The Accuracy of Citizen Science Data: A Quantitative Review

Eréndira Aceves-Bueno, Adeyemi S. Adeleye, Marina Feraud, Yuxiong Huang, Mengya Tao, Yi Yang, and Sarah E. Anderson

Bren School of Environmental Science & Management, University of California, Santa Barbara, 2400 Bren Hall, Santa Barbara, California 93106 USA

Introduction

Citizen science involves volunteers who participate in scientific research by collecting data, monitoring sites, and even taking part in the whole process of scientific inquiry (Roy et al. 2012, Scyphers et al. 2015). In the past two decades, citizen science (also called participatory or community-based monitoring) has gained tremendous popularity (Bonney et al. 2009, Danielsen et al. 2014), due in part to the increasing realization among scientists of the benefits of engaging volunteers (Silvertown 2009, Danielsen et al. 2014, Aceves-Bueno et al. 2015, Scyphers et al. 2015). In particular, the cost-effectiveness of citizen science data offers the potential for scientists to tackle research questions with large spatial and/or temporal scales (Brossard et al. 2005, Holck 2007, Levrel et al. 2010, Szabo et al. 2010, Belt and Krausman 2012). Today, citizen science projects span a wide range of research topics concerning the preservation of marine and terrestrial environments, from invasive species monitoring (e.g., Scyphers et al. 2015) to ecological restoration and from local indicators of climate change to water quality monitoring (Silvertown 2009). They include well-known conservation examples like the Audubon Christmas Bird Count (Butcher et al. 1990) and projects of the Cornell Lab of Ornithology (Bonney et al. 2009).

Despite the growth in the number of citizen science projects, scientists remain concerned about the accuracy of citizen science data (Danielsen et al. 2005, Crall et al. 2011, Gardiner et al. 2012, Law et al. 2017). Some studies evaluating data quality have found volunteer data to be more variable than professionally collected data (Harvey et al. 2002, Uychiaoco et al. 2005, Belt and Krausman 2012, Moyer-Horner et al. 2012) and others that volunteers’ performance is comparable to that of professionals or scientists (Hoyer et al. 2001, 2012, Canfield et al. 2002, Oldekop et al. 2011). For example,
Danielsen et al. (2005) concluded that the 16 comparative cases studies they reviewed only provided cautious support for volunteers’ ability to detect changes in populations, habitats, or patterns of resource use. In a more recent review, Dickinson et al. (2010) found that the potential of citizen scientists to produce datasets with error and bias is poorly understood.

The evidence of problems with citizen science data accuracy (e.g., Hochachka et al. 2012, Vermeiren et al. 2016) indicates a need for a more systematic analysis of the accuracy of citizen science data derived from individual studies of accuracy. To our knowledge, despite useful qualitative reviews (e.g., Lewandowski and Specht 2015), there are to date no reviews that combine the case studies to quantitatively evaluate the data quality of citizen science. In this paper, we conduct a quantitative review of citizen science data in the areas of ecology and environmental science. We focus on the universe of peer-reviewed studies in which researchers compare citizen science data to reference data either as part of validation mechanisms in a citizen science project or by designing experiments to test whether volunteers can collect sufficiently accurate data. We code the authors’ qualitative assessments of data accuracy and we code the quantitative assessments of data accuracy. This enables us to evaluate both whether the authors believe the data to be accurate enough to achieve the goals of the program and the degree of accuracy reflected in the quantitative comparisons. We then use a linear regression model to assess correlates of accuracy. With citizen science playing an increasingly important role in expanding our scientific knowledge and enhancing the management of the environment, we conclude with recommendations for assessing data quality and for designing citizen science tasks that are more likely to produce accurate data.

Methods

This study uses the case survey method to compile the set of studies published before 2014 that directly compare citizen science data with reference data. The goal of this method is to supplement qualitative, in-depth case studies with a quantitative analysis. As with all large-n studies, this prioritizes generalizability over detailed analysis of each case. It supplements existing published case studies and qualitative reviews (e.g., Freitag et al. 2016, Kosmala et al. 2016).

Compilation of comparative case studies

We used a “snowball” approach to identify studies published before 2014 that compare citizen science data with some sort of reference data. Beginning with the 16 studies reviewed in Danielsen et al. (2005), we performed a cited reference search on Google Scholar (http://scholar.google.com/) for papers that cited these 16 studies. Next, we identified every paper cited in this group of papers that compared citizen science data to reference data and again performed a cited reference search on this new group of papers. We repeated this process iteratively until we encountered no new case studies, giving confidence that we had identified the universe of papers in ecology and environmental science that compare citizen science data to reference data. This process yielded a preliminary list of 72 articles. We eliminated nine studies because they either presented their statistical results in figures (e.g., Rock and Lauten 1996, Osborn et al. 2005, Thelen and Thiet 2008), did not directly compare citizen science data against professionally collected data (e.g., Mellanby 1974), or conducted only qualitative comparisons (e.g., Mueller et al. 2010). Bibliographic information on each of the 63 studies used in this study is provided in Appendix S1.
Extraction of statistical information

For each of the 63 papers, we identified each comparison between citizen scientists and professionals that was made. This yielded 1,363 comparisons, which spanned a wide range of measurements from identification and counts of specific species (Lovell et al. 2009) to calculation of total nitrogen concentration in water (Loperfido et al. 2010). We extracted quantitative statistical results for each comparison. For example, in a study on invasive species (Crall et al. 2011), volunteers’ estimates of cover across species were compared to professionals’ estimates using a Student \(t \) test, so we recorded the \(t \) statistic, \(P \) value, and degrees of freedom when provided. In that same paper, citizen scientists’ correct identification of species was compared to professionals’ using percent agreement and a chi-square test, so each of those values (percent agreement, chi-square value, and \(P \) value) was recorded. That paper also included breakdowns of easy and difficult species identification, as well as the presence or absence of species, resulting in five observations that compare the data from volunteers to that of professionals. To assure data quality, the accuracy of the data extracted from each paper was checked by a second coder after inclusion into the database.

Each comparison of different tasks or different subsets of the tasks is used as an observation here. Where more than one statistical test was used to compare the same set of observations, each was included in the summary of the data presented here. As a result, some comparisons appear more than once among the 1,363 comparisons. Specifically, 182 observations were counted twice and five observations were counted three times to capture all statistical methods that researchers reported in 63 studies. These duplications were eliminated in the analysis that compares citizen science data to professionals. The order of selection for the \(p \) value where multiple tests were used was Student’s \(t \) test, Wilcoxon signed rank test, ANOVA, then Mann–Whitney test. In the few examples where no \(P \) value was available and a correlation \(r \) value was available, the correlation \(r \) value was used. We define minimally acceptable levels of accuracy as not being significantly different (\(P < 0.05 \)) according to statistical tests, having a correlation greater than 0.5, or having at least 80% agreement. These are relatively low standards for accuracy. We return to what defines an acceptable level of accuracy in our recommendations for comparing citizen science and professional data (Section Recommendations to increase transparency and make determination of accuracy more comparable across studies).

Authors’ qualitative evaluations of citizen science data

In addition to collecting the statistical comparisons between citizen science and reference data, we qualitatively code the authors’ evaluations of the quality of the citizen science data. For each paper, a coder read the abstract and qualitatively coded whether the authors used words like accurate, reliable, comparable, statistically similar, or valuable to describe the citizen science data or whether they used words like no significant correlations, overestimated, or contradictions. This results in a binary coding of the authors’ assessment of the data as either positive or negative. A second coder confirmed the binary coding of the authors’ assessments of the data.

Covariates of accuracy

In addition to coding the statistical comparisons between citizen science data and reference data, we coded the attributes of the task and citizen scientists that might affect accuracy. To characterize the
task, we coded the discipline as geology, atmospheric science, biology of animals, or botany and the location of the research as marine, freshwater, terrestrial, or the atmosphere. We also coded whether the author noted any particular difficulty with the task, as difficulty affects accuracy (Kosmala et al. 2016). To understand the attributes of the citizen scientists, we coded the length of participation of the citizen scientists into six categories ranging from 0–1 month to more than 10 years, whether they participated only once or repeatedly, and the number of citizen scientists participating. We coded whether the paper mentioned that the citizen scientists received training prior to the task and whether the citizen scientists had an economic or health stake in the scientific/research question. Details of the coding are in Appendix S2. A linear regression model was fit to assess whether various attributes of the citizen science project affect the percent agreement between citizen science data and reference data.

Results

Characteristics of the data

Fig. 1 provides a summary of the characteristics of the papers. Most of the studies focused on terrestrial systems (47.7%), followed by freshwater systems (29.2%), marine systems (21.5%), and atmospheric studies (1.5%). The majority (69.0%) of the studies were relatively short, with lengths of participation of less than 1 month; a smaller fraction had longer monitoring periods, varying from 2–6 months (34.2%) to 7–12 months (8.5%) to 1–5 years (2.8%). The number of citizen scientists participating in studies tended to be small, with 20.55% of studies using fewer than 10 people. Very few studies (2) used more than 1,000 people (2.7%). Other studies engaged 11–50 people (19.2%), 51–100 people (13.7%), 101–500 people (16.4%), or 501–1,000 people (6.9%). Fig. 2 shows that more than 60% of the statistical comparisons we analyzed were from animal studies, followed by botany studies and geology-related studies which comprised slightly over 20% and 18%, respectively. Only 0.6% of the comparisons generated by citizen science studies focused on the atmosphere.

Fig. 1. The characteristics of the 63 papers used to compare citizen science and professional data (from left to right): study location, length of participation, citizen scientist group size, and training. NA means data could not be inferred and NR means not reported.
Citizen science data and professional data were compared using more than 10 different statistical methods (Fig. 2). The comparisons most commonly used percent agreement (42.0%), Mann–Whitney test (13.7%), or Student’s t test (14.2%). The least-used comparison methods were correlations such as linear regression, Spearman’s rank correlation, and Pearson’s correlation. Table 1 shows the number of studies and the number of comparisons using each of the statistical methods. Each test measures accuracy in a slightly different way.

Table 1. Methods† applied by the studies reviewed to test the accuracy of citizen science data.

<table>
<thead>
<tr>
<th>Methods</th>
<th>No. studies</th>
<th>No. comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage agreement</td>
<td>27</td>
<td>525</td>
</tr>
<tr>
<td>T test</td>
<td>15</td>
<td>183</td>
</tr>
<tr>
<td>Spearman’s rank correlation</td>
<td>9</td>
<td>69</td>
</tr>
<tr>
<td>Wilcoxon signed rank test</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>Pearson’s correlation</td>
<td>8</td>
<td>52</td>
</tr>
<tr>
<td>ANOVA</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Linear regression</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Mann–Whitney test</td>
<td>4</td>
<td>185</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>ANOSIM</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Kendall’s coefficient of rank</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

†Only methods used by two or more papers are presented. This table includes comparisons where multiple methods were used. Later analyses eliminate these duplicates.
While authors tend to be optimistic about the use of citizen science data in their qualitative discussions, we find only 51 to 62% of the comparisons between citizen science data and reference data show accuracy levels that meet our minimum thresholds for accuracy in scientific research. We present results from each of the main data comparison methods (percent agreement, statistics using P values, correlations, and authors’ qualitative evaluations of accuracy) separately in this section and present results from regression analysis in the following section.

Percent agreement: Is there agreement between the data collected by citizen scientists and professionals?—The most common means of comparing citizen science data to data collected by professionals was percent agreement (525 out of 1,363; Table 1); yet this method does not allow for hypothesis testing. As shown in Fig. 3, 55.2% of comparisons had a percentage agreement equal to or greater than 80%. There was at least 50% agreement in about 86.1% of the comparisons. Percent agreement of 10% or less was reported less than 2% of the time. We note that percent agreement fails to account for agreement by chance (Lombard et al. 2002), so these figures likely overstate the degree of accuracy of citizen scientists.

Statistics using p values: Are the data collected by citizen scientists and professionals different?—A total of 528 comparisons used various statistical tests that resulted in P values to test the hypothesis that citizen scientist and professional data are different. Considering a P value ≤ 0.05 as significant, differences between citizen science and professional data were significant in 203 observations (38.4%) and not significant in 325 observations (61.6%), as shown in Fig. 4. Each comparison of citizen scientists to professionals was given the same weight, regardless of the sample size or the degree of replication. Alternately, Fisher’s method aggregates the results and suggests that there are significant differences between citizen science and professional data when all studies are considered together (results in Appendix S3).

Fig. 3. Percent agreement between citizen science data and reference data. The bars represent the amount of analyses (y-axis) that reported each level of percent agreement (x-axis). The percentage of papers reporting each level of agreement is shown on top of each bar.
Contributions

Fig. 4. Number of comparisons where the data collected by citizen scientists and professionals are significantly different (gray) or not significantly different (pattern). For P values >0.05 where the exact P value was not reported, we randomly and uniformly generated values between 0.051 and 1. A total of 137 comparisons were treated in this way.

Correlations: Are there significant correlations between the data collected by citizen scientists and professionals?—The correlation between citizen scientist and professional data was reported in 81 pairings. Overall, 72% of correlations were significantly greater than zero, but a quarter of the positive correlations were quite weak. We considered values of $r \geq 0.5$ to show moderate-to-strong correlation between citizen scientist and scientist data. There were 41 observations (50.6%) with $r \geq 0.5$, of which 36 (87.8%) were significant ($P \leq 0.05$), 2 (4.9%) were not significant, and 3 (7.3%) were not reported. A total of 35 observations (43.2%) showed a weak positive correlation between citizen scientist and scientist data ($0 \leq r < 0.5$). Of these observations, 12 (34.3%) were significant, 17 (48.6%) were not significant, and 6 (17.1%) had no reported P values. Five observations (6.2%) indicated a negative correlation between citizen scientist and scientist data, and in all of these cases, the correlations were not significant (Fig. 5).

Authors’ qualitative evaluations of citizen science data

This analysis shows that, depending on the comparison method, between 51% and 62% of the comparisons resulted in accurate citizen science data. In the 63 papers analyzed, 73% of the abstracts described the contributions of citizen science positively, using words like *accurate, reliable, comparable, statistically similar,* or *valuable.* Only eight of the papers (13%) assessed citizen scientists’ performance negatively, using words like *no significant correlations, overestimated,* or *contradictions* in their abstracts. There are two likely reasons for these differences. First, many papers have multiple comparisons between citizen science and reference data, which may allow the authors to conclude that citizen science data are sufficiently accurate for certain tasks. In other words, the authors of the studies frequently saw the usable data within the noise. Second, there is no agreed-upon definition of terms like “reliable.” For some scholars, 70% agreement is reliable, yet for others 70% agreement would not be
sufficient for the scientific questions they seek to answer. This highlights the crucial role that research design and researcher judgment play in deciding whether data are accurate enough for a given use.

Covariates of accuracy

The main covariates of citizen scientists’ accuracy are location, participation length, monitoring frequency, group size, training, and volunteer type, with about 20% of the total data variance explained by the model (Table 2). Research conducted in marine and terrestrial locations tends to have over 40%

![Correlation r values for data collected by citizen scientists and professionals, and their associated P values. Significant correlations are shown in gray, non-significant correlations are shown in pattern, and correlations with no reported P values are shown in blank. The numbers within columns represent the number of observations.](image)

Table 2. The fitted model coefficients and the corresponding significant levels and standard errors.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimate</th>
<th>Standard error</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>74.87</td>
<td>10.29</td>
<td>1.51E-12</td>
</tr>
<tr>
<td>Location—marine</td>
<td>54.49</td>
<td>8.04</td>
<td>3.78E-11</td>
</tr>
<tr>
<td>Location—terrestrial</td>
<td>44.90</td>
<td>6.81</td>
<td>1.20E-10</td>
</tr>
<tr>
<td>Participation length—7 months to 1 year</td>
<td>18.80</td>
<td>9.87</td>
<td>0.057</td>
</tr>
<tr>
<td>Monitoring frequency—repeated</td>
<td>−12.92</td>
<td>3.45</td>
<td>0.0002</td>
</tr>
<tr>
<td>Group size—medium</td>
<td>0.61</td>
<td>8.22</td>
<td>0.94</td>
</tr>
<tr>
<td>Group size—small</td>
<td>−8.38</td>
<td>8.20</td>
<td>0.31</td>
</tr>
<tr>
<td>Training—yes</td>
<td>22.14</td>
<td>5.05</td>
<td>1.44E-05</td>
</tr>
<tr>
<td>Volunteer type—volunteer</td>
<td>−67.84</td>
<td>7.21</td>
<td><2E-16</td>
</tr>
<tr>
<td>Specialized knowledge—yes</td>
<td>10.40</td>
<td>4.56</td>
<td>0.023</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
higher percent agreement than in freshwater locations. A longer participation length and holding a training session have a positive effect on the percent agreement, both with around 20% increases. This suggests that the studies to quantitatively compare citizen science data to professional data currently available may underestimate the accuracy of projects with longer participation. Surprisingly, citizen scientists who participate repeatedly in the monitoring program perform about 13% worse than those who participate only once. If the citizen scientists have an economic or health stake in the outcome, percent agreement is, on average, 68% higher than the general volunteer type.

Discussion and conclusions

Recommendations to increase transparency and make determination of accuracy more comparable across studies

1) Most importantly, we recommend that authors be explicit about their criterion for determining whether the data are “good enough,” as assessment criteria appeared to vary considerably. Ideally, this threshold should be determined prior to data collection to more quickly identify problematic tasks during collection and to avoid post hoc rationalization of the accuracy of collected data. For example, if the goal is to identify catastrophic changes in mussel coverage in the intertidal zone, sufficient accuracy might be that citizen scientists can detect changes of at least one or two standard deviations in existing data. In other research, sufficient accuracy might require detecting much smaller changes. This lack of explicit criteria for accuracy is particularly acute when correlations are used. For example, one paper reported a Spearman rank correlation of 0.55 with $P < 0.001$. While this allows for a significance test (an advantage over percent agreement), it is unclear whether 0.55 should be considered a high enough correlation. These definitions of accuracy are specific to the research question for which the data will be used and should be specified before data collection commences or analysis proceeds.

2) Since percent agreement fails to account for agreement by chance (Lombard et al. 2002), we recommend augmenting it with Fleiss’s K coefficient, a more conservative index (Landis and Koch 1977) that is less likely to overstate agreement. While percent agreement is appealing for ease of interpretation, Fleiss’s K coefficient has been employed extensively in studies requiring intercoder reliability and both can be reported to balance ease of interpretation with conservative estimates of accuracy.

Limitations

The case survey method of analysis has well-known shortcomings. First, the case survey method relies on published case studies, which may not adequately cover all areas. In this case, many well-known citizen science projects are long-term and use many citizen scientists. Studies evaluating data quality, however, typically analyze data over a short period of time with fewer participants (Wiggins et al. 2011). The available comparisons of citizen science and reference data may not be fully representative of citizen science projects, which leaves open the possibility that the longer term and larger projects have better data quality. Thus, the conclusions here should be taken to apply mainly to shorter projects. It is clear that studies comparing citizen science data to reference data should continue, as there is more to learn about the correlates of data quality and how to design citizen science projects that produce quality data. Second, the analysis hinges on the quality of the data in the studies. There are reasons to believe
that the studies used here likely represent relatively good quality data. They were primarily designed explicitly to test the quality of citizen science data, which likely indicates that the researchers put more thought into how to obtain quality data. Most of the studies here (75.3%) provided training, which improves data quality. Nonetheless, this study must rely on published comparisons and data quality issues are not unique to citizen science. The papers examined here most often compare citizen science data to professional data, a common means of assessing data quality that often makes the assumption that the professional data are fully accurate (Kosmala et al. 2016). Yet data collected by professionals can also have quality issues (Dickinson et al. 2010, Crall et al. 2011, Lewandowski and Specht 2015). We are therefore cognizant that the conclusions drawn here necessarily come from a subset of the citizen science activities that are undertaken, compared with professional data, and published, so care must be taken in generalizing to other citizen science projects.

Conclusions

Despite these limitations of the case survey methodology, it offers the best way to draw quantitative conclusions across the published case studies, since most citizen science studies are not designed with reference data for comparison. As a result, researchers can only qualitatively assess the accuracy of the data. Such qualitative assessments can be valuable, as when a researcher notices citizen scientists struggling to identify uncommon species. But they may be overly optimistic. Although the abstracts of papers comparing citizen science data to professional data indicated that the citizen science data quality was good in 73% of the abstracts, the results of our quantitative assessment cast more doubt on the accuracy of the data. For those studies reporting P values, we found that citizen science was not significantly different from professional data in 62% of the cases. We also found a moderate-to-strong correlation in 51% of the comparisons reporting correlation, and 55% of the comparisons reporting percent agreement had at least 80% agreement with professional data. Depending on the needs of the researchers, such levels of accuracy may not be sufficient. Monitoring in marine or terrestrial environments, longer participation length, prior training program, larger group size, and conducting research related to volunteers’ economic and health situations are good ways to increase the accuracy of the data. This analysis of more than 1,300 comparisons between citizen science and professional data offers some actionable recommendations for researchers using or considering the use of citizen science.

First, the low overall accuracy of the data suggests that researchers should consider collecting reference data so as to easily identify suspect citizen science data. If collection of reference data is impractical, researchers should closely supervise citizen scientists to enable qualitative accuracy checks or employ other quality assurance methods. Jacobs (2016) analyzes existing methods for automated and semi-automated quality assurance and existing citizen science projects are constantly innovating to improve data quality (Jacobs). For example, the eBird project establishes a maximum number of birds that may be entered for every species in each month for a given region and then follows up with the original observers if these values are exceeded (Wood et al. 2011) and has continued to improve its data quality procedures.

Second, researchers should design citizen science tasks with the skill of the citizens in mind and employ strategies to improve data quality. Our regression results suggest that researchers should strive to employ citizen science on projects where citizens participate for longer time periods and should provide training sessions. Training, in particular, has been shown elsewhere to enhance accuracy and
credibility (Freitag et al. 2016, Kosmala et al. 2016). A novel finding from this research is that scientists should consider seeking out volunteers with an economic or health stake in the research outcomes, as these volunteers produce data of better quality. For example, researchers might recruit citizens for a mussel study from among recreational harvesters, rather than the general population. Kosmala et al. (2016) offer other strategies, such as iterative project design, employment of statistical methods for error correction, and good data curation, for improving data quality.

This somewhat pessimistic assessment of citizen science accuracy should not discourage researchers from using citizen science for conservation science, as it has other advantages such as cost-effectiveness and stakeholder engagement (Aceves-Bueno et al. 2015, Newman et al. 2017). Nonetheless, it does call into question the accuracy of the data and suggest that researchers put safeguards like the recommendations above into place when employing volunteers in monitoring and data collection.

Acknowledgments

Isaac Perlman and Trevor Zink participated in early stages of the project. We thank them for their assistance. We would like to thank Michael Bostock for the d3.js script that we used to produce Sankey diagrams in this manuscript. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. All authors conceived of and designed the study, performed research, analyzed the data, and wrote the manuscript.

Literature Cited

Supporting Information

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/10.1002/bes2.1336/suppinfo