Muscular MRI-based algorithm to differentiate inherited myopathies presenting with spinal rigidity

European Radiology

pp 1–11 | Cite as

- Mickael Tordjman (1) Email author (mickael_tordjman@hotmail.com)View author's OrcID profile (View OrcID profile)
- Ivana Dabaj (2)
- Pascal Laforet (3)
- Adrien Felter (1)
- Ana Ferreiro (4)
- Moustafa Biyoukar (5)
- Bruno Law-Ye (1)
- Edmar Zanoteli (6)
- Claudia Castiglioni (7)
- John Rendu (8)
- Christophe Beroud (9)
- Alexandre Chamouni (10)
- Pascale Richard (11)
- Dominique Mompoint (1)
- Susana Quijano-Roy (2)
- Robert-Yves Carlier (1)

1. Assistance Publique des Hôpitaux de Paris (AP-HP), Service d’Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
2. Pôle Pédiatrie, Hôpital Raymond Poincaré, Garches, France - Centre de Référence Maladies Neuromusculaires GNMH, FILNEMUS, Garches, France
3. Département de Neurologie, Unité Clinique de Pathologie Neuromusculaire, Institut de Myologie, CHU La Pitié Salpêtrière, APHP, Paris, France
4. Service de Génétique, Hôpital Raymond Poincaré, APHP, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
5. Unité de Recherche Clinique, Hôpital Saint-Antoine, APHP, Paris, Hôpitaux Universitaires Est Parisien, Garches, France
6. Department of Neurology, Medical School of the University of São Paulo, São Paulo, Brazil
7. Neuromuscular and Motor Disorders Program Clinica Las Condes, Pediatric Neurology, Santiago, Chile
8. Département de Biochimie, Toxicologie, Pharmacologie et Génétique Moléculaire, CHU Grenoble Alpes, Grenoble, France
9. Département de Génétique Médicale, AP-HM, Hôpital Timone Enfants, Marseille, France
10. Institut Necker Enfants Malades, Inserm U1151, Paris, France
11. UF de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de
Génétique Moléculaire et Chromosomique, CHU La Pitié Salpêtrière, APHP, Paris,
France

Musculoskeletal
First Online: 25 May 2018
Received: 10 January 2018
Revised: 01 April 2018
Accepted: 10 April 2018

- 60 Downloads

Abstract

Objectives

Inherited myopathies are major causes of muscle atrophy and are often characterized by
rigid spine syndrome, a clinical feature designating patients with early spinal
contractures. We aim to present a decision algorithm based on muscular whole body
magnetic resonance imaging (mWB-MRI) as a unique tool to orientate the diagnosis of
each inherited myopathy long before the genetically confirmed diagnosis.

Methods

This multicentre retrospective study enrolled 79 patients from referral centres in France,
Brazil and Chile. The patients underwent 1.5-T or 3-T mWB-MRI. The protocol
comprised STIR and T1 sequences in axial and coronal planes, from head to toe. All
images were analyzed manually by multiple raters. Fatty muscle replacement was
evaluated on mWB-MRI using both the Mercuri scale and statistical comparison based
on the percentage of affected muscle.

Results

Between February 2005 and December 2015, 76 patients with genetically confirmed
inherited myopathy were included. They were affected by Pompe disease or harbored
mutations in RYR1, Collagen VI, LMNA, SEPN1, LAMA2 and MYH7 genes. Each
myopathy had a specific pattern of affected muscles recognizable on mWB-MRI. This
allowed us to create a novel decision algorithm for patients with rigid spine syndrome by
segregating these signs. This algorithm was validated by five external evaluators on a
cohort of seven patients with a diagnostic accuracy of 94.3% compared with the genetic
diagnosis.
Conclusion

We provide a novel decision algorithm based on muscle fat replacement graded on mWB-MRI that allows diagnosis and differentiation of inherited myopathies presenting with spinal rigidity.

Key Points

• Inherited myopathies are rare, diagnosis is challenging and genetic tests require specialized centres and often take years.

• Inherited myopathies are often characterized by spinal rigidity.

• Whole body magnetic resonance imaging is a unique tool to orientate the diagnosis of each inherited myopathy presenting with spinal rigidity.

• Each inherited myopathy in this study has a specific pattern of affected muscles that orientate diagnosis.

• A novel MRI-based algorithm, usable by every radiologist, can help the early diagnosis of these myopathies.

Keywords

Whole body imaging Myopathies, structural, congenital Muscular diseases
Muscular dystrophies Spinal curvatures

Abbreviations

MAM

Mean of percentages of affected muscle

mWB-MRI

Muscular whole body magnetic resonance imaging

RSS

Rigid spine syndrome
Electronic supplementary material

The online version of this article (https://doi.org/10.1007/s00330-018-5472-5) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in to check access.

Notes

Acknowledgements

We thank the patients and their families for their invaluable contributions. We also thank Nathaniel Bern for his help with statistics, Pr Dominique Berrebi, Dr Lea Chiche and Annuelle Chetrit, Dr Jessica Beaziz for their advice. We thank Dr Joseph Benzakoun, Dr Wagih Ben Hassen, Dr Jeffery Zhou, Dr Anh Minh and Dr Corentin Provost for their help with making up the validation group.

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Mickael Tordjman

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

Nathaniel Bern kindly provided statistical advice for this manuscript. One of the authors has significant statistical expertise: Moustafa Biyoukar.
Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional review board approval was obtained.

Methodology

- retrospective
- diagnostic or prognostic study/observational
- multicentre study

Supplementary material

330_2018_5472_MOESM1_ESM.docx (16.6 mb)
ESM 1 (DOCX 17032 kb)

References

 CrossRef (https://doi.org/10.1016/0966-8966(91)90039-U)

 CrossRef (https://doi.org/10.1016/j.nmd.2013.11.003)
3.
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258110)
Google Scholar (http://scholar.google.com/scholar_lookup?title=Dia.pngstic%20approach%20to%20congenital%20muscular%20dystrophies&author=CG.%20B%C3%B6nnemann%20et%20al
4.
CrossRef (https://doi.org/10.1086/342719)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC378532)
5.
CrossRef (https://doi.org/10.1016/j.nmd.2012.08.003)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930922)
6.
CrossRef (https://doi.org/10.1007/s00330-010-1799-2)
7.

CrossRef (https://doi.org/10.1002/mus.24634)

CrossRef (https://doi.org/10.1002/mus.25018)

CrossRef (https://doi.org/10.1016/j.nmd.2008.01.009)

CrossRef (https://doi.org/10.1053/ejpn.2002.0617)

CrossRef (https://doi.org/10.1097/WCO.0000000000000364)

PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1644828)

CrossRef (https://doi.org/10.1212/01.wnl.0000251268.41188.04)

15. Wu S, Ibarra MCA, Malicdan MCV et al (2006) Central core disease is due to RYR1 mutations in more than 90% of patients. Brain 129:1470–1480
CrossRef (https://doi.org/10.1093/brain/awl077)
Google Scholar (http://scholar.google.com/scholar_lookup?title=Central%20core%20disease%20is%20due%20to%20RYR1%20mutations%20in%20more%20than%2090%25%20of%20patients&author=S.%20Wu&author=M.%20Ibarra&author=MCV.%20Malicdan&journal=Brain&volume=129&pages=1470-1480&publication_year=2006)

CrossRef (https://doi.org/10.1002/ana.22119)

CrossRef (https://doi.org/10.1093/hmg/ddi025)

CrossRef (https://doi.org/10.1002/ana.21417)

CrossRef (https://doi.org/10.1016/j.jns.2010.09.011)

CrossRef (https://doi.org/10.1038/ng713)

CrossRef (https://doi.org/10.1016/j.jocn.2015.04.016)

CrossRef (https://doi.org/10.1002/ana.10693)

CrossRef (https://doi.org/10.1016/j.nmd.2012.06.005)

Google Scholar (http://scholar.google.com/scholar_lookup?
title=Selective%3andomuscle%20involvement%20in%20magnetic%20resonance%20imaging%20in%20autosomal%20dominant%20Emery-
Dreifuss%20muscular%20dystrophy&author=E.%20Mercuri&author=S.%20Counsell&author=J.%20Allsop&journal=Neuropediatrics&volume=33&page=10-
14&publication_year=2002)

CrossRef (https://doi.org/10.1037/h0031619)

Google Scholar (http://scholar.google.com/scholar_lookup?
title=Measuring%20nominal%20scale%20agreement%20among%20many%20raters&author=JL.%20Fleiss&journal=Psychol%20Bull&volume=76&pages=378-
382&publication_year=1971)

CrossRef (https://doi.org/10.1177/00131644600200104)

Google Scholar (http://scholar.google.com/scholar_lookup?
title=A%20coefficient%20of%20agreement%20for%20nominal%20scales&author=J.%20Cohen&journal=Educ%20Psychol%20Meas&volume=20&pages=37-
46&publication_year=1960)

CrossRef (https://doi.org/10.1080/01621459.1967.10482916)

Google Scholar (http://scholar.google.com/scholar_lookup?
title=On%20the%20Kolmogorov-
Smirnov%20test%20for%20normality%20with%20mean%20and%20variance%20unknown&author=HW.%20Lilliefors&journal=J%20Am%20Stat%20Assoc&vol-
ume=62&pages=399-402&publication_year=1967)

28. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 50–60

Google Scholar (https://scholar.google.com/scholar?q=Mann%20HB%20%20Whitney%20DR%20%281947%29%20On%20a%20test%20whether%20one%20of%20two%20random%20variables%20is%20stochastically%20larger%20than%20the%20other.%20Ann%20Math%20Stat%2050%20%E2%80%9360)

CrossRef (https://doi.org/10.2307/3001968)

Google Scholar (http://scholar.google.com/scholar_lookup?

CrossRef (https://doi.org/10.1002/ana.21846)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=Muscle%20magnetic%2oresonance%2oimaging%2oinvolvement%2o
muscular%2odystrophies%2owith%2origidity%2othe%2ospine&author=E.

CrossRef (https://doi.org/10.1016/j.nmd.2004.08.006)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=Magnetic%2oresonance%2oimaging%2of%2omuscle%2oin%20congenital%2omyopathies%2oaassociated%2owith%2oRYR1%20mutations&author=H.%20Jungbluth&author=MR.%20Davis&author=C.%20M%20C%20Müller&journal=Neur
muscul%20Disord&volume=14&pages=785-790&publication_year=2004)

CrossRef (https://doi.org/10.1016/j.nmd.2015.10.001)
Google Scholar (http://scholar.google.com/scholar_lookup?
title=Muscle%20imaging%2oin%20muscle%20dystrophies%2oproduced%2oby%2
omutations%2oin%2othe%2oEMD%2oand%2oLMNA%2ogenes&author=J.%2
0D%20D–
Manera&author=A.%20Alejaldre&author=L.%20Gonz%C3%A1lez&journal=Neur
muscul%20Disord&volume=26&pages=33-40&publication_year=2016)

CrossRef (https://doi.org/10.1016/j.nmd.2011.06.748)
Google Scholar (http://scholar.google.com/scholar_lookup?title=Whole-body%2omuscle%20MRI%2oin%2opatients%2osuffering%2ofrom%2olat
ome%2onset%2oPompe%2odisease%3A%2oinvolvement%2opatterns&author=RY.
%20Carlier&author=P.%20Laforet&author=C.%20Wary&journal=Neuromuscul%2
0Disord&volume=21&pages=791-799&publication_year=2011)

CrossRef (https://doi.org/10.1016/j.nmd.2006.09.013)
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17134899)
Google Scholar (http://scholar.google.com/scholar_lookup?

CrossRef (https://doi.org/10.1016/j.nmd.2012.12.009)
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23394783)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594745)
Google Scholar (http://scholar.google.com/scholar_lookup?

CrossRef (https://doi.org/10.1016/0960-8966(94)90028-0)
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7919974)
Google Scholar (http://scholar.google.com/scholar_lookup?

CrossRef (https://doi.org/10.1016/0960-8966(95)90039-X)

CrossRef (https://doi.org/10.1038/ejhumgenet2014.169)

CrossRef (https://doi.org/10.1093/brain awp236)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038491)

CrossRef (https://doi.org/10.1016/j.yexcr.2007.03.028)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964355)

Copyright information

© European Society of Radiology 2018
About this article

Cite this article as:

- DOI (Digital Object Identifier) https://doi.org/10.1007/s00330-018-5472-5
- Publisher Name Springer Berlin Heidelberg
- Print ISSN 0938-7994
- Online ISSN 1432-1084

- About this journal
- Reprints and Permissions

Published in cooperation with

the European Society of Radiology

Personalised recommendations

SPRINGER NATURE

© 2017 Springer International Publishing AG. Part of Springer Nature.

Not logged in Not affiliated 47.152.39.128