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Abstract

Small solids embedded in gaseous protoplanetary disks are subject to strong dust–gas friction. Consequently,
tightly coupled dust particles almost follow the gas flow. This near conservation of the dust-to-gas ratio along
streamlines is analogous to the near conservation of entropy along flows of (dust-free) gas with weak heating and
cooling. We develop this thermodynamic analogy into a framework to study dusty gas dynamics in protoplanetary
disks. We show that an isothermal dusty gas behaves like an adiabatic pure gas, and that finite dust–gas coupling
may be regarded as effective heating/cooling. We exploit this correspondence to deduce that (1) perfectly coupled,
thin dust layers cannot cause axisymmetric instabilities; (2) radial dust edges are unstable if the dust is vertically
well-mixed; (3) the streaming instability necessarily involves a gas pressure response that lags behind dust density;
and (4) dust-loading introduces buoyancy forces that generally stabilize the vertical shear instability associated
with global radial temperature gradients. We also discuss dusty analogs of other hydrodynamic processes (e.g.,
Rossby wave instability, convective overstability, and zombie vortices) and how to simulate dusty protoplanetary
disks with minor tweaks to existing codes for pure gas dynamics.

Key words: accretion, accretion disks – hydrodynamics – instabilities – methods: analytical – methods: numerical –
protoplanetary disks

1. Introduction

Protoplanetary disks are comprised of a mixture of gas and
dust (Chiang & Youdin 2010). Although the overall dust
content is small (~1% by mass), their presence can have
profound impacts on the gas dynamics and vice versa. Dust–
gas friction introduces phenomena that are absent from pure
gas disks. Important examples include the streaming instability
(SI, Youdin & Goodman 2005; Johansen & Youdin 2007;
Youdin & Johansen 2007), secular gravitational instabilities
(SGI, Ward 2000; Youdin 2011; Michikoshi et al. 2012;
Takahashi & Inutsuka 2014, 2016; Latter & Rosca 2017) and
Kelvin–Helmholtz instabilities (Goldreich & Ward 1973;
Chiang 2008; Barranco 2009; Lee et al. 2010).

These instabilities can trigger turbulence, and (in different
regimes) promote or inhibit planetesimal formation. More
recently, new dusty instabilities have appeared in numerical
simulations (Lorén-Aguilar & Bate 2015, 2016; Lambrechts
et al. 2016) and analytical calculations (Squire & Hopkins 2017;
Hopkins & Squire 2017), but their physical underpinnings are
not yet well understood.

Current state-of-the-art models of dusty protoplanetary disks
directly simulate gas dynamics coupled to explicit Lagrangian
dust particles (Johansen et al. 2006; Nelson & Gressel 2010;
Bai & Stone 2010a; Yang & Johansen 2014; Zhu et al. 2014;
Gibbons et al. 2015; Baruteau & Zhu 2016; Simon et al. 2016).
The equation of motion for each particle is solved including
dust–gas drag, the strength of which is measured by a stopping
time ts—the decay timescale for the relative velocity between
gas and dust. Thus small ts corresponds to tightly coupled
particles.

Another approach is to model the dust population as a
continuous, pressureless fluid (Barrière-Fouchet et al. 2005;
Paardekooper & Mellema 2006; Ayliffe et al. 2012; Meheut

et al. 2012; Laibe & Price 2012; Fu et al. 2014; Lorén-Aguilar
& Bate 2014; Surville et al. 2016). The hydrodynamic
equations are evolved for two fluids: the gas and dust, with
density and velocity rg, vg and rd, vd, respectively. Source terms
are introduced into the momentum/energy equations to model
dust–gas drag. This approach can take advantage of existing
numerical methods/codes for simulating pure gas dynamics. A
practical difficulty with this approach is the need to numerically
stabilize the pressureless dust fluid with, e.g., artificial
diffusion.
The two-fluid equations for dust and gas can be reformulated

into equivalent dynamical equations for the center-of-mass
velocity v and the relative dust–gas velocity -v vd g (Youdin &
Goodman 2005). In this reformulation, continuity equations for
dust and gas can be replaced by the mass conservation of total
density ρ plus the evolution of the dust-to-gas ratio r rd g (or
dust fraction, r rd , Laibe & Price 2014).
This reformulation is particularly advantageous in the tight-

coupling limit of Wt 1s , where the orbital frequency Ω sets
the characteristic timescale in many disk dynamics problems.
Models with two fluids or with Lagrangian solids are
numerically difficult to evaluate in this regime, because of
stiff drag forces. In the reformulated equations, however, the
center-of-mass motion does not experience drag forces and thus
is not stiff. Moreover, for W t 1s the relative motion satisfies
the terminal velocity approximation and can be eliminated from
the equations. This single-fluid framework for a well-coupled
dust–gas mixture facilitates numerical calculations (Price &
Laibe 2015), and also simplifies analytic calculations (Youdin
& Goodman 2005; Jacquet et al. 2011), which is useful for
gaining insight.
In this work, we develop a parallel between this single-fluid

description of dust–gas mixtures and standard hydrodynamics.
Specifically we recast the evolution of the dust-to-gas ratio as
an energy equation for the thermal content of a fluid. This
parallel is most precise when the gas in the dust–gas mixture
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obeys a locally isothermal equation of state for the gas,
r=P cs

2
g, where cs is a prescribed sound-speed profile. This

isothermal approximation holds when cooling times are short
(Lin & Youdin 2015), e.g., in protoplanetary disks whose
temperature is set by external irradiation (Chiang & Goldreich
1997; Stamatellos & Whitworth 2008).

Under these two approximations of strong drag and isothermal
gas, we show that the equations of dusty gas dynamics are
equivalent to those of nearly adiabatic (i.e., slowly cooling) gas
dynamics without dust, see Figure 1. The basis of the analogy is
that the entrainment of tightly coupled dust particles in gas flows
is similar to the advection of entropy in an adiabatic fluid. Finite
dust–gas drag acts as effective heating/cooling: the relative drift
between dust and gas causes a fluid parcel to exchange dust
particles with its surroundings—an effect similar to heat
exchange between a gas parcel and its surroundings. Needless
to say, the effective heating term must have a specific form,
which we derive, for the equivalence to hold.

The purpose of our physical and mathematical parallel
between dusty gas and standard hydrodynamics is to gain a
deeper understanding of the dynamics and stability of dusty
protoplanetary disks. We can apply established methods to
generalize previous stability results for pure gas dynamics to
dusty disks. We show that strictly isothermal disks with perfectly
coupled dust are generally stable to axisymmetric perturbations,
unless the dust-to-gas ratio varies more rapidly in radius than in
height. We put forward a thermodynamical interpretation of
dust–gas drag instabilities, and apply it to the SI. We also study
the effect of dust-loading on the vertical shear instability (VSI)
previously considered in pure gas disks (Nelson et al. 2013; Lin
& Youdin 2015; Barker & Latter 2015).

This paper is organized as follows. In Section 2 we describe
a key insight of our study, that pressure work (i.e., “PdV”) can
explain the basis of several instabilities, including SI and VSI,
in terms of pressure–density phase lags. This motivates us to
seek an analogy between dust–gas mixtures and pure gas. We
develop our formalism in Section 3 by transforming the two-
fluid equations of a tightly coupled dusty gas into single-fluid
hydrodynamic equations with a special cooling function. Here
we also define the effective entropy and buoyancy of our model
fluid. In Section 4 we discuss general stability properties of
dusty disks. We then analyze explicit disk models in Section 5,
where we show that radial dust edges are unstable, and revisit
the SGI and SI in the tight-coupling regime. In Section 6 we
extend the VSI to dusty disks. We discuss future applications of
the dusty/adiabatic gas equivalence in Section 7 before
summarizing in Section 8.

2. Growing Oscillations by Doing Work

In this section we provide physical arguments to highlight
the similarity between single-phase fluids and dust–gas
mixtures. The mathematical description of this section is
deferred to Section 4.4.

It is well known that in the limit of perfect coupling the
addition of dust increases the gas inertia but not pressure. One
can then regard dusty gas as a single fluid with a reduced sound
speed. Here, we argue that when dust–gas coupling is
imperfect, there exists another similarity with pure gas, related
to the phase of pressure and density evolution. Thus it is still
possible to regard partially coupled dusty gas as a single fluid.
A general result in fluid dynamics is that work is done

whenever oscillations in the pressure and density of the fluid
are not in phase. If the average work done is positive, then
oscillation amplitudes grow: the work done allows the system
to “overshoot” beyond the amplitude of preceding oscillations.
Figure 2 gives a graphical demonstration that if pressure lags

behind density, then positive is work done because it leads to a
clockwise path in the “P–V” plane. The annotations consider
the particular case where the phase lag arises because the fluid
has two components (gas and dust, see below) but the
following description is general.
From A to B, a fluid parcel is expanding to return to

equilibrium, but pressure is still increasing. This overcompensa-
tion will cause the parcel to expand beyond the maximum
volume of the previous cycle. Similarly, from C to D the parcel
is already contracting toward equilibrium, but pressure is still
dropping. This allows the parcel’s contraction to overshoot the
maximum density attained in the previous cycle. The overall
positive work done leads to growth in the oscillation amplitude.
This effect is similar to being pushed downward on a swing
when descending.
There are several situations where the pressure and density

of a fluid are not in phase. The obvious case is if the fluid is
subject to external heating/cooling. For example, in strongly
irradiated protoplanetary disks the disk temperature T(r) is

Figure 1. The central concept of this work. A mixture of small particles
imperfectly coupled to isothermal gas behaves similarly to an adiabatic, pure
gas subject to cooling. This permits one to use the equations for standard
hydrodynamics to study dust–gas dynamics.

Figure 2. Thermodynamic interpretation of growing oscillations in a fluid.
Top: evolution of pressure and density in time. Bottom: oscillation cycle in the
P–V plane. In the case shown, dust drag causes pressure (due to gas only) to lag
behind total density. This results in a clockwise path in the P–V plane, implying
positive work done by the fluid, which would increase oscillation amplitudes.
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time-independent but varies with the cylindrical radius r from
the star (Chiang & Goldreich 1997). Since rµP Tg for an
ideal gas, there is no reason to expect P and rg to be in phase as
a gas parcel oscillates between different radii and adopts the
corresponding local temperatures. In fact, we will show that
this is a fundamental property of the VSI (Lin & Youdin 2015).

Another possibility, as annotated in Figure 2, is a dusty gas.
The relevant density here is the total density r r r= +d g, but
the fluid pressure P is due to gas only. If dust were perfectly
coupled to the gas, then P and ρ would be in phase, and there is
no work done. However, for finite dust–gas drag, rd and rg are
not necessarily in phase, because dust particles can drift relative
to the gas, i.e., the dust-to-gas ratio evolves in time. If this
causes P to lag ρ, then the positive work done would lead to
growing oscillations. Indeed, we show that this is true for
the SI.

In order to apply this thermodynamic interpretation of dust–
gas drag instabilities, we need to develop a formal analogy
between dusty gas and pure hydrodynamics. We show this is
possible in the limit of strong drag and a fixed equation of state
for the gas.

3. Single-fluid Description of Dusty Gas

We model an accretion disk as a mixture of gas with dust
treated as a pressureless fluid. We denote their density and
velocity field as r( )v,g g and r( )v,d d , respectively. The mixture
has total density

r r rº + ( ), 1g d

and center-of-mass velocity

r r

r
º

+
( )v

v v
, 2

g g d d

a single temperature T, and its pressure P arises solely from the
gas component. Our goal is to obtain a set of equations
describing the dust–gas mixture that resembles standard,
single-phase hydrodynamics.

The dust and gas fluids interact via a drag force
parameterized by the relative stopping time ts such that

r r
r r

r
¶
¶

= -
¶

¶
= -

-( )
( )v v v v

t t t
3d

d

drag
g

g

drag

g d d g

s

is the dust–gas friction force per unit volume. Note that ts
differs slightly from the particle stopping time t r r= ts s g used
in some studies (e.g., Youdin & Goodman 2005).

In general the relative velocity -v vd g obeys a complicated
evolutionary equation (see, e.g., Youdin & Goodman 2005).
However, for tightly coupled dust particles with W t 1s K ,
where WK is the Keplerian orbital frequency (since we are
interested in protoplanetary disks), we can use the “terminal
velocity approximation” to set

r
- =

 ( )v v
P

t 4d g
g

s

(Jacquet et al. 2011). This equation reflects the well-known
effect of particle drift toward pressure maximum
(Weidenschilling 1977).

Under the terminal velocity approximation the dust–gas
mixture obeys the first-order (in ts) one-fluid equations:

r
r= -  · ( )v

D

Dt
, 5

r
= -  · ( ) ( )

Df

Dt
f t P

1
, 6d

d s

r
= -F -  ( )vD

Dt
P

1
, 7tot

 g= - -  + + - L( ) · ( )v
DT

Dt
T1 8eff

(see Laibe & Price 2014; Price & Laibe 2015 for a detailed
derivation from the two-fluid equations), where ºD Dt
¶ + ·vt is the Lagrangian derivative following the mixtureʼs
center-of-mass velocity v. For an ideal gas the pressure is given by

r m=P Tg , where  is the gas constant and μ is the mean
molecular weight.
Equation (6) is obtained from the dust continuity equation,
r r¶ +  =· ( )v 0t d d d , by writing r= + v v t Pd s and

eliminating rd in favor of the dust fraction fd:




r
r

º =
+

( )f
1

, 9d
d

where  r r= d g is the usual dust-to-gas ratio. If =t 0s then the
dust-to-gas ratio is conserved following the fluid. Otherwise, ò
evolves due to particle drift in response to pressure gradients.
Note that Equation (6) is equivalent to Equation (46) of Jacquet
et al. (2011).
The total gravitational potential yF = F +tot includes that

from a central star of mass M* and the disk’s own potential ψ.
We adopt

* *F = -
+

- -
⎛
⎝⎜

⎞
⎠⎟( ) ( )r z

GM

r z

GM

r

z

r
, 1

2
, 10

2 2

2

2

where f( )r z, , are cylindrical coordinates centered on the star
and G is the gravitational constant. The second equality is the
thin-disk approximation, appropriate for ∣ ∣z r . We use this
approximate form in order to obtain explicit expressions for
disk equilibria (Section 5.1). The disk potential ψ satisfies the
Poisson equation

y p r = ( )G4 . 112

We include ψ for completeness, but we will mostly neglect it
unless stated otherwise.
For the mixture’s temperature evolution, Equation (8), γ is

the adiabatic index of the gas;  represents heating andeff is
an effective source term arising from transforming the gas
energy equation (Equation (17)) from the two-fluid to one-fluid
variables (see Laibe & Price 2014 for details). We also include
a simple model of radiative cooling,

L =
- ( )T T

t
, 12ref

cool

which relaxes the mixture back to a prescribed temperature
profile Tref on a timescale of tcool. We will shortly simplify the
problem by considering rapid cooling, t 0cool .
Equations (5)–(8) are not yet equivalent to standard

hydrodynamics, which typically evolves two scalar fields—
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the density and temperature (or pressure). By contrast,
Equations (5)–(8) involve three scalars: ρ, fd, and T. However,
we can establish an analogy by fixing the equation of state for
the gas, thus eliminating Equation (8), but then reformulating
the evolution of the dust-to-gas ratio, Equation (6), into an
energy-like equation.

3.1. Locally Isothermal Equation of State

We consider the limit of short cooling times, t 0cool ,
appropriate for the outer parts of an irradiated protoplanetary
disk (Chiang & Goldreich 1997; Lin & Youdin 2015). Then the
disk temperature =T Tref at all times, and so we may adopt a
locally isothermal equation of state

r r= = -( ) ( ) ( )P c r z c f, 1 , 13s
2

g s
2

d

where  m=( )c r z T,s ref is a prescribed sound-speed profile
fixed in time. In most applications we consider vertically
isothermal disks with

µ( ) ( )c r r , 14q
s
2

where q is the power-law index for the disk temperature. For
q=0 the disk is strictly isothermal.

Notice that Equation (13) resembles an ideal-gas equation of
state but with a reduced temperature = - ( )T T f1ref d . This
reduced temperature decreases with dust-loading. Since fd
typically decreases away from the midplane, we expect
vertically isothermal dusty disks to behave as if the temperature
increased away from z=0.

3.2. Effective Energy Equation

Although we have deleted the true energy equation by fixing
a locally isothermal equation of state, we show that the mixture
nevertheless obeys an effective energy evolution equation. This
is because advection of the dust fraction, described by
Equation (6), can be transformed into an energy-like equation.
The equation of state, Equation (13), implies

r
= -

( )
f

P

c r z
1

,
.d

s
2

Then Equation (6) becomes


¶
¶

+  = -  +  +· · · ( )v v v
P

t
P P P cln , 15s

2


r

º  - 
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥· ( )c t

P

c
P1 . 16s

2
s

s
2

For comparison with the standard energy equation in hydro-
dynamics, rewriting Equation (8) for a pure ideal gas with

rµP Tg , and reverting back to gas velocities, gives

g
¶
¶

+  = -  + - L· · ( ) ( )v v
P

t
P P

P

T
. 17g g

We can thus interpret Equation (15) as the energy equation for
an ideal gas with adiabatic index g = 1, but now with the
imposed temperature gradient cs

2 and dust–gas drag  acting
as source terms.

If we denote the pressure forces by

r
º -

 ( )F
P

, 18

then

 r= - ( )Fc f t ,s
2

d s

which is in the same form as cooling by radiative diffusion. In
protoplanetary disks the corresponding “heat flux,” propor-
tional to F, is directly radially outward and vertically upward.
This is simply a reflection of particle drift toward increasing
pressure (inward and downward). Particle flux into a region
contributes to “cooling” of that region because the reduced
temperature is lowered.

3.3. Entropy and Buoyancy of Isothermal Dusty Gas

The specific entropy of an ideal gas is r= g( )S C PlnP
1

g ,
where CP is the heat capacity at constant pressure.
Since we have shown that a locally isothermal dusty gas

effectively has g = 1 we can define an effective entropy for the
mixture as

r
º = -[ ( )] ( )S

P
c fln ln 1 , 19eff s

2
d

where the constant heat capacity has been absorbed into Seff .
Then combining Equations (15) and (5) gives

=  +  · · ( )v
DS

Dt
c

c

P
t f Pln ,eff

s
2 s

2

s d

which is equivalent to entropy evolution in standard hydro-
dynamics, albeit with source terms. With an effective entropy
defined this way, many of the results concerning the stability of
(locally) isothermal dusty gas will have identical form and
interpretations to those for pure gas.
The physical reason for this analogy is that with strong drag

( t 0s ), dust is almost perfectly entrained in the gas, but there
is some gain/loss of dust particles between different gas
parcels. This is analogous to the entropy of an ideal pure gas
subject to heating/cooling: entropy is conserved following a
gas parcel, except if there is heat exchange between a fluid
parcel and its surroundings. For strictly isothermal gas perfectly
coupled to dust (constant cs

2 and =t 0s ) we have
= =DS Dt Df Dt 0eff d . In this case the effective entropy is

exactly conserved because the dust fraction is “frozen in”
the flow.
We can now define the vertical buoyancy frequency Nz of

the mixture as

r

r
º -

¶
¶

¶
¶

=
¶

¶
¶
¶

( ) ( )N
P

z

S

z
c r

z

f

z

1 ln
, 20z

2 eff
s
2 g d

where the second equality assumes a vertically isothermal disk.
Protoplanetary disks have r¶ < 0z g , thus stability against

vertical convection ( >N 0z
2 ) requires ¶ <f 0z d , i.e., the dust

density should drop faster than the gas density away from the
midplane. This is equivalent to entropy increasing away from
the midplane. A similar expression exists for the radial
buoyancy frequency Nr, but ∣ ∣ ∣ ∣N Nr z in thin, smooth disks.
A vertical buoyancy force exists even in vertically

isothermal dusty disks, because coupling gas to dust particles

4
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increases the fluid’s inertia, but pressure (i.e., restoring) forces
are unchanged. The increased weight of the fluid resists vertical
oscillations and hence there is an associated buoyancy force.
However, if ¹t 0s so the gas–dust coupling is imperfect, then
gas is no longer “weighed down” by the dust and can slip past
it. Thus finite drag diminishes the dust-induced buoyancy. This
is similar to reducing gas buoyancy through cooling (Lin &
Youdin 2015).

3.4. Physical Disk Conditions

The above correspondence between isothermal dusty gas and
adiabatic pure gas is derived under the terminal velocity
approximation, which applies to short stopping times,
W t 1s K , and the locally isothermal approximation, which

applies to short cooling times, W tcool K 1. In typical
protoplanetary disk models such as the Minimum Mass Solar
Nebula, ts decreases for smaller particles and/or toward smaller
radii (Youdin 2011). However, tcool is generally small only in the
outer disk (Lin & Youdin 2015; Malygin et al. 2017). Combin-
ing these results, we estimate that the correspondence will be
applicable to particles of less than millimeter size at a few to tens
of au in protoplanetary disks. However, note that the isothermal
approximation may be relaxed to other fixed equations of state
(see Section 7.2).

4. General Stability Criteria for Dusty Gas

In this section we discuss the stability properties of the dusty
gas mixture using a variational principle. This approach does
not require explicit solutions (i.e., a specific distribution of the
density and dust-to-gas ratio) to the equilibrium equations. We
consider axisymmetric systems and neglect self-gravity here.

4.1. Steady States

For a given distribution of the dust fraction fd (or dust-to-gas
ratio ò), the mass and momentum Equations (5)–(7) admit
solutions with r ( )r z, and f= W( ) ˆv r r z, where W = fv r ,
which satisfy

r
W =

¶F
¶

+
¶
¶

( )r
r

P

r

1
, 212

r
=

¶F
¶

+
¶
¶

( )
z

P

z
0

1
, 22

with r= ( )P P f ,d given by the equation of state
(Equation (13)). An explicit solution is presented in
Section 5.1, when we analyze the stability of protoplanetary
disks.

The mixture possesses vertical shear. To see this, we
eliminate Φ between Equations (21) and (22) to obtain

r
¶W
¶

=
¶
¶

¶
¶

-
¶
¶

¶
¶

⎛
⎝⎜

⎞
⎠⎟ ( )r

z

P

r

S

z

P

z

S

r

1
. 23

2
eff eff

and recall that = -[ ( )]S c fln 1eff s
2

d . It is well appreciated that
vertical stratification of the dust layer contributes to vertical
shear (Chiang 2008). Equation (23) shows that a radial dust
stratification (¶ fr d) also contributes to vertical shear.

Our equilibrium solutions satisfy the hydrostatic constraints
of Equations (21)–(22) but are not in general steady-state
solutions to the energy Equation (15), because the source term
 ¹ 0 for realistic disks. Limiting cases with  º 0 include (1)

unstratified or 2D, razor-thin disk models with finite dust–gas
drag; (2) perfectly coupled dust with =t 0s . The following
analyses thus apply strictly to these limiting cases of  = 0 in
equilibrium. Our analysis is also a good approximation when ts
is sufficiently small such that the evolution of the background
disk (e.g., dust settling) occurs on much longer timescales than
the instability growth timescales.

4.2. Integral Relation

We consider axisymmetric Eulerian perturbations to a
variable X of the form

d s-[ ( ) ( )] ( )X r z i tRe , exp , 24

where σ is the complex mode frequency. We write

s w= - ( )is , 25

where s and ω are the growth rate and real frequencies,
respectively. Then perturbations have time dependence w+est i t.
Thus for w > 0, perturbations rotate anticlockwise in the
complex plane.
In Appendix A we linearize Equations (5), (7), and (15) to

derive the following integral relation:

* *

*

*





ò

ò

ò

s r d r d d d d r d

d d d

d d

= + + +

+  - 

-  

⎤
⎦⎥

[ ∣ ∣ ( ) ∣ ∣

∣ · ( )∣ ( · )

( · )( · )

( )

v v

v v

v A v v v v B v D

P
P dV dV

P c dV

1

ln ,

26

r z r z r z
2 2 2 2

2

s
2

where * denotes the complex conjugate,

 ò r d dº +(∣ ∣ ∣ ∣ ) ( )v v dV 27r z
2 2 2

is the meridional kinetic energy, and coefficients A B D, , can
be read off Equation (77). We now consider various limits of
Equation (26).

4.3. Strictly Isothermal Gas Perfectly Coupled to Dust

When cs
2 is a constant and =t 0s (so that  = 0), the dusty

gas equations are exactly equivalent to those for adiabatic
hydrodynamics with unit adiabatic index. Although the gas is
strictly isothermal, the mixture behaves adiabatically because
the dust fraction fd is advected with the gas. This is similar to
entropy conservation following an adiabatic gas without
heating or cooling.
In this case, the last two integrals in Equation (26) vanish.

Then the condition for axisymmetric stability, s > 02 , is met if
the integrand coefficients satisfy + >A D 0 and

- >AD B 02 (Ogilvie 2016, Section 11.6), which yields

k
r

+   >· ( )P f
1

0, 282

g
d

r
k-

¶
¶

-
¶
¶

+
¶W
¶

¶
¶

>
⎛
⎝⎜

⎞
⎠⎟ ( )P

z

f

z
r

z

f

r

1
0, 29

g

2 d
2

d

where k º ¶ W >- ( )r r 0r
2 3 4 2 is the square of the epicyclic

frequency. Note that r r = P c lng s
2

g for strictly isothermal
gas considered here.
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Equations (28)–(29) can in fact be obtained by inserting
-( )C fln 1P d for the entropy into the standard expression for

the Solberg–Hoiland criteria (Tassoul 1978) for axisymmetric
stability of adiabatic gas. This substitution is consistent with
our definition of the effective entropy Seff since we are
considering constant cs.

We expect Equation (28) to be satisfied in typical
protoplanetary disks where the dust-to-gas ratio increases in
the same direction as the local pressure gradient, which is
equivalent to the gas density gradient for isothermal gas.

On the other hand, Equation (29) can be violated in disks if
the dust is vertically well-mixed but radially stratified, such that
¶ =f 0z d but ¶ ¹f 0r d . In this case the left of Equation (29)
becomes

r
-

¶
¶

¶
¶

<
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟ ( )P

z

f

r

1
0. 30

g

2

d
2

Such an isothermal dusty disk is unstable because there is no
effective vertical buoyancy to stabilize vertical motions
(Nz= 0), which can tap into the free energy associated with
vertical shear due to the radial gradient in the dust fraction.
This situation is identical to the adiabatic simulations of Nelson
et al. (2013) for pure gas, where the gas entropy is vertically
uniform but has a radial gradient. The authors indeed find
instability. We give a numerical example in the dusty context in
Section 6.6.

4.4. Thermodynamics of Dust-drag Instabilities

The physical interpretation of Section 2 is here derived in
detail. Consider constant cs but ¹t 0s (so d ¹ 0).
Equation (26) indicates that s2 is generally complex, unless
the second integral on the right is real. Thus we may have
growing oscillations, or overstability, due to dust–gas friction.
This is seen by taking the imaginary part of Equation (26):

* 


ò d d

w
=

( · )
( )

v
s

dVIm

2
, 31

2

assuming w ¹ 0. Since drag ( d ) appears as a source term in
our effective energy equation, the quantity * d d[( · ) ]vIm
represents correlations between compression/expansion and
heating/cooling.

It is well known that such correlations may lead to
pulsational instabilities in stars (Cox 1967). We thus interpret
dust-drag overstabilities in a similar way, adapting from the
treatment of stellar pulsations by Cox (1967) and lecture notes
by Samadi et al. (2015) and J. Christensen-Dalsgaard.4

4.4.1. Work Done by Dusty Gas

The physical interpretation of Equation (31) is that work
done by pressure forces in the dusty gas leads to growth
( >s 0) or decay ( <s 0) in oscillation amplitudes. To
demonstrate this, we calculate the average work done assuming
periodic oscillations, and show that if the average work done is
positive, then the oscillation amplitude would actually grow.

Consider oscillations in the dusty gas with period Tp. The
average rate of work done is

 ò ò
u

= ¢
¢

+
( )

T
dt P

D

Dt
dm

1
32

p t

t T

M

p

(Cox 1967, see their Equation (4.10) and related discussions),
where u r= 1 is the specific volume of the mixture, D/Dt is
the Lagrangian derivative, the spatial integral is taken over the
total mass M of the mixture and dm is a mass element.
Here we consider Lagrangian perturbations such that

 + D s-( ) ( )P P PeRe 33i t

is the pressure following a fluid element of the mixture (and
similarly for ρ). The Lagrangian perturbation Δ of a variable X
is xdD = + ·X X X and x is the Lagrangian displacement,
so x d s= i vx z x z, , . Inserting the above pressure and density
fields into Equation (32), and noting that only products of
perturbations contribute to after time-averaging, we find for
periodic oscillations (time dependence wei t and real ω) that

*
 ò

w r
r

= - D
D⎛

⎝⎜
⎞
⎠⎟ ( )P dV

2
Im , 34

Equation (34) shows that a phase difference between gas
pressure and the total density leads to work done ( ¹ 0).
Now, Equations (67) and (68) imply that the integrand of the

numerator in Equation (31) is

*
*

d d s
r
r

 = - D
D⎛

⎝⎜
⎞
⎠⎟( · ) ∣ ∣ ( )v PIm Im , 352

for constant cs. Then combining Equations (34), (35), and (31)
gives




= ( )s , 36
2

where we have set s w= - in Equation (35). Equation (36)
states that if the average work done is positive during an
oscillation,  > 0, then its amplitude will actually
grow ( >s 0).
Positive work is done by a fluid parcel if

*w r- D D >( )PIm 0. Without loss of generality, take w > 0
and consider a mass element with rD = 1. Then positive work
requires D <( )PIm 0. This corresponds to Lagrangian pres-
sure perturbations lagging behind those in density; see Figure 3
for the case of dusty gas.

4.4.2. Physical Properties of Overstabilities in Dust–Gas Drag

The above discussion applies to any single fluid with a
pressure and density. In the case of interest—dusty gas—the
work done is attributed to finite dust–gas drag. The relative
drift between gas and dust, which only exists if  ¹t P 0s
(Equation (4)), causes a phase difference between the two
components, and hence between pressure and total density.
A parcel of the strictly isothermal dusty gas mixture does

positive work if

*w r r- D D >( ) ( )sgn Im 0,g d

meaning that gas follows dust (Figure 3). Overstabilities are
thus not possible if the gas does not respond to dust (i.e., no
back-reaction). The pressure–density lag shown in Figure 3 is4 http://astro.phys.au.dk/~jcd/oscilnotes/print-chap-full.pdf
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achieved if, just after the total density of a parcel maximizes, its
gas content is increasing, which requires a sufficiently large
particle flux out of the parcel. See A to B in Figure 2.

This thermodynamic interpretation does not explain why
drag forces cause gas pressure to lag behind the dust density,
but it shows that this must be the case for any growing
oscillations associated with the dust–gas drag. To rigorously
understand how dust drag causes this lag requires an explicit
solution to the linearized equations with detailed treatment of
the function  . However, given the complexity of  (see
Appendix C), we might generally expect dusty disks to support
a range of stable and overstable modes, with the latter being
associated with pressure–density lag. In Section 5.3.2 we check
that the SI fits into this thermodynamic interpretation in the
limit of strong drag.

4.5. Locally Isothermal Gas Perfectly Coupled to Dust

If ( )c r z,s is nonuniform but =t 0s , Equation (26) gives

*


ò d d

w
=

 ( · )( · )
( )

v v
s

P c dVIm ln

2
, 37

s
2

2

again assuming w ¹ 0. This instability represents VSI caused
by vertical shear arising from a radial temperature gradient
(Nelson et al. 2013; Barker & Latter 2015; Lin & Youdin 2015).
We present numerical solutions of the VSI with perfectly
coupled dust in Section 6.

5. Application to Protoplanetary Disks

We now examine instabilities in dusty protoplanetary disks
based on explicit descriptions of the equilibrium state. We first
specify the disk structures to be analyzed. We show that sharp
radial edges in the dust-to-gas ratio can render the disk
unstable. We then revisit two well-known instabilities in dusty
gas using the hydrodynamic framework developed thus far,
namely SGI and the SI.

5.1. Disk Structure with a Prescribed Dust Distribution

We assume a Gaussian profile in the dust-to-gas ratio,

 


= -
⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( )r z r

z

H r
, exp

2
. 380

2

2

Inserting Equation (38) into vertical hydrostatic equilibrium,
Equation (22), and integrating with the approximate gravita-
tional potential (Equation (10)), we obtain the gas density as

 



r

r= - - - -
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭

( )

( )

( )

r z

r
z

H

H

H

z

H

,

exp
2

1 exp
2

,

39

g

g0

2

g
2 0

2

g
2

2

2

where

*=
W

W º ( )H
c GM

r
, . 40g

s

K
K 3

Here Hgis the gas scale-height in the dust-free limit and WK is
the Keplerian frequency.
In gas-dominated disks with  < 10 the gas distribution

r ( )r z,g is close to Gaussian, as in the dust-free case, and the
dust density is approximately

r r -
⎛
⎝⎜

⎞
⎠⎟( ) ( )r

z

H
exp

2
, 41d 0 g0

2

d
2

with


= + ( )

H H H

1 1 1
, 42

d
2 2

g
2

and Hd is the dust scale-height.
Finally, we define

º
S
S

 ( )Z
H

H
430

d

g

d

g

as a measure of the local metallicity, where Sd and Sg are the
dust and gas surface densities, respectively. The second
equality holds for   10 .

5.1.1. Orbital Frequency

From Equation (21) the disk orbital frequency is


rW = W - +

+
¶

¶

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

( )
( )

( )

r z r
z

r

h

r
c, 1

3

2 1 ln
ln ,

44

K

2

2

g
2

s
2

g

1 2

where

º ( )h
H

r
45g

g

is the characteristic disk aspect ratio, with h 1g for
protoplanetary disks (PPDs).

5.1.2. Vertical Shear

Writing Equation (23) in terms of the gas density and dust-
to-gas ratio with a power-law temperature profile

Figure 3. Phase relation for overstable modes in isothermal dusty gas. Such
modes require (Lagrangian) oscillations in the gas pressure, which is directly
proportional to the gas density, to lag behind those in dust density. The
eigenvectors rotate anticlockwise for w > 0.
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(Equation (14)) gives the disk’s explicit vertical shear profile:


 



r

r

¶W
¶

=
+

¶
¶

¶

¶
-

¶
¶

¶
¶

- +
¶

¶

⎧⎨⎩
⎫⎬⎭

( )
( )

( ) ( )

r
z

c r

r z z

P

r

q

r z

1

ln ln

1
ln

. 46

2
s
2

2

g

g

The first two terms correspond to vertical shear caused by
spatial variations in the dust-to-gas ratio. The third term
proportional to q corresponds to vertical shear due to the radial
temperature gradient, which survives in the dust-free limit.

We can compare these sources by evaluating them using the
equilibrium solutions in Section 5.1. We assume the disk is
radially smooth so that ¶ ~ r1r . This gives




d
d

¶ W

¶ W
~

+

∣ ∣
∣ ∣

( )
∣ ∣( )

( )
r

r q

max , 1

1
, 47

z

z

dust gas gradient

temp. gradient

2

2

where d º H Hg. Since =∣ ∣ ( )q O 1 in PPDs, Equation (47)
indicates that vertical shear due to variations in the dust-to-gas
ratio dominates over that due to the radial temperature gradient
for thin dust layers such that d 2 .

5.1.3. Dusty Vertical Buoyancy

For the above equilibrium the vertical buoyancy frequency is
given explicitly as


 

=
+

W
⎛
⎝⎜

⎞
⎠⎟( )

N
z

H1
,z

2
2

2

K
2

where we have used = ( )c c rs s . Then

 W( )N O .z 0 K

However, for well-mixed dust layers such that  H Hg,
( )Nmax z may occur outside a finite vertical domain.

5.2. Instability of Dusty Edges

Here we apply the dusty analog of the Solberg–Hoiland
criteria derived in Section 4.3 assuming strictly isothermal gas.
As discussed there, the first criterion is generally satisfied. Thus
we only consider the second condition, Equation (29).

We assume that the disk is approximately Keplerian so that
k W K, and that the vertical gas distribution is Gaussian. In
terms of the dust-to-gas ratio ò, Equation (29) becomes




 -
+

¶
¶

-
¶
¶

+
¶
¶

>
⎛
⎝
⎜⎜

⎞
⎠
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( )
h

r

P

r

H

H r
1

1

ln

ln

ln

ln

ln

ln
0, 48

g
2

2

2

g
2

for stability. The first term in brackets is usually stabilizing in
PPDs for reasons given in Section 4.3. The second term in
brackets is always destabilizing, but is small in smooth, thin
disks with radial gradients ( )O r1 , h 1g , provided that
H Hg is not large (e.g., some dust settling has occurred). This

means that typical dusty PPDs are stable to axisymmetric
perturbations, even for arbitrarily thin dust layers.

To violate Equation (48) and obtain instability, notice that
the left side is a quadratic in ¶r . Thus instability is possible
for sufficiently large (in magnitude) radial gradients in the

dust-to-gas ratio,

 
c c

¶
¶

>
¶
¶

<+ - ( )
r r

ln

ln
or

ln

ln
, 49

for instability, where



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¶
¶


¶
¶

+
+
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⎡
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In typical accretion disks where ¶ <P 0r , instability is easier
for increasing dust-to-gas ratios ( ¶ > 0r ).
We can neglect pressure gradients in Equation (50) if

¶ ~ ( )r P Oln 1r and   + ( )H H h 2 1g g . For example,
if   0.01 and h 0.05g , then we require  ´ -H H 2 10g

3.
This can be met if the dust is not well settled (e.g., due to a small
amount of turbulence). Then instability requires

 


¶
¶

+( ) ( )
r H

ln 1 1
. 51

That is, if the radial lengthscale of the dust-to-gas ratio is much
less its vertical lengthscale,   ( )L O H , then the system is
unstable. Taking  ~ 0.01, we find that for thin dust layers with
  H H Hd g, instability requires   ( )L O H0.1 g , i.e., the

dust-to-gas ratio must vary on an extremely short radial
lengthscale. This might be achieved, for example, at sharp
edges associated with gaps opened by giant planets.
Technically, the above discussion is applicable only when cs

is constant and =t 0s (see Section 4.3). However, since dusty
edges translate to sharp entropy gradients (Section 3.3), we
may generally expect sharp features in the dust distribution of
protoplanetary disks to be unstable.

5.3. Radially Local Problem

We now specialize further and compute explicit solutions to
the linear problem. We consider radially localized axisym-
metric disturbances of the form

d d=( ) ( ) ( ) ( )X r z X r z ik r, , exp , 52x1

where kx is a real wavenumber such that ∣ ∣k r 1x , and the
amplitude d ( )X r z,1 is a slowly varying function of r. Then
¶  ikr x when acting on the above primitive perturbations, and
we may neglect curvature terms. We take >k 0x without loss
of generality. Hereafter, we drop the subscript 1 on the
amplitudes.
Introducing

dr
r

d
r

º º ( )W Q
P

, , 53

the linearized equations for vertically isothermal dusty gas with
the pressure equation in place of the dust fraction
(Equations (5), (7), (11), (15)) are then

s d d d r d r= + ¢ + ¶ + ¶ ( )i W ik v v v vln ln , 54x r z r r z z

sd d dy- = W - - -f ( )i v v WF ik Q ik2 , 55r r x x

sd
k

d d=
W

+
¶

¶
f

f ( )i v v
v

z
v

2
, 56r z

2

sd r dy- = - - ¢ + ¢ - ¢[ ( ) ] ( )i v WF Q Q ln , 57z z
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

s
r

d d
r

d d

r
d

d
r

= + ¢ + ¶ + ¶

- ¶ -

( ) ( )

( )

i Q
P

ik v v v P v P

P
v c

1

ln , 58

x r z r r z z

r r s
2

dy p r dy = + ( )G W k4 , 59x
2

where ¢ º ¶z and recall rº -F P . We have temporarily
restored self-gravity to discuss SGI in the next section. The
linearized dust diffusion function d is given in Appendix C.

Equations (54)–(59) are a set of ordinary differential
equations in z. All coefficients and amplitudes are evaluated
at a fiducial radius =r r0, but their full z-dependence is
retained. We next discuss solutions to these equations. We first
show that the above equations yield the SGI and SI in the
strong drag regime in Sections 5.3.1 and 5.3.2, respectively.
We then consider 3D, stratified disks in Section 6 to study how
the addition of dust affects the VSI.

5.3.1. Secular Gravitational Instability

Consider a razor-thin, self-gravitating disk so that
r d= S ( )z , where δ is the Dirac delta function and Σ is the
total surface density. Here  = S Sd g and = S Sfd d , where
Sd,g are the dust and gas surface densities. The background
disk is uniform and we neglect the vertical dimension in
Equations (54)–(58). The linearized dust–gas drag term is then
d r- = t f c k Qxs d s

2 2 . The thin-disk solution to Equation (59)
is dy p= = - S( ) ∣ ∣z G W k0 2 x .

These simplifications yield the dispersion relation

s p k s s- S - + = -( )( ∣ ∣ ) ( )i t f c k G k i c k f2 1 .x x xs d s
2 2 2 2

s
2 2

d

Searching for slowly and purely growing modes, s = is with
k∣ ∣s , we find

p k
k p

=
S -

- S + -

( ∣ ∣ )
∣ ∣ ( )

( )s
t f c k G k

G k c k f

2

2 1
. 60x x

x x

s d s
2 2 2

2
s
2 2

d

This is SGI mediated by strong dust–gas drag with negligible
turbulent dust diffusion (Takahashi & Inutsuka 2014, their
Equation (13) becomes our Equation (60) in this limit after a
change of variables). A similar effect occurs in viscous self-
gravitating gas disks (Gammie 1996; Lin & Kratter 2016). In
fact, if we identify n º t f cs d s

2 as a kinematic viscosity, then
Equation (60) is identical to Gammie’s Equation (18).

This exercise shows that the one-fluid framework, further
simplified by the terminal velocity approximation, is sufficient
to capture SGI in the limit of strong drag.

5.3.2. Streaming Instability

We now consider 3D disks without self-gravity. We neglect
the vertical component of the stellar gravity, appropriate for
studying regions near the disk midplane. This allows us to
Fourier analyze in z to obtain an algebraic dispersion relation of
the form så == ( )c k k, 0j j x z

j
0

5 , where kz is a real vertical
wavenumber. The coefficients cj can be read off Equation (96)
in Appendix D. There we also show that this dispersion relation
reduces to that for the SI in the limit of incompressible gas and
small ts (Youdin & Goodman 2005; Jacquet et al. 2011).

In Table 1 we solve the full dispersion relation
(Equation (96)) numerically for selected cases where analytic
SI growth rates have been verified with particle–gas numerical

simulations (from Youdin & Johansen 2007; Bai &
Stone 2010b). Following previous works on SI, we use
normalized wavenumbers h=K rkx z x z, , where

h
r

º -
W

¶
¶

=
- W( )

( )
r

P

r f

F

r

1

2

1

2 1
61r

g K
2

d K
2

measures the pressure offset of Keplerian rotation. We fix
h = Wc r0.05 s K. In this section we also quote the particle
stopping time t = -( )t f1s s d .
The eigenfrequencies obtained from the one-fluid dispersion

relation are compared with those from a full, two-fluid analysis
(similar to Youdin & Goodman 2005; Kowalik et al. 2013). As
expected, eigenfrequencies agree better with decreasing ts since
in that limit the mixture behaves more like a single fluid. Most
importantly, we find the work done  > 0 in all cases, and
hence find growing oscillations.
In Table 1 we also calculate the phase difference between the

Lagrangian pressure perturbation and density perturbations as

*j s rº D D[ ( )] ( )Psgn Re arg .

(Note that it is important to include the global radial pressure
gradient in d d sD = + ¶P P i v Px r .) Then j > 0 indicates gas
pressure lagging behind total density, which is true for all the
cases. Thus SI is indeed associated with such a phase lag.
In Figure 4 we calculate the most unstable SI mode as a

function of ts at fixed Kz= 30 and  = 3. Growth rates are
maximized over Kx. We compare results between the full, two-
fluid linear analysis and the one-fluid framework. We also
include an analytic model, developed in Appendix D.2, based
on the one-fluid dispersion relation with additional approxima-
tions (orange diamonds).
Both results based on the one-fluid framework compare well

with the full, two-fluid analysis, only breaking down at a
relatively large t W 0.1s K . For larger ts the two-fluid phase
lag drops, along with the growth rate. This suggest that a non-
vanishing phase lag is indeed necessary for instability.
However, the magnitude of the phase lag does not correlate
with growth rates. In fact, j remains finite as s t ∣ ∣, 0s (but
non-zero). This arises because the optimum tµ -Kx s

1 2

diverges (see Appendix D.2).
In a future work we will perform a more detailed parameter

survey to compare the simplified one-fluid and full two-fluid
frameworks in calculating SI (see comparisons using other
problems, Laibe & Price 2014; Price & Laibe 2015).

6. VSI with Dust

We now present numerical solutions for vertically stratified,
non-self-gravitating disks, assuming perfectly coupled dust.
We formally take =t 0s so the equilibrium solutions defined in
Section 4.1 are exact steady states. In reality, dust settles to the
midplane on a timescale ~ Wt t1settle s K

2 (Takeuchi &
Lin 2002). However, we expect the perfectly coupled limit to
be valid provided timescales of interest t tgrow settle. For the
VSI this translates to W t h .s K g For thin PPDs, this is satisfied
for W - ( )t O 10s K

2 .
We first consider constant midplane dust-to-gas ratios 0 and

characteristic thickness Hò. Then the dust-to-gas ratio  = ( )z .
In this limit any growing modes must be associated with the
imposed temperature gradient (see Section 4). We then study
the effect of dust-loading on the VSI previously studied in pure
gas disks (Lin & Youdin 2015, LY15 in this section). In
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Section 6.5 we allow ¶ ¹ 0r , and in Section 6.6 we consider
VSI driven entirely by radial gradients in the dust-to-gas ratio
(as discussed in Section 4.3).

The parameters for the linear problem includes 0, the dust
layer thickness Hd, and the perturbation radial wavenumber kx.

We choose a midplane gas density profile r µ -rg0
3 2. The

fiducial power-law index for the temperature profile is = -q 1;
and we set the aspect ratio of the gas disk to be =h 0.05g .
These values were also used by LY15.
We impose solid vertical boundaries so that d  =( )v z 0z max .

We solve the linearized equations as a generalized eigenvalue
problem using a pseudo-spectral code adapted from LY15.
Amplitudes are expanded in Chebyshev polynomials up to
order 512.

6.1. Qualitative Expectations

LY15 found that the appropriate way to compare vertical
shear (destabilizing) and vertical buoyancy (stabilizing) is
¶ W Wr z K against WNz

2
K
2 . From Sections 5.1.2 and 5.1.3 we

find ¶ W ~ W∣ ∣r qhz g K for a thin, gas-dominated disk, while

~ WNz
2

K
2 . Thus we expect dust-induced buoyancy forces to

stabilize the disk against the VSI where   hg.

6.2. Effect of Dust-loading

We first vary the midplane dust-to-gas ratio  Î -[ ]10 , 10
3 ,

fixing the dust thickness to =H H0.99d g. Then ò is roughly
constant with height. We set the vertical domain to =z H5max g.
Figure 5 compares the vertical shear rate in the basic state,

which is destabilizing, and the vertical buoyancy frequency,
which is stabilizing. For the nearly dust-free disk with
 = -100

3 the vertical shear dominates buoyancy for all
>∣ ∣z 0. However, a heavy dust-load with  = 10 causes the

buoyancy to dominate over vertical shear in the disk
atmosphere ∣ ∣z H2.5 g. We thus expect instability to occur

Table 1
Selected Modes of the Streaming Instability

Mode (t Ws K, r rK ,x z, g d)
Complex Frequency, s WK Work Done, * r rD D∣ ∣P Pressure–density lag, j

Two-fluid One-fluid Two-fluid One-fluid Two-fluid One-fluid

linA (1) (0.1, 30, 3) 0.3480+0.4190i 0.3640+0.4249i 0.078 0.090 27 30
linB (1) (0.1, 6, 0.2) −0.4999+0.0155i −0.4981+0.0054i 0.025 0.0054 5 . 8 1 . 2
linC (2) ( -10 , 1500, 22 ) 0.1049+0.5981i 0.1338+0.6650i 0.0076 0.013 8 . 3 11
linD (2) ( -10 , 2000, 23 ) 0.3225+0.3154i 0.3219+0.3154i 0.061 0.061 22 22

References. (1) Youdin & Johansen (2007); (2) Bai & Stone (2010b).

Figure 4. Comparison of the linear streaming instability between a full two-
fluid analysis (solid line), the one-fluid framework simplified by the terminal
velocity approximation (green asterisks), and an analytic solution to the one-
fluid dispersion relation in the dust-rich limit (orange diamonds, see also
Appendix D.2). The vertical wavenumber is fixed and growth rates are
maximized over Kx.

Figure 5. Vertical shear rate (solid) compared to vertical buoyancy (dotted) in a
locally isothermal, dusty disk with midplane dust-to-gas ratio of  = -100

3

(black) and  = 10 (blue). The dust layer thickness is fixed at =H H0.99d g so
the dust-to-gas ratio ò is approximately constant with height. Vertical buoyancy
here is due to dust-loading.
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at all heights for  = -100
3, but to be restricted to the midplane

for  = 10 .
Figure 6 shows unstable modes for different values of 0

with fixed perturbation wavenumber =k H 30x g . The eigenva-
lue distributions for   -100

2 are similar to the dust-free
fiducial case considered by LY15. This is expected since
 < h0 g (Section 6.1). Eigenvalues consists of the roughly
horizontal “body modes,” and the nearly vertical “surface
modes” (which are associated with the imposed vertical
boundaries, Barker & Latter 2015).

We find that increasing the dust-to-gas ratio reduces VSI
growth rates. Notably, surface modes, which are typically
fastest growing in the dust-free case, are suppressed in dusty
disks for   0.10 (i.e.,  > h0 g). The body modes’ growth rates
remain W( )O hg K but their oscillation frequency increases with
dust-loading, i.e., it increases with the vertical buoyancy. The
total number of modes does not change significantly. This is in
contrast with the effect of increasing cooling times in an
adiabatic gas disk, for which LY15 find fewer unstable modes.

The lowest frequency “fundamental” body mode is energe-
tically dominant because the entire disk column is perturbed
(unlike surface modes, which only disturb the disk boundaries,
Umurhan et al. 2016a). In Figure 7 we compare the
fundamental mode between the nearly dust-free case
 = -100

3 and a dusty disk with  = 10 . Dust-loading
preferentially stabilizes the disk atmosphere against the VSI,
restricting meridional motions to ∣ ∣z H2 g. This is consistent
with Figure 5 comparing the vertical shear in the basic state and
the buoyancy.

In Figure 8 we plot the growth rates as a function of 0 for
different perturbation wavenumbers kx. Dust-loading stabilizes
the VSI more effectively for shorter wavelength perturbations.
This is because for high wavenumbers the dominant modes are
surface modes, which are effectively stabilized by dust-loading
because buoyancy forces are largest near the vertical
boundaries. The figure suggest that VSI becomes much less
efficient for   0.10 and k H 50x g .

6.3. Effect of Dust Layer Thickness

We now vary Hd but fix the metallicity º =Z H H0 d g
0.03 to obtain 0. Since we will consider thin dust layers, here
we use a smaller domain with =z H2max g so that ò does not
become too small.

We analyze two disks with =H H0.1d g and =H H0.99d g.
Figure 9 compares the vertical shear rate and buoyancy
frequency. For ∣ ∣z H0.4 g the two disks have the same profile,
with vertical shear dominating over buoyancy. We thus expect
perturbations away from the disk midplane in both cases. For

∣ ∣z H0.4 g, a thin dust layer with =H H0.1d g boosts the
vertical shear rate, but the associated buoyancy is larger still,
implying that the midplane should be stable.
Figure 10 compares the fastest growing VSI body modes

with =k H 30x g for the two cases above. (The thinner domain
adopted here eliminates surface modes, LY15.) We find very

Figure 6. Unstable modes in a locally isothermal, perfectly coupled dusty disk
with fiducial parameters = - -( ) ( )p q h H H, , , 1.5, 1, 0.05, 0.99g d g . The real
frequency ω and growth rates s are shown for a range of midplane dust-to-gas
ratios  r r=0 g0 d0.

Figure 7. Fundamental dusty VSI mode in real space for midplane dust-to-gas
ratio  = -100

3 (left) and  = 10 (right). The color scale shows the perturbation
to the dust-to-gas ratio, d ; and the arrows show r d d( )v v,x z .

Figure 8. Maximum growth rate of the dusty VSI as a function of the midplane
dust-to-gas ratio 0 for perturbations with different radial wavenumbers k. The
dust layer thickness is fixed at H Hd g.

Figure 9. Vertical shear rate (solid) compared to vertical buoyancy (dotted) in a
locally isothermal, dusty disk with metallicity Z = 0.03 and dust thickness

=H H0.1d g (black) and =H H0.99d g (blue).
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similar mode frequencies

s =
- W =
- W =

⎧⎨⎩
( )
( )

i h H H

i h H H

0.3053 0.8142 0.99 ,

0.3178 1.2237 0.1 ,
g K d g

g K d g

since the vertical shear profile is similar throughout most of the
disk. However, meridional motions are suppressed near the
midplane of the =H H0.1d g disk, as expected from the larger
buoyancy frequency relative to vertical shear there. This leads
to a structure analogous to PPD dead zones: a quiescent
midplane between active surface layers (Gammie 1996).

Figure 11 shows the maximum VSI growth rates as a
function of Hd. As before, we find that growth rates are most
affected by the vertical structure of the dust layer when the
perturbation wavenumber is large. Notice that VSI growth rates
converge as H 0d . Thus a thin dust layer, however large its
associated vertical shear, does not affect VSI growth rates. The
non-monotonic behavior for H H0.5d g arises because the
vertical buoyancy frequency
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is a non-monotonic function of Hd at fixed z. At =z Hg and
=z H2 g the buoyancy frequency is maximized for H H0.5d g

and H H0.8d g, respectively. This is consistent with the
minima in growth rates in Figure 11.

6.4. Axisymmetric Stability of Ultrathin Dust Layers

The discussion in Section 4.3 implies that strictly isothermal
disks with a radially uniform dust-to-gas ratio are stable against
axisymmetric perturbations, no matter how thin the dust layer
is. We now demonstrate this numerically.

To connect with similar studies, here we also use the
Richardson number º ¶ W( )N rRi z z

2 2 to label calculations
(Youdin & Shu 2002). Numerical simulations show that non-
axisymmetric instabilities develop when Ri 0.1, brought
about by very thin dust layers (Chiang 2008; Lee et al. 2010).
We show that axisymmetric instabilities never develop in
radially uniform disks, however small Ri.

We shall consider ultrathin dust layers with H H0.01d g
and thus restrict the vertical domain to =z H0.02max g. We fix
the metallicity at Z= 0.01 so the midplane dust-to-gas ratio 0
is O(1). We consider radial wavenumbers with =k H 1x d .
Figure 12 shows the maximum growth rate as a function of

the radial temperature gradient, q. For all cases the vertical
shear is dominated by that due to the dust layer (see
Section 5.1.2). However, we see that µ ∣ ∣s q , i.e., growth rates
vanish in the strictly isothermal limit. In particular, this holds
for <Ri 0.1, the critical value for non-axisymmetric
instabilities.
Axisymmetric instability here is associated with the thermal

contribution to vertical shear: as q 0, ¶ Wz becomes entirely
due to ¶z and there is no instability (s→0). This result is
independent of Ri, so the Richardson number does not
characterize the axisymmetric stability of dust layers.

6.5. Effect of a Radially Varying Dust-to-gas Ratio

We now consider a radially varying dust-to-gas ratio.
Specifically we let  µ -r0

1 and  µH Hg (compare with
constant values in the previous calculations). Then

 


¶
¶

= -
⎛
⎝⎜

⎞
⎠⎟r

z

H

d H

dr r

ln 1
.

2

2

g

Here we fix Z= 0.01 and =H H0.8d g.

Figure 10. Fastest growing dusty VSI mode in real space for midplane dust
layer thickness =H H0.99d g (left) and =H H0.1d g (right). The dust content is
fixed atS = S0.03d g. The color scale shows the perturbation to the dust-to-gas
ratio, d ; and the arrows show r d d( )v v,x z .

Figure 11. Maximum VSI growth rate for different perturbation wavenumbers
k as a function of the dust layer thickness Hd at fixed metallicity Z = 0.03.

Figure 12. Maximum VSI growth rate for ultrathin dust layers H H0.01d g

(with radially uniform dust-to-gas ratio). Vertical shear is dominated by that
due to vertical dust stratification, but axisymmetric instability is still associated
with the radial temperature gradient q. Here, Ri0 is the minimum Richardson
number in the domain in the limit q 0. The disk is stable to axisymmetric
perturbations in the strictly isothermal limit, regardless of the dust layer
thickness.
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Figure 13 shows that a radially varying dust-to-gas ratio
increases the magnitude of the vertical shear rate away from the
midplane (see also Equation (46)). Thus we typically find
higher VSI growth rates, as shown in Figure 14. Surfaces
modes, appearing at high kx, are more effectively enhanced by
the additional vertical shear induced by ¶r . Low-frequency
body modes with small kx are more affected by radial variations
in the dust-to-gas ratio than high-frequency body modes with
high kx.

However, all growth rates remain W( )O hg K . Importantly, the
increase in the growth rate of the fundamental mode is small.
We do not expect the radial dependence in ò to significantly
affect the VSI in a dusty disk.

6.6. Pure Instability with Vertically Well-mixed Dust

In Section 4.3 we found that for strictly isothermal disks, a
vertically uniform dust-to-gas ratio can be unstable if
 ¹d dr 0. To demonstrate this numerically we set q=0 and
Hd such that  =H H103

g. We let r r µ -r d
d g with different

power indices d. The metallicity is fixed at Z= 0.03. In these
cases vertical shear ¶ Wz is attributed to the radially varying
dust-to-gas ratio (see Equation (46)).

We show unstable modes in Figure 15. As expected from the
discussion in Section 4.3, the disk admits purely growing modes
with w = 0. This is distinct from the growing oscillations
associated with classic VSI discussed above.

We find that in smooth disks large kx is needed for appreciable
growth rates, e.g., =k H 1800x g with r r µ -rd g

1. Local
shearing-box simulations may be required to study the nonlinear
evolution of such short wavelengths (e.g., Bai & Stone 2010b;
Yang & Johansen 2016). Alternatively, as shown in Figure 15, a
rapidly varying dust-to-gas ratio permits dynamical instability at
longer radial wavelengths, which might be resolvable in global
disk simulations.

7. Discussion

7.1. Applications and Limitations

The main application we envision for the dusty/adiabatic gas
analogy is to develop physical interpretations of dust–gas drag
instabilities, and to find dusty analogs of pure gas instabilities
in protoplanetary disks, which is discussed in Section 7.3. One
can also exploit the similarity to adapt existing hydrodynamic
codes to simulate dusty protoplanetary disks (see Section 7.4).

It is important to keep in mind the assumptions used to
develop our thermodynamic model of dusty gas. The terminal
velocity approximation, r- = v v t Pd g s g, was employed
from the outset. This is applicable to small particles with short
stopping times that are strongly coupled to the gas. Generally
we require ts to be the shortest timescale in the physical
problem. For example, to study dust settling, we require

~ Wt t t1s settle s K
2 , or W t 1s K .

However, the validity of the terminal velocity approximation
may depend not only on ts. The value of the dust–gas ratio and
the problem itself may also be important. For example, Table 1
shows that the dust-rich “linA” mode and dust-poor “linB”
mode of the SI have the same ts, but the former is accurately
captured by the simplified equations, while the latter is not.
This suggests that for the SI the simplified equations are better
suited for r r > 1d g . The simplified equations also contain
spurious modes in certain limits (see Appendix D.3).
Note that our thermodynamic interpretation of dust–gas drift

does not actually depend on the terminal velocity approx-
imation. Once the equation of state for the gas is fixed and the
true energy equation deleted, the dust continuity equation can
be converted to a new effective energy equation. As an
example, for strictly isothermal dusty gas we obtain

r= -  +  - -· · [ ( ) ( )] ( )v v v
DP

Dt
P c f f1 . 62s

2
d d d g

This equation does not use the terminal velocity approximation
(which gives Equation (15)). Evaluating the right side generally
requires solving an evolutionary equation for -v vd g (Laibe &

Figure 13. Vertical shear rate (solid) compared to vertical buoyancy (dotted) in
a locally isothermal, dusty disk with metallicity Z = 0.01 and dust thickness

=H H0.8d g. Black curves assume a dust-to-gas ratio that depends only on
height, whereas the blue curve also allows a radial dependence in ò. See text for
details.

Figure 14. Unstable VSI modes in the disk models of Figure 13. Diamonds
(asterisks) are mode frequencies for a disk with radially uniform (varying) dust-
to-gas ratio. The radial wavenumbers are =k H 10x g (green), =k H 30x g

(black), and =k H 100x g (orange).

Figure 15. Purely growing modes in a strictly isothermal disk (q = 0) with
vertically uniform dust-to-gas ratio. The instability is due to vertical shear
¶ W ¹ 0z arising from radial variations in the dust-to-gas ratio,  ¹d dr 0.
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Price 2014). Nevertheless, Equation (62) shows that dust–gas
relative drift can be interpreted as a heat flux within the dust–
gas mixture. Thus, even without the terminal velocity
approximation we can regard the dusty gas as a single ideal
fluid subject to cooling.

7.2. Generalization to Locally Polytropic Disks

We can extend the correspondence between dusty and
adiabatic gas to other fixed equations of state. As an example,
consider the locally polytropic disk

r= G( ) ( )P K r z, , 63g

where K is a prescribed function and Γ is the constant
polytropic index. Then eliminating fd from the dust
Equation (6) gives

r
= -G  +  +

G
 · · · ( ) ( )v v

DP

Dt
P P K

P
f t Pln . 64

g
d s

Thus the dusty gas behaves like a pure gas with adiabatic index
Γ. The entropy is given by

= -G[ ( )( )] ( )S K r z fln , 1 . 65eff
1

d

The results of Sections 4.3 and 4.4 remain valid for the strictly
polytropic disk with =K constant, while one sets c Ks

2 in
Section 4.5.

7.3. Dusty Analogs of Other Gaseous Instabilities

7.3.1. Classic GIs

The addition of dust enhances GI because dust particles
contribute to the total disk mass but not thermal pressure,
which effectively lowers the disk temperature (Thompson &
Stevenson 1988; Shi & Chiang 2013). For typical dust-loading
fd with Z 1, this effect is unimportant. However, if ò is large
(e.g., due to dust settling) then the reduced temperature

= - ( )T T f1 d may be lowered to enable instability.
As noted in Section 3.1, dust settling causes T to increase

away from the midplane. This contrasts with previous studies
of GI in vertically stratified disks where the temperature
decreases from the midplane (e.g., Mamatsashvili & Rice 2010;
Kim et al. 2012; Lin 2014). While we expect that only the total
surface density and characteristic temperatures are relevant to
stability (Toomre 1964), a non-trivial vertical temperature
structure, induced by dust, may modify the vertical structure of
3D waves and unstable modes.

Another potential connection to previous results for gas disks
is gravito-turbulence. Cooling, self-gravitating gaseous disks
sustain a turbulent state where shock heating due to gravita-
tional instabilities is balanced by radiative cooling (Gammie
2001). Since dust–gas drift appears as a diffusion or cooling in
our framework (Equation (15)), it may be conceivable to have
“dusty gravito-turbulence.” As self-gravity increases the local
density, the associated pressure maxima attract dust particles,
but the back-reaction onto the gas may try to flatten the
pressure bump (Taki et al. 2016), thus enabling a quasi-
steady state.

7.3.2. Rossby Wave Instability (RWI)

The RWI is a non-axisymmetric, 2D shear instability that
operates in thin disks when it has radial structure (Lovelace

et al. 1999; Li et al. 2000). These studies consider adiabatic pure
gas and show that instability is possible if there is an extremum in
the generalized potential vorticity  k= WSg- 2g

2
g

2
g, where

 = SgPg g is essentially the gas entropy. Here P should be
interpreted as the vertically integrated pressure. The nonlinear
result of the RWI is vortex formation (Li et al. 2001).
The dusty/adiabatic gas analogy implies that the condition

for RWI in a polytropic dusty gas disk is an extremum,


k

=
WS

+
S
SG

⎛
⎝⎜

⎞
⎠⎟ ( )

K2

1
1 . 66

2

2
d

g

2

Thus RWI may also be triggered by extrema in the dust-to-gas
ratio, e.g., narrow dust rings/gaps. This may lead to direct
formation of dusty vortices, as opposed to dust-trapping by a
pre-existing gas vortex (Barge & Sommeria 1995; Lyra &
Lin 2013).

7.3.3. Convective Overstability (ConO)

The “ConO” was discovered in non-adiabatic, unstratified
disk models of pure gas where the radial buoyancy frequency is
such that º ¶ <N F S C 0r r r P

2 and cooling times ~ W-tcool K
1.

This combination leads to growing epicycles (Klahr &
Hubbard 2014; Lyra 2014; Latter 2016).
Now consider a strictly isothermal dusty disk where the

relevant entropy is dust-induced, r r= - +( )S ln 1eff d g . Since
µ -¶ >F P 0r r in typical disk models, ConO would require

¶ <S 0r eff , implying that the dust-to-gas ratio increases
outward. This might occur at special radial locations in
protoplanetary disks, such as planet gaps. Dust-settling itself
may also cause the midplane dust-to-gas ratio to increase
outward (Takeuchi & Lin 2002).
Isothermal disks have =t 0cool , so the pure gas ConO cannot

exist. However, we have shown that dust–gas drag provides an
effective energy source/sink to the mixture (Section 3.2). It
would be interesting to explore whether or not dust–gas drag
can play the role of cooling to enable a “dusty convective
overstability.”

7.3.4. Zombie Vortices

The “zombie vortex instability” (ZVI) is a non-axisymmetric,
nonlinear instability discovered in pure gas disks (Marcus
et al. 2015; Umurhan et al. 2016b). It operates by having
finite-amplitude perturbations exciting “critical layers,” where
the intrinsic wave frequency of the perturbation matches the
local vertical buoyancy frequency (Marcus et al. 2013). These
critical layers roll up into vortices, exciting further critical
layers. The process repeats itself and the result is an array of
vortices.
Since the necessary physical ingredient for the ZVI is

vertical buoyancy, it requires an almost purely adiabatic gas
with long cooling times ( W t 1cool K ). This limits its
applicability in typical protoplanetary disks to 1 au (Lesur
& Latter 2016; Malygin et al. 2017). However, this considera-
tion assumes a dust-free disk as far as the dynamics is
concerned.
On the other hand, we have shown that dust-loading induces

an effective buoyancy even in isothermal disks. It is thus
natural to ask whether or not the required adiabatic conditions
for ZVI can be realized through dust-loading (specifically a
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vertical gradient in the dust-to-gas ratio) and thus produce
“dusty ZVI.” This may allow the zombie vortices to develop
1 au in PPDs.

7.4. Implications for Numerical Simulations

The one-fluid model with the terminal velocity approximation,
Equations (5)–(7), has been applied to simulate dusty proto-
planetary disks (Dipierro et al. 2015; Ragusa et al. 2017). These
studies explicitly evolve the dust density.

However, the equivalence of dusty and adiabatic gas identified
in this paper means that one need not implement a separate
module for simulating the dust component in locally isothermal/
polytropic gas. The standard energy equation substitutes for the
dust continuity equation. Thus pure gas dynamic codes can be
used to simulate protoplanetary dusty disks. When the sound
speed cs (or K ) is not constant and/or the dust–gas coupling is
imperfect, ¹t 0s , one should add corresponding source terms in
the energy equation (e.g., Equation (64)). The source term
associated with dust–gas drag,  , is analogous to radiative
diffusion (Price & Laibe 2015) or thermal conduction, which is
also common in modern hydrodynamics codes.

We have taken advantage of the equivalence of dusty and
adiabatic gas to convert the popular PLUTO5 hydrodynamics
code (Mignone et al. 2007) into a dusty gas dynamics code
appropriate for simulating protoplanetary disks coupled to
small dust. In fact, our code is unaware of the fact that it is
modeling dusty gas. We will apply this modified code—
dPLUTO—to study dusty disk–planet interaction (J.-W. Chen &
M.-K. Lin, in preparation). Preliminary results show that our
approach reproduces features such as dusty rings associated
with planet-induced gaps similar to those obtained from
explicit two-fluid simulations (e.g., Dong et al. 2017).

8. Summary

In this paper, we examine the conditions under which the
presence of dust can trigger instabilities in gaseous protoplanetary
disks. To this end, we develop an analogy between isothermal
dusty gas and pure ideal gas. The correspondence arises because
drag forces reduce the relative velocity between gas and dust. In
the limit of perfect dust–gas coupling, with stopping time t 0s ,
dust is entrained in the gas. Then the dust-to-gas ratio r rd g is
conserved following the flow. This property is analogous to
entropy conservation following an adiabatic, pure gas.

For finite drag, ¹t 0s , the dust content of a parcel of the dusty
gas mixture is no longer conserved. The parcel can exchange dust
particles with neighboring parcels. This is analogous to heat
exchange between a parcel of pure gas and its surroundings.

We explicitly show that for a fixed equation of state for the
gas, the evolutionary equation for r rd g may be replaced by an
effective energy equation. This leads to a natural definition of
the effective entropy of isothermal dusty gas as

r

r r
=

+

⎛
⎝
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⎞
⎠
⎟⎟S

c
ln ,eff

s
2

g

g d

which implies that a nonuniform dust-to-gas ratio induces
buoyancy forces. The effect of finite dust–gas friction appears
as an energy source term. This analogy with standard
hydrodynamics with cooling/heating allows us to find dusty

analogs of gaseous instabilities, and to provide thermodyna-
mical interpretations of dust-drag instabilities.
We obtain the equivalent Solberg–Hoiland criteria for the

axisymmetric stability of strictly isothermal, perfectly coupled
dusty gas. Applying these to typical protoplanetary disks, we find
that the vertical shear associated with dust layers cannot lead to
axisymmetric instabilities, however thin the dust layer is. Instead,
sharp radial edges in the dust-to-gas ratio could destabilize the
disk, because these imply sharp gradients in the diskʼs effective
entropy profile. Alternatively, if the dust is vertically well-mixed,
then any radial gradient in r rd g can destabilize the disk.
We apply our thermodynamic framework to interpret the

Streaming Instability (SI; Youdin & Goodman 2005; Jacquet
et al. 2011) and to generalize the gaseous Vertical Shear
Instability (VSI; Nelson et al. 2013; Lin & Youdin 2015) to
dusty disks. We explicitly show that in SI the evolution of gas
pressure lags behind dust density. In fact, this is a general
property of overstabilities driven by dust–gas drag. It takes a
finite time for the gas to respond to the dust motion. A lag
implies that there exists a time interval where the gas pressure
of a parcel of the dusty gas mixture is increasing while dust is
already being expelled. The dusty gas then does positive work
that amplifies oscillations. This interpretation is analogous to
stellar pulsational instabilities (Cox 1967).
For the VSI we find that dust-loading is generally stabilizing.

In our disk models dust-loading does not affect VSI growth
rates significantly, but meridional motions may be suppressed
where the dust-induced vertical buoyancy dominates over
vertical shear, consistent with our previous study (Lin &
Youdin 2015). Since the dust-induced buoyancy forces
increase away from the midplane, we find that dust-loading
can stabilize “surface modes” of the VSI that would otherwise
have the largest growth rates. We also show that radial
variations in r rd g can trigger a type of VSI, even when the
usual sources of vertical shear—vertical dust gradients and
radial temperature gradients—are negligible.
In a realistic disk, dust particles settle on a timescale

~ Wt t1settle s K
2 (Takeuchi & Lin 2002), compared with typical

VSI growth timescales, ~ Wt h1grow g K. This suggest that
particles with Wt hs K g cannot settle against the VSI. On the
other hand, larger particles with Wt hs K g should settle to
form a dusty midplane. In fact, our calculations suggest that
settling would stabilize the disk against VSI and allow further
settling. The result may be a quiet, dusty midplane (unless
non-axisymmetric instabilities develop, Chiang 2008) with
VSI-turbulent gaseous atmospheres.
We also discuss future applications of our thermodynamic

framework to study dusty protoplanetary disks. Because
isothermal dusty gas has an effective entropy, we suggest that
purely hydrodynamic processes, such as the Rossby Wave
Instability (Li et al. 2000) or the Zombie Vortex Instability
(Marcus et al. 2015), where entropy plays a role, could have
dusty counterparts. Furthermore, hydrodynamic instabilities
driven by thermal cooling, such as VSI in stably stratified disks
(Lin & Youdin 2015) or the “Convective Overstability” (Klahr
& Hubbard 2014; Lyra 2014), may also find dusty analogs
because finite dust–gas drag is equivalent to a heat sink/source.
The dusty/adiabatic gas equivalence also offers a simple

way to simulate dusty protoplanetary disks using purely
hydrodynamic codes. All that is required is a re-interpretation
of the fluid variables and additional source terms in the usual
energy equation. The latter is already available in many public5 http://plutocode.ph.unito.it/
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codes. In a follow-up work we will apply this approach to study
dusty disk–planet interaction.
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Appendix A
Variational Principle

Here we consider the more general equation of state for the
gas with r= GP K g where K is a prescribed function of position
and Γ is a constant. The effective energy equation is then
Equation (64), which generalizes Equation (15). Assuming
axisymmetry throughout, we linearize this equation along with
Equations (5), (7), and (11) to give
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where the linearized pressure force dF is given in Appendix B.
Recall that xdD = + · is the Lagrangian perturbation and
x is the Lagrangian displacement. In addition,
xs d = - · ·vi for axisymmetric flow. These equations

do not assume the radially local approximation used in
numerical computations. Note that Equations (67)–(68) imply

*
*


s

r
r

d d d
dD D

= G  -   +⎜ ⎟⎛
⎝

⎞
⎠∣ ∣ ∣ · ∣ · ·

( )

v v v
P

P
K

P
ln ,

73
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so the first (real) term on the right does not contribute to
*rD D( )PIm . Setting K to constant and taking the imaginary

part gives Equation (35).
From the linearized meridional momentum equations, we find
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where the integral is taken over the volume of the fluid.
Integrating by parts and ignoring surface integrals, the last term is

*

* *

* *

* *

* * *

* *

*

*

*











ò

ò

ò

ò

ò

ò

ò

srd d

s
dr
r
d sd d

s
dr
r
d sd d

s
d

d
d d

d sd d

s
d

d d d

d d
d

d
d d d

d d

d
d d

d

d d d

d d d
d

=  - 

=  + 

=
G

-  +
G

 +
G

´  + 

=
G

 + G  + 

´
G

 +
G

- 

=  +
G

 -
G

 -
G

´  + G 

+ 
G

 +
G

- 

=
G

 + G  - 

´  -   +

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎫⎬⎭
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

·

· ·

· ·

· ·

· ·

( · · ) ( · )

· ·

· · ·

( · · )

( · ) · ·

∣ · · ∣ ( · )

( · ) ( · ) ·

( )

F v

v v

v v

v
v

v v

v v v

v
v

v
v v

v v

v
v

v

v v v

v v v

i dV

i P i P dV

i P i P dV

i
P

P
S K

P

P i P dV

i
P

P
P P P

K
P

S dV

P K
P

P P

P K
P

S dV

P
P P P

S P K
P

dV

ln

ln

ln ln

ln

1

ln ,

75

eff

eff

eff

2

eff

where rº G( )S Plneff
1 . The self-gravitational part of

Equation (74) is, again neglecting surface terms when
integrating by parts,
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where the linearized continuity and Poisson equations have
been used.
Hence,
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Note that the coefficients of *d dv vz r and *d dv vz r are equal owing
to the equilibrium state (Equation (23)). The non-self-
gravitating case with G = =K c1, s

2 gives Equation (26).
Similar integral relations are given by Kato (1978), Kley et al.
(1993), and Latter & Ogilvie (2006).

Appendix B
Linearized Pressure Forces and Their Divergence

The linearized form of the pressure force r= -F P is

d
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The explicit forms for dF and d · F, in the radially local
approximation, are
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equation, and
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Appendix C
Linearized Dust Diffusion

We consider small grains in the Epstein regime, with fixed
internal density and size, so that


r

= ( )t
c

83s
s

(Price & Laibe 2015), where  is a constant. Then the dust
diffusion function becomes
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Linearizing,
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The linearized dust fraction dfd and its derivatives in the radially
local approximation are given by
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Appendix D
One-fluid Dispersion Relation for the Streaming Instability

We consider an unstratified disk with F = F( )r (by setting
z= 0 in Equation (10)) so that r¶ = ¶ =P 0z z . The back-
ground r¶ Pr , fd are constant input parameters. We Fourier
analyze in r and z so that ¶  ikz z and ¶  ikr x when acting
on perturbations, and denote º +∣ ∣k k kx z

2 2 2. We consider
large kx and thus neglect background gradients when compared
to that of perturbations. This is also done in most local studies
of dusty disks (e.g., Youdin & Johansen 2007). The linearized
equations, after eliminating the azimuthal velocity, are

s d d d=  = +· ( )vi W ik v ik v , 89x x z z

s d k d s s= - + ( )v v i F W k Q, 90x x r x
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The artificial factor z = 1 is inserted to keep track of the left of
the energy equation. Setting ζ to zero is equivalent to assuming
incompressible gas (Jacquet et al. 2011). The linearized dust
diffusion function (Appendix C), under the above approxima-
tions, is
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We eliminate the velocity perturbations to obtain
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which yields the dispersion relation
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The equation of state r= -( )P c f1s
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d was used.
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D.1. Incompressible Gas Limit

We can set z = 0 or consider  ¥cs
2 to obtain the

incompressible gas limit. Using t º -( )t f1s s d , we obtain

t s s t k s

k
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as derived by Jacquet et al. (2011) and Laibe & Price (2014) for
the SI. If s tW = W∣ ∣ ( )OK s K and t W  1s K , then the quartic
term is small and may be neglected. In that case we obtain the
cubic dispersion relation of Youdin & Goodman (2005).

D.2. Approximate Solutions in the Dust-rich Limit

Here we seek analytic solutions for the SI by examining
limiting cases and with additional approximations. We will fix
k f,z d and maximize growth rates over kx. It turns out that
simple solutions exist in the dust-rich case with fd near unity.
We consider small stopping times, t  0s , and assume that the
corresponding optimum  ¥kx .

We begin with the incompressible dispersion relation,
Equation (97). We assume a Keplerian disk ( kW = = WK),
and low-frequency modes (s W∣ ∣ K), which allows us to
neglect the quartic term. (This is also necessary to avoid
spurious modes, see Appendix D.3.) In dimensionless form, the
dispersion relation is
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where n s= WK, t= WSt s K, = -f f1g d (the gas fraction),
and recall that h=K rkx z x z, , . We have used h= WF f r2r g

2 and
considered large Kx.

Analytic expressions for cubic roots are unwieldy. To keep the
problem tractable, let us assume at this stage that the quadratic
term can be neglected compared to the last term. That is,

n+ - -( ) ∣ ∣ ( ) ( )
if

K f
f K K f

2
1 2 1 . 99

x
x z

d

g
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2 2
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(The imaginary term can be neglected for fixed fd but allowing
 ¥Kx .) We show in Appendix D.2.2 that this simplification

is valid for dust-rich disks.
Equation (98) now becomes the depressed cubic

 n n- = ( ), 1003

where  and  can be read off Equation (98). This can be
solved with Vieta’s substitution


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then Equation (100) becomes a quadratic for m3,
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At this point we assume that the term µKz
2 inside the square

root may be neglected. That is,

- ( ) [ ( )] ( )K K f f27 St 1 2 . 104z x
2 2 2

g d
2

We show in Appendix D.2.2 that this is readily satisfied.
Then m  1 3.
Now, remembering that we are considering the dust-rich

limit with - <f1 2 0d , the explicit solution for μ is

m = - p
⎡
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We have chosen the complex root for instability. Inserting this
into Equation (101) gives the eigenfrequency ν:

 n = +- - -( ) ( ) ( )K KRe
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1 3 1 3 1 3 5 3

 n = -- - -( ) ( ) ( )K KIm
3

2
St St , 107x x

1 3 1 3 1 3 5 3

where

 = -[ ( ) ] ( )f f K2 2 1 , 108zg d
2 1 3




= ( )
K

3
. 109z

2

Maximizing growth rates over Kx by setting n¶ ¶ =( ) KIm 0x ,
we find the optimum wavenumber is given by


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The maximum growth rate is then
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and the real frequency n n=( ) ( ) ( )Re 3 2 Im . We see that as
t  0s , the most unstable radial wavenumber diverges, µKx

t  ¥-
s

1 2 with a vanishing growth rate, tµ ( )smax 0s .
This corresponds to instability at arbitrarily small radial length
scales.

D.2.1. Finite Phase Lag as t  0s

An interesting property of the special solutions described above
is that there is always a phase lag between the Lagrangian pressure
and density perturbations. Since n >( )Re 0, the phase lag may be
defined as *j r= D D( )Parg . (Note that we may set rD = 1
without loss of generality.) It may be shown that D P
d s¶i v Px r in the limit of large Kx. To obtain dvx we use
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Equation (90) in the low-frequency limit. The expression for dvx
involves the Eulerian pressure perturbation, dP, for which we use
Equation (94) and assume incompressibility (z  0).

With these additional simplifications the phase lag j is given via

*
*

j
r
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D D
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. 112x

x xg
2 2

From here it is clear for the above solutions, where µ -K Stx
1 2

and n µ St1 2, that j is a constant. Explicitly inserting the
solutions gives

j =
´ -

-
( )

( )
f

f
tan

2 3 2 1

16 7
. 113

3 2
d

d

For the case shown in Figure 4 with =f 0.75d , we have
j  26 , comparable to the ~ 30 obtained from numerical
solutions.

D.2.2. Consistency Check

Here we check if the above explicit solutions are consistent
with the assumptions used to obtain them. Inserting the
solutions for the most unstable mode, we find Equation (99)
becomes

  ( )f
12

17
0.7. 114d

Since f 1d , this requirement can only be marginally satisfied.
However, we find that this mostly gives errors in the real
frequency (see Figure 4), while growth rates are still captured
correctly. On the other hand, the assumption of Equation (104)
becomes the trivial inequality

 ⎜ ⎟⎛
⎝

⎞
⎠ ( )1

27

4

5

3
30, 115

3

so Equation (104) is satisfied, which justifies the approximate
solution for μ in Equation (105).

Ultimately, the validity of these assumptions is justified
a posteriori by comparison with the solution to the full
equations in Figure 4.

D.3. Spuriously Growing Epicycles

A caveat of the dispersion relations Equations (96) and (97)
is that they admit spurious unstable modes with s W∣ ∣ . This
violates the one-fluid approximation to model dusty gas. We
demonstrate this below by considering the incompressible
dispersion relation. (We checked numerically that compressi-
bility has negligible effects on the modes examined.)

Consider the limit kz= 0. Then Equation (97) becomes

n
n

- - + - =
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⎦⎥( ) ( )i

f
i K

f

f
f

St
2 1 0 116x

2
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d

in dimensionless form. Neglecting the quadratic term leads to
stability, n <( )Im 0. This is consistent with a full two-fluid
analysis (Youdin & Goodman 2005).

However, solving Equation (116) explicitly assuming
t n ∣ ( )∣f Im 1d s would yield

n - ~( ) ( ) ( ) ( )K f ORe 2 1 St 1 117x d
2

n - -( ) [ ( ) ] ( )f K fIm St 4 1 St 1 . 118xd
2

d
4 2

Accordingly, growth is possible if

>
-( )

( )
K f

St
1

2 1
. 119

x d
2

Alternatively, for fixed ts growth is enabled by a sufficiently
large Kx. Unlike the SI, which is strongly suppressed when

=f 1 2d , these modes can still grow at equal dust-to-gas ratio.
These growing epicycles with w k∣ ∣ are absent from full

two-fluid models (Youdin & Goodman 2005). The discrepancy
lies in the fact that the one-fluid equations, to first order in ts,
are only valid for low-frequency waves with s W∣ ∣ . Thus
only low-frequency modes should be retained from analyses
based on Equations (5)–(8).
Figure 16 shows unstable modes found from Equation (96)

as a function of Kz at fixed Kx= 1500,  = 2, and t W = 0.01s K .
The growth rates of the (spurious) overstable dusty epicycles
are weakly dependent on Kz and are well approximated by that
in the limit Kz= 0, Equation (118). For the case considered in
Figure 16 we find Ws 0.067 K, as observed. By contrast, the
SI requires >K 0z , and it dominates when K 100z .
Care must be taken if the first-order one-fluid equations are

used to simulate dusty gas. For example, 2D, razor-thin disks
would allow the spurious epicycles to dominate, since in that
case the SI cannot operate. However, Figure 16 shows that the
SI should dominate in realistic 3D disks where a range of Kz is
allowed.
Thus simulations based on the first-order one-fluid equations

should be set up to suppress these spurious epicycles. This
might be achieved, for example, through physical or numerical
viscosity to eliminate high-kx modes, since for fixed disk/dust
parameters these spurious epicycles operate only at sufficiently
small radial wavelengths. Alternatively, one needs to ensure
that the physical instabilities of interest have larger growth rates
than the spurious epicycles.
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