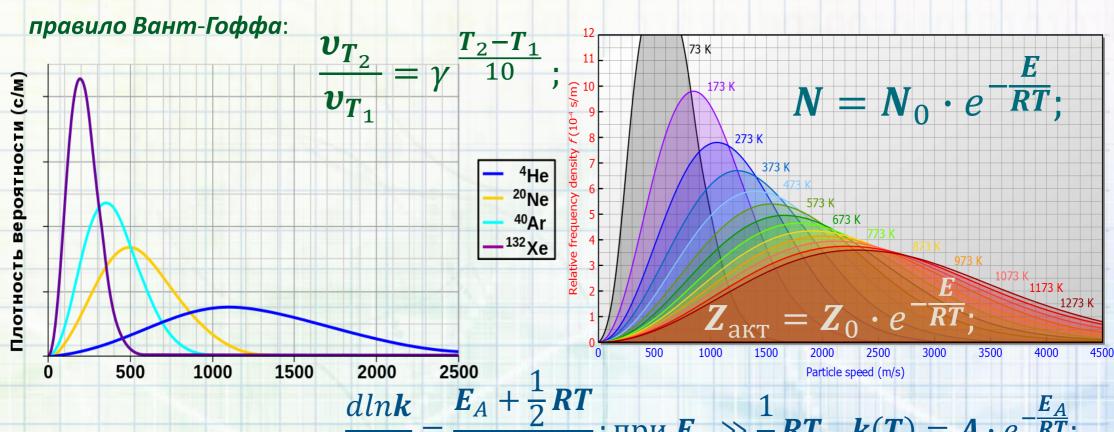




При разложении по кинетическому уравнению первого порядка пропан-2-ола на поверхности пентаоксида диванадия образуются параллельно: ацетон; пропан; иерез 5 с после начала реакции при 590 К концентрации компонентов составили: $H_8C_3O = 28,2$ моль·м $^{-3}$; $H_6C_3O = 7,8$ моль·м $^{-3}$; $H_6C_3 = 8,3$ моль·м $^{-3}$; $H_8C_3 = 1,8$ моль·м $^{-3}$; определите: 1) исходную концентрацию изопропанола; 2) общую константу скорости разложения и константы скорости трёх параллельных реакций; 2) время разложения половины исходного количества спирта и концентрации продуктов разложения.



ИНВЕРТНЫЙ САХАР


Тростниковый сахар в присутствии ионов H^+ гидролизуется водой, т.н. инверсия сахарозы с образованием смеси равных количеств фруктозы и глюкозы; при $T=298\ K$ в сильно разбавленном растворе сахара подкисленном соляной кислотой было зафиксировано

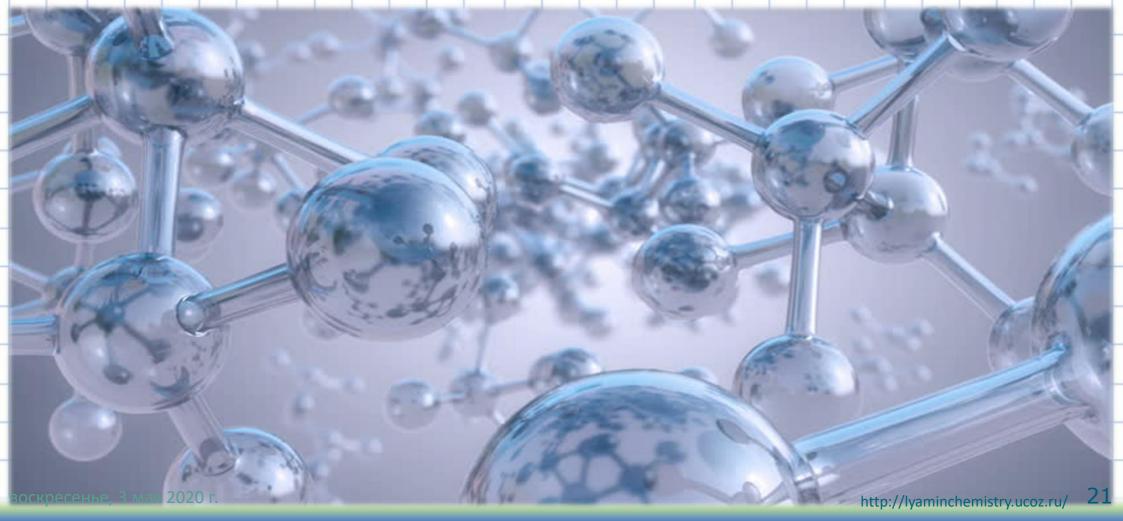
следующее изменение угла вращения au мин au 0,0 176 au плоскости поляризации света: au au au au 25,16 5,46 -8,38

определите константу скорости гидролиза тростникового сахара в данных условиях и количественную долю сахара, которая инвертируется за 236 минут с начала гидролиза;

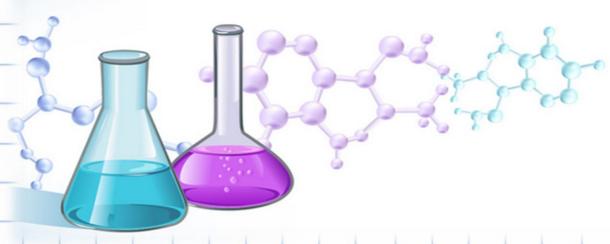
ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ

уравнение Аррениуса:
$$\frac{dlnk}{dT} = \frac{E_A + \frac{1}{2}RT}{RT^2}; \text{ при } E_A \gg \frac{1}{2}RT \quad k(T) = A \cdot e^{-\frac{E_A}{RT}};$$

$$lnk = lnk_{T_2} - lnk_{T_1} = lnA - \frac{E_A}{RT_2} + \frac{S_A}{R} - lnA + \frac{E_a}{RT_1} - \frac{S_a}{R}; \qquad ln\frac{k_{T_2}}{k_{T_1}} = \frac{E_a(T_2 - T_1)}{RT_1T_2};$$


$$ln\frac{\boldsymbol{k_{T_2}}}{\boldsymbol{k_{T_1}}} = \frac{\boldsymbol{E_a(T_2 - T_1)}}{RT_1T_2};$$

$$\boldsymbol{E}_{a} = \frac{R\boldsymbol{T}_{2}\boldsymbol{T}_{1}}{\boldsymbol{T}_{2} - \boldsymbol{T}_{1}} \cdot \ln \frac{\boldsymbol{k}_{T_{2}}}{\boldsymbol{k}_{T_{1}}}; \quad \boldsymbol{k}_{T} = \boldsymbol{Z}_{0} \cdot e^{-\frac{\boldsymbol{E}}{RT}};$$


ЛЕКАРСТВЕННЫЕ СРЕДСТВА

Реакция разложения спазмолитина в растворе соответствует кинетическому уравнению реакции первого порядка; период полураспада спазмолитина при 25° С равен 104 ч, а при 35° С равен 39 ч. Определите энергию активации и температурный коэффициент константы скорости разложения спазмолитина; рассчитайте время, за которое разложится 90 % спазмолитина при 45° С:

13. Константа скорости реакции $H_{2(r)} + I_{2(r)} \rightleftarrows 2HI_{(r)}$ при температуре 683 К равна 0,0659 м³·моль $^{-1}$ ·мин $^{-1}$, а при 716 К константа скорости равна 0,375 м³·моль $^{-1}$ ·мин $^{-1}$. Определите энергию активации и константу скорости реакции при температуре 700 К

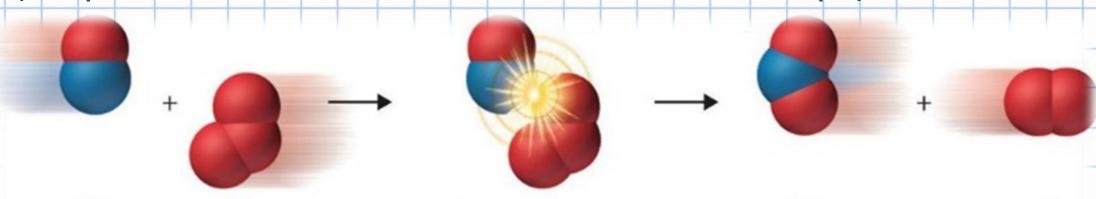
12. Для реакции $H_{2(r)} + I_{2(r)} \rightleftarrows 2HI_{(r)}$ разница энергий активации прямой и обратной реакций составляет -9,3 кДж·моль $^{-1}$; константа равновесия процесса при температуре 350° С равна 68,5. Определите каким образом и во сколько раз изменится отношение скоростей прямой и обратной реакции при температуре 500 K

ЦЕПНАЯ РЕАКЦИЯ

- 13. Реакция прямого синтеза хлороводорода идёт по радикально-цепному механизму. Её может инициировать синий или ультрафиолетовый свет или нагревание, при этом разрывается связь CI-CI, $E_{cs}=242~{\rm кДж\cdot моль^{-1}}$, т.к. для связи H-H $E_{cs}=436~{\rm кДж\cdot моль^{-1}}$. При малой скорости инициирования реакция идёт спокойно, при этом, в соответствии с принципом стационарности Боденштейна, скорость изменения концентрации всех промежуточных частиц, а их концентрация пренебрежимо мала по сравнению с H_2 и Cl_2 , можно приравнять к нулю, т.е. суммарная скорость их образования равна суммарной скорости расходования.
- 1) запишите полный механизм термической фотохимической реакции синтеза хлороводорода: стадии инициирования, роста и обрыва цепи;
- 2) обе стадии продолжения цепи элементарные реакции, константы скорости которых определяются уравнением Аррениуса, где при 200° С $A_1=A_2=10^{11}$ л·моль $^{-1}$ ·с $^{-1}$, $E_{A_1}=25$ кДж·моль $^{-1}$, $E_{A_2}=2$ кДж·моль $^{-1}$; исходя из этих значений, докажите, что обрыв цепи происходит почти исключительно в соответствии с одним процессом.

ЦЕПНАЯ РЕАКЦИЯ

13. Реакция прямого синтеза хлороводорода идёт по радикально-цепному механизму. Её может инициировать синий или ультрафиолетовый свет или нагревание, при этом разрывается связь CI-CI, $E_{cs}=242~{\rm кДж\cdot моль^{-1}}$, т.к. для связи H-H $E_{cs}=436~{\rm кДж\cdot моль^{-1}}$. При малой скорости инициирования реакция идёт спокойно, при этом, в соответствии с принципом стационарности Боденштейна, скорость изменения концентрации всех промежуточных частиц, а их концентрация пренебрежимо мала по сравнению с H_2 и Cl_2 , можно приравнять к нулю, т.е. суммарная скорость их образования равна суммарной скорости расходования.


1) запишите полный механизм термической фотохимической реакции синтеза хлороводорода: стадии инициирования, продолжения и обрыва цепи;

ЦЕПНАЯ РЕАКЦИЯ

13. Реакция прямого синтеза хлороводорода идёт по радикально-цепному механизму. Её может инициировать синий или ультрафиолетовый свет или нагревание, при этом разрывается связь CI-CI, $E_{cs}=242~{\rm кДж\cdot моль^{-1}}$, т.к. для связи $H-H~E_{cs}=436~{\rm кДж\cdot моль^{-1}}$. При малой скорости инициирования реакция идёт спокойно, при этом, в соответствии с принципом стационарности Боденштейна, скорость изменения концентрации всех промежуточных частиц, а их концентрация пренебрежимо мала по сравнению с H_2 и Cl_2 , можно приравнять к нулю, т.е. суммарная скорость их образования равна суммарной скорости расходования.

2) обе стадии продолжения цепи — элементарные реакции, константы скорости которых определяются уравнением Аррениуса, где при 200° С $A_1=A_2=10^{11}\,$ л·моль $^{-1}\cdot$ с $^{-1}$, $E_{A_1}=25\,$ кДж·моль $^{-1}$, $E_{A_2}=2\,$ кДж·моль $^{-1}$; исходя из этих значений, докажите, что обрыв цепи происходит почти исключительно в соответствии с одним процессом.

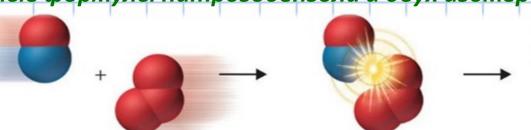
NO есенье, 3 мая 2020 г. O_3

Effective collision

NO2

02

- 14. Нитрозосоединения соединения с общей формулой RNO; нитрозосоединения являются промежуточными продуктами восстановления нитросоединений слабыми восстановителями. Одно из свойств ароматических нитрозосоединений способность к обратимой димеризации с образованием димеров состава: RN(O)N(O)R. Из-за наличия двойной связи N=N молекулы димеров существуют
- 1) приведите структурные формулы нитрозобензола и двух изомеров его димера. Молекулы какого из изомеров более полярны?
- 2) раствор объёмом 0,400 мл, изначально содержавший 13,60 мг С₆Н₅NO, в состоянии равновесия при 290 К содержит нитрозобензол, цисизомер димера и транс-изомер в мольном соотношении 1,089 : 1,000 : 3,678. Определите молярные концентрации всех веществ в растворе в состоянии равновесия. Рассчитайте константу равновесия реакции изомеризации цис-димер


 транс-димер при температуре 290 К.
- 3) определите энтальпию реакции изомеризации, если известно, что константа равновесия этой реакции уменьшается в 1,42 раза при увеличении температуры от 290 К до 310 К.

в виде двух геометрических изомеров.

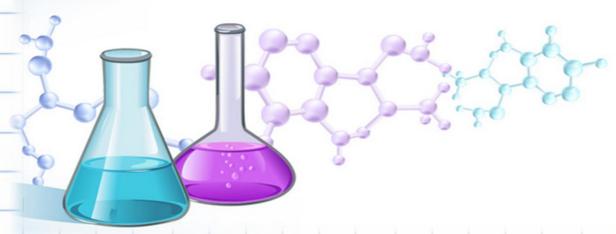
- 14. Нитрозосоединения соединения с общей формулой RNO; нитрозосоединения являются промежуточными продуктами восстановления нитросоединений слабыми восстановителями. Одно из свойств ароматических нитрозосоединений способность к обратимой димеризации с образованием димеров состава: RN(O)N(O)R. Из-за наличия двойной связи N=N молекулы димеров существуют в виде двух геометрических изомеров.
- 4) при изучении кинетики параллельных реакций димеризации нитрозобензола были определены энергии активации реакций превращения в цис-изомер (90,8 кДж·моль⁻¹) и в транс-изомер (96,7 кДж·моль⁻¹). При малых степенях превращения можно считать обе реакции необратимыми, а соотношение между количествами изомеров равным отношению скоростей реакций их образования. Считая, что предэкспоненциальные множители обеих реакций одинаковы, рассчитайте отношение концентраций цис- и транс-изомера при малых степенях превращения при температуре 290 К.

1) приведите структурные формулы нитрозобензола и двух изомеров его димера.

Молекулы какого из изомеров более полярны?

NO

 O_3


Effective collision

 NO_2

 D_2

2) раствор объёмом 0,400 мл, изначально содержавший 13,60 мг С₆H₅NO, в состоянии равновесия при 290 К содержит нитрозобензол, цисизомер димера и транс-изомер в мольном соотношении 1,089 : 1,000 : 3,678. Определите молярные концентрации всех веществ в растворе в состоянии равновесия. Рассчитайте константу равновесия реакции изомеризации цис-димер

транс-димер при температуре 290 К.

3) определите энтальпию реакции изомеризации, если известно, что константа равновесия этой реакции уменьшается в 1,42 раза при увеличении температуры от 290 К до 310 К.

4) при исследовании кинетики параллельных реакций димеризации нитрозобензола были определены значения энергий активации реакций превращения в цис-изомер (90,8 кДж·моль⁻¹) и в транс-изомер (96,7 кДж·моль⁻¹). При малых степенях превращения можно считать обе реакции необратимыми, а соотношение между количествами изомеров равным отношению скоростей реакций их образования. Считая, что предэкспоненциальные множители обеих реакций одинаковы, рассчитайте

отношение концентраций цис- и транс-изомера при малых степенях превращения

