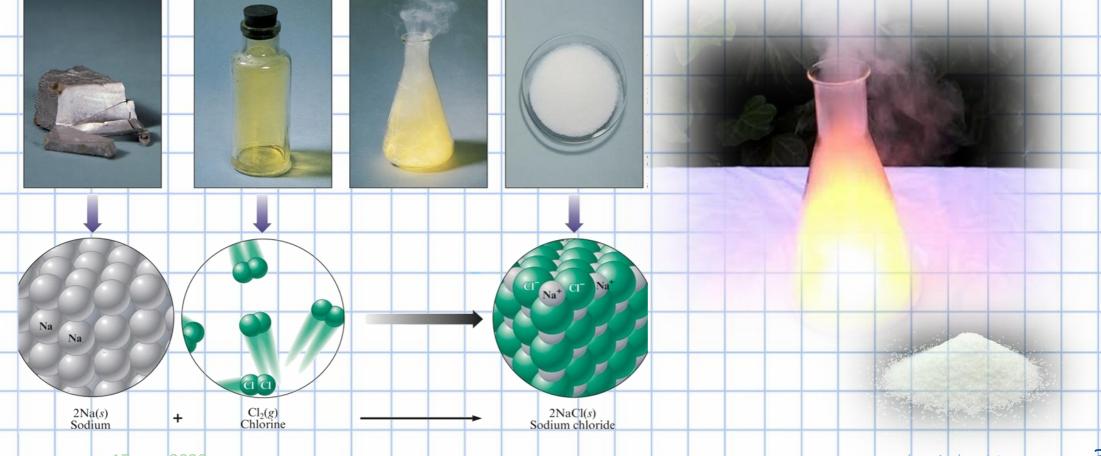

Лямин Алексей Николаевич,

доцент, кандидат педагогических наук, Почётный работник образования РФ КОГОАУ ДПО «ИРО Кировской области», г. Киров


www.lyaminchemistry.ucoz.ru

ХИМИЧЕСКАЯ ДИНАМИКА

химическая форма движения материи

носителем химической формы движения материи является система атомов, ионов, радикалов или молекул, а в основе движения лежит разрушение и образование химических связей или перераспределение электронной плотности между частицами, при этом вновь образующиеся частицы приобретают качественно новые свойства

CI-CN H-CN

химическая реакция

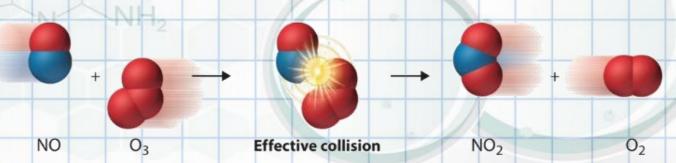
реакция, от латинского re – приставка, указывающая на повторное, возобновляемое действие или на противодействие и actio – действие — действие, состояние, процесс, возникающие в ответ на какое либо воздействие;

химическая реакция— движение веществ, сопровождающееся изменением их состава, структуры и энергии, посредством разрыва связей в реагентах и образования новых связей в продуктах;

вещество, содержащее атакуемый реакционный центр называют субстратом, а атакующее вещество называют реагентом; субстрат и реагент вместе называют реагентами;

реагенты — продукты реакции и изменение энергии

$$aA + bB \rightarrow cC + dD \pm E (\pm Q; \Delta_r H)$$


уравнение химической реакции составляют на основе закона сохранения материи

CI-CN H-CN

РЕАКЦИОННАЯ СПОСОБНОСТЬ

самопроизвольная реакция — реакция, проходящая при данных условиях без участия внешних сил; свойства вещества определяются только во взаимодействии; реакционная способность — относительная характеристика химической активности вещества, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость; это понятие относительное, т.к. определяется по отношению к конкретному веществу — партнёру по реакции, при этом чем выше реакционная способность вещества, тем больше скорость процесса;

внутренняя сущность движущей силы химического процесса заключается в изменении внутренней энергии системы реагентов и продуктов; отличие заключается в том, что разность в энергии тел можно констатировать по разности масс и скорости тела, а для вещества таким показателем может служить энергия связей, образующих вещество, а следовательно, значение электроотрицательности частиц

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ПОЛИНГА

H-			I F Y															
	I	П	Ш	IV	V	VI	VII	VIII	ΙX	Х	ΧI	XII	XIII	XIV	ΧV	XVI	XVII	XVIII
1	Н	 Относительная электроотрицательность элементов по Полингу 											Н	Ц				
	2,20																2,20	ПЕ
0	Li	Be		×248/	L		-		H	1	SA		В	С	N	0	F	NIa
2		4		Trees.		AL .	7		ar i	1.20	7			~ ==	4	~		INE

Co

1,88

Rh

2,28

lr

2,20

Mt

Gd

1,20

Cm

1,28

Ni

1,91

Pd

2,20

Pt

2,28

Ds

Cu

1,90

Ag

1,93

Au

2,54

Rg

Tb

1,10

Bk

1,30

Zn

1,65

Cd

1,69

Hg

2,00

Cn

Dy

1,22

Cf

1,30

P

2,19

As

2,18

Sb

2,05

Bi

2,02

Mc

Tm

1,25

Md

1,30

ΑI

1,61

Ga

1,81

In

1,78

ΤI

1,62

Nh

Ho

1,23

Es

1,30

Si

1,90

Ge

2,01

Sn

1,96

Pb

2,33

FI

Er

1,24

Fm

1,30

S

2,58

Se

2,55

Te

2,10

Po

2,00

Lv

Yb

1,10

No

1,30

CI

3,16

Br

Αt

Ts

2,96 3,00

2,66 2,60

2,20 2,20

Ar

Kr

Хe

Rn

Og

Lu

1,27

Lr

1,29

0,98 1,57 2,55 3,04

Fe

1,83

Ru

2,20

Os

2,20

Hs

Eu

1,20

Am

1,13

Mn

1,55

Тс

1,90

Re

1,90

Bh

Sm

1,17

Pu

1,28

Cr

1,66

Mo

2,16

W

2,36

Sg

Pm

1,13

Np

1,36

Na

0,99

K

0,82

Rb

Cs

0,79

Fr

0,70

La

1,10

Ac

1,10

Mg

1,31

Ca

1,00

Sr

Ba

Sc

1,36

1,22

La*

0,89 1,10

Ra Ac**

0,90 1,10

Ce

1,12

Th

1,30

٧

1,63

Nb

1,60

Та

1,50

Db

Nd

1,14

U

1,38

Τi

1,54

Zr

1,33

Ηf

1,30

Rf

Pr

1,13

Pa

1,50

строго говоря, элементу нельзя приписать постоянную электроотрицательность; значение электроотрицательности химического элемента зависит от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов; в последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа электронной орбитали, участвующей в образовании связи, и от того, занята ли орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной; одним из наиболее развитых в настоящее время подходов является подход Малликена Роберта Сандерсона; в основу этого подхода легла идея выравнивания электроотрицательностей атомов химических элементов при образовании химической связи между ними; были найдены многочисленные зависимости

между электроотрицательностями Малликена и важнейшими физикохимическими свойствами неорганических соединений большинства элементов периодической системы; очень плодотворной оказалась и модификация метода, основанная на перераспределении электроотрицательности в молекулах органических соединений

изменение электроотрицательности

$$S^{-2} < S^0 < S^{+2} < S^{+4} < S^{+6}$$

с увеличением заряда иона значение его электроотрицательности возрастает:

$$H^- < H < H^+$$

с изменением гибридного состояния меняется электроотрицательность элемента в соединении:

$$...$$
sp³ < sp² < sp

ЧЕМ НИЖЕ ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ЭЛЕМЕНТА

ЧЕМ ВЫШЕ ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ЭЛЕМЕНТА

ТЕМ ЯРЧЕ ВЫРАЖЕНЫ

МЕТАЛЛИЧЕСКИЕ

ОСНОВНЫЕ

ВОССТАНОВИТЕЛЬНЫЕ

СВОЙСТВА ВЕЩЕСТВА

K; KH; K2O; KOH

ТЕМ ЯРЧЕ ВЫРАЖЕНЫ

НЕМЕТАЛЛИЧЕСКИЕ

КИСЛОТНЫЕ

ОКИСЛИТЕЛЬНЫЕ

СВОЙСТВА ВЕЩЕСТВА

H₂S; S; SO₃; H₂SO₄

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

реакции, проходящие с изменением степени окисления элементов, образующих реагенты; с понижением степени окисления у окислителя

и с повышением степени окисления у восстановителя:

14NO + 6HBrO₄ + 4H₂O
$$\implies$$
 14HNO₃ + 3Br₂

B₂S_{3 (тв)} + 24HNO_{3 (конц)} \implies 2B(OH)₃ + 24NO₂ + 3H₂SO₄ + 6H₂O

3Cu₂S + 5K₂Cr₂O₇ + 23H₂SO₄ \implies 5Cr₂(SO₄)₃ + 6CuSO₄ + 5K₂SO₄ + 23H₂O

Cl_{2 (г)} + 2Ni(OH)_{2 (тв)} + 2KOH_(конц) \implies 2NiO(OH) + 2KCl + 2H₂O

H₂C — O — H

3 HC — O — H + 14KMnO_{4 (тв)} \implies 14MnO_{2 (тв)} + 7K₂CO_{3 (тв)} + 2CO_{2 (г)} + 12H₂O (г)

H₂C — O — H (ж) O

N=N — Cl + LiAlH₄ + 4HCl \implies HOCH₂CH₂CH₂CH₂OH + 2H₂ + LiCl + AlCl₃

+ H₂CO + 2NaOH \implies + N₂ + HCOONa + NaCl + H₂O

H. G.

КИСЛОТНО-ОСНОВНЫЕ РЕАКЦИИ

реакции обмена между кислотой и основанием;

в продуктах образуются вещества, содержащие анион кислоты и катион основания:

$$PF_{5(r)} + 4H_2O \implies 5HF_{(r)}^{\uparrow} + H_3PO_{4(p-p)}$$

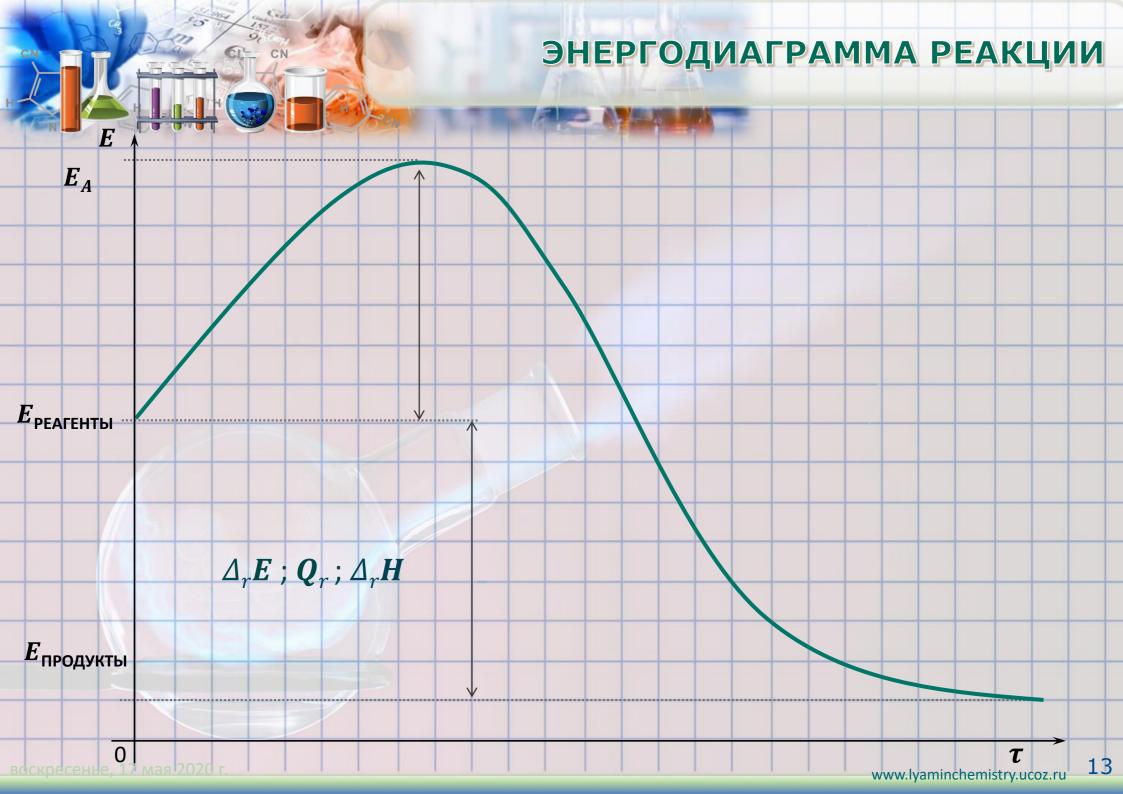
$$\text{Li}_{3}\text{P}_{(\Gamma)} + 3\text{H}_{2}\text{O} \longrightarrow 3\text{LiOH}_{(p-p)} + \text{PH}_{3}^{\uparrow}_{(\Gamma)}$$

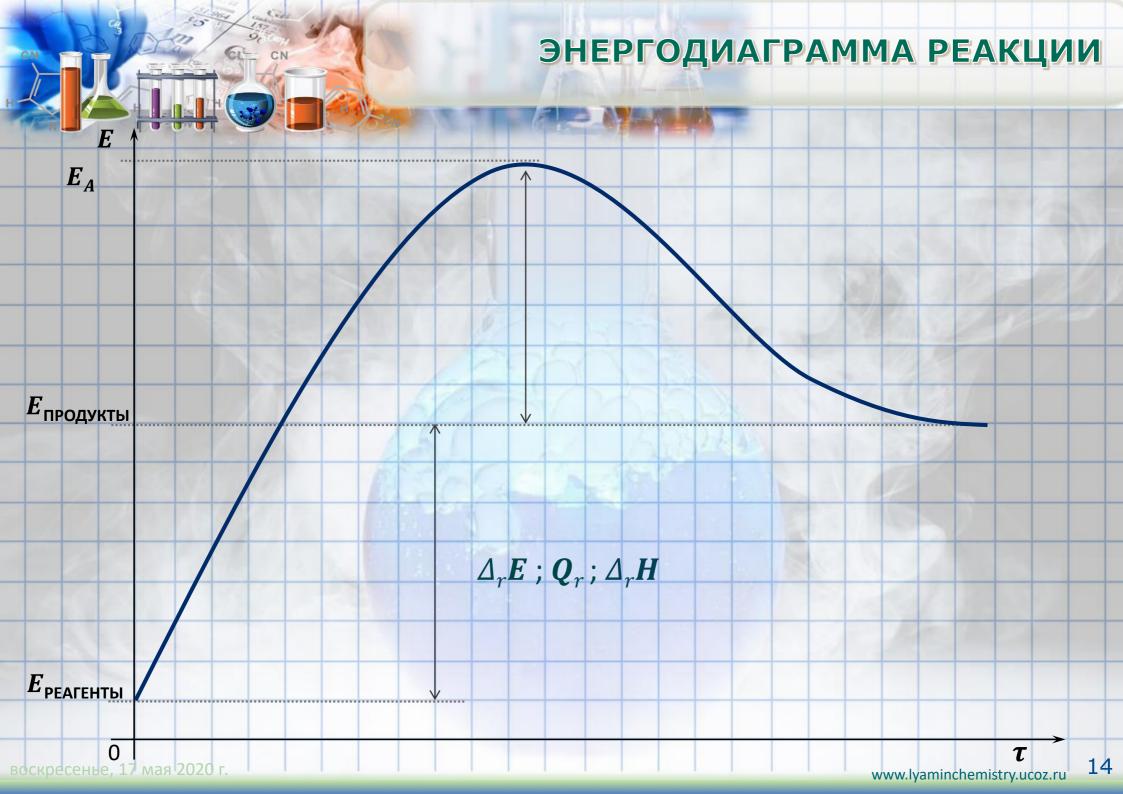
$$SiO_{2 \text{ (TB)}} + 6HF_{(KOHU)} \longrightarrow H_2[SiF_6]_{(p-p)} + 2H_2O$$

$$AlCl_{3 (TB)} + 4LIH_{(TB)} \xrightarrow{9 \oplus \text{up}} Li[AlH_4] + 3LiCl_{(TB)}$$

$$SF_{4(\Gamma)} + 2H_2O_{(x)} \longrightarrow SO_2^{\uparrow} + 4HF_{(p-p)}$$

$$HNO_{3 (конц)} + H_{2}SO_{4 (конц)} \xrightarrow{T} NO_{2}^{+}_{(p-p)} + HSO_{4}^{-}_{(p-p)} + H_{2}O_{(ж)}$$


$$(NH_4)_2SO_3S_{(p-p)} + 2HCI_{(p-p)} \longrightarrow SO_2^{\uparrow} + S_{(TB)_{\downarrow}} + 2NH_4CI_{(p-p)} + H_2O_{(x)}$$


(NO)HSO_{4 (TB)} +
$$3$$
NaOH_(p-p) \longrightarrow Na₂SO₄ + NaNO₂ + 2 H₂O

$$2Mg_2C_{3 (TB)} + 8HCI_{(p-p)} \longrightarrow H_3C - C \equiv CH_{(r)}^{\dagger} + H_2C = C = CH_{2 (r)}^{\dagger} + 4MgCI_{2 (p-p)}^{\dagger}$$

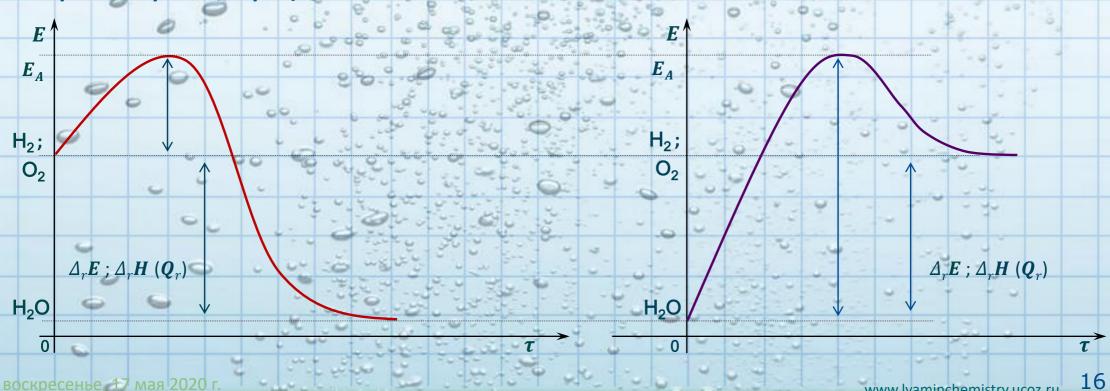
КРИТЕРИИ ХИМИЧЕСКОЙ РЕАКЦИИ

- ✓ в химическую реакцию вступают вещества с противоположными свойствами: окислитель восстановитель; кислота основание;
- ✓ внутренняя сущность движущей силы химического процесса заключается в изменении внутренней энергии системы реагентов и продуктов;
- ✓ чем сильнее различие в свойствах реагирующих веществ, тем больше движущая сила процесса, когда различие в свойствах стремится к нулю, химический процесс стремится к состоянию равновесия;
- ✓ чем больше различаются электроотрицательности элементов, образующих реагенты, тем более возможно химическое взаимодействие между ними;
- ✓ элементы с наиболее различными значениями электроотрицательности образуют один из продуктов;
- ✓ наиболее возможны химические процессы, идущие с образованием осадков в растворах, с образованием комплексных ионов, воды и образованием летучих продуктов

• для начала химической реакции необходима определённая энергия для достижения активного состояния частиц — энергия активации $E_{\scriptscriptstyle A}$;

 E_A обычно в природных процессах изменяется в пределах от 50 до 250 кДж·моль $^{-1}$; если $E_A <$ 60 кДж·моль $^{-1}$, то реакции идут очень быстро, а при $E_A >$ 105 кДж·моль $^{-1}$, реакция практически не идёт при нормальной T.

- количество выделившейся или поглощённой в ходе химической реакции энергии определяется только начальным (внутренняя энергия реагентов) и конечным (внутренняя энергия продукта) состоянием процесса, называется энергетическим эффектом реакции и соответствует на энергетической диаграмме ΔE ;
- реакции проходят с выделением энергии, если внутренняя энергия продукта меньше внутренней энергии реагентов и такие реакции называются экзоэнергетическими; если внутренняя энергия продуктов больше внутренней энергии реагентов, то такие реакции проходят с поглощением энергии и называются эндоэнергетическими, от греческого ἕξω вне, снаружи, ἕνδον внутри и ένέργεια действие, деятельность;
- эндоэнергетические процессы требуют постоянной затраты энергии;
- энергообмен химической реакции с окружающей средой может принимать различные формы: тепловую, механическую, звуковую, электрическую, световую и др.


15

СУЩНОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ

$$2H_{2(\Gamma)} + O_{2(\Gamma)} \xrightarrow{T} 2H_{2}O_{(\Re)} + E; \quad 2H_{2}O_{(\Re)} \xrightarrow{9\pi. \text{ TOK}} 2H_{2(\Gamma)} + O_{2(\Gamma)} - E$$

выводы

- химическая реакция сопровождается процессом разрыва химических связей в реагентах и образования новых химических связей в продуктах;
- энергия в ходе химической реакции не возникает и не исчезает, но передаётся в различных формах в эквивалентных количествах;
- сумма энергии, необходимой для разрушения химических связей в реагентах реакции, и энергии, выделяемой при образовании химических связей в продуктах реакции, равна тепловому эффекту химической реакции;
- количество энергии, выделяемое в ходе химического процесса, численно равно и противоположно по знаку количеству энергии, которое будет поглощаться при прохождении обратного процесса;
- разность энергий активации прямого и обратного химического процесса равна тепловому эффекту этого процесса;
- самопроизвольный процесс направлен в сторону уменьшения энергии принцип минимума энергии

ТЕРМОДИНАМИКА

от греческого θ єрµо – тепло; θ є́рµη – теплота; δ ύναµις – сила; δ υναµικός – сильный «Термодинамика — единственная теория универсального содержания, относительно которой я убеждён, что в пределах применимости её основных понятий она никогда не будет опровергнута».

Альберт Эйнштейн, физик США.

наука, изучающая материальные макроскопические системы и процессы на основе общих законов взаимопревращения теплоты, различных видов работы и энергии;

термодинамическая система— материальный макроскопический объект, выделенный из окружающей среды с помощью, реально существующей или воображаемой граничной поверхности— границы раздела, способный к обмену с другими объектами энергией и/или веществом;

статистический закон— это закон, управляющий поведением больших совокупностей и в отношении отдельного объекта, позволяющий делать лишь вероятностные выводы о его поведении;

если считать, что относительные значения меньше 10^{-9} невозможно обнаружить экспериментально, то нижний предел для числа частиц в термодинамической системе составляет 10^{18} ; только к таким множествам частиц применимы, например, понятия температуры, теплоты и энтропии.

ТЕРМОДИНАМИЧЕСКИЕ СИСТЕМЫ

открытые системы— свободно обменивающиеся энергией, веществом и информацией с окружающей средой; в таких системах могут происходить явления самоорганизации, усложнения или спонтанного упорядочивания;

замкнутые системы— обмен энергией, веществом и информацией с окружающей средой ограничен: закрытые— обмениваются только энергией, но не веществом; адиабатные— обмен энергией запрещён, обмениваются только веществом; изолированные— любой обмен исключён, идеализация, модель;

различают следующие состояния систем:

равновесное— состояние термодинамической системы, характеризующееся при постоянных внешних условиях неизменностью параметров и отсутствием потоков вещества или энергии:

стабильное— состояние, при котором всякое бесконечно малое воздействие вызывает только бесконечно малое изменение состояния системы, а при снятии воздействия система самопроизвольно возвращается в исходное состояние;

неравновесное— состояние термодинамической системы, при котором всякое бесконечно малое воздействие вызывает конечное изменение системы...;

ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ

самопроизвольный — процесс, не требующий направленных воздействий на систему за исключением тех, которые обеспечивают постоянство температуры и давления; процесс, проходящий при данных условиях без участия внешних сил; это процесс, при котором над системой не совершается никакой полезной работы, т.е. полезная работа которого положительна;

несамопроизвольный — процесс, проходящий при данных условиях под действием внешних сил; процесс, при котором над системой совершается полезная работа, т.е. процесс, полезная работа которого отрицательна;

равновесный— процесс, представляющий собой непрерывную последовательность равновесных состояний;

неравновесный— процесс, представляющий собой последовательность состояний, среди которых не все являются равновесными состояниями;

обратимый— процесс, после которого система и окружающая среда могут возвратиться в исходное состояние без макроскопических изменений в системе и окружении; все равновесные процессы обратимы;

необратимый— процесс, после которого система и окружение не могут вернуться в начальное состояние;

CN CN

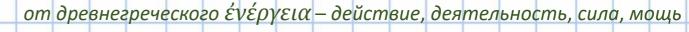
ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ

в ходе процесса некоторые термодинамические переменные могут быть фиксированными и в соответствии с этим различают изопроцессы:

изобарный, изобарический процесс — процесс, проходящий при постоянном давлении; изохорный, изохорический процесс — процесс, проходящий при постоянном объёме; изотермический процесс — процесс, проходящий при постоянной температуре; адиабатный, адиабатический процесс — процесс, при котором система не обменивается с окружающей средой теплотой; полная теплоизоляция неосуществима, только в приближении к очень быстрым процессам расширения и сжатия системы; функция состояния — функция, зависящая от нескольких независимых параметров, которые однозначно определяют состояние системы и не зависящая от пути перехода системы в это состояние: энергия, энтропия, температура, объём, давление и др.; функция перехода — функция, значение которой зависит от пути прохождения процесса: теплота и работа;

стандартные ст.у., нормальные н.у. условия — согласно IUPAC: T = 273,15 K, p = 1 бар или 10^5 Па; согласно National Institute for Standards and Technology: T = 293,15 K, p = 1 атм или 101325 Па; согласно ICAO, Международной организации гражданской авиации: T = 288,15 K, p = 1 атм или 101325 Па и абсолютная и относительная влажность 0

ЭНЕРГЕТИЧЕСКАЯ КОНЦЕПЦИЯ


«Во всех макроскопических системах материального мира живой и неживой природы, техники, производства, науки и т.д. непрерывно происходят изменения энергии, изучая которые можно получить необходимые данные о закономерностях функционирования и развития этих систем».

И. В. Петрянов-Соколов, академик Россия.

в 1961 году выдающийся преподаватель физики (США) и нобелевский лауреат, Ричард Филлипс Фейнман (Файнман) в лекциях так выразился о концепции энергии:

существует факт, или, если угодно, закон, управляющей всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его — сохранение энергии. Он утверждает, что существует определённая величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлечено. Это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним...

ЭНЕРГИЯ

общая количественная мера различных форм движения материи, E Дж; термин впервые появился в работах Аристотеля, а в науку термин «Энергия» ввёл в 1807 г. Томас Юнг, часто, Янг, англ. Thomas Young; 13.06.1773, Милвертон, графство Сомерсет — 10.05.1829, Лондон — английский физик, механик, врач, астроном и востоковед, один из создателей волновой теории света;

в СИ энергия обозначается E, измеряется в Дж и имеет размерность: $\mathrm{L}^2\mathrm{MT}^{-2}$, равную:

- ullet силе умноженной на длину: $oldsymbol{E} = oldsymbol{F} \cdot oldsymbol{l}$
- давлению умноженному на объём: $E = p \cdot V$
- импульсу умноженному на скорость: $\pmb{E} = \pmb{p} \cdot \pmb{v}$
- массе умноженной на квадрат скорости: $E = m \cdot v^2$
- заряду умноженному на напряжение: $oldsymbol{E} = oldsymbol{q} \cdot oldsymbol{U}$
- мощности умноженной на время: $E = N \cdot au$


15 % Ch		ЭКВИВАЛЕНТНОСТЬ ЭНЕРГИИ							
	Эквивалент								
Единица	Дж	эрг	межд. кал	эВ					
1 Дж	1	1,0×10 ⁷	0,238846	6,24142×10 ¹⁸					
1 эрг	1,0×10 ⁻⁷	1	2,38846×10 ⁻⁸	6,24142×10 ¹¹					
1 межд. Дж	1,0002	1,0002×10 ⁷	0,23889367	6,24267×10 ¹⁸					
1 KFC·M	9,80665	9,80665×10 ⁷	2,34227	6,12074×10 ¹⁹					
1 Вт-ч	3,6×10 ³	3,6×10 ¹⁰	8,5985×10 ²	2,24691×10 ²²					
1 л-атм	1,013278×10 ²	1,013278×10 ⁹	2,42017×10 ¹	6,32429×10 ²⁰					
1 межд . кал (саІ _{ІТ})	4,1868	4,1868×10 ⁷	1	2,61316×10 ¹⁹					
1 терм. кал (кал _{тх})	4,18400	4,18400×10 ⁷	9,99331×10 ⁻¹	2,61141×10 ¹⁹					
1 электрон-вольт (эВ)	1,6022×10 ⁻¹⁹	1,60219×10 ⁻¹²	3,82679×10 ⁻²⁰	1					
воскресенье, 17 мая 2020 г. 25									

потенциальная энергия

om латинского potentia – сила

 $m{E}_{p_i}$ Дж — часть энергии системы, зависящая только от взаимного расположения объектов и от их положения во внешнем силовом поле:

$$E_p = mgh; W = -mg \int_{h_1}^{h_2} dh;$$

$$W = \gamma m_1 m_2 \int_{r_1}^{r_2} \frac{1}{r^2} dr; \qquad W = \gamma m_1 m_2 \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

где: W — совершаемая работа, Дж; h — высота центра масс тела, м; m — масса тела, кг; g — ускорение свободного падения 9,81 м·с⁻²; r — расстояние между центрами масс тел, м; γ — гравитационная постоянная 6,67·10⁻¹¹, м³/кг·с²;

термин «Потенциальная энергия» ввёл в науку в 1853 г. англичанин **Уильям Джон Ренкин**

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

от греческого κίνησις – приводящий в движение

 $oldsymbol{E}_{oldsymbol{k}_{c}}$ Дж — часть энергии системы, зависящая от скоростей движения всех её

компонентов:

$$E_k = \frac{mo}{2}$$
;

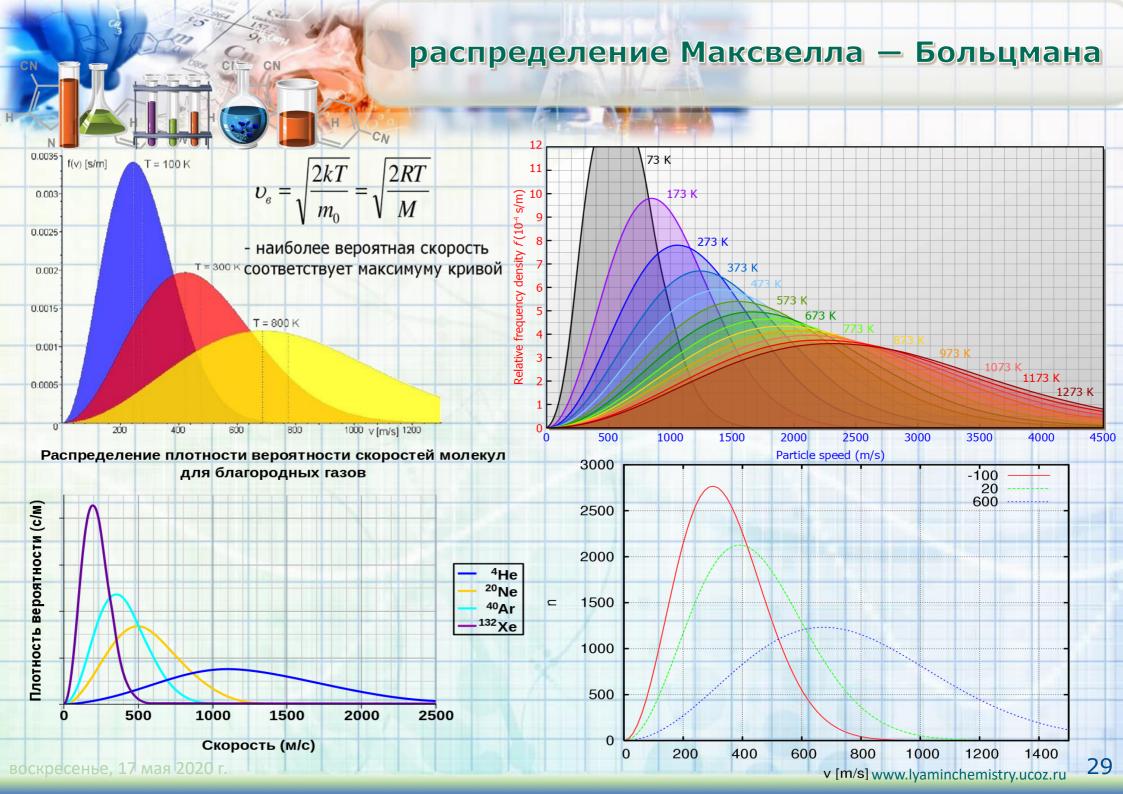
$$W = m \int_{v_1}^{v_2} v dv$$

термин «Кинетическая энергия» впервые использовал в 1829 г. Гаспа́р-Гюста́в де Кориоли́с, Франция

ТЕМПЕРАТУРА

Т, К — основная величина СИ, характеризующая среднюю кинетическую энергию частиц, образующих систему; внутренняя энергия, в отличии от температуры, определяет полную энергию частиц системы; айсберг обладает гораздо большей внутренней энергией, чем чашка горячего кофе, хотя температура айсберга намного ниже температуры кофе; чтобы нагреть 300 мл кофе на 1° С, потребуется порядка 1,254 кДж энергии, а для нагрева айсберга с размерами футбольного поля на 1° С, потребуется уже порядка 4,18×10¹¹ кДж энергии; в однородном идеальном газе, находящемся при абсолютной температуре Т, энергия, приходящаяся на каждую поступательную степень свободы частицы, равна, как следует из распределения Максвелла — Больцмана:

где: k — постоянная Больцмана 1,380658×10 $^{-23}$ Дж·К $^{-1}$;


 $oldsymbol{m}_0\sqrt{\overline{oldsymbol{v}}^2}^2$

при 300 К **эта энергия составляет 2,07×10⁻²¹** Дж, или **0,013** эВ;

тогда средняя кинетическая энергия отдельной частицы составит:

 $\overline{E}_k = \frac{m_0 \vee v}{2}$

средняя квадратичная скорость при 25° С изменяется в пределах от $1370~{
m M\cdot c^{-1}}$ для гелия до $240~{
m M\cdot c^{-1}}$ для ксенона

CI CN H CN

УРАВНЕНИЯ МКТ ГАЗОВ

Постоянная Авогдаро	N_A	6,0221415(10)×10 ²³ моль ⁻¹
Постоянная Больцмана	k	1 3806505(24)×10 ⁻²³ Лж·К ⁻¹

Газовая постоянная
$$R$$
 8,314472(15) Дж·К $^{-1}$ ·моль $^{-1}$ $R=kN_A$

Число степеней свободы частицы f одноатомный газ — 3; двухатомный газ — 5; трёхатомный газ и твёрдое вещество — 6

$$\overline{E}_k = \frac{m_0 \sqrt{\overline{v}^2}^2}{2}; \quad \overline{E}_k = \frac{fkT}{2}$$

$$\boldsymbol{v_m} = \sqrt{\frac{2kT}{m_0}} = \sqrt{\frac{2RT}{M}}$$

$$\overline{\boldsymbol{v}} = \sqrt{\frac{8RT}{\pi M}}; \quad \overline{\boldsymbol{v}} = 1.128 \cdot \boldsymbol{v_m}$$

$$\sqrt{\overline{v}^2} = \sqrt{\frac{3RT}{M}} = 158 \cdot \sqrt{\frac{T}{M}}; \quad \sqrt{\overline{v}^2} = 1,225 \cdot v_m$$

$$\bar{l} = \frac{RT}{d^2 p N_A \pi \sqrt{2}} \approx 10^{-7} \text{M}$$

$$\overline{z} = \frac{d^2 \overline{v} p N_A \pi \sqrt{2}}{RT} \approx 10^9 - 10^{10} c^{-1}$$

$$p = \frac{m\overline{v}^2}{3V}$$

CT CN

ВНУТРЕННЯЯ ЭНЕРГИЯ

-kTN;U

U, Дж — совокупность кинетической энергии теплового, поступательного, колебательного, вращательного движений всех частиц системы и потенциальной

энергии их взаимодействия:

где: **f** – степень свободы частиц;

воскресенье, 17 мая 2020 г

k – постоянная Больцмана 1,38·10 $^{-23}$ Дж·К $^{-1}$;

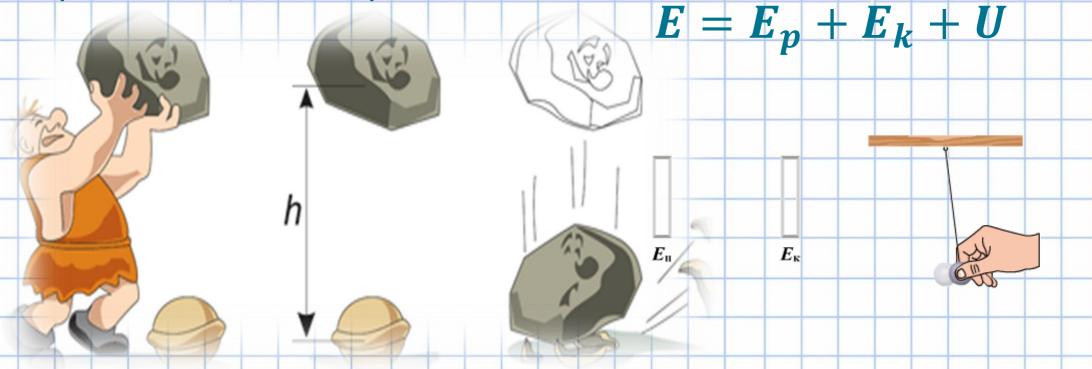
R – универсальная газовая постоянная 8,314 Дж·моль $^{-1}$ ·К $^{-1}$;

n – количество вещества, моль; N – общее количество частиц; T – температура, K;

	Тип движения						
Вещество	поступательное	вращательное	колебательное	Всего			
одноатомный газ	3	+		3			
двухатомный газ	3	2		5			
трёхатомный газ	3	3	_	6			
твёрдое			6	6			
жидкое		не определено					

термин «Внутренняя энергия» ввёл в 1851 г. **Уильям Томсон лорд Кельвин**, Англия

воскресенье, 17 мая 2020 г


ЗАКОН СОХРАНЕНИЯ ЭНЕРГИЯ

om латинского aequivalens – равноценный, равнозначный

энергия не создаётся и не исчезает, а лишь переходит в разные виды или передаётся в другие системы в эквивалентных количествах:

$$\Sigma E = const$$

E, Дж — сумма потенциальной энергии, кинетической энергии и внутренней энергии системы, полная энергия системы:

ТЕПЛОТА

Q, q, Дж — изменение внутренней энергии, характеризующее передачу хаотического поступательного, колебательного и вращательного движения частиц системы к частицам окружающей среды, или наоборот, путём теплообмена: теплопроводности, конвекции или теплового излучения;

теплоёмкость C, Дж· K^{-1} — отношение подведённого к системе количества теплоты к достигнутой при этом разности температур;

удельная теплоёмкость c, Дж· K^{-1} · Γ^{-1} — количество теплоты необходимое для нагрева одного грамма вещества на один градус по шкале Кельвина:

$$c = \frac{C}{m}; \quad c = \frac{\delta Q}{mdT}; \quad Q = \int_{T_1}^{T_2} cmdT;$$

уравнение Томпсона: $oldsymbol{Q}=cm(oldsymbol{T}_2-oldsymbol{T}_1)$;

стандартная теплоёмкость C° , Дж·К $^{-1}$ ·моль $^{-1}$ — теплоёмкость одного моль вещества при T=298,15 К и p=1 атм;

РАБОТА

W Дж — изменение внутренней энергии системы, характеризующее поступательное движение организованного потока частиц системы к частицам окружающей среды или, наоборот, создание в системе поступательного движения организованного потока частиц под действием частиц окружающей среды;

в природных процессах, чаще всего, изменяется объём газов и совершается работа расширения или сжатия системы:

$$W = \int_{V_1}^{V_2} p dV$$
; $W = p \Delta V$; $W = nR \Delta T$;

полезная работа W' Дж — сумма всех видов работы кроме работы расширения-сжатия системы;

теплота и работа есть следствие обмена движением частиц системы и окружающей среды; теплота и работа характеризуют не систему, а временные процессы передачи движения, его преобразования; это функции перехода и их бесконечно малое изменение не является полным дифференциалом; внутри системы нет ни теплоты, ни работы;

НАЧАЛА ТЕРМОДИНАМИКИ

любая изолированная система с течением времени приходит в равновесное состояние и самопроизвольно выйти из него не может;

«...это положение ограничивает размер систем, которые описывает термодинамика; оно не выполняется для систем астрономического масштаба — мегасистем и микроскопических систем с малым числом частиц, т.к. системы галактического размера самопроизвольно не приходят в состояние равновесия, благодаря дальнодействующим гравитационным силам; микроскопические системы могут самопроизвольно выходить из состояния равновесия и это явление называют флуктуациями... Самопроизвольный переход системы из неравновесного состояния в равновесное называют релаксацией. Основной постулат ничего не говорит о времени релаксации, он утверждает, что равновесное состояние системы будет обязательно достигнуто, но длительность такого процесса никак не определена.» [Основы физической химии [Электронный ресурс]: учебное пособие: в

2 ч. Ч. 1: Теория / В. В. Ерёмин [и др.]. — 4-е изд. (эл.). — Электрон. текстовые дан. (1 файл pdf: 323 с.). — М.: БИНОМ. Лаборатория знаний, 2015, с. 9];

все процессы релаксации являются неравновесными процессами, при которых в системе происходит диссипация энергии — необратимое преобразование части энергии упорядоченных процессов: кинетической энергии движения тела, энергии электрического тока и др., в энергию неупорядоченных процессов, в итоге — в теплоту;

общее термодинамическое требование к устойчивости системы— принцип минимума энергии: максимуму устойчивости системы соответствует минимум её энергии!

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

вся теплота, подведённая к закрытой термодинамической системе, расходуется на изменение внутренней энергии системы и совершение работы против внешних сил:

$$\delta Q = dU + \delta W; \quad Q = \Delta U + W$$

принято считать положительными теплоту, переданную окружающей среде, и работу, совершённую над ней — против внешних сил; однако, согласно рекомендациям IUPAC, положительно всё то, что направлено в систему, т.е. увеличивает энергию системы; в любом процессе приращение внутренней энергии закрытой системы равно сумме количества теплоты, переданной системе и работы, совершённой над ней внешними силами:

 $d\mathbf{U} = \delta \mathbf{Q} + \delta \mathbf{W}; \ \Delta \mathbf{U} = \mathbf{Q} + \mathbf{W};$

первое начало определяет постоянство алгебраической суммы теплоты и работы, но не определяет величину теплоты и величину работы в отдельности, т.к. эти величины зависят от способа проведения процесса: при необратимом способе проведения процесса не совершается полезной работы, а вся энергия процесса передаётся окружающей среде в форме выделения или поглощения теплоты ΔQ ; при обратимом способе проведения процесса энергия расходуется на совершение полезной работы, для выполнения которой необходим аппарат или устройство, например, промышленный химический аппарат

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ

всеобщим фундаментальным законом природы является закон сохранения энергии, частным случаем которого являются законы сохранения импульса, заряда; этот закон подтверждён бесчисленными наблюдениями и опытными данными как напрямую, так и через разнообразные его следствия;

ни одна материальная система не может функционировать и развиваться, не потребляя энергии, которая расходуется на совершение работы, на изменение внутренней энергии системы и на рассеяние тепла в окружающую среду:

$$d\mathbf{E} = d\mathbf{U} + \delta\mathbf{W} + \delta\mathbf{Q} ;$$

самопроизвольный процесс направлен в сторону уменьшения энергии — принципминимума энергии

ЭНТАЛЬПИЯ

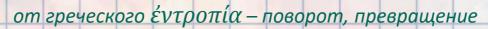
от греческого $\varepsilon V \tau \alpha \lambda \pi \omega$ – нагреваю

выражение U+pV Хейке Камерлинг-Оннес предложил называть — энтальпия; H, Дж — термодинамическая аддитивная функция состояния системы, т.е. энтальпия всей системы равна сумме энтальпий составляющих её частей;

изменение энтальпии ΔH равно количеству теплоты, сообщаемое или отводимое от системы при постоянном давлении: $\Delta H^{\circ}_{T}=Q_{p};\;\;\Delta H^{\circ}_{T}=\Delta U+p\Delta V;\;\;\Delta H^{\circ}_{T}=\Delta U+\Delta nRT\;;$

по уравнению Кирхгофа:

 $\Delta H^{\circ}_{T_2} = \Delta H^{\circ}_{T_1} + \int_{T_1}^{T_2} \Delta C^{\circ}_{p} dT ;$


при условии независимости теплоёмкости от температуры зависимость изменения энтальпии от температуры примет вид:

$$\Delta H^{\circ}_{T} = \Delta H^{\circ}_{298} + C_{M,p}(T-298)$$

 $\Delta H^{\rm o}$ характеризует энергетические эффекты фазовых переходов, химических реакций и других процессов, проходящих с веществом количеством 1 моль π^{-1} при постоянном давлении π^{-1} бар

S, Дж \cdot К $^{-1}$ мера рассеяния энергии в окружающую среду;

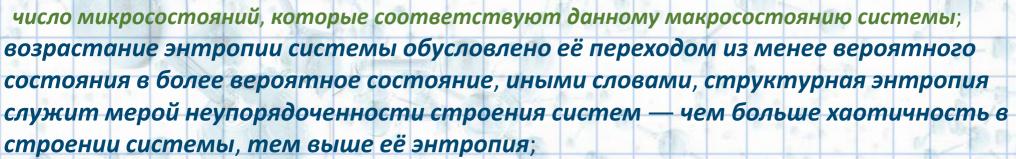
изменение энтропии ΔS выражает часть запаса энергии $Q = T\Delta S$, которая в реальных условиях перехода при температуре окружающей среды T рассеивается в тепло, уменьшая величину действительной работы:

$$W' = W_{max} - T\Delta S$$

где: W' — полезная работа; W_{max} — действительная работа; ΔS — изменение энтропии, Дж·К $^{-1}$; T — температура, K;

поэтому энтропию, иногда, ассоциируют со скрытой энергией системы;

термин, впервые введён в 1865 г. для определения меры необратимого рассеяния энергии Рудольфом Юлиусом Эммануэлем Клаузиусом, Германия


воскресенье, 17 мая 2020 г

статистическая физика связывает энтропию с вероятностью осуществления данного макроскопического состояния системы:

 $S = k \ln W$

где: W – термодинамическая вероятность или

информация эквивалентна отрицательной энтропии или по Леону Бриллюэну, $1956\ \mathrm{r}$. Франция **«энтропии Шеннона»**, **негэнтропии S_{\mathrm{H}}**;

информационная энтропия — мера неопределённости сообщения, т.е. рост данных о системе ведёт к уменьшению её неопределённости;

впервые связь энтропии с вероятностью состояния системы была установлена Людвигом Больцманом в 1872 г., Австрия;

энтропия — внутреннее свойство системы

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

в изолированной системе самопроизвольно протекают процессы с возрастанием **энтропии** $\Delta S > Q/T$; $\Delta S > 0 \equiv T \Delta S > 0$; принцип минимума энергии;

при необратимом способе проведения процесса из первого начала термодинамики следует $oldsymbol{Q}=arDelta U+W-W'$, из второго начала термодинамики: arDelta S>Q/T; тогда: $\Delta U + p\Delta V < T\Delta S \equiv \Delta H < T\Delta S$, т.о. самопроизвольный необратимый процесс в изобарных условиях тем более возможен, чем больше убыль энтальпии системы и больше рост энтропии системы;

при обратимом способе проведения процесса из первого начала термодинамики следует $oldsymbol{Q}=arDelta oldsymbol{U}+oldsymbol{W}$, из второго начала термодинамики следует: $\Delta S=oldsymbol{Q}/T$; $oldsymbol{Q}=T\Delta S$, тогда: $T arDelta S = arDelta U + W \equiv T arDelta S = arDelta H + W'; W' = T arDelta S - arDelta H$, m.o. самопроизвольный обратимый процесс в изобарных условиях также более возможен, чем больше рост энтропии и больше убыль энтальпии системы.

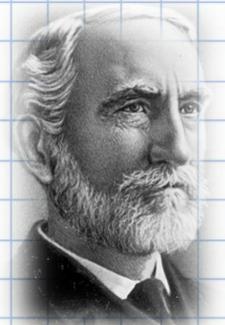
менеджер по зданию постоянно убирает кабинет, т.к. за время между уборками увеличивается хаотичность, беспорядок системы, т.е. на уборку — уменьшение энтропии нужно затратить определённое количество упорядоченной энергии, тогда как увеличение энтропии — рост хаотичности процесс самопроизвольный;

ЭНЕРГИЯ ГИББСА

полезная работа W' равна убыли энергии Гиббса: $W' = -\Delta G$;

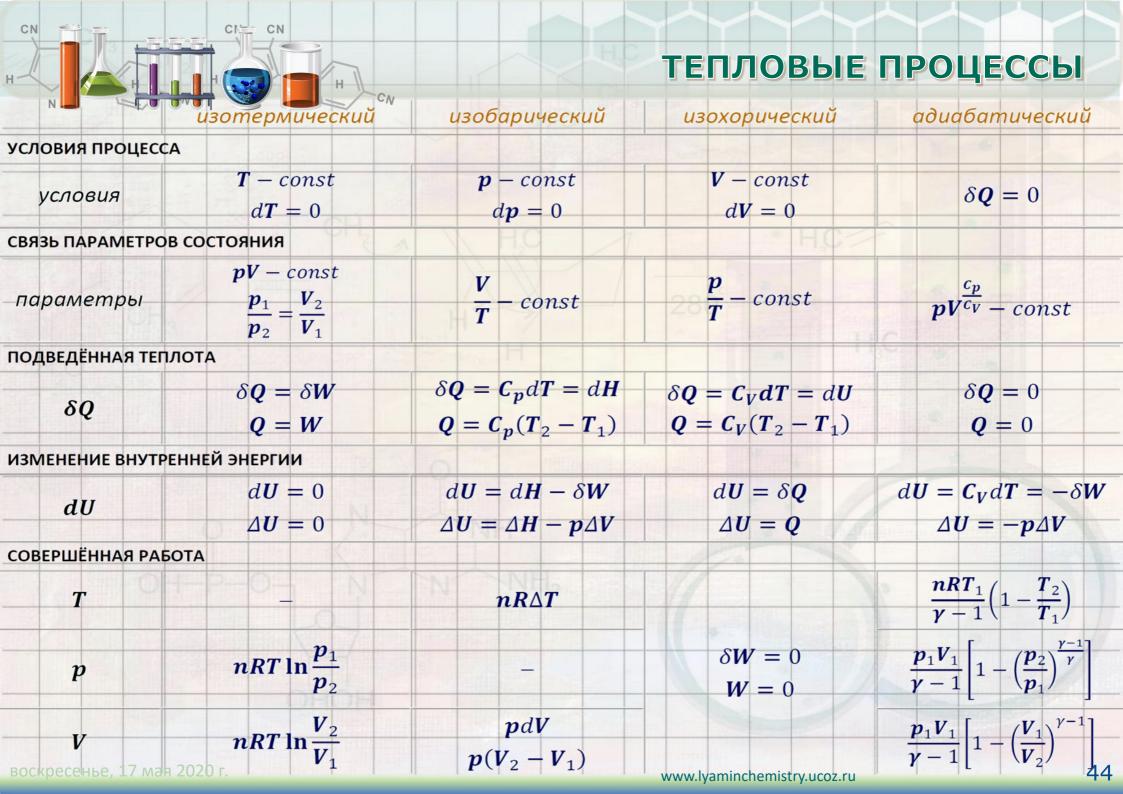
где: ΔH — полный запас энергии системы;

 $W' = T\Delta S - \Delta H; \quad \Delta G = \Delta H - T\Delta S$


T extstyle S — энергия, которая расходуется на изменение энтропии и не переходит в работу,

«скрытая энергия»; ΔG — энергия, за счёт которой система может совершать полезную работу,

т.н. «свободная энергия Гиббса»;


 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

следовательно, самопроизвольными в изобарных условиях являются процессы, изменение энергии Гиббса которых отрицательно:

 $\Delta G < 0$; $\Delta H - T\Delta S < 0$; $\Delta H < T\Delta S$

энергия Гиббса показывает, какая часть от внутренней энергии системы может быть использована в изобарном процессе или получена в процессе в заданных условиях и позволяет установить принципиальную возможность процесса в изобарных условиях; изменение энергии Гиббса даёт информацию о возможности самопроизвольного процесса, но не даёт информации о скорости процесса; при $\Delta G = 0$ система находится в равновесном состоянии, характеризующимся: $T\Delta S = \Delta H$

уравнения тепловых процессов

внутренняя энергия порции газа равна сумме энергий всех частиц:

$$U = nN_A E_k = \frac{f}{2} nN_A kT = \frac{f}{2} nRT = \frac{f}{2} pV$$

работа при изобарическом процессе (p — const):

$$W = \int_{V_1}^{V_2} p dV = p \int_{V_1}^{V_2} dV = p(V_2 - V_1) = p\Delta V = nR(T_2 - T_1) = nR\Delta T$$

работа при изотермическом процессе (T — const) через объём:

$$W = \int_{V_1}^{V_2} \boldsymbol{p} dV = \int_{V_1}^{V_2} \frac{\boldsymbol{nRT}}{\boldsymbol{V}} dV = \boldsymbol{nRT} \int_{V_1}^{V_2} \frac{1}{\boldsymbol{V}} dV = \boldsymbol{nRT} \ln \frac{V_2}{V_1};$$

работа при изотермическом процессе (T — const) через давление:

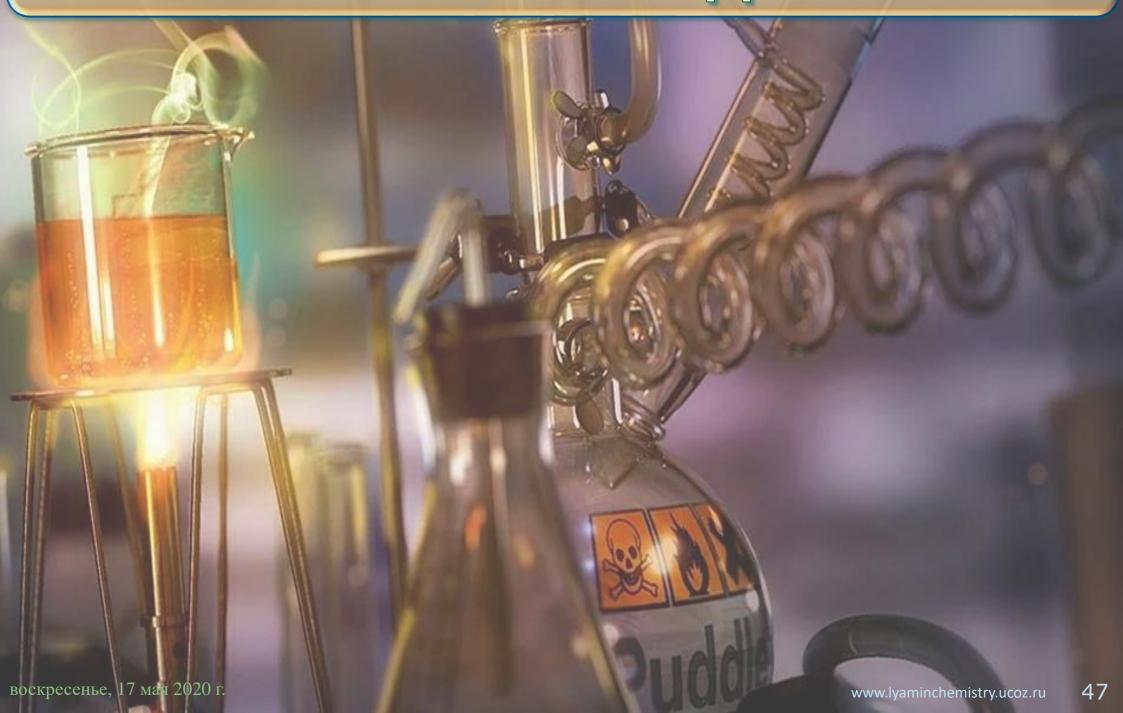
$$W = \int_{p_1}^{p_2} p dV = \int_{p_1}^{p_2} p d\left(\frac{nRT}{p}\right) = nRT \int_{p_1}^{p_2} p d\left(\frac{1}{p}\right) = nRT \int_{p_1}^{p_2} p\left(-\frac{dp}{p^2}\right) = -nRT \int_{p_1}^{p_2} \frac{p dp}{p^2} = nRT \ln \frac{p_1}{p_2}$$

молярная теплоёмкость идеального газа при постоянном давлении (p — const):

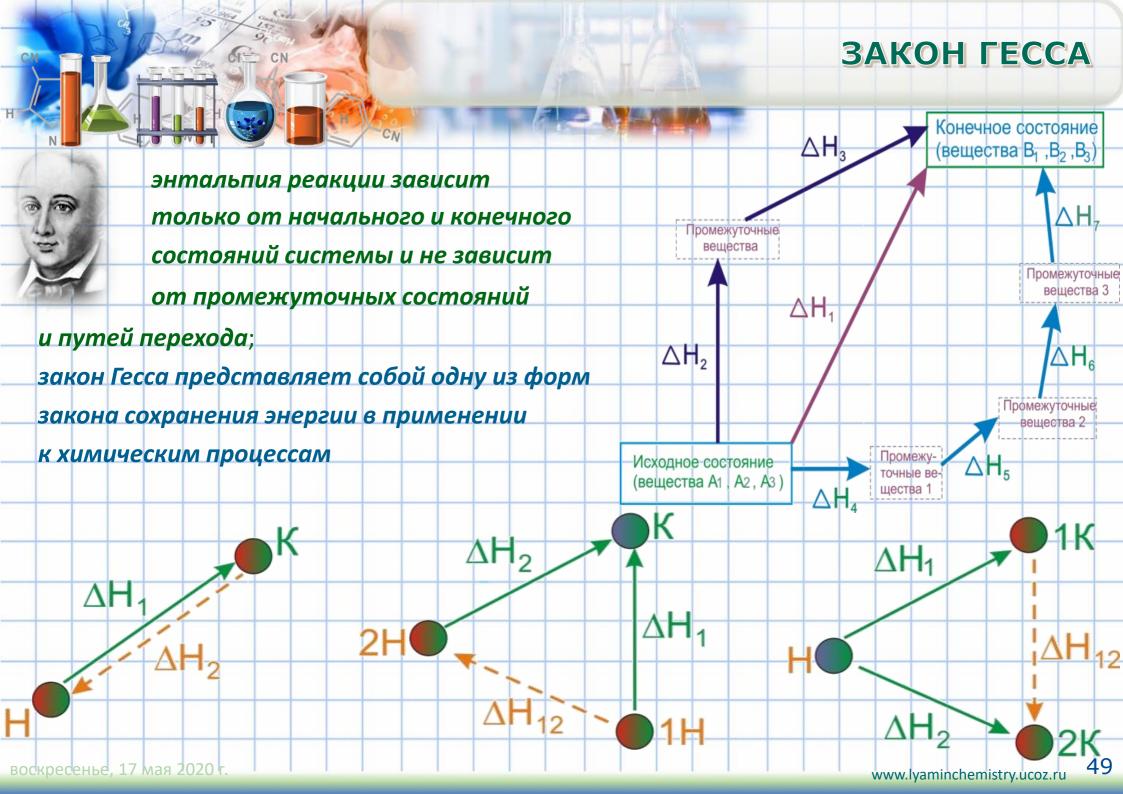
$$C_{M;p} = \frac{\delta Q}{ndT} = \frac{dU + \delta W}{ndT} = \frac{1}{ndT} \left(\frac{fnRdT}{2} + nRdT \right) = R \left(\frac{f + 2}{2} \right)$$

молярная теплоёмкость идеального газа при постоянном объёме (V — const):

$$C_{M;V} = \frac{\delta Q}{ndT} = \frac{dU + \delta W}{ndT} = \frac{1}{ndT} \left(\frac{fnRdT}{2} + 0 \right) = R\frac{f}{2}$$


$$C_{M;p}-C_{M;V}=R\left(\frac{f+2}{2}\right)-R\frac{f}{2}=R$$


теплота при изобарическом процессе (p — const):


$$\delta Q_p = dU + pdV; \int_1^2 \delta Q_p = \int_1^2 dU + \int_1^2 pdV$$

$$Q_p = U_2 - U_1 + pV_2 - pV_1; Q_p = (U_2 + pV_2) - (U_1 + pV_1)$$

ХИМИЧЕСКАЯТЕРМОДИНАМИКА

СЛЕДСТВИЕ ИЗ ЗАКОНА ГЕССА

• стандартное изменение энтальпии химической реакции равно сумме произведений стандартных энтальпий образования продуктов реакции и их стехиометрических коэффициентов за вычетом суммы произведений стандартных энтальпий образования реагентов и их стехиометрических коэффициентов:

$$aA + bB \longrightarrow cC + dD$$

$$\Delta_r \mathbf{H}^{\circ} = \sum \Delta_f \mathbf{H}^{\circ}(D) \cdot d; \Delta_f \mathbf{H}^{\circ}(C) \cdot c - \sum \Delta_f \mathbf{H}^{\circ}(B) \cdot b; \Delta_f \mathbf{H}^{\circ}(A) \cdot a$$

 стандартное изменение энтальпии химической реакции равно сумме произведений стандартных энтальпий сгорания реагентов и их стехиометрических коэффициентов за вычетом суммы произведений стандартных энтальпий сгорания продуктов и их стехиометрических коэффициентов

ИЗМЕНЕНИЕ ЭНЕРГИИ ГИББСА

изменение энергии Гиббса показывает, какая часть от полной внутренней энергии системы может быть использована для химической реакции и позволяет установить принципиальную возможность химического процесса в заданных условиях:

$$aA + bB \rightarrow cC + dD$$
;

$$\Delta_r \mathbf{G}^{\circ}_T = \Delta_r \mathbf{H}^{\circ}_T - \mathbf{T} \Delta_r \mathbf{S}^{\circ}_T$$

$$\Delta_r G^{\circ}_T < 0; \ \Delta_r H^{\circ}_T - T \Delta_r S^{\circ}_T < 0; \ \Delta_r H^{\circ}_T < T \Delta_r S^{\circ}_T; \ T > \frac{\Delta_r H^{\circ}_T}{\Delta_r S^{\circ}_T}$$

$$\Delta_r \mathbf{G}^{\circ}_{T} = 0; \ \Delta_r \mathbf{H}^{\circ}_{T} - T \Delta_r \mathbf{S}^{\circ}_{T} = 0; \ \Delta_r \mathbf{H}^{\circ}_{T} = T \Delta_r \mathbf{S}^{\circ}_{T}; \ T = \frac{\Delta_r \mathbf{H}^{\circ}_{T}}{\Delta_r \mathbf{S}^{\circ}_{T}}$$


$$\Delta G^{\circ}_{\phi.\Pi.} = \Delta_{\phi.\Pi.} H^{\circ}_{T} - T \Delta_{\phi.\Pi.} S^{\circ}_{T}; \quad \Delta_{\phi.\Pi.} H^{\circ}_{T} = T \Delta_{\phi.\Pi.} S^{\circ}_{T}; \quad T = \frac{\Delta_{\phi.\Pi.} H^{\circ}_{T}}{\Delta_{\phi.\Pi.} S^{\circ}_{T}};$$

УРАВНЕНИЯ КИРХГОФА

зависимость изменения энтальпии и изменения энтропии от температуры в изобарных условиях определяется уравнениями Кирхгофа; при допущении независимости теплоёмкости от температуры:

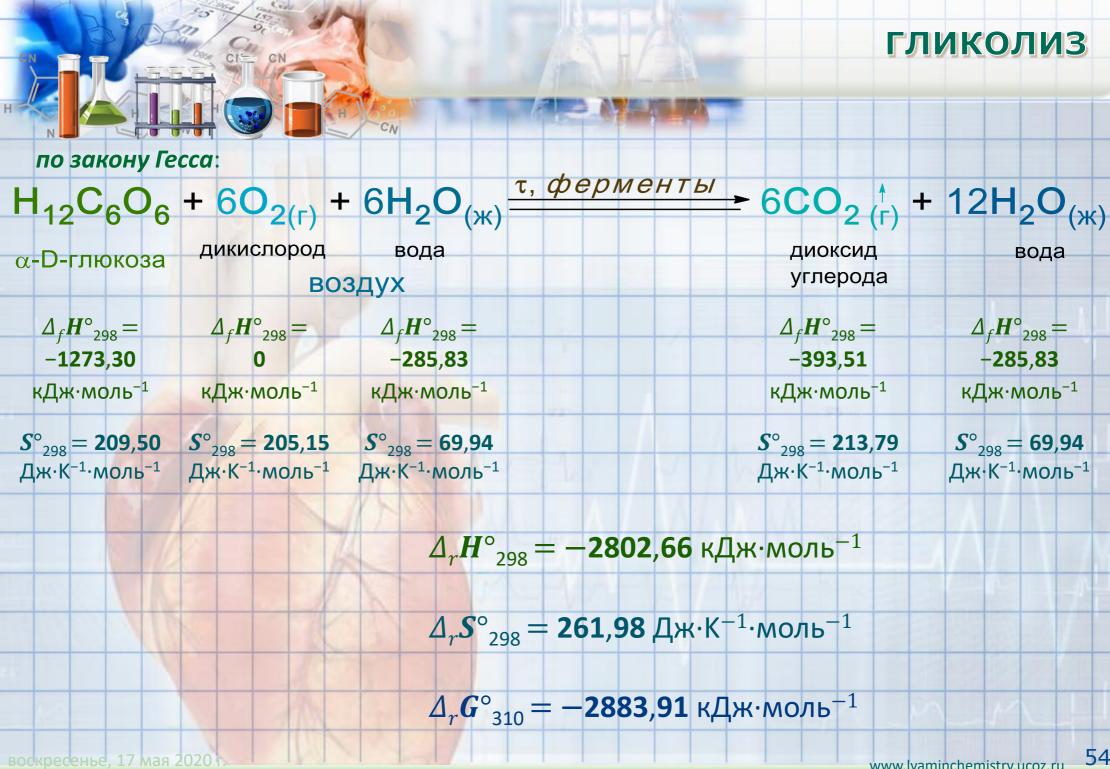
$$\Delta H^{\circ}_{T_{2}} = \Delta H^{\circ}_{T_{1}} + \int_{T_{1}}^{T_{2}} \Delta C^{\circ}_{p} dT; \qquad \Delta S^{\circ}_{T_{2}} = \Delta S^{\circ}_{T_{1}} + \int_{T_{1}}^{T_{2}} \Delta C^{\circ}_{p} dT; \qquad \Delta T^{\circ}_{T_{1}} = \Delta T^{\circ}_{T_{1}} + \int_{T_{1}}^{T_{2}} \Delta C^{\circ}_{p} dT;$$

зависимость изменения энтропии от объёма и от давления в изотермических условиях:

$$\Delta S^{\circ}_{T} = nR \cdot ln \frac{V_{2}}{V_{1}}; \quad \Delta S^{\circ}_{T} = nR \cdot ln \frac{p_{1}}{p_{2}}$$

зависимость энергии Гиббса от объёма и от давления в изотермических

$$\Delta G^{\circ}_{T} = -nRT \cdot ln \frac{V_{1}}{V_{2}}; \quad \Delta G^{\circ}_{T} = -nRT \cdot ln \frac{p_{2}}{p_{1}};$$


ТЕРМОДИНАМИКА РЕАКЦИИ

по закону Гесса:

$$H_4C_{(\Gamma)}$$
 + $2O_2_{(\Gamma)}$ $545^{\circ}C_{\bullet}$ $CO_2_{(\Gamma)}$ + $2H_2O_{(\Gamma)}^{\uparrow}$ $\Delta_f H^{\circ}_{298} = -74,6$ $\Delta_f H^{\circ}_{298} = 0$ $\Delta_f H^{\circ}_{298} = -393,5$ $\Delta_f H^{\circ}_{298} = -241,8$ $\Delta_$

$$\Delta_r H^{\circ}_{298} = -802,5 \text{ кДж·моль}^{-1}$$
 $\Delta_r S^{\circ}_{298} = -5,3 \text{ Дж·К}^{-1} \cdot \text{моль}^{-1}$
 $\Delta_r G^{\circ}_{298} = -800,9 \text{ кДж·моль}^{-1}$

при необратимом способе сжигания 1 моль метана в окружающую среду выделится 802,5 кДж энергии в тепловой форме; при этом энтропия системы и среды изменится на: $\Delta S = Q/T = 800,9/298,15 \approx 2,686$ кДж/К; при полностью обратимом способе проведения процесса в каком либо аппарате при использовании 1 моль метана совершится 800,9 кДж полезной работы и выделится в форме тепла: $Q = T\Delta S = 5,3.298,15 \approx 1580$ Дж; изменение энтропии системы и среды при этом равно нулю

РАВНОВЕСНОЕ СОСТОЯНИЕ СИСТЕМЫ

состояние, при котором все параметры системы имеют определённые значения, остающиеся при неизменных внешних условиях постоянными сколь угодно долго;

равновесным является такое состояние системы, при котором действие процессов внутри системы, приводящее к выходу системы из равновесия, полностью компенсируется противодействием процессов, идущих в окружающей среде;

равновесное состояние устанавливается в системе, изолированной от окружающей среды, и сохраняется в ней произвольно долгое время; без учёта гравитационных сил, равновесное состояние системы характеризуется постоянными значениями давления и температуры по всему объёму; термодинамическое равновесие возможно лишь в системах, состоящих из очень большого числа частиц, т.е. в макросистемах; термодинамическое равновесие достигается, если скорость релаксационных процессов **достаточно велика** (как правило, это характерно для высокотемпературных процессов) либо велико время для достижения равновесия (имеет место в геологических процессах); при изменении внешних условий состояние равновесия изменяется; через определённое время в системе устанавливается новое равновесие, но при других равновесных параметрах; переход системы из одного равновесного состояния в другое называется смещением равновесия (сдвигом равновесия)

ФАЗОВЫЕ РАВНОВЕСИЯ

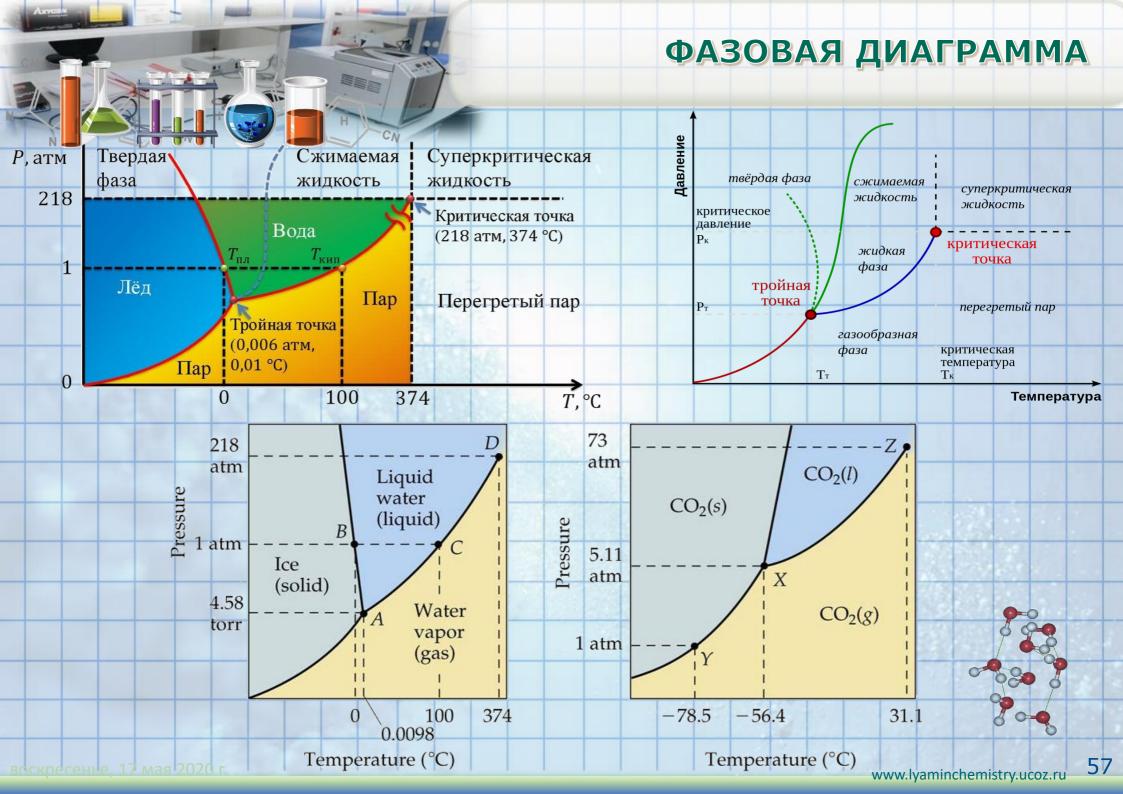
условием состояния равновесия между двумя фазами является равенство давлений, температур и энергий Гиббса в обеих фазах; в однокомпонентной системе условие существования двух фаз при изменении общего давления и температуры описывается

уравнением Клапейрона-Клаузиуса:

$$\frac{d\boldsymbol{p}}{d\boldsymbol{T}} = \frac{\Delta_{\Phi,\Pi}.\boldsymbol{S}_{\boldsymbol{T}}}{\Delta_{\Phi,\Pi}.\boldsymbol{V}};$$

$$m{T}_1 \cdot \Delta_{\Pi \Pi} m{S}^{\circ}_{T_1} + \left(\frac{(m{p}_2 - m{p}_1)}{m{
ho}_{\mathbb{H}}} - \frac{(m{p}_2 - m{p}_1)}{m{
ho}_{\mathrm{TB}}} \right)$$

$$\frac{d\boldsymbol{p}}{d\boldsymbol{T}} = \frac{\Delta_{\phi.\Pi.}H_T}{T\Delta_{\phi.\Pi.}V}; \quad \boldsymbol{T}_2 = \frac{\boldsymbol{T}_1 \cdot \Delta_{\Pi\boldsymbol{\Lambda}}H^{\circ}_{\boldsymbol{T}_1} + \left(\frac{\boldsymbol{T}_1 \cdot (\boldsymbol{p}_2 - \boldsymbol{p}_1)}{\boldsymbol{\rho}_{\text{ж}}} - \frac{\boldsymbol{T}_1 \cdot (\boldsymbol{p}_2 - \boldsymbol{p}_1)}{\boldsymbol{\rho}_{\text{TB}}}\right)}{\Delta_{\Pi\boldsymbol{\Lambda}}H^{\circ}_{\boldsymbol{T}_1}}$$


$$\frac{dln\boldsymbol{p}}{d\boldsymbol{T}} = \frac{\Delta_{\text{MCH}}\boldsymbol{S}^{\circ}_{\boldsymbol{T}_{1}}}{\boldsymbol{R}\boldsymbol{T}}; \quad ln\frac{\boldsymbol{p}_{2}}{\boldsymbol{p}_{1}} = \frac{\Delta_{\text{MCH}}\boldsymbol{S}^{\circ}_{\boldsymbol{T}_{1}}}{\boldsymbol{R}\boldsymbol{T}}(\boldsymbol{T}_{2} - \boldsymbol{T}_{1}); \quad \boldsymbol{T}_{2} = \frac{\boldsymbol{R}\boldsymbol{T}_{1}ln\boldsymbol{K}_{\boldsymbol{p}}}{\Delta_{\text{MCH}}\boldsymbol{S}^{\circ}_{\boldsymbol{T}_{1}}} + \boldsymbol{T}_{1};$$

$$\frac{d lnp}{dT} = \frac{\Delta_{\text{MC}\Pi}S^{\circ}_{T_{1}}}{RT}; \quad ln\frac{p_{2}}{p_{1}} = \frac{\Delta_{\text{MC}\Pi}S^{\circ}_{T_{1}}}{RT}(T_{2} - T_{1}); \quad T_{2} = \frac{RT_{1}lnK_{p}}{\Delta_{\text{MC}\Pi}S^{\circ}_{T_{1}}} + T_{1};$$

$$\frac{\Delta_{\text{MC}\Pi}H^{\circ}_{T_{1}}}{RT^{2}}; \quad ln\frac{p_{2}}{p_{1}} = \frac{\Delta_{\text{MC}\Pi}H^{\circ}_{T_{1}}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right); \quad T_{2} = \frac{T_{1} \cdot \Delta_{\text{MC}\Pi}H^{\circ}_{T_{1}}}{\Delta_{\text{MC}\Pi}H^{\circ}_{T_{1}} - RT_{1}lnK_{p}}; \quad T_{2} = \frac{\Delta_{\text{MC}\Pi}H^{\circ}_{T_{1}}}{\Delta_{\text{MC}\Pi}S^{\circ}_{T_{1}} - R \cdot lnK_{p}};$$

зависимость изменения энтальпии и энтропии фазового перехода от температуры определяется уравнением Кирхгофа:

$$\Delta_{\phi,\Pi} H^{\circ}_{T_{2}} = \Delta_{\phi,\Pi} H^{\circ}_{298} + \Delta C^{\circ}_{p} (T_{2} - 298); \quad \Delta_{\phi,\Pi} S^{\circ}_{T_{2}} = \Delta_{\phi,\Pi} S^{\circ}_{298} + \Delta C^{\circ}_{p} (lnT_{2} - ln298);$$

КОНСТАНТА ХИМИЧЕСКОГО РАВНОВЕСИЯ

отношение произведения равновесных количеств продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных количеств исходных веществ, взятых в степени их стехиометрических коэффициентов:

$$aA + bB \rightleftharpoons cC + dD (\pm \Delta_r G)$$
;

$$K_{\chi} = \frac{\chi(C)^{c} \cdot \chi(D)^{d}}{\chi(A)^{a} \cdot \chi(B)^{b}}; \quad K_{p} = \frac{p(C)^{c} \cdot p(D)^{d}}{p(A)^{a} \cdot p(B)^{b}}; \quad K_{c} = \frac{[C]^{c} \cdot [D]^{d}}{[A]^{a} \cdot [B]^{b}}$$

$$p(A) = C(A) \cdot RT = \chi(A) \cdot p_{\text{общ}}; \quad K_p = K_c \cdot (RT)^{\Delta n_{\text{(газ)}}} = K_{\chi} \cdot p_{\text{общ}}^{\Delta n_{\text{(газ)}}};$$

если $K_p > 1$, то данная реакция протекает со значительным выходом продуктов;

если $K_p > 10^4$, то реакция практически необратима;

если $K_p < \mathbf{1}$, то такая реакция нетехнологична;

если $K_p < 10^{-4}$, то практическое осуществление такой реакции при данных условиях невозможно;

для химических реакций при стандартных условиях $T=298,15~\mathrm{K}; \, p=1~\mathrm{бар}$ константа равновесия является табличной величиной;

And H CN

изобарно-изотермический потенциал

максимальная полезная работа в изобарно-изотермических условиях при обратимом способе проведения процесса будет равна сумме полезной работы системы при изобарных условиях и полезной работы при изотермических условиях:

$$W'_{p} = T\Delta S - \Delta H; \quad W'_{T} = RT \ln \frac{p_{1}}{p_{2}}; \quad W'_{T,p} = T\Delta S - \Delta H + RT \ln \frac{p_{1}}{p_{2}};$$

согласно $W' = -\Delta G$, изменение энергии Гиббса в изобарно-изотермических условиях называется изобарно-изотермическим потенциалом и выражается:

$$\Delta oldsymbol{G}_{T,p} = \Delta oldsymbol{H} - T \Delta oldsymbol{S} + RT ln rac{oldsymbol{p}_2}{oldsymbol{p}_1};$$
 при $oldsymbol{p}_1 = 1$ бар: $\Delta oldsymbol{G}_T = \Delta oldsymbol{G}^\circ_T + RT ln oldsymbol{K}_{oldsymbol{p}}$;

где: K_p — константа равновесия процесса, равная реальному давлению системы относительно стандартного давления 1 бар; $\Delta G_{T,p}$ — стандартное изменение свободной энергии Гиббса в изобарно-изотермических условиях;

в равновесном состоянии $\Delta G_{T,\,p}=0$; стандартное изменение изобарно-изотермического потенциала принимает вид: $\Delta G^{\circ}_{\,T}=-RTlnK_{p}\;;\quad lnK_{p}=-\frac{\Delta G^{\circ}_{\,T}}{RT}\;;\quad K_{p}=e^{-\frac{\Delta G^{\circ}_{\,T}}{RT}}\;;$

при нестандартных условиях, т.е. при парциальных давлениях вещества, отличающихся от давления p=1 бар: p_2

 $\Delta G_{T,p} = \Delta G^{\circ}_{T} + RT \ln \frac{p_{2}}{p_{1}}; \quad \Delta G_{T,p} = RT \ln \frac{p_{2}}{p_{1}} - RT \ln K_{p}$

ИЗОТЕРМА ВАНТ-ГОФФА

уравнение изотермы Вант-Гоффа:

$$\Delta G_T = RT \left(ln \frac{p_2}{p_1} - ln K_p \right); \quad \Delta G_T = RT ln \left(\frac{p_2/p_1}{K_p} \right);$$

позволяет определить возможность самопроизвольного процесса при разных парциальных давлениях— количествах газообразных веществ, участвующих в химической реакции;

если в ходе химического процесса объём газообразных веществ уменьшается, то увеличение внешнего давления ведёт к уменьшению изобарно-изотермического потенциала $p_2/p_1 < Kp$; $\Delta G_T < 0$ и самопроизвольный процесс идёт в прямом направлении до достижения состояния равновесия, т.е. равновесие смещается в сторону продуктов химической реакции, увеличивая выход продукта;

если в ходе химического процесса объём газообразных веществ не изменяется, то изменение внешнего давления не влияет на изменение изобарно-изотермического потенциала $p_2/p_1=Kp$; $\Delta G_T=0$ и система находится в равновесном состоянии;

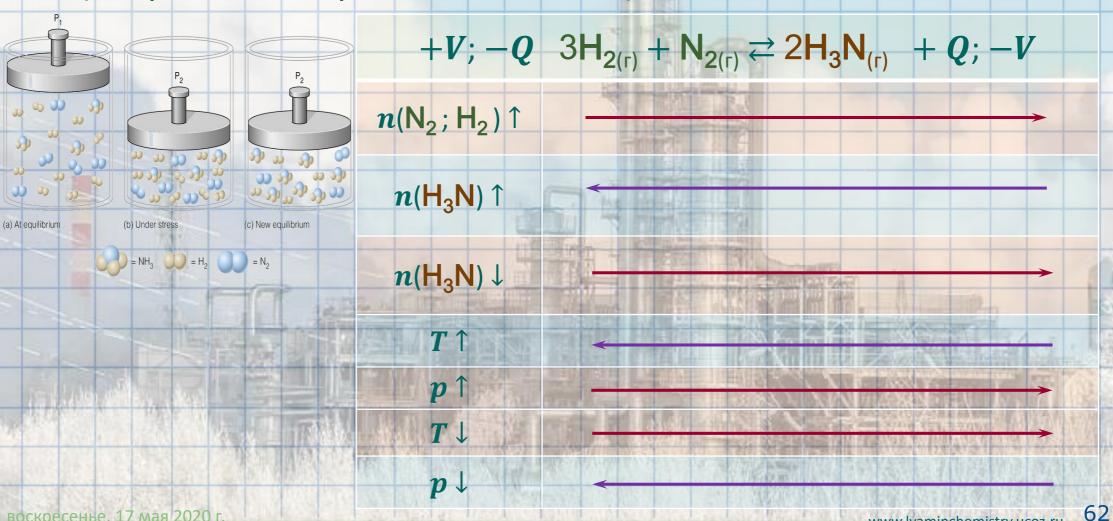
если в ходе химического процесса объём газообразных веществ увеличивается, то увеличение внешнего давления ведёт к увеличению изобарно-изотермического потенциала $p_2/p_1 > Kp$; $\Delta G_T > 0$ и самопроизвольный процесс идёт в обратном направлении до достижения состояния равновесия, т.е. равновесие смещается в сторону реагентов и уменьшается выход продукта химической реакции.

ИЗОБАРА ВАНТ-ГОФФА

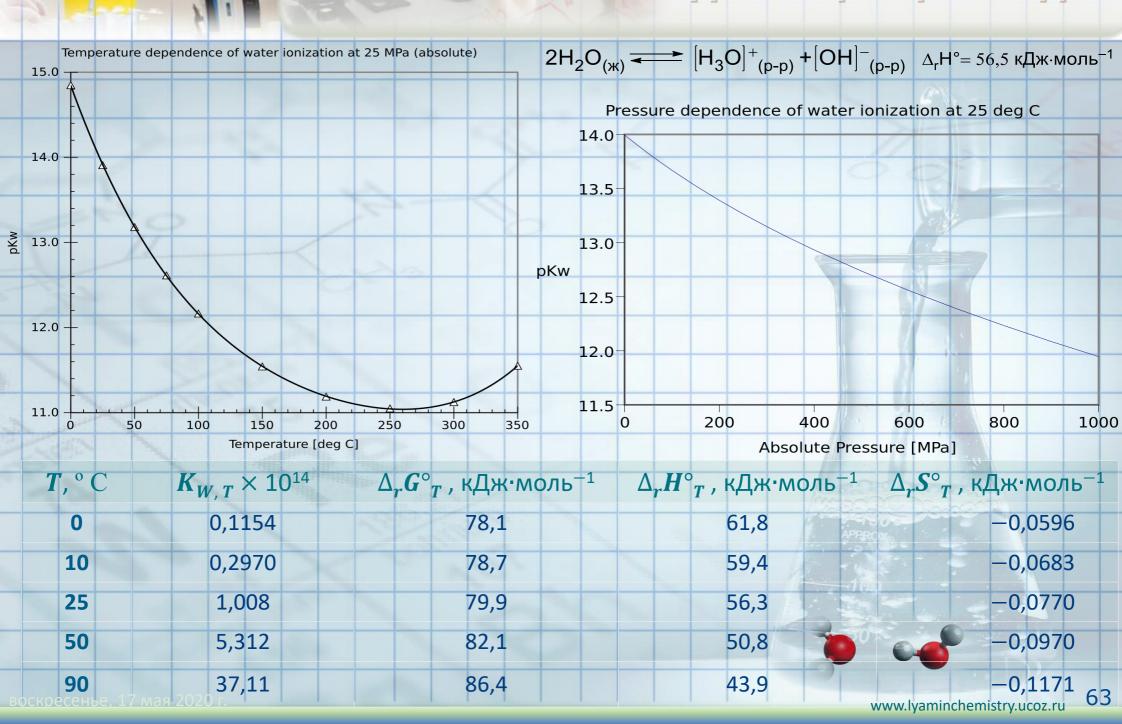
уравнение изобары Вант-Гоффа:

$$\Delta H^{\circ} - T\Delta S^{\circ} = -RT \ln K_{p}; \quad \Delta H^{\circ} - T_{1}\Delta S^{\circ} = -RT_{1} \ln K_{p_{1}}; \quad \Delta H^{\circ} - T_{2}\Delta S^{\circ} = -RT_{2} \ln K_{p_{2}};$$

$$\Delta H^{\circ}_{T} = R \frac{T_{1}T_{2}}{T_{2} - T_{1}} \ln \frac{K_{2}}{K_{1}}; \quad \ln \frac{K_{2}}{K_{1}} = -\frac{\Delta H^{\circ}_{T}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right);$$


позволяет определить изменение энтальпии процесса при известных константах равновесия в определённом интервале температура, и наоборот, определить константу равновесия процесса при определённой температуре по стандартной энтальпии процесса и известной константе равновесия при определённой температуре чем больше численное значение ΔH°_{T} , тем больше влияние температуры на смещение равновесия в процессе, если изменение энтальпии не происходит: $\Delta H^{\circ}_{T} = 0$, то температура не оказывает влияния на смещение равновесия в процессе;

при повышении температуры в экзотермических процессах $\Delta H^{\circ}_{T} < 0$, $T_{2} > T_{1}$, $K_{2} < K_{1}$, т.е. с повышением температуры выход продукта уменьшается, равновесие смещается в сторону исходного состояния;


повышение температуры $T_2 > T_1$ в ходе эндотермического процесса $\Delta H^{\circ}_T > 0$ приводит к увеличению выхода продукта $K_2 > K_1$ и смещению равновесия в сторону конечного состояния.

ПРИНЦИП ЛЕ ШАТЕЛЬЕ — БРАУНА

если на систему, находящуюся в состоянии равновесия, воздействовать, изменяя параметры — температура, давление, концентрация и др., то в системе происходит смещение равновесия, направленное на компенсацию этого воздействия

диссоциация воды

АНОМАЛИИ ДИССОЦИАЦИИ ВОДЫ

 $2H_2O_{(ж)} \longrightarrow [H_3O]^+_{(p-p)} + [OH]^-_{(p-p)} \Delta_r H^\circ = 56,5 кДж·моль^{-1}$ в интервале давлений от 1 бар до 1000 бар рост температуры приводит к увеличению положительного значения ΔG°_{T} ; при возрастании температуры $K_{W,T}$ проходит через максимум и возрастание давления приводит к увеличению максимального значения $K_{W,\,T}$; при увеличения давления положение максимума $K_{W,\,T}$ смещается в сторону более высоких температур, так, если при давлении ${f 100}$ бар максимальное значение $K_{W,T}$ составляет 7,328imes10 $^{-12}$ и наблюдается при температуре 240 $^{
m o}$ С, то при давлении 1000 бар **максимальное значение** $K_{W,T}$ **уже равно 3,141 imes10^{-11} и имеет место при 310^{\circ} С ;** значение энтальпии диссоциации воды ΔH°_{T} уменьшается при повышении температуры, причём вблизи температуры максимума $K_{W,\,T}$ происходит смена знака $\Delta H^{\circ}_{\,\,T}$; энтропия диссоциации воды отрицательна во всем исследованном интервале температур и давлений и её величина уменьшается с ростом температуры; в исследованном интервале температур от 0° С до 360° С повышение давления при фиксированной температуре приводит к снижению положительной величины ΔG°_{T} диссоциации воды, причём относительная величина уменьшения энергии Гиббса диссоциации тем больше, чем выше температура.

ЗАКОНЫ ЭНЕРОЭНТРОПИКИ

CN H CN

ЗАКОНЫ ЭНЕРГОЭНТРОПИКИ

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ

ни одна материальная система не может функционировать или развиваться не потребляя энергии, которая расходуется на совершение работы, на изменение внутренней энергии системы и на рассеяние тепла в окружающую среду:

$$\Delta E = \Delta U + W + Q$$

самопроизвольный процесс направлен в сторону уменьшения энергии— принцип минимума энергии;

ЗАКОН ВОЗРАСТАНИЯ ЭНТРОПИИ

изолированные макроскопические системы стремятся самопроизвольно перейти из менее вероятного состояния в более вероятное состояние, т.е. из более упорядоченного состояния в менее упорядоченное состояние:

$$\Delta S > 0$$
;

возрастание энтропии ведёт к убыванию негэнтропии и деградации энергии; в состоянии термодинамического равновесия системы с окружающей средой энтропия системы максимальна, а её изменение равно нулю:

$$S - max; \Delta S = 0;$$

ЗАКОНЫ ЭНЕРГОЭНТРОПИКИ

ЗАКОН УМЕНЬШЕНИЯ ЭНТРОПИИ УПРАВЛЯЮЩИХ СИСТЕМ

энтропия открытых управляющих систем в процессе их развития всегда убывает за счёт потребления энергии от внешних источников:

$$\Delta S < 0$$

при этом энтропия систем, служащих источником энергии и негэнтропии возрастает; любая упорядочивающая деятельность осуществляется за счёт расходования энергии и роста энтропии окружающих систем и без такового происходить не может — стационарное состояние;

ЗАКОН ПРЕДЕЛЬНОГО РАЗВИТИЯ СИСТЕМ

материальные системы при прогрессивном развитии достигают предела при максимальном значении негэнтропии:

ЗАКОН КОНКУРЕНЦИИ СИСТЕМ

преимущественное развитие получают системы, которые при данных условиях достигают максимального значения негэнтропии и/или энергетического минимума:

$$S_{H} - max$$
; $E - min$

 $S_{\rm H}-max$;

БИОЭНЕРГОЭНТРОПИКА

ПОЛНОЕ ИЗЛУЧЕНИЕ: 1,2×10³⁴ Дж·год⁻¹

Излучение, достигающее Земли: 5,484×10²⁴ Дж·год⁻¹

Отражение атмосферой: 1,7 \times 10 24 Дж \cdot год $^{-1}$

Поглощение атмосферой: 9,322×10²³ Дж·год⁻¹

Поглощение сушей: 2,63×10²⁴ Дж·год⁻¹

Испарение: 6,274×10²³ Дж·год⁻¹

Перенос тепла от экватора к полюсам: $9,65 \times 10^{22} \, \text{Дж} \cdot \text{год}^{-1}$

Мощность ветра: $3,25 \times 10^{22}$ Дж \cdot год $^{-1}$

Мощность рек: 9,41×10¹⁹ Дж-год⁻¹

Мощность приливов: $3,14 \times 10^{19}$ Дж-год $^{-1}$

Мощность вулканов: $9,41 \times 10^{18}$ Дж \cdot год $^{-1}$

Излучение, усваиваемое растениями: $1,87 \times 10^{22}$ Дж \cdot год $^{-1}$

Прирост биомассы: 7,5imes10 16 г \cdot год $^{-1}$

Запас биомассы: 1,843×10¹⁸ г

Расход на биопроцессы: 6,17×10²² Дж·год⁻¹

всё более высокий уровень дифференциации сосредотачивается во всё меньшем объёме; фитомасса океана 0,21 % производит 32,3 % всей первичной продукции Земли; более упорядоченные формы $\Delta S_H > 0$ вытесняют менее упорядоченные с высоким уровнем энтропии!

```
СОЛНЦЕ
```

 $\Delta S > 0$

H,0

co,

 H_3N

CH,

и др.

 $O_2 \xrightarrow{h\nu; \lambda = 175-200 \text{ hм}; E = 6,6 \text{ 9B}} 2\dot{O}; O_2 + \dot{O} \xrightarrow{h\nu; \lambda = 200-280 \text{ нм}; E = 5,2 \text{ 9B}} O_3$ $\Delta_r G^\circ_{298} = 163 \text{ кДж-моль}^{-1}$

АТМОСФЕРА

ЗЕМЛЯ

 φ (O₂) = 21 %; φ (N₂) = 78 %; φ (CO₂) = 0,039 %;

ЧЕЛОВЕК

затраты человека: 4,0×10 ²⁰ Дж·год⁻¹, 2013 год по академику Завойскому, удвоение каждые 35 лет

животный мир

дыхание: $C_n(H_2O)_m + nO_{2(r)} + mH_2O_{(ж)} \xrightarrow{\stackrel{\bullet}{=}} nCO_{2(r)} + 2mH_2O_{(ж)}$ 38 моль АТФ; для n = 6 $\Delta_r G^{\circ}_{310} = -2820$ кДж·моль $^{-1}$ $\Delta_r G^{\circ}_{310} = 38 \times 31 = 1178$ кДж·моль $^{-1}$; КПД $\approx 1178/2820 \approx 0,42$ 42 % — биосинтез, 58 % — обогрев и рассеяние ИТОГО: прирост зоомассы — $3,943 \times 10^{15}$ г·год $^{-1}$; запас зоомассы: суша — $1,005 \times 10^{15}$ г; океан — $9,970 \times 10^{14}$ г

РАСТИТЕЛЬНЫЙ МИР

фотосинтез: $\begin{array}{c} {\sf nCO_2}_{(\Gamma)} + 2{\sf mH_2O_{(\aleph)}} \xrightarrow[\lambda=680\cdot700\,{\sf HM};\,\, E=1.8\,\, \Im B]{} } {\sf C_n(H_2O)_m} + {\sf nO_2}_{(\Gamma)}^{\dagger} + {\sf mH_2O_{(\aleph)}} \\ {\sf 1,23\times10}^{17} & {\sf 2,86\times10}^{17} \\ {\sf \Gamma\cdot\Gamma0\varDelta^{-1}} & {\sf \Gamma\cdot\Gamma0\varDelta^{-1}} \end{array} \qquad \qquad \begin{array}{c} {\sf 8,91\times10}^{16} \\ {\sf \Gamma\cdot\Gamma0\varDelta^{-1}} \end{array}$

 $\Delta_r G^\circ_{298}^\circ = 471,4$ кДж·моль $^{-1}$; $1,12\times10^{21}$ Дж год $^{-1}$; КПД $\approx 0,06$ 6 % — усвоенного излучения, расходуется на прирост фитомассы ИТОГО: прирост суммарной фитомассы — $7,1\times10^{16}$ г·год $^{-1}$; запас фитомассы: суша — $1,837\times10^{18}$ г, океан — $3,9\times10^{15}$ г ежегодное сокращение на 20% – 25%

С органич еские соедине

 $N = 1,0 \times 10^{15} \text{ г} \cdot \text{год}^{-1}; S = 2,0 \times 10^{14} \text{ г} \cdot \text{год}^{-1}; P = 2,6 \times 10^{14} \text{ г} \cdot \text{год}^{-1}$

при необратимом способе окисления 1 моль глюкозы в окружающую среду выделяется: 2802,66 кДж тепла; при полностью обратимом способе окисления 1 моль глюкозы в организме человека была бы совершена работа 2883,91 кДж, при этом из окружающей среды поглотилось бы: 0,26198·310 = 81,21 кДж энергии;

для синтеза 1 моль АТФ требуется затратить 31 кДж энергии, т.о. при окислении в организме человека одного моль глюкозы полностью обратимым способом должно синтезироваться: 2883,91/31 = 93 моль АТФ; в действительности при окислении одного моль глюкозы в организме человека синтезируется 38 моль АТФ, что составляет 41 % от возможного; остальная же часть энергии передаётся окружающей среде в форме тепла, повышая тем самым энтропию окружающей среды;

т.о. в результате усвоения органической пищи совершается полезная работа по созданию упорядоченных структур и увеличение энтропии окружающей среды; поэтому, чем более необратим процесс, тем более увеличение энтропии окружающей среды и, наоборот, чем более обратим процесс, тем более совершение полезной работы и менее изменение энтропии, т.е. процесс стремится к равновесному состоянию;

