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Abstract

This paper examines the role of software piracy in digital platforms, where a platform provider

makes a decision of how much software to produce in-house and how much to outsource from a

third-party software provider. Using a vertical differentiation model, we first theoretically investi-

gate the impact of software piracy on equilibrium pricing and profits of the platform and software

providers, and software outsourcing decision by the platform. We find that the platform provider

can benefit from piracy, and that an increase in piracy reduces in-house software production. We

then provide empirical evidence for the external validity of our theoretical prediction on the out-

sourcing decision using data from the U.S. handheld video game market between 2004 and 2012.

This market is a classical two-sided market, dominated by two handheld platforms (Nintendo DS

and Sony PlayStation Portable) and is known to have suffered from software piracy significantly.

Our regression results show that the proportion of in-house software decreases in piracy, supporting

our theoretical prediction.
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1 Introduction

Software piracy has been a hotly debated topic in digital platforms such as video games, smart-

phone/tablet apps, and ebooks. Traditionally, studies on software piracy have mainly focused on

how software piracy might increase/decrease the profits of software providers (see e.g., Conner

and Rumelt 1991, Takeyama 1994, Givon, Mahajan, and Muller 1995, Shy and Thisse 1999, Peitz

2004, Jain 2008, Sinha, Machado, and Sellman 2010, Vernik, Purohit, and Desai 2011, Lahiri and

Dey 2013). However, in digital platforms where consumers and software providers interact (e.g.,

Church and Gandal 1992), software piracy does not only affect the profits of software providers,

but also the profits of platform providers. In order to use software, consumers first need to adopt

a platform. This feature appears to suggest that platform providers might benefit from software

piracy because it potentially increases the sales of platforms, which creates a conflict of interest in

piracy protection between platform providers and software providers.

Despite its importance and relevance to digital platform businesses, little has been studied about

the role of software piracy in a two-sided market setting. Notable exceptions are Rasch and Wenzel

(2013, 2015). Built on the literature on two-sided markets (e.g., Rochet and Tirole 2006, Rysman

2009), Rasch and Wenzel (2013) theoretically study the conflict between platforms and software

developers in a competitive platform market. Rasch and Wenzel (2015) extend this theoretical

model and examine how the impact of piracy differs across prominent and non-prominent software

developers. Our paper aims at contributing to this literature by examining the role of outsourcing

decisions by a platform provider when software piracy exists. In many digital platforms, platform

providers are also software providers (e.g., Nintendo, Microsoft, Apple, Google), and often in-

house software accounts for a significant proportion of platform providers’ profits. For example,

for Nintendo DS, a handheld video game device released by Nintendo in November 2004, Nintendo

made USD 89.2 million revenue in the first year from own in-house software alone, and this was

53% of revenues for all software released on Nintendo DS and 25% of the revenue from Nintendo

DS handheld device (hardware) in the same period. The in-house software production in digital

platform markets is an important phenomenon, and has been studied in the context of vertical

integration between platform providers and software providers (e.g., Lee 2013). However, no prior

studies on software piracy have incorporated this important aspect into the analysis.1

When software is provided by both platform and software providers, the effect of piracy on

1For example, Rasch and Wenzel (2013, 2015) assume that all software is provided by independent software
providers. However, they model platform competition, which we do not study in this paper.
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platform providers is not straightforward. While piracy might help increase the sales of platforms,

it can hurt in-house software profits. Platforms might then pass on the loss to software providers

by outsoucing software, but doing so will reduce the overall profits from software because the

margin from in-house software is higher than that from license fee revenues. Our goal is to examine

the impact of software piracy on the equilibrium outsourcing decision, or equivalently in-house

production decision.

To investigate the question, we develop a vertical differentiation model of software piracy where

upon buying a platform, consumers choose to buy a legal copy of software or use an illegal copy.

Following previous studies, we capture the degree of piracy through the deteriorated quality of

illegal software (i.e., psychological disutility, cost of acquiring knowledge for pirating software).

Under this setting, we first consider two baseline scenarios: (1) full integration scenario, where the

platform provider supplies both platform and software, and (2) full outsourcing scenario, where the

platform provider supplies platform and the software provider supplies software. We show that in

the full integration scenario, the platform provider’s combined profits from hardware and software

are always decreasing as the degree of software piracy increases. While the hardware profits are

increasing in piracy, the loss of software profits due to piracy outweighs the gain in hardware

profits. However, if the platform provider fully outsources software and earns software license fees

from the software provider, the impact of software piracy on its profits is non-linear in piracy, and

the platform provider benefits from an increase in piracy when the degree of piracy is relatively

high. This is because, although the profits from software license fees are decreasing in piracy, the

rate of the decline is smaller than that in in-house software profits in scenario (1). As a result, the

gain in platform profits due to piracy can outweigh the loss in license profits when the degree of

piracy is relatively high. We also find that under some conditions, the equilibrium license fee is

negative.

We then examine the main scenario in which the platform provider chooses the degree of in-

house versus outsourced software production. Once again, we find that the platform provider gains

from an increase in piracy when the degree of piracy is high. Moreover, as the degree of piracy

increases, the optimal proportion of in-house software decreases. This can be explained through

the mechanism combined from the two baseline scenarios: As the degree of piracy increases, the

loss in in-house software profit due to piracy increases. Although the profit margin from in-house

software is higher than license fees, the platform provider benefits from shifting software profits

from in-house to license fees because the (negative) marginal impact of piracy can be reduced.
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To provide empirical evidence for the external validity of our theoretical result on equilibrium

outsourcing decision, we collect data from the U.S. handheld video game market between 2004 and

2012. This market is a classical two-sided market (Clements and Ohashi 2005, Dubé, Hitsch, and

Chintagunta 2010, Chao and Derdenger 2013, Derdenger and Kumar 2013, Lee 2013, Derdenger

2014), dominated by two handheld platforms (Nintendo DS and Sony PlayStation Portable) and

is known to have suffered from software piracy significantly (Fukugawa 2011). For Nintendo DS,

a device called Revolution 4 made hacking possible, and for Sony PlayStation Portable, Pandora

battery was the key device for hacking. We obtain monthly data on software sales from NPD and

create two measures for the proportion of in-house software based on (i) the number of in-house

versus outsourced software titles and (ii) revenues of in-house versus outsourced software. As we

cannot directly observe the degree of piracy, we use U.S. Google Trends search volume on the two

idiosyncratic devices as a proxy for the degree of piracy. Our identification assumption is that

as more information about hacking devices becomes available, the chance of a consumer finding

hacking information becomes higher, which induces more search behavior on Google. Under this

assumption, U.S. Google Trends search volume captures variation in the cost of acquiring knowledge

about pirating software. In order to control for potential endogeneity of the search volume, we also

obtain Google Trends data on the same devices restricted to Japan (in Japanese).

Using monthly observations for the two handheld devices, we run regression analyses and esti-

mate the effect of piracy on the proportion of in-house software by controlling for other variables

such as the cumulative sales of hardware, system software updates, and platform- and month-fixed

effects. We find that for both measures of the proportion of in-house software, the effect of piracy

was negative and significant. These results support the theoretical prediction that the proportion

of in-house software decreases as the degree of piracy increases.

2 A Model of Software Piracy

We examine the role of piracy in outsourcing software in a vertical differentiation model with a

monopolist platform provider.2 Our model consists of three players: the platform provider, the

software provider, and consumers. The platform provider produces the hardware and sets the

hardware price. It can also produce software by itself (in-house software), outsource software to

the software provider (outsourced software), or mix of them. We assume that the total software

developed is one unit, and let δ ∈ [0, 1] be the proportion of software developed in-house and 1− δ

2Throughout the paper, we use hardware and platform interchangeably.

3



be the proportion outsourced. We assume that the cost of developing δ software for the platform

provider is Ch
2 δ2 and the cost of developing 1− δ software for the software provider is Cs

2 (1− δ)2.

Throughout the analysis, we assume that Ch ≥ Cs > 0. Finally, we assume that software is

undifferentiated, and that the marginal costs of hardware and software are zero.

The timeline of the model is as follows:

1. The platform provider sets the price of hardware (ph) and the proportion of software developed

in-house (δ).

• If δ < 1 (some outsourcing), the platform provider sets the unit licensing fee (f) paid

by the software provider.

• If δ = 1 (no outsourcing), the platform provider sets the price of software (ps).

2. If δ < 1, the software provider observes f and sets the price of software (ps) that is common

for all software.

3. Consumers observe ph and ps, and decide to buy hardware and to buy or pirate software.

We first describe consumers’ purchase decisions, and then move on to the firms’ decisions.

2.1 Consumers’ purchase decisions

Suppose that the consumers who buy one unit of software have the following utility:

ulegal(α) = v − ph + α− ps, (1)

and the pirates have the following utility:

upirate(α) = v − ph + γα, (2)

where v > 0 is the benefit from the hardware absent software; For example, smart phones have

some benefit even without any apps, or PlayStation 4 has a built-in Blu-ray player;3 α is the benefit

from the software; ph is the price of the hardware; ps is the price of the software; γ is the reduction

in utility due to the fact that the software is pirated. It might be psychological disutility such as

the fear of getting caught, the cost of acquiring knowledge for finding and using pirated software,

3Two platforms in our empirical application, Nintendo DS and Sony PlayStation Portable, have this feature. For
example, the hardware benefit for Nintendo DS may come from pre-existing software (Rasch and Wenzel 2013) as
Nintendo DS is backward-compatible with Game Boy Advance cartridges. Sony PlayStation Portable has a built-in
media player that can can play music and video, and an internet web browser.
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Figure 1: Distribution of buyers and pirates

the fact that the software is not pirated right away and so it’s a somewhat older game, or the fact

that many pirated software have limited functionality, e.g., inability to play multiplayer sessions

online for video games. Thus γ measures the effect of piracy. The larger it is, the more serious is

the problem they pose. If γ =1, then no one buys the software, and if γ = 0, there’s no piracy.

Thus γ denotes the degree of piracy, and we assume that γ ∈ (0, 1).

We assume that in order to play the software one has to purchase the hardware, that is, the

reality of the digital platform business is such that the hardware cannot be pirated. In order to

figure out who pirates and who buys, we let α be uniformly distributed between 0 and ᾱ, and as

we show shortly, Figure 1 summarizes the distribution of buyers and pirates: To show that indeed

consumers with α ∈ [0, α1] do not buy the hardware, consumers with α ∈ [α1, α2] buy the hardware

and pirate the software, while consumers with α ∈ [α2, ᾱ] buy both hardware and software, note

that the utilities of both buyers and pirates are increasing in α and therefore if we define α1 as

the lowest benefit such that upirate(α1) = 0, then for α < α1, the consumers do not purchase the

hardware and thus are out of the market, and for α > α1, the consumers buy the hardware and

have only to decide whether to pirate or purchase the software. Solving upirate(α1) from Equation

(2), this lower bound is given by the following:

α1 =
ph − v

γ
. (3)

The boundary α2 is such that the utilities of the pirates and legal buyer are exactly equal. Since

from Equations (1) and (2), it is evident that
∂ulegal

∂α >
∂upirate

∂α , consumers with α < α2 pirate the

software and those with α > α2 buy it legally. Solving upirate(α2) = ulegal(α2) from Equations (1)

and (2) yields the following:

α2 =
ps

1− γ
. (4)

We now discuss the optimal behavior of the firms where we first deal with one firm that produces
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both hardware and software (δ = 1: full integration), and then proceed to the case where production

is done by separate entities (δ = 0: full outsourcing). Finally, we consider the case where δ ∈ (0, 1).

Throughout our analysis, we make the following assumption.

Assumption 2.1. ᾱ >
√
2v.

Intuitively, this assumption states that the utility from software is large enough as compared to the

pure hardware benefit. We make this assumption because our focus in this paper is on the role of

software and its piracy activities.

2.2 A single firm produces both hardware and software (Full Integration)

The profit of the monopolist producing both hardware and software is given by the following:

πh = ph(ᾱ− α1) + ps(ᾱ− α2)−
Ch

2
= ph

(
ᾱ− ph − v

γ

)
+ ps

(
ᾱ− ps

1− γ

)
− Ch

2
(5)

where the RHS of Equation (5) is achieved by substituting from Equations (3) and (4). First order

conditions with respect to both prices yield the following (it is straightforward to check the second

order conditions are also satisfied). The superscript I implies that the variable in question is an

equilibrium solution in this Integration case.

pIs =
ᾱ(1− γ)

2
, (6)

pIh =
v + ᾱγ

2
. (7)

Substituting Equations (6) and (7) into (3) and (4) yield the following:

αI
1 =

ᾱγ − v

2γ
, (8)

αI
2 =

ᾱ

2
. (9)

Clearly αI
2 > αI

1 for all range of parameters, and αI
1 ≥ 0 if ᾱγ ≥ v. Assumption 2.1 guarantees

that such γ exists. If this condition is not satisfied, it means that all consumers purchase the

hardware and the hardware price does not depend on γ (i.e., ph = v). It is also easy to check that

upirate(α2) = ulegal(α2) =
v
2 . Thus the utility of the pirates spans the range from 0 to v

2 , while the

utility of the legal buyers span the range of v
2 to ᾱ+v

2 . Substituting Equation (6) through (9) into

(5) yields that the profits of the firm are declining with increase in piracy (γ) as is evident from

the following equation:

πI
h =

{
ᾱv + ᾱ2(1−γ)

4 − Ch
2 if γ < v

ᾱ ,
(ᾱγ+v)2

4γ + ᾱ2(1−γ)
4 − Ch

2 if γ ≥ v
ᾱ .

(10)
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Equation (10) also suggests that when Ch is large, the hardware firm prefers not to produce software

at all. If the firm does not produce any software, it still can make profits on the hardware because

of the intrinsic value of hardware v. The firm would then charge the price of ph = v, and at that

price the entire market (ᾱ) would buy the hardware. Thus the firm would make the profits of ᾱv.

πh = ᾱv.

It is then easy to check that when Ch is large, a higher γ makes the hardware firm not produce

software because
∂πI

h
∂γ < 0. The following Proposition summarizes the results of the Full Integration

case.

Proposition 2.2. [Full Integration] For small Ch, the hardware firm will develop software for any

γ ∈ (0, 1). For intermediate Ch, the hardware firm will only develop software when γ is smaller

than a threshold that is a function of (ᾱ, v, Ch). For large Ch, the hardware firm will only sell

hardware. When the hardware firm develops software, (i) the firm’s profits decrease in γ and (ii)

for a small γ, all consumers buy hardware at ph = v and the profits from hardware sales do not

depend on γ.

We provide detailed analysis in Appendix A.1.

2.3 Separate production with hardware firm setting licensing fee (Full Out-
sourcing)

This case deals with two independent firms: The hardware firm (subscripted by h) sets the price of

the hardware (ph) and the licensing fee (f), and the software provider (subscripted by s) sets the

price of the software (ps). We start with the software provider’s problem.

The profit function of the software provider is given by the following, where the RHS of the

equation is achieved by substituting from Equation (4). In accordance with the previous section,

the superscript O implies that the variable in question pertains to this Outsourcing case.

πs = (ps − f)(ᾱ− α2)−
Cs

2
= (ps − f)

(
ᾱ− ps

1− γ

)
− Cs

2
. (11)

The first-order condition gives

pOs =
ᾱ(1− γ)

2
+

f

2
. (12)

Substituting Equation (12) into Equation (11) yields the software provider’s profits:

πs(f) =
(ᾱ(1− γ)− f)2

4(1− γ)
− Cs

2
. (13)
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This profits impose an important constraint: the software provider produces the software only if

πs(f) ≥ 0. Since ∂πs(f)
∂f < 0, when Cs is large, the hardware firm needs to lower the licensing fee

sufficiently (f could be negative) in order to make the software provider produce the software.

The hardware producer profits are given by the following where the RHS of the equation is

achieved by substituting from Equations (3), (4) and (12).

πh = ph(ᾱ− α1) + f(ᾱ− α2) = ph

(
ᾱ− ph − v

γ

)
+ f

(
ᾱ− ᾱ(1− γ) + f

2(1− γ)

)
. (14)

The first-order conditions with respect to ph and f yield the following:

pOh =
v + ᾱγ

2
, (15)

fO =
ᾱ(1− γ)

2
. (16)

If we substitute Equation (16) into (12), we get the software price:

pOs =
3ᾱ(1− γ)

4
. (17)

The price of the hardware remains as before, but the price of the software increased, and thus we see

the effect of double marginalization: the price to the consumers is higher. Also we can recalculate

the boundaries by substituting Equations (15) and (17) into (3) and (4):

αO
1 =

ᾱγ − v

2γ
, (18)

αO
2 =

3ᾱ

4
. (19)

Thus the lower bound α1 did not change while the upper bound increased from ᾱ
2 to 3ᾱ

4 . Thus the

fact that a separate firm produces the software, increases pirates (since it increases the software

price). We can now compute the profits of the two firms as follows:

πO
h =

{
ᾱv + ᾱ2(1−γ)

8 if γ < v
ᾱ ,

(ᾱγ+v)2

4γ + ᾱ2(1−γ)
8 if γ ≥ v

ᾱ ,
(20)

πO
s =

ᾱ2(1− γ)

16
− Cs

2
. (21)

Now we can ask about the effect of piracy (γ). Suppose γ is increased. Then the price of the

software drops while the hardware price increases. In the Full Integration case, the absolute changes

are equal, i.e.,
∣∣∣∂ph∂γ

∣∣∣ = ∣∣∣∂ps∂γ

∣∣∣ = ᾱ
2 . In the Full Outsourcing case, the decrease in software price is

higher than the increase in the price of the hardware as demonstrated by the following inequality:∣∣∣∣∂ph∂γ

∣∣∣∣ = ᾱ

2
<

3ᾱ

4
=

∣∣∣∣∂ps∂γ

∣∣∣∣ .
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More interestingly, while the software firm clearly loses from piracy (see Equation 21), the hardware

firm may benefit from piracy when γ ≥ v
ᾱ . Differentiating Equation (20) with respect to γ yields

that ∂πh
∂γ ≥ 0 if:

ᾱγ ≥
√
2v. (22)

If v ≤ ᾱγ ≤
√
2v, then we get the expected result that ∂πh

∂γ ≤ 0. However if ᾱγ ≥
√
2v, then the

firm producing the hardware benefits from piracy. The reason is that this firm indeed loses twice:

Once on the licensing fee (see Equation 16), and second because the lower bound for buying the

hardware α1 is getting slightly larger (see Equation 18). But when piracy is large to begin with

(as required by condition 22), the change in this lower bound is small. On the other hand, the

hardware firm gains considerably by charging more for the hardware at a rate of ᾱ
2 (see Equation

15), and so if ᾱ is large enough (as required by condition 22), then the overall effect is to increase

its profits when piracy increases.

As in the previous case, as a sanity check, we can compute what will be the profits of the

hardware producer if it decides not to buy any software from the software provider, and compare it

to the profits given in Equation (20). We first note that the software provider develops software if

πO
s ≥ 0. For a range of (γ, Cs) such that πO

s > 0 (inner solutions), it is easy to check that πO
h > ᾱv

for any γ within the range. This is because the hardware firm earns positive licensing fee profits

(i.e., ᾱ2(1−γ)
8 > 0), and the profits from hardware sales are at least as large as ᾱv.

Now consider a range of (γ, Cs) such that πO
s ≤ 0 (corner solutions). Under this condition,

the hardware firm has two options: (i) lower the licensing fee and guarantee that πO
s = 0, or (ii)

abandon software and only sell hardware (and earn πh = ᾱv). Recall Equation (13). The constraint

πs = 0 implies that

πs(f) = 0 ⇔ (ᾱ(1− γ)− f)2

4(1− γ)
− Cs

2
= 0

⇔ f = ᾱ(1− γ)−
√

2(1− γ)Cs,

where the last identity comes from the constraint that the demand for software is nonnegative.

Under this f , the demand for software is
√

Cs
2(1−γ) . Substituting this licensing fee and Equation

(15) into Equation (14) yields

πO
h =

ᾱv +
(
ᾱ(1− γ)−

√
2(1− γ)Cs

)√
Cs

2(1−γ) if γ < v
ᾱ ,

(ᾱγ+v)2

4γ +
(
ᾱ(1− γ)−

√
2(1− γ)Cs

)√
Cs

2(1−γ) if γ ≥ v
ᾱ .

(23)

When γ < v
ᾱ , we have seen that the hardware firm has an incentive to make the software provider

develop software as long as the license profits are nonnegative, which is equivalent to a nonnegative

9



licensing fee. When γ ≥ v
ᾱ , the optimal f could be negative and the profit loss due to the negative

f could be fully compensated by an increase in the profits from hardware (as it increases with

γ). However, for a very large γ, the “subsidy” to the software firm through a negative licensing

fee becomes too large to be compensated by hardware profits. As a result, the hardware firm will

prefer not having software.

The following Proposition summarizes the results of the Full Outsourcing case.

Proposition 2.3. [Full Outsourcing] For small Cs and γ, the hardware firm will set a positive

license fee and the software firm produces software and earn positive profits. As γ increases, the

hardware firm’s profits could increase in γ. For a large γ, the software producer earns zero profits

and the license fee becomes negative. As γ further increases, the hardware firm prefers not to

subsidize the software firm, i.e., it only sells hardware.

We provide complete analysis in Appendix A.2.

2.4 Piracy and endogenous outsourcing decision

Built on the previous two baseline analyses, we now allow the hardware firm to control how much

of the software they produce in-house (δ) and how much they outsource (1 − δ). The hardware

firm sets the price of the hardware (ph), the proportion of software developed in house (δ), and the

license fee (f). The software firm sets the price of the software (ps).

From the analyses in the two baseline cases, we know that when the cost of developing software

is large or when the degree of piracy is too high, the hardware firm prefers to sell only hardware.

Moreover, when γ is too small, all consumers purchase hardware and hardware profits are indepen-

dent of the degree of piracy. These intuitions still hold in the current scenario, and thus we restrict

our attention to the interior solution in the current scenario:

Assumption 2.4. The cost of developing software is sufficiently low:

Cs ≤ Ch ≤ 27ᾱ(ᾱ− v)

128
.

Assumption 2.5. The degree of piracy is intermediate: let γ ≡ 1− 128Ch
27ᾱ2 and γ ≡ 1− 4(4Ch+Cs)ChCs

(2Ch+Cs)2ᾱ2 .

Then, we assume

γ ∈ Γ ≡
[
γ, γ

]
.

It is easy to check that Cs ≤ Ch implies that Γ is non-empty.
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We start with the software firm’s problem. As we will see below, the software firm’s equilibrium

software pricing will be identical to the Full Outsourcing case. Given (δ, f), the software firm’s

problem is

max
ps

(1− δ)(ps − f)

(
ᾱ− ps

1− γ

)
− Cs

2
(1− δ)2.

The first-order condition with respect to ps is the same as before, and gives

ps(f) =
ᾱ(1− γ) + f

2
, Qs(f) =

ᾱ(1− γ)− f

2(1− γ)
.

Plugging these into πs, we get

πs(δ, f) = (1− δ)
(ᾱ(1− γ)− f)2

4(1− γ)
− 1

2
Cs(1− δ)2.

The profits for the hardware firm consists of three elements: hardware profits (πhw
h ), profits

from license fees for outsourced software (πsw,out
h ), and in-house software profits (πsw,in

h ). The

profit function of the hardware firm is

πh = πhw
h + πsw,out

h + πsw,in
h

= ph

(
ᾱ− ph − v

γ

)
︸ ︷︷ ︸

hardware profits

+(1− δ)f

(
ᾱ(1− γ)− f

2(1− γ)

)
︸ ︷︷ ︸

profits from license fees

+ δ
ᾱ(1− γ) + f

2

(
ᾱ(1− γ)− f

2(1− γ)

)
− 1

2
Chδ

2︸ ︷︷ ︸
profits from in-house software

.

The hardware firm maximizes the profits by choosing the price of hardware (ph), license fee (f), and

proportion of in-house software (δ). First, consider the hardware price. The first-order condition

with respect to ph does not involve other endogenous variables (f and δ), and the optimal ph can

be obtained as

ph =
v + γᾱ

2
.

The first-order conditions for f and δ are

∂πh
∂f

= − 1

2(1− γ)

[
(1− δ)f + δ

ᾱ(1− γ) + f

2

]
︸ ︷︷ ︸
decrease in πh due to a decrease in software sales

+

(
ᾱ(1− γ)− f

2(1− γ)

)[
1− δ

2

]
︸ ︷︷ ︸

increase in πh due to an increase in “price” (f and ps)

= 0

∂πh
∂δ

=

(
ᾱ(1− γ)− f

2(1− γ)

)[
−f +

ᾱ(1− γ) + f

2

]
︸ ︷︷ ︸

increase in πh due to an increase in “price” (i.e., f < ps)

− Chδ︸︷︷︸
decrease in πh due to an increase in development cost

= 0.

First, the first-order condition with respect to f gives

f =
ᾱ(1− γ)(1− δ)

2− δ
. (24)
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Equation (24) implies that the optimal license fee is positive, and this is because we focus on the

interior solution. Also, note that for any δ, f is uniquely determined. To see this, notice that

∂f

∂δ
= − ᾱ(1− γ)

(2− δ)2
< 0.

The above inequality also implies that as the proportion of in-house software increases, the

license fee goes down. To see this intuitively, note that the marginal return from f for outsourced

software profit (
∂πsw,out

h
∂f ) and that for in-house software profit (

∂πsw,in
h
∂f ) are

∂πsw,out
h

∂f
= (1− δ)

ᾱ(1− γ)− 2f

2(1− γ)
, and

∂πsw,in
h

∂f
= −δ

f

2(1− γ)
.

The first-order condition with respect to f requires ∂πh
∂f =

∂πsw,out
h
∂f +

∂πsw,in
h
∂f = 0. Also, as Equation

(24) implies that the optimal f is strictly positive for δ > 0, the marginal return from f for in-house

software is strictly negative (i.e.,
∂πsw,in

h
∂f < 0). These two observations suggest that at the optimal

f , the marginal return from f for outsourced software is strictly positive (i.e,
∂πsw,out

h
∂f > 0). Thus,

if the hardware chooses to increase the proportion of in-house software, then it should lower the

license fee so that it increases the return from additional in-house software.

Now, substituting the expression for the optimal f (Equation 24) into the first-order condition

for δ, we get
ᾱ2(1− γ)

4(2− δ)2︸ ︷︷ ︸
MR of in-house software given optimal f

= Chδ︸︷︷︸
MC of in-house software

. (25)

This condition characterizes the optimal δ. The analytical solution is complicated and multiple

solutions could exit. However, we can get intuitions implicitly. First, it can be verified that the

marginal revenue in (25) is a convex function of δ on [0,1], and the marginal cost is linear in δ.

Figure 2 shows a graphical representation of condition (25). We plot the marginal revenue (the

convex curve labeled as MR), and four lines for the marginal cost with varying Ch (MC1 to MC4)

over δ. The solution(s) of Equation (25) depend on the values of (ᾱ, Ch, γ):

# solutions =


1 (δ < 2

3) if ᾱ2(1−γ)
4Ch

∈ (0, 1) (MC1),

2 (one solution < 2
3 and another > 2

3) if ᾱ2(1−γ)
4Ch

∈ [1, 3227) (MC2),

1 (δ = 2
3) if ᾱ2(1−γ)

4Ch
= 32

27 (MC3),

0 if ᾱ2(1−γ)
4Ch

> 32
27 (MC4).

Assumption 2.5 guarantees that ᾱ2(1−γ)
4Ch

≤ 32
27 , thus at least one solution exists. For MC2, we have

two solutions (points a and b in Figure 2). However, we can show that solution b (δ > 2
3) is a

12
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Figure 2: A graphical representation of optimal δ

saddle point, and thus the optimal proportion of in-house software (δ) is less than or equal to 2
3 .

We provide more detail on this in Appendix A.3.

Finally, note that the marginal revenue in Equation (25) is decreasing in γ. In Figure 2, a

downward shift of the marginal revenue curve moves the solution of δ to the left (for δ < 2
3). Thus,

we have ∂δ
∂γ < 0 for δ < 2

3 . This can also be shown by multiplying both sides of Equation (25) by

(2− δ)2 and differentiating with respect to γ:

− ᾱ2

4
=

∂δ

∂γ
Ch(2− δ)2 + 2δCh(2− δ)

(
−∂δ

∂γ

)
⇔ ∂δ

∂γ
= − ᾱ2

4Ch(2− δ)(2− 3δ)
, δ ̸= 2

3
.

The following Proposition summarizes the main results of the endogenous outsourcing scenario,

and we provide details in Appendix A.3.

Proposition 2.6. Suppose Assumptions 2.4 and 2.5 hold. Then, for γ ∈ Γ defined in Assumption

13



2.5, there exists a unique optimal strategy (p∗h, f
∗, δ∗) by the hardware firm that satisfies

p∗h =
v + γᾱ

2
, f∗ =

ᾱ(1− γ)(1− δ∗)

2− δ∗
,

δ∗(2− δ∗)2 =
ᾱ2(1− γ)

4Ch
, δ∗ ∈

[
Cs

2Ch + Cs
,
2

3

]
.

Moreover, under this optimal strategy, we have

∂δ∗

∂γ
< 0.

That is, as the degree of piracy increases, the hardware firm will use more outsourcing for the

production of software.

When γ becomes larger than the upper bound of Γ, the software firm’s profits become zero. As

before, the hardware firm may be willing to “subsidize” the software firm by lowering the licensing

fee, but it will eventually prefer not to have software when γ becomes too large. When γ is lower

than the lower bound of Γ, the hardware firm will sell hardware to all consumers. Under this

situation, hardware profits are no long a function of γ.

Next, we state that when Ch is low, the hardware firm’s profit πh can increase in piracy when

the degree of piracy γ is high. For this to happen for γ ∈ Γ, we require the following assumption:

Assumption 2.7. Let Cs = µCh for µ ∈ (0, 1].

Ch <
(2 + µ)2(2ᾱ2 − (4 + µ)v2)

8(4 + µ)µ
.

Proposition 2.8. Suppose Assumptions 2.4 and 2.5 hold. Then, for γ ∈ Γ defined in Assumption

2.5 and under Assumption 2.7, there exists a unique γ̂ < γ such that for γ > γ̂, ∂πh
∂γ > 0. Further-

more, γ̂ >
√
2v
ᾱ , i.e., the threshold value of γ in the current case is strictly greater than that in the

Full Outsourcing case.

More details are provided in Appendix A.4.

3 Empirical Investigation

Our theoretical examination shows that the proportion of in-house software decreases with the

degree of piracy. In this section, we provide some empirical evidence for the external validity of

our theoretical prediction using data from the U.S. handheld video game market between 2004

and 2012. Video game markets are a canonical example of two-sided markets in which software
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firms interact with consumers through platforms (video game consoles/handhelds) (Clements and

Ohashi 2005, Dubé, Hitsch, and Chintagunta 2010, Chao and Derdenger 2013, Derdenger and

Kumar 2013, Lee 2013, Derdenger 2014). During the sample period, the handheld market was

dominated by two major platforms: Nintendo DS (NDS), released in November 2004 by Nintendo,

and Sony PlayStation Portable (PSP), released in March 2005 by Sony Computer Entertainment.4

These two platforms provide a novel empirical setting for investigating our theoretical prediction.

First, software titles on NDS and PSP are developed by both the hardware firm (Nintendo/Sony)

and third-party software firms (e.g., Activision Blizzard, Electronic Arts, Square Enix).5 Thus, we

can examine the extent to which software titles are developed in-house versus outsourced. Second,

these platforms are known to have suffered from software piracy significantly (Fukugawa 2011).

According to a study conducted by Computer Entertainment Suppliers Association in Japan in

2010, the estimated total revenues lost due to software piracy on NDS and PSP is $41.7 billion

from 2004 to 2009 worldwide.6 The significant effect of piracy was mainly because of the devices

that easily make illegally downloaded software playable on NDS and PSP. For NDS, a small device

called the Revolution for DS (R4) made hacking possible. It is a cartridge that can be inserted

into NDS and allow downloaded ROMs to be booted on NDS from a microSD card. For Sony

PSP, hacking was made possible via a Pandora battery and a Magic Memory Stick. Eventually,

Nintendo took a legal action to stop the sales of R4, but Sony did not.

3.1 Data

This section describes the empirical measures used for our empirical examination. Our goal is to

examine the effect of software piracy on the proportion of in-house software. We collected data on

measures for (1) the proportion of in-house software (dependent variable), (2) the degree of software

piracy (key independent variable), and (3) control variables. The unit of our analysis is (platform,

month), and our sample size is 172.7 In what follows, we will explain each set of measures.

4We note that our theoretical model examines a monopoly platform’s decision. Although the empirical application
in this section has two platforms, NDS and PSP are highly differentiated from one another. PSP’s target consumer
segment was conventional gamers who appreciate high-quality graphics in a portable device, and NDS went after
children and casual gamers and offered a new way of playing games with touch screen and pen.

5We note that neither Nintendo nor Sony developed software for its rival’s platform.
6https://www.engadget.com/2010/06/06/cesa-calculates-gaming-industry-losses-due-to-portable-piracy/.
7Our theoretical prediction is based on a static model, but our empirical measures are observed at the monthly

level. Although developing a dynamic model is beyond the scope of this paper, we conjecture that our prediction
on the outsourcing decision will extend to a dynamic setting. In a dynamic variant of our model, consumers in
subsequent periods will have a lower α, which reduces the equilibrium hardware price over time (Nair 2007, Liu
2010). If consumers are forward-looking, they might delay purchase and this will increase α1 in Figure 1 in period 1.
However, as we saw, since the optimal δ is independent of ph, we expect that the impact of γ on δ will still remain
negative.
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3.1.1 Measures for the dependent variable

To measure the extent to which software is developed in-house versus outsourced, we obtain data

from NPD on monthly sales of all software titles released on NDS and PSP from their inception to

February 2012. For each software, we use its publisher identity for grouping software into in-house

(when the publisher is the platform provider) and outsourced (when the publisher is a third-party

software provider).8 For NDS, 1,777 software titles are released during the sample period, and

109 titles (6.1%) are by Nintendo (i.e., in-house). Examples of top selling in-house software titles

include New Super Mario Bros., Mario Kart DS, and Pokémon Diamond Version, and examples of

top selling outsourced software include Guitar Hero on Tour Bundle (by Activision Blizzard), Lego

Star Wars: The Complete Saga (by LucasArts), and Cooking Mama (by Majesco Entertainment).

For PSP, we observe 626 titles and 77 of them (12.3%) are by Sony. Examples of in-house software

include God of War: Chains of Olympus, SOCOM U.S. Navy SEALs: Fireteam Bravo, and Ratchet

& Clank: Size Matters, and examples of outsourced software include Grand Theft Auto: Liberty

City Stories (by Take-Two Interactive), Need for Speed: Most Wanted (by Electronic Arts), and

Star Wars: Battlefront II (by LucasArts).

Table 1 presents summary statistics on monthly software-related measurements for NDS and

PSP. The number of observations for NDS is 88 months, and that for PSP is 84 months. Our

main dependent variable is the proportion of in-house software. We create two measures using (1)

the number of “active” software, and (2) software revenues. “Active” software in a given month

is defined as software which has positive sales in that month. Video game software sales typically

peaks in the release month, declines quickly over time, and eventually becomes zero. We count

the number of software with positive sales in each month, for both in-house and outsourced. The

first panel of Table 1 shows that the average number of active software in any given month is

662.2 titles for NDS and 317.7 titles for PSP. The average number of active in-house software is 51

titles (11.8%) for NDS and 44.7 titles (16.8%) for PSP. These numbers are slightly higher than the

numbers described earlier (6.1% for NDS and 12.3% for PSP). This is mainly because in-house video

games tend to stay in the market longer than outsourced video games. We use these proportions

as one of the measures for the proportion of in-house software development.

Another measure is derived from the proportion of in-house software revenues. Our theoreti-

8We note that it is possible that in-house software is developed by an independent software developer and published
by a platform provider (see Gil and Warzynski 2015, Ishihara and Rietveld 2017). In this study, we focus on publisher
identity because the decision to release a game is made by publishers.
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Platform Variable Average SD Min Max

# active software

NDS all software 662.2 489.7 6 1418

(N=88) in-house software 51.4 25.9 1 92

in-house proportion 11.8% 6.19% 5.65% 29.7%

PSP all software 317.7 148.9 18 490

(N=84) in-house software 44.7 17.5 7 66

in-house proportion 16.8% 6.88% 11.7% 38.9%

software revenue

NDS all software $90.2m $88.5m $6.76m $470.1m

(N=88) in-house software $35.9m $31.2m $2.48m $148.3m

in-house proportion 44.8% 14.3% 23.9% 78.8%

PSP all software $29.8m $26.8m $2.86m $147.2m

(N=84) in-house software $5.53m $4.97m $0.64m $27.1m

in-house proportion 19.2% 6.73% 8.65% 39.3%

Notes: The number of observations (N) indicates the number of months we observe data for NDS (88 months) and
PSP (84 months).

Table 1: Summary statistics on monthly software-related measures

cal model does not account for software differentiation between in-house software and outsourced

software and also that within each group of software. However, in reality, software titles are dif-

ferentiated in quality and other observed attributes. The proportion of in-house software revenues

account for the average difference between the two groups of software, and can be thought of as

a weighted average version of the first dependent variable measure. The second panel of Table

1 shows the summary statistics on software revenues. The average monthly software revenue (all

active titles) is USD 90.2 million for NDS and 29.8 million for PSP. The average monthly revenue

for in-house software is USD 35.9 million (44.8%) for NDS and USD 5.5 million (19.2%) for PSP.

We note that the proportion of in-house software revenues for NDS is significantly higher than that

for PSP, despite the fact that the proportion of the number of active in-house software for NDS

is lower than that for PSP. This is because Nintendo owns several hugely successful intellectual

properties such as Mario franchise and Pokémon franchise which disproportionately generate huge

revenues as compared to outsourced video games.

The two panels in Figure 3 plot our dependent measures over time. The left panel shows

the monthly proportion of in-house software based on the number of active software, for NDS

and PSP. For NDS, it fluctuates between 0.1 and 0.3 right after the platform release, gradually

declines, and reaches a steady level of around 0.07. For PSP, it starts high (around 0.4) and quickly

declines until around April 2007, and slightly increases from there. Common in both platforms is
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Figure 3: Monthly proportion of in-house software over time

that the proportion tends to be higher in the earlier platform lifecycle than in the later platform

lifecycle. This might be because the platform providers needed to boost the sales of handheld

devices (platform adoption) in the early platform lifecycle, so as to enjoy the positive indirect

network feedback loop in the subsequent periods (e.g., increases software titles, which in turn

increases hardware sales). To do so, instead of relying on third-party software firms to release video

game titles in the early product lifecycle, the platform providers release their own in-house games.

Since our theoretical model is static and does not account for such a dynamic incentive shift, we

will control for the effect of platform lifecycle by including the cumulative number of hardware sales

as a control variable (we will discuss below).

The right panel shows the monthly proportion of in-house software revenues for NDS and PSP.

This measure fluctuates more significantly than the measure based on the number of active software.

Spikes are typically associated with a release of blockbuster in-house software. There is also a mild

seasonal effect: the in-house software proportion tends to be high in March, April, and May than in

other months for both NDS and PSP. For NDS, the proportion is also relatively high in August and

September. We will include monthly dummies as controls to account for such variation. Finally, we

note that for NDS, the proportion is on average higher in the earlier platform lifecycle than in the

later platform lifecycle, consistent with the trend of the other measure on the left panel. However,
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for PSP, the proportion fluctuates around 0.2 throughout the platform lifecycle, despite the fact

that the proportion on the left panel shows a declining pattern over time. This is mainly because

blockbuster software in PSP tends to be released by third-party firms (e.g., Take-Two Interactive

and Electronic Arts), and many of those titles were multi-platform releases such as PlayStation

2 (e.g., Grand Theft Auto: Liberty City Stories). Since the extra cost of porting games from

PlayStation 2 to PSP is relatively low, third-party firms were able to release blockbuster titles in

the early lifecycle of PSP. However, NDS was an innovative handheld device with touch screen and

pen, and many NDS games were designed to take advantage of this unique feature of NDS. As a

result, third-party firms did not enjoy the multi-platform strategy that involves NDS as much as

they did for PSP.

3.1.2 Measures for the key independent variable

The key independent variable of our regression analysis is the degree of piracy. In the theoretical

model, we operationalize it as a lowered quality of software relative to a legal version (γ). The

lowered quality may be due to a variety of reasons, but one such factor is the cost of using pirated

software. For NDS and PSP, in order to play illegally downloaded games, consumers need to know

how to use the device (R4 for NDS and Pandora battery for PSP) for hacking the system of the

handheld devices. Since this is an illegal act, most consumers search information online and find

out how-to. Such information is initially spread and shared only among hardcore hackers. But

what was unique about NDS and PSP software piracy is that the device made hacking so popular

and accessible to regular gamers that the information on the device became widely spread online.9

As more websites appear and explain how to use the device, the cost of using pirated software

decreases. In other words, we could use the volume/accessibility of online information as a proxy

for the (inverse) cost of using pirated software.

In our regression analysis, we use Google Trends’ (relative) search volume to approximate the

accessibility of online information on how to use the device.10 Since Google Trends is a result of

consumers’ interest in a certain keyword, it may not exactly match with the information accessi-

bility. Thus, our key identification assumption is that as more information becomes available, the

chance of finding information becomes higher. As a result, the search volume increases. Under this

9In fact, using R4 for NDS became widely well-known even among primary school children in Japan, and many
parents (who do not play video games) did not realize it is illegal and they made inquiries at video game shops as to
how to use the device to make downloaded games playable on NDS.

10Google Trends (https://trends.google.com/trends/) shows how often a particular keyword is searched relative
to the total search volume.
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Figure 4: Google Trends monthly search volume over time

assumption, consumers’ interest in the device (as captured by Google Trends) will capture variation

in the accessibility of information on how to use the device.

Specifically, we use the term “ds r4” and “psp pandora battery” as the search keywords for NDS

and PSP, respectively.11 We made the inquiry separately and obtain the monthly search volume

over our sample period using the U.S. as the specified region. The value of the search volume is

normalized in a way that the value, 100, is assigned to the peak search volume during the entire

period. Since we retrieved data separately for NDS and PSP, both series will have 100 as the

peak search volume value. Thus the comparison of the search volume between NDS and PSP is

meaningless, and only the time-series variation within each series matters. In our regression, we

include the platform fixed-effect as a control for adjusting the level effect.

Figure 4 shows the search volume for “ds r4” (left panel) and “psp pandora battery” (right

panel) over the sample period. In addition to the search volume in the U.S., we plot the search

volume restricted to Japan (in Japanese equivalent of the keywords). As we will explain below, the

search volume obtained from Japan will be used as an instrument in our regression. The search

11We did not use “nds” because “ds” was a more widely used term for referring to Nintendo DS. For PSP, we did
not include a term “Magic Memory Stick,” mainly because it makes the search volume significantly smaller. Also,
consumers only need to buy a Pandora battery (Magic Memory Stick can be easily made by downloading software
and storing it in a regular Memory Stick).
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volume for NDS is essentially zero for about two years after NDS release (until November 2006),

and increases sharply during 2007. In this year, NDS software piracy became a serious issue for

software firms and some software firms started embedding a code in software that prevents pirates

from playing an illegally downloaded version.12 However, such a prevention code was often cracked

by hackers a few days after release, and it never became a real solution. In 2008, Nintendo started

taking a legal action worldwide against retailers who sell R4.13 For example, Tokyo District Court

ruled against the distribution of R4 in February 2009. This coincides with a significant decline in

the search volume in Japan. In the U.S., the legal action was not taken during our sample period,

which is consistent with the longer lasting U.S. search volume.

We observe similar patterns for PSP. The search volume is zero until July 2007, and sharply

increases in the rest of 2007. The trend happened in Japan slightly earlier than in the U.S. Sony,

instead of taking a legal action, constantly introduced system software updates as well as new

hardware models that embed better protection against piracy.

In summary, we use the variation in search volume as a proxy for the degree of piracy. Based

on our theoretical prediction, we expect that a higher search volume leads to a lower proportion of

in-house software.

3.1.3 Control variables

In order to control for other factors that might influence the proportion of in-house software, we

collect additional data and generate control variables. First, we obtain data from NPD on monthly

hardware unit sales for NDS and PSP from their inception to February 2012. We then compute

the cumulative number of hardware unit sales and include this variable to control for the effect of

platform lifecycle on the dependent measure. We plot the cumulative hardware sales over time in

the left panel of Figure 5. Overall, the difference between NPD and PSP was small in the beginning,

but gets wider as time goes one. A periodic jump is due to the Christmas seasonal effect. As we

discussed above, platform’s lifecycle plays an important role in influencing the proportion of in-

house versus outsourced software. At the beginning of the lifecycle, third-party software firms may

be skeptical about the success of a platform. Moreover, the cost of developing software for a new

platform may be high because programmers may not be familiar with the development environment

for making software for the new platform. As time goes on, if the platform turns out to be a success

(which is captured by a large number of cumulative hardware sales), software firms will have more

12See, e.g., https://www.engadget.com/2008/03/11/square-enix-thanks-pirates-for-playing-ffcc/.
13https://ap.nintendo.com/news/press.jsp.
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Figure 5: Cumulative hardware unit sales and cumulative number of system software updates over
time

incentive to release software on the platform.

Second, we obtain monthly occurrence data on system software update releases for both NDS

and PSP. System software is similar to an operating system in computer, and controls all func-

tionalities available on a handheld device. System software updates are not necessarily targeted

against software piracy (e.g., fixing known bugs, adding new features to the device), but can also

be used for embedding piracy protection features. The right panel of Figure 5 shows the cumulative

number of system software updates over time for NDS and PSP. As we mentioned earlier, Sony

was active in providing updates for improving piracy protection but Nintendo was not. If software

firms expect new system software updates by a platform in a given month, and if the updates are

related to piracy protection, they may align the introduction of a software title with the system

software updates. Moreover, in general, they may find it more attractive to introduce software to

a platform with more system software updates. Thus, we include both monthly and cumulative

system software updates as control variables.

Finally, as we discussed above, we include monthly dummies to control for popular months for

introducing software. Since we have only two platforms, we are not able to control for calendar

time fixed effects. We tried specifications with year fixed effects but found that they are highly

correlated with the (logged) cumulative hardware sales and created a multicollinearity issue. Thus,

we dropped year fixed effects.
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3.2 Results

Our econometric model is

yit = αGit + βXit + µi + ϵit,

where the subscripts i and t index platform and time, yit is a measure for the proportion of in-house

software (either based on the number of active software or software revenue), Git is Google Trends’

search volume for hacking devices (a proxy for the degree of piracy), Xit is a vector of observed

controls (logged cumulative hardware sales, system software updates, and monthly dummies), µi is

a platform fixed effect, and ϵit is an error term. Our main parameter of interest is α, the effect of

piracy on the proportion of in-house software. Our theoretical result predicts that α is negative.

The key econometric issue in estimating the above model is that Git and ϵit may be correlated.

For example, it is possible that Google Trends U.S. search volume may be correlated with a new

release of blockbuster in-house games in the U.S. That is, when a popular game is released, con-

sumers might search for information about hacking device so that they can play it for free illegally,

which makes the search volume endogenous. We thus estimate the model using the Two-Stage

Least Squares. We use Google Trends Japan’s search volume for hacking devices (in Japanese) as

an instrument for the U.S. measure. As we saw in Figure 4, these two measures are highly corre-

lated. Also, as a set of video games available and released in Japan in a given month are different

from those in the U.S., we expect that Google Trends Japan’s search volume is uncorrelated with

the error term.14

We report the parameter estimates of the model in Table 2. The first panel of Table 2 shows

a set of results based on the number of active software and the second panel is based on software

revenues. In each panel, we estimated four models that differ in the set of control variables.

For all the specifications, we compute the standard errors based on the heteroskedasticity- and

autocorrelation-consistent (HAC) variance estimates (Newey and West 1987) with the Bartlett

kernel and the bandwidth of two. Also, in order to check the validity of the instruments, we report

the first-stage F-statistic of excluded instruments. The F-statistics suggest that our instruments

are not weak (Staiger and Stock 1997).

We first discuss the results in the first panel (the number of active software). Model 1 includes

14Some video games are released both in the U.S. and Japan, but not necessarily in the same month. Most games
have either U.S. or Japan as a primary target market, and based on the performance in the primary market, they
may also be released in the other market. Even popular games that are targeted at both markets from the beginning
may not be released in the same month. For example, Mario Kart DS, one of the best-selling Nintendo DS games,
was released in November 2005 in the U.S., and in December 2005 in Japan.
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Table 2: Regression Results

DV = in-house proportion based on # active software

Variable Model 1 Model 2 Model 3 Model 4

Google trends US (piracy) -4.61e-4∗∗ -4.42e-4∗∗ -4.55e-4∗∗ -4.30e-4∗∗

(1.10e-4) (1.03e-4) (1.14e-4) (1.06e-4)

Cumulative hardware sales (logged) -0.046∗∗ -0.046∗∗ -0.043∗∗ -0.042∗∗

(0.006) (0.006) (0.008) (0.008)

Software updates -0.008∗ -0.011∗∗

(0.003) (0.004)

Cumulative software updates -4.32e-4 -0.001

(3.97e-4) (3.92e-4)

Platform FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

R-squared 0.783 0.788 0.787 0.795

First-stage F-statistic 73.2 69.5 70.9 67.1

# observations 172 172 172 172

DV = in-house proportion based on software revenue

Variable Model 1 Model 2 Model 3 Model 4

Google trends US (piracy) -8.46e-4∗∗ -8.21e-4∗∗ -8.79e-4∗∗ -8.78e-4∗∗

(2.94e-4) (2.94e-4) (2.52e-4) (2.57e-4)

Cumulative hardware sales (logged) -0.049∗∗ -0.049∗∗ -0.070∗∗ -0.070∗∗

(0.009) (0.009) (0.014) (0.014)

Software updates -0.011 -0.001

(0.008) (0.007)

Cumulative software updates 0.003∗∗ 0.001

(0.001) (0.001)

Platform FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

R-squared 0.773 0.775 0.804 0.804

First-stage F-statistic 73.2 69.5 70.9 67.1

# observations 172 172 172 172

Notes: Standard errors are reported in parentheses. We compute the standard errors based on the heteroskedasticity-

and autocorrelation-consistent (HAC) variance estimates (Newey and West 1987) with the Bartlett kernel and the

bandwidth of two. ∗ and ∗∗ indicate 5% and 1% significance, respectively.
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Google Trends U.S. search volume, logged cumulative hardware sales, platform and month fixed

effects. We find that the search volume has a negative and significant effect on the proportion of

in-house software, which supports our theoretical prediction that a higher degree of piracy reduces

the proportion of in-house software. The (logged) cumulative hardware sales has a negative and

significant effect, suggesting that we see more outsourced software in the later platform lifecycle.

This result is consistent with our earlier discussion that platform providers might have an incentive

to introduce in-house software to boost hardware sales in the early platform lifecycle. Also, software

firms may have more incentive to introduce software to a platform with a larger customer base.

In Models 2-4, we add control variables related to system software updates to Model 1. First,

Model 2 adds the monthly number of system software updates to Model 1. The effect of the search

volume continues to be negative and significant. We find that the monthly number of system

software updates has a negative and significant effect on the proportion of in-house software. This

result is consistent with our discussion above that software firms might find it profitable to align

their software release with the timing of system software updates. Model 3 adds the cumulative

number of system software updates to Model 1. Once again, the effect of the search volume has a

negative and significant effect. However, we find that the cumulative number of system software

updates is insignificant. This may be because the general difference in efforts for piracy protection

between the two platforms may be stable over time and captured by the platform fixed effects.

Finally, in Model 4, we added both monthly and cumulative system software updates. Our main

conclusion remains unchanged.

In the second panel, we uses the proportion of in-house software revenue as the dependent

variable. We run the same four specifications. Throughout the four specifications, we find that the

search volume has a negative and significant effect on the proportion of in-house software revenue,

supporting our theoretical prediction. The (logged) cumulative hardware sales is also negative and

significant, suggesting the importance of platform lifecycle in explaining the proportion. However,

control variables based on system software updates are mostly insignificant, except for Model 3,

where we find that the cumulative number of system software updates has a positive and significant

effect on the proportion of in-house software. This is mainly because in the later periods of our

sample period, we observe an increasing trend of the proportion of in-house software revenue (right

panel of Figure 3), especially for NDS. This trend coincides with the system software updates

by NDS (right panel of Figure 5). Interestingly, we do not observe such trend when we use the

proportion based on the number of active software (left panel of Figure 3), and this is probably
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why we did not find a significant effect of the cumulative number of system software updates.

The positive effect when the proportion is based on software revenue may because, as a result of

increasing piracy protection via system software updates for NDS, consumers became more likely

to buy popular in-house software, which pushed the proportion of in-house software revenue.

Overall, throughout our empirical analyses, we consistently find a significant negative effect of

piracy on the proportion of in-house software, providing the external validity of our theoretical

prediction: the proportion of in-house software decreases as the degree of software piracy increases.

4 Discussion and Conclusion

In this paper we examine the role of software piracy in the outsourcing decision of a platform

provider. In particular, we look at a hardware producer such as Sony, that has to make a software

outsourcing decision, that is how many games to produce in-house, and how many to outsource

from a third-party software provider, where the games are routinely pirated, and that level of

piracy has to be taken into account in the outsourcing decision. In such markets, there is a built-in

tension between the hardware and software firms with respect to piracy: As the hardware cannot

be pirated, the hardware firm indirectly benefits from piracy (up to a level) since all pirates have

to purchase the hardware.

Using a vertical differentiation model, as well as empirical study using data from the U.S.

handheld video game market, we find that an increase in piracy increases the level of outsourcing

of the hardware provider, as well as increasing its profits. The reason for the increase in outsourcing

as a response to increase in piracy occurs because as the degree of piracy increases, the loss in in-

house software production due to piracy increases. Although the profit margin from in-house

software is higher than license fees, the platform provider benefits from shifting software profits

from in-house to license fees because the negative marginal impact of piracy can be reduced.

This main result occurs when the level of piracy is intermediate, between a lower and an upper

bound. When the level of piracy is smaller than the lower bound, the hardware firm will sell

hardware to all consumers, and the hardware profits are no longer a function of piracy. When the

level of piracy becomes larger than the upper bound, the software firm’s profits vanish, and the

hardware firm will be willing to subsidize the software firm by lowering the licensing fee up to a

limit of piracy, beyond which the software market disintegrates.

These results point at a major difficulty for the software producers: In practice, much of the

anti-piracy measures are within the realm of the hardware producer. These include measures such
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as developing new models that prevent modification of hardware (Fukugawa 2011).15 However, in

intermediate levels of piracy, as piracy becomes more prevalent, the hardware firms profits increase,

and at the same time it shifts the burden to the software firms by outsourcing more. It has no

incentive to stop piracy at these levels. Only when the level of piracy becomes acute (as it did in

the US in 2008) do the hardware firm’s incentives align with the software firm so that actions is

taken in the form of change of hardware or legal action.

15While software firms tried to embed codes in games that prevented pirates from playing pirated versions, such
prevention codes were quickly cracked by hackers and became useless.
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A Appendix

A.1 Proof of Proposition 2.2

The hardware firm’s problem is formulated as

max
ph,ps

phQh(ph) + psQs(ps)−
Ch

2
,

subject to (1) Qh(ph) ≥ Qs(ps), and (2) Qh(ph) ≤ ᾱ.16 The Lagrangian is then given by

L(ph, ps, λ) = phQh(ph) + phQh(ph) + psQs(ps) + λ1

(
Qh(ph)−Qs(ps)

)
+ λ2

(
ᾱ−Qh(ph)

)
,

and the Kuhn-Tucker conditions are

∂L

∂ph
= Qh(ph) + phQ

′
h(ph) + λ1Q

′
h(ph)− λ2Q

′
h(ph) = 0

∂L

∂ps
= Qs(ps) + psQ

′
s(ps)− λ1Q

′
s(ps) = 0

Qh(ph) ≥ Qs(ps) λ1 ≥ 0 λ1

(
Qh(ph)−Qs(ps)

)
= 0

Qh(ph) ≤ ᾱ λ2 ≥ 0 λ2

(
ᾱ−Qh(ph)

)
= 0

We solve this set of inequalities and equations. Below we examine every possible case.

1. When both constraints (1) and (2) are not binding (λ1 = λ2 = 0): This is the case with an

interior solution. We have

ph =
ᾱγ + v

2
, ps =

ᾱ(1− γ)

2

Qh =
ᾱγ + v

2γ
, Qs =

ᾱ

4
.

Constraint (1) is satisfied for any γ because v > 0. Constraint (2) implies that γ ≥ v
ᾱ , and

Assumption 2.1 (i.e., ᾱ >
√
2v) implies that the range of γ that supports this scenario is

non-empty.

With the optimal ph and ps, the hardware firm’s profit is

πh =
(ᾱγ + v)2

4γ
+

ᾱ2(1− γ)

4
− Ch

2
.

Now we check the condition for πh ≥ ᾱv, i.e., the hardware firm prefers to have software.

This condition is equivalent to

(ᾱ2 − 2ᾱv − 2Ch)γ + v2 ≥ 0.

16For simplicity, we drop some of the constraints that will obviously not bind (e.g., ph, ps ≥ 0).
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When Ch ≤ ᾱ(ᾱ−2v)
2 , πh > ᾱv for any γ because v > 0. When Ch > ᾱ(ᾱ−2v)

2 , πh ≥ ᾱv

for γ ≤ v2

2Ch−ᾱ(ᾱ−2v) . For the latter case to be non-empty, we need v
ᾱ ≤ v2

2Ch−ᾱ(ᾱ−2v) , or

Ch ≤ ᾱ(ᾱ−v)
2 .

In summary, this scenario is supported under the following conditions: (i) Ch ≤ ᾱ(ᾱ−2v)
2 and

γ ∈
[
v
ᾱ , 1
)
; (ii) Ch ∈

(
ᾱ(ᾱ−2v)

2 , ᾱ(ᾱ−v)
2

]
and γ ∈

[
v
ᾱ ,

v2

2Ch−ᾱ(ᾱ−2v)

]
.

2. When only constraint (2) is binding (λ1 = 0 and λ2 ≥ 0): This is the case with Qs(ps) <

Qh(ph) = ᾱ (everyone buys hardware). We have

ph = v, ps =
ᾱ(1− γ)

2

Qh = ᾱ, Qs =
ᾱ

4
.

Constraint (1) is satisfied for any γ. Since constraint (2) is binding, we need λ1 ≥ 0, which is

equivalent to γ ≤ v
ᾱ . Assumption 2.1 implies that the range of γ that supports this scenario

is non-empty.

With the optimal ph and ps, the hardware firm’s profit is

πh = ᾱv +
ᾱ2(1− γ)

4
− Ch

2
,

and it is easy to check that πh ≥ ᾱv for γ ≤ 1− 2Ch
ᾱ2 . In order for the range of γ that supports

this scenario to be non-empty, we need 1− 2Ch
ᾱ2 > 0, or Ch < ᾱ2

2 .

In summary, the following conditions support this scenario: (i) Ch ≤ ᾱ(ᾱ−v)
2 and γ ∈

(
0, v

ᾱ

]
;

(ii) Ch ∈
(
ᾱ(ᾱ−v)

2 , ᾱ
2

2

)
and γ ∈

(
0, 1− 2Ch

ᾱ2

)
.

3. When only constraint (1) is binding (λ1 ≥ 0 and λ2 = 0): This is the case with Qh(ph) =

Qs(ps) < ᾱ. This constraint gives the following relationship between ps and ph:

ps =
(1− γ)(ph − v)

γ
.

Substituting this into the first-order conditions, we get λ1 = − v
γ < 0 for any γ. Thus this

scenario is not supported.

4. When both constraints are binding (λ1 ≥ 0 and λ2 ≥ 0): This is the case with Qh(ph) =

Qs(ps) = ᾱ. From the discussion above, we can obtain

ph = v, ps = 0

Qh = Qs = ᾱ.
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Constraint (1) requires λ1 ≥ 0. However, substituting the above optimal prices into the

first-order conditions, we can show that λ1 = −ᾱ(1 − γ) < 0. Thus, this scenario is not

supported.

Combining the results, we have:

1. When Ch ≤ ᾱ(ᾱ−2v)
2 , the hardware firm will develop software for γ ∈ (0, 1).

• For γ ∈
(
0, v

ᾱ

]
, the optimal strategy is characterized by scenario 2.

• For γ ∈
(
v
ᾱ , 1
)
, the optimal strategy is characterized by scenario 1.

2. When Ch ∈
(
ᾱ(ᾱ−2v)

2 , ᾱ(ᾱ−v)
2

]
, the hardware firm will develop software if γ ∈

(
0, v2

2Ch−ᾱ(ᾱ−2v)

]
.

Otherwise, it will only sell hardware.

• For γ ∈
(
0, v

ᾱ

]
, the optimal strategy is characterized by scenario 2.

• For γ ∈
(

v
ᾱ ,

v2

2Ch−ᾱ(ᾱ−2v)

)
, the optimal strategy is characterized by scenario 1.

3. When Ch ∈
(
ᾱ(ᾱ−v)

2 , ᾱ
2

2

)
, the hardware firm will develop software if γ ∈

(
0, 1− 2Ch

ᾱ2

)
. Oth-

erwise, it will only sell hardware.

• The optimal strategy is characterized by scenario 2.

4. When Ch ≥ ᾱ2

2 , the hardware firm will not develop software for γ ∈ (0, 1).

In summary, when Ch is sufficiently low, regardless of γ’s value, software is supplied. When γ

is small, all consumers buy hardware. When Ch is intermediate, the hardware firm does not supply

software if γ is large. This is because the negative effect of software piracy on in-house software

is so large that it would not make sense to pay Ch and sell software. When Ch is large, it is too

costly to supply software so the hardware firm just sells hardware.

A.2 Proof of Proposition 2.3

The software provider’s problem given the license fee f is given by

πs(f) = max
ps

(ps − f)

(
ᾱ− ps

1− γ

)
− Cs

2
.
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The first-order condition with respect to ps yields

ps(f) =
ᾱ(1− γ) + f

2

Qs(f) ≡ ᾱ− ps(f)

1− γ
=

ᾱ

2
− f

2(1− γ)

πs(f) =
(ᾱ(1− γ)− f)2

4(1− γ)
− Cs

2
.

The hardware provider’s problem is then given by

max
ph,f

phQh(ph) + fQs(f)

subject to (1) Qh(ph) ≥ Qs(f), (2) Qh(ph) ≤ ᾱ, and (3) πs(f) ≥ 0. The Lagrangian is

L(ph, f, λ) = phQh(ph) + fQs(f) + λ1

(
Qh(ph)−Qs(f)

)
+ λ2

(
ᾱ−Qh(ph)

)
+ λ3πs(f).

The Kuhn-Tucker conditions are

∂L

∂ph
= Qh(ph) + phQ

′
h(ph) + λ1Q

′
h(ph)− λ2Q

′
h(ph) = 0

∂L

∂f
= Qs(f) + fQ′

s(f)− λ1Q
′
s(f) + λ3π

′
s(f) = 0

Qh(ph) ≥ Qs(f) λ1 ≥ 0 λ1

(
Qh(ph)−Qs(f)

)
= 0

Qh(ph) ≤ ᾱ λ2 ≥ 0 λ2

(
ᾱ−Qh(ph)

)
= 0

πs(f) ≥ 0 λ3 ≥ 0 λ3πs(f) = 0

We solve this set of inequalities and equations. Below we examine every possible case.

1. When all constraints are not binding (λ1 = λ2 = λ3 = 0): This is the case with interior

solutions. We have

ph =
ᾱγ + v

2
, f =

ᾱ(1− γ)

2

Qh =
ᾱγ + v

2γ
, Qs =

ᾱ

4
.

Constraint (1) is satisfied for any γ. Non-binding constraint (2) implies that γ ≥ v
ᾱ . Finally,

non-binding constraint (3) implies that γ ≤ 1 − 8Cs
ᾱ2 . The range of γ that supports this

scenario is non-empty if v
ᾱ ≤ 1− 8Cs

ᾱ2 or Cs ≤ ᾱ(ᾱ−v)
8 .

With the optimal ph and f , the hardware firm’s profit is

πh =
(ᾱγ + v)2

4γ
+

ᾱ2(1− γ)

8
,
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and it is easy to check that πh > ᾱv for any γ in the range. Thus, the hardware firm prefers

to have software developed. Moreover,

∂πh
∂γ

=
ᾱ2

8
− v2

4γ2
.

Thus, ∂πh
∂γ > 0 for γ >

√
2v
ᾱ .

In summary, this scenario is supported under the following conditions: Ch < ᾱ(ᾱ−v)
8 and

γ ∈
[
v
ᾱ , 1−

8Cs
ᾱ2

]
. Moreover, if Ch < ᾱ(ᾱ−

√
2v)

8 , then ∂πh
∂γ ≤ 0 for γ ∈

[
v
ᾱ ,

√
2v
ᾱ

]
and ∂πh

∂γ > 0 for

γ ∈
(√

2v
ᾱ , 1− 8Cs

ᾱ2

]
. If Ch ∈

[
ᾱ(ᾱ−

√
2v)

8 , ᾱ(ᾱ−v)
8

)
, ∂πh

∂γ ≤ 0 for all γ ∈
[
v
ᾱ , 1−

8Cs
ᾱ2

]
.

2. When only constraint (3) is binding (λ1 = λ2 = 0 and λ3 ≥ 0): This is the case where

πs(f) = 0. We have

ph =
ᾱγ + v

2
, f = ᾱ(1− γ)−

√
2(1− γ)Cs

Qh =
ᾱγ + v

2γ
, Qs =

√
Cs

2(1− γ)
.

Constraint (1) requires ᾱγ+v
2γ ≥

√
Cs

2(1−γ) . Let g(γ) = ᾱγ+v
2γ −

√
Cs

2(1−γ) . It is easy to check

that ∂g(γ)
∂γ < 0 ∀γ, limγ→0 g(γ) = +∞, and limγ→1 g(γ) = −∞. Thus, there exist a unique

threshold, say, γ1 ∈ (0, 1) such that g(γ) ≥ 0 for all γ ≤ γ1. Constraint (2) implies that

γ ≥ v
ᾱ . Constraint (3) is binding thus we need λ3 ≥ 0, which is equivalent to γ ≥ 1 − 8Cs

ᾱ2 .

The range of γ that supports this scenario is non-empty if g(γ) > 0 at γ = max
{

v
ᾱ , 1−

8Cs
ᾱ2

}
.

Suppose that v
ᾱ < 1 − 8Cs

ᾱ2 (or Cs < ᾱ(ᾱ−v)
8 ). Then, it is easy to check g(γ = 1 − 8Cs

ᾱ2 ) > 0,

so γ1 > 1 − 8Cs
ᾱ2 . If v

ᾱ ≥ 1 − 8Cs
ᾱ2 (or Cs ≥ ᾱ(ᾱ−v)

8 ), then g(γ = v
ᾱ) ≥ 0 (i.e., v

ᾱ ≤ γ1) if

Cs ≤ 2ᾱ(ᾱ− v). Together, the range of γ is non-empty if Cs ≤ 2ᾱ(ᾱ− v).

With the optimal ph and f , the hardware firm’s profit is

πh =
(ᾱγ + v)2

4γ
+
(
ᾱ(1− γ)−

√
2(1− γ)Cs

)√ Cs

2(1− γ)
.

When γ ≥ v
ᾱ , not everyone buys hardware and phQh = (ᾱγ+v)2

4γ ≥ ᾱv. Thus, the above

equation for πh suggests that πh can be lower than ᾱv only when the optimal licensing fee is

negative:

ᾱ(1− γ)−
√

2(1− γ)Cs < 0 ⇔ γ > 1− 2Cs

ᾱ2
.

We first check if a negative licensing fee could actually happen within the above range of γ.

When v
ᾱ > 1 − 2Cs

ᾱ2 (or Cs > ᾱ(ᾱ−v)
2 ), then the condition for this scenario to be non-empty
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(Cs ≤ 2ᾱ(ᾱ − v)) implies that 1 − 2Cs
ᾱ2 < γ1. If v

ᾱ ≤ 1 − 2Cs
ᾱ2 , then it can be shown that

g(γ = 1 − 2Cs
ᾱ2 ) = ᾱ2v

2(ᾱ2−2Cs)
> 0. Thus, the negative licensing fee could indeed happen.

Below, we focus on γ ∈
(
1− 2Cs

ᾱ2 , γ1
]
.

First, note that

∂πh
∂γ

=
ᾱ2

4
− v2

4γ2
− ᾱ

2

√
Cs

2(1− γ)
.

We can show that for γ > 1− 2Cs
ᾱ2 ,

√
Cs

2(1−γ) >
ᾱ
2 . Thus, we have

∂πh
∂γ < 0 for γ ∈

(
1− 2Cs

ᾱ2 , γ1
]
.

Given this, if 1 − 2Cs
ᾱ2 < v

ᾱ (or Cs > ᾱ(ᾱ−v)
2 ), then we have πh < ᾱv for γ ∈

[
v
ᾱ , γ1

]
because

πh < ᾱv at γ = v
ᾱ . For Cs ≤ ᾱ(ᾱ−v)

2 , since π > ᾱv at γ = 1 − 2Cs
ᾱ2 , we can possibly have a

unique threshold,say, γ2 ∈
(
1− 2Cs

ᾱ2 , γ2
]
such that πh < ᾱv for γ ∈ (γ2, γ1]. For example, we

can numerically check that for (ᾱ, v, Cs) = (1.0, 0.5, 0.2), there exists such γ2 < γ1, but for

(ᾱ, v, Cs) = (1.5, 0.5, 0.2), πh > ᾱv at γ = γ1. Since we cannot derive a closed form for the

thresholds, let us define Θ ≡ {θ = (ᾱ, v, Cs) : 0 < v < ᾱ, 0 < Cs <
ᾱ(ᾱ−v)

2 , πh(γ = γ1) ≥ ᾱv}.

We can now summarize the range of γ that supports this scenario. When Ch < ᾱ(ᾱ−v)
8 , γ ∈[

1− 8Cs
ᾱ2 , γ1

]
for (ᾱ, v, Cs) ∈ Θ. For (ᾱ, v, Cs) /∈ Θ, there exists a unique γ2(θ) ∈

(
1− 2Cs

ᾱ2 , γ1
)

such that πh < ᾱv for all γ ∈ (γ2(θ), γ1]. When Ch ∈
[
ᾱ(ᾱ−v)

8 , ᾱ(ᾱ−v)
2

]
, γ ∈

[
v
ᾱ , γ1

]
for

(ᾱ, v, Cs) ∈ Θ. For (ᾱ, v, Cs) /∈ Θ, there exists a unique γ2(θ) ∈
(
1− 2Cs

ᾱ2 , γ1
)
such that

πh < ᾱv for all γ ∈ (γ2(θ), γ1]. When Ch ∈
(
ᾱ(ᾱ−v)

2 , 2ᾱ(ᾱ− v)
]
, γ ∈

[
v
ᾱ , γ1

]
. But as we saw,

πh < ᾱv for this range of γ and the hardware firm prefers not to have software.

Finally, we examine the effect of γ on πh. We saw that for γ ∈
(
1− 2Cs

ᾱ2 , γ1
]
, we have ∂πh

∂γ < 0.

We thus consider γ ∈
[
max

{
v
ᾱ , 1−

8Cs
ᾱ2

}
, 1− 2Cs

ᾱ2

]
. Note that

∂2πh
∂2γ

=
v2

2γ3
− ᾱ

4(1− γ)

√
Cs

2(1− γ)
=

v2

2(1− γ)
√
1− γ

(
(1− γ)

√
1− γ

γ3
− ᾱ

√
Cs

2
√
2v2

)
.

It is easy to check that limγ→0
∂2πh
∂2γ

= ∞ and limγ→1
∂2πh
∂2γ

= −∞. Let h(γ) = (1−γ)
√
1−γ

γ3 −
ᾱ
√
Cs

2
√
2v2

. We can show that ∂h(γ)
∂γ < 0 for all γ, and thus, there exists a unique thresh-

old, say, γ3 such that ∂2πh
∂2γ

∣∣∣
γ=γ3

= 0. We can then consider three possibilities in terms

of where γ3 falls into the range of γ above. Suppose γ3 > 1 − 2Cs
ᾱ2 . Then ∂2πh

∂2γ
> 0 for

γ ∈
[
max

{
v
ᾱ , 1−

8Cs
ᾱ2

}
, 1− 2Cs

ᾱ2

]
. Since ∂πh

∂γ < 0 at γ = 1 − 2Cs
ᾱ2 , we have ∂πh

∂γ < 0 for

∀γ ∈
[
max

{
v
ᾱ , 1−

8Cs
ᾱ2

}
, 1− 2Cs

ᾱ2

]
. For this to happen, we need h(γ = 1 − 2Cs

ᾱ2 ) > 0. Next,

if γ3 < max
{

v
ᾱ , 1−

8Cs
ᾱ2

}
, then ∂2πh

∂2γ
< 0 for γ ∈

[
max

{
v
ᾱ , 1−

8Cs
ᾱ2

}
, 1− 2Cs

ᾱ2

]
. Thus the sign

of ∂πh
∂γ depends on whether ∂πh

∂γ is positive or negative at γ = max
{

v
ᾱ , 1−

8Cs
ᾱ2

}
. First, when
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v
ᾱ < 1− 8Cs

ᾱ2 (or Cs <
ᾱ(ᾱ−v)

8 ), we have

∂πh
∂γ

∣∣∣∣
γ=1− 8Cs

ᾱ2

=
ᾱ2

4

[
1

2
−
(

ᾱv

ᾱ2 − 8Cs

)2
]
,

which is positive if Cs < ᾱ(ᾱ−
√
2v)

8 . Thus, when Cs < ᾱ(ᾱ−
√
2v)

8 , there exists a unique

threshold, say, γ4 such that ∂πh
∂γ > 0 for γ ∈

(
1− 8Cs

ᾱ2 , γ4
)
and ∂πh

∂γ ≤ 0 otherwise. If

Cs ∈
[
ᾱ(ᾱ−

√
2v)

8 , ᾱ(ᾱ−v)
8

)
, then ∂πh

∂γ < 0 for all γ ∈
(
1− 8Cs

ᾱ2 , 1− 2Cs
ᾱ2

)
. When v

ᾱ < 1 − 8Cs
ᾱ2 , it

is easy to check

∂πh
∂γ

∣∣∣∣
γ= v

ᾱ

= − ᾱ

2

√
ᾱCs

2(ᾱ− v)
< 0 ∀γ ∈

(
v

ᾱ
, 1− 2Cs

ᾱ2

)
.

Finally, if γ3γ ∈
[
max

{
v
ᾱ , 1−

8Cs
ᾱ2

}
, 1− 2Cs

ᾱ2

]
, then ∂πh

∂γ is a parabola with a maximum at

γ = γ3. Thus, we can check if the maximum attained can be positive. Analytically, it

is cumbersome to show. However, our numerical analysis shows that there exists a set of

(ᾱ, v, Cs) such that the maximum is positive (e.g., (ᾱ, v, Cs) = (1, 0.2, 0.1)). Under such a

condition, there exist γ4, γ5 ∈
[
max

{
v
ᾱ , 1−

8Cs
ᾱ2

}
, 1− 2Cs

ᾱ2

]
such that ∂πh

∂γ > 0 for γ ∈ (γ4, γ5)

and ∂πh
∂γ ≤ 0 otherwise.

3. When only constraint (2) is binding (λ1 = 0, λ2 ≥ 0, and λ3 = 0): This is the case where

Qh(ph) = ᾱ. We have

ph = v, f =
ᾱ(1− γ)

2

Qh = ᾱ, Qs =
ᾱ

4
.

Constraint (1) is satisfied for any γ. Constraint (2) is binding thus we need λ2 ≥ 0, which

results in γ ≤ v
ᾱ . Constraint (3) implies γ ≤ 1 − 8Cs

ᾱ2 . The range of γ that supports this

scenario is non-empty if 1− 8Cs
ᾱ2 > 0, or Cs <

ᾱ2

8 .

The hardware firm’s profit is πh = ᾱv + ᾱ2(1−γ)
8 , which is greater than ᾱv for any γ ≤

min
{

v
ᾱ , 1−

8Cs
ᾱ2

}
. Moreover, ∂πh

∂γ < 0.

In summary, this scenario is supported under the following conditions: (i) Cs ≤ ᾱ(ᾱ−v)
8 and

γ ∈
(
0, v

ᾱ

]
; (ii) Cs ∈

[
ᾱ(ᾱ−v)

8 , ᾱ
2

8

]
and γ ∈

(
0, 1− 8Cs

ᾱ2

)
. In both cases, ∂πh

∂γ < 0.

4. When constraints (2) and (3) are binding (λ1 = 0, λ2 ≥ 0, and λ3 ≥ 0): This is the case
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where Qs(f) ≤ Qh(ph) = ᾱ and πs(f) = 0. We have

ph = v, f = ᾱ(1− γ)−
√
2(1− γ)Cs

Qh = ᾱ, Qs =

√
Cs

2(1− γ)
.

Constraint (1) requires ᾱ ≥
√

Cs
2(1−γ) , which is equivalent to γ ≤ 1 − Cs

2ᾱ2 . Constraint (2) is

binding thus we need λ2 ≥ 0, or γ ≤ v
ᾱ . Constraint (3) is also binding thus we need λ3 ≥ 0,

or γ ≥ 1− 8Cs
ᾱ2 . The range of γ that supports this scenario is γ ∈

[
1− 8Cs

ᾱ2 ,min
{

v
ᾱ , 1−

Cs
2ᾱ2

}]
.

In order for this range to be non-empty, we need the following conditions. When v
ᾱ ≤ 1− Cs

2ᾱ2

(or Cs ≤ 2ᾱ(ᾱ − v)), we need 1 − 8Cs
ᾱ2 ≤ v

ᾱ , or Cs ≥ ᾱ(ᾱ−v)
8 . When v

ᾱ > 1 − Cs
2ᾱ2 , we need

1− Cs
2ᾱ2 > 0, or Cs < 2ᾱ2. Thus, the range of γ is non-empty if Cs ∈

[
ᾱ(ᾱ−v)

8 , 2ᾱ2
)
.

With the optimal ph and f , the hardware firm’s profit is

πh = ᾱv +
(
ᾱ(1− γ)−

√
2(1− γ)Cs

)√ Cs

2(1− γ)
.

This is greater than or equal to ᾱv as long as the licensing fee is non-negative, which implies

γ ≤ 1 − 2Cs
ᾱ2 . Since 1 − 2Cs

ᾱ2 < 1 − Cs
2ᾱ2 , the range of γ that supports this scenario becomes

γ ∈
[
1− 8Cs

ᾱ2 ,min
{

v
ᾱ , 1−

2Cs
ᾱ2

}]
. When v

ᾱ ≤ 1− 2Cs
ᾱ2 (or Cs ≤ ᾱ(ᾱ−v)

2 ), we need 1− 8Cs
ᾱ2 ≤ v

ᾱ ,

or Cs ≥ ᾱ(ᾱ−v)
8 . When v

ᾱ > 1− 2Cs
ᾱ2 , we need 1− 2Cs

ᾱ2 > 0, or Cs <
ᾱ2

2 . Thus, the range of γ

is non-empty if Cs ∈
[
ᾱ(ᾱ−v)

8 , ᾱ
2

2

)
. Moreover, note that

∂πh
∂γ

= − ᾱ

2

√
Cs

2(1− γ)
.

Thus ∂πh
∂γ < 0.

In summary, this scenario is supported under the following conditions: (i) Cs ∈
[
ᾱ(ᾱ−v)

8 , ᾱ(ᾱ−v)
2

]
and γ ∈

(
max

{
0, 1− 8Cs

ᾱ2

}
, v
ᾱ

]
; (ii) Cs ∈

(
ᾱ(ᾱ−v)

2 , ᾱ
2

2

]
, γ ∈

(
max

{
0, 1− 8Cs

ᾱ2

}
, 1− 2Cs

ᾱ2

]
. For

Cs ∈
(
ᾱ2

2 , 2ᾱ2
]
, the optimal strategy is supported, but the hardware firm’s profits are lower

than ᾱv. Moreover, we have ∂πh
∂γ < 0 under these conditions.

5. When only constraint (1) is binding (λ1 ≥ 0 and λ2 = λ3 = 0): This is the case with

Qh(ph) = Qs(f). Intuitively, this scenario will not be supported because when πs(f) > 0,

the optimal licensing fee will be high enough to make Qs(f) smaller than Qh(ph). We can

compute

ph =
ᾱ(3− 2γ)γ + (4− 3γ)v

2(2− γ)
, f =

(ᾱ(1− γ)− v)(1− γ)

2− γ
.
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The first-order condition with respect to f gives λ1 = f
γ(1−γ) −

ᾱ
2γ . Substituting the optimal

f into this, we can show that λ1 < 0 for any γ. Thus, this scenario is not supported.

6. When constraints (1) and (3) are binding (λ1 ≥ 0, λ2 = 0, and λ3 ≥ 0): This is the case with

Qh(ph) = Qs(f) < ᾱ and πs(f) = 0. This could happen when Cs is large and γ is also large

so that the hardware firm needs to lower f sufficiently, which makes the software demand

equal to the hardware demand. We can compute

ph = ᾱγ + v − γ

√
Cs

2(1− γ)
, f = ᾱ(1− γ)−

√
2(1− γ)Cs

Qh = Qs =

√
Cs

2(1− γ)
.

Constraint (1) is binding thus we need λ1 ≥ 0. From the first-order condition with respect to

ph, we get

λ1 = −ᾱγ − v + 2γ

√
Cs

2(1− γ)
= 2γ

(√
Cs

2(1− γ)
− ᾱγ + v

2γ

)
,

which is greater than or equal to zero when γ ≥ γ1, where γ̃ is defined in scenario 2 above.

Constraint (2) requires Qh ≤ ᾱ, or γ ≤ 1 − Cs
2ᾱ2 . Constraint (3) is binding thus we need

λ3 ≥ 0, which can be shown to be satisfied when γ ≥ γ1. To see this, note that the first-order

condition with respect to f gives

λ3 ≥ 0 ⇔ ᾱ(1− γ)− 2f + λ1 ≥ 0.

First, note that ᾱ(1−γ)−2f ≥ 0 for γ ≥ 1− 8Cs
ᾱ2 and that γ1 > 1− 8Cs

ᾱ2 (we have proven this in

scenario 2 above, but it is easy to check that because λ1(γ = 1− 8Cs
ᾱ2 ) < 0 and ∂λ1

∂γ > 0, it must

be 1− 8Cs
ᾱ2 < γ1). Thus, at γ = γ1, λ3 > 0. Overall, the range of γ that supports this scenario

is γ ∈
[
γ1, 1− Cs

2ᾱ2

]
. For this range of γ to be non-empty, we need λ1(γ = 1− Cs

2ᾱ2 ) ≤ 0, which

is equivalent to Cs ≤ 2ᾱ(ᾱ− v).

With the optimal ph and f , the hardware firm’s profit is

πh =

(
ᾱγ + v − γ

√
Cs

2(1− γ)

)√
Cs

2(1− γ)
+
(
ᾱ(1− γ)−

√
2(1− γ)Cs

)√ Cs

2(1− γ)

=

(
ᾱ+ v − (2− γ)

√
Cs

2(1− γ)

)√
Cs

2(1− γ)
.

We note that at γ = 1− Cs
2ᾱ2 , we have ph = v, f = −Cs

2ᾱ , Qh = Qs = ᾱ. Thus,

πh =

(
v − Cs

2ᾱ

)
ᾱ = ᾱv − Cs

2
,
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which is clearly less than ᾱv. For γ ∈
[
γ1, 1− Cs

2ᾱ

)
, note that

∂πh
∂γ

=
1

1− γ

√
Cs

2(1− γ)

(
ᾱ+ v

2
−

√
Cs

2(1− γ)

)
.

We know that ᾱ+v
2 < ᾱγ+v

2γ for γ < 1. Also, for γ > γ1,
ᾱγ+v
2γ <

√
Cs

2(1−γ) . Thus, ∂πh
∂γ < 0

for γ ∈
[
γ1, 1− Cs

2ᾱ2

)
. As we saw in scenario 2, we can show that πh − ᾱv at γ = γ1 can

be positive or negative under some values of (ᾱ, v, Cs). Note that the hardware firm’s profit

function in this scenario is identical to that in scenario 2 at γ = γ1. Thus, we can use the

same set of Θ we defined in scenario 2, and summarize the results as follows.

When Ch < ᾱ(ᾱ−v)
2 and (ᾱ, v, Cs) ∈ Θ, there exists a unique threshold, say, γ6(θ) ∈

(
γ1, 1− Cs

2ᾱ2

)
such that the hardware firm prefers to have software for γ ∈ [γ1, γ6(θ)]. When Ch < ᾱ(ᾱ−v)

2

and (ᾱ, v, Cs) /∈ Θ or Ch ∈
[
ᾱ(ᾱ−v)

2 , 2ᾱ(ᾱ− v)
]
, the hardware firm prefers not to have soft-

ware. Moreover, ∂πh
∂γ < 0.

7. When constraints (1) and (2) are binding (λ1 ≥ 0, λ2 ≥ 0, and λ3 = 0): This is the case with

Qh(ph) = Qs(f) = ᾱ. Once again, intuitively, this scenario will not be supported because

when πs(f) > 0, the optimal licensing fee will be high enough to make Qs(f) smaller than

Qh(ph). We can compute

ph = v f = −ᾱ(1− γ).

The first-order condition with respect to f gives λ1 = f
γ(1−γ) −

ᾱ
2γ . Substituting the optimal

f into this, we can show that λ1 < 0 for any γ.

8. When all constraints are binding (λ1 ≥ 0, λ2 ≥ 0, and λ3 ≥ 0): This is the case with

Qh(ph) = Qs(f) = ᾱ and πs(f) = 0. We can compute

ph = v f = −ᾱ(1− γ)

Qh = Qs = ᾱ

From the three constraints, we can show that this scenario is supported only at γ = 1− Cs
2ᾱ2 .

At this γ, the first-order conditions give

λ3 =
ᾱ

Cs
λ1 + 1, λ2 = λ1 + v +

Cs

2ᾱ
− ᾱ.

First, for any λ1 ≥, λ3 > 0, but λ2 ≥ 0 if v + Cs
2ᾱ − ᾱ ≥ 0, or Cs ≥ 2ᾱ(ᾱ− v).
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Note that the hardware firm’s profits under the above optimal strategy are then

πh = ᾱv − ᾱ(1− γ)ᾱ < ᾱv.

Thus, the hardware firm prefers not to have software.

Combining the results from supported scenarios, we have:

1. When Cs ≤ ᾱ(ᾱ−v)
8 and θ = (ᾱ, v, Cs) ∈ Θ, there exists a unique γ6(θ) ∈

(
γ1, 1− Cs

2ᾱ2

)
such

that the optimal strategy is characterized as follows.

• For γ ∈
(
0, v

ᾱ

]
, the optimal strategy is characterized by scenario 3.

• For γ ∈
(
v
ᾱ , 1−

8Cs
ᾱ2

)
, the optimal strategy is characterized by scenario 1.

• For γ ∈
(
1− 8Cs

ᾱ2 , γ1
)
, the optimal strategy is characterized by scenario 2.

• For γ ∈ (γ1, γ6(θ)], the optimal strategy is characterized by scenario 6.

• For γ ∈ (γ6(θ), 1), the hardware firm chooses not to have software.

2. When Cs ≤ ᾱ(ᾱ−v)
8 and θ = (ᾱ, v, Cs) /∈ Θ, there exists a unique γ2(θ) ∈

(
1− 2Cs

ᾱ2 , γ1
)
such

that the optimal strategy is characterized as follows.

• For γ ∈
(
0, v

ᾱ

]
, the optimal strategy is characterized by scenario 3.

• For γ ∈
(
v
ᾱ , 1−

8Cs
ᾱ2

)
, the optimal strategy is characterized by scenario 1.

• For γ ∈
(
1− 8Cs

ᾱ2 , γ2(θ)
]
, the optimal strategy is characterized by scenario 2.

• For γ ∈ (γ2(θ), 1), the hardware firm chooses not to have software.

3. When Cs ∈
(
ᾱ(ᾱ−v)

8 , ᾱ(ᾱ−v)
2

]
and θ = (ᾱ, v, Cs) ∈ Θ, there exists a unique γ6(θ) ∈

(
γ1, 1− Cs

2ᾱ2

)
such that the optimal strategy is characterized as follows.

• For Cs ≤ ᾱ2

8 :

– For γ ∈
(
0, 1− 8Cs

ᾱ2

]
, the optimal strategy is characterized by scenario 3.

– For γ ∈
(
1− 8Cs

ᾱ2 , v
ᾱ

)
, the optimal strategy is characterized by scenario 4.

– For γ ∈
(
v
ᾱ , γ1

)
, the optimal strategy is characterized by scenario 2.

– For γ ∈ (γ1, γ6(θ)], the optimal strategy is characterized by scenario 6.

– For γ ∈ (γ6(θ), 1), the hardware firm chooses not to have software.

• For Cs >
ᾱ2

8 :

41



– For γ ∈
(
0, v

ᾱ

)
, the optimal strategy is characterized by scenario 4.

– For γ ∈
(
v
ᾱ , γ1

)
, the optimal strategy is characterized by scenario 2.

– For γ ∈ (γ1, γ6(θ)], the optimal strategy is characterized by scenario 6.

– For γ ∈ (γ6(θ), 1), the hardware firm chooses not to have software.

4. When Cs ∈
(
ᾱ(ᾱ−v)

8 , ᾱ(ᾱ−v)
2

]
and θ = (ᾱ, v, Cs) /∈ Θ, there exists a unique γ2(θ) ∈

(
1− 2Cs

ᾱ2 , γ1
)

such that the optimal strategy is characterized as follows.

• For Cs ≤ ᾱ2

8 :

– For γ ∈
(
0, 1− 8Cs

ᾱ2

]
, the optimal strategy is characterized by scenario 3.

– For γ ∈
(
1− 8Cs

ᾱ2 , v
ᾱ

)
, the optimal strategy is characterized by scenario 4.

– For γ ∈
(
v
ᾱ , γ2(θ)

]
, the optimal strategy is characterized by scenario 2.

– For γ ∈ (γ2(θ), 1), the hardware firm chooses not to have software.

• For Cs >
ᾱ2

8 :

– For γ ∈
(
0, v

ᾱ

)
, the optimal strategy is characterized by scenario 4.

– For γ ∈
(
v
ᾱ , γ2(θ)

]
, the optimal strategy is characterized by scenario 2.

– For γ ∈ (γ2(θ), 1), the hardware firm chooses not to have software.

5. When Cs ∈
(
ᾱ(ᾱ−v)

2 , ᾱ
2

2

]
, the optimal strategy is characterized as follows. Note that Assump-

tion 2.1 implies that ᾱ(ᾱ−v)
2 > ᾱ2

8 , thus Cs >
ᾱ2

8 in this region of Cs.

• For γ ∈
(
0, 1− 2Cs

ᾱ2

]
, the optimal strategy is characterized by scenario 4.

• For γ ∈
(
1− 2Cs

ᾱ2 , 1
)
, the hardware firm chooses not to have software.

6. When Cs >
ᾱ2

2 , the hardware firm prefers not to have software for γ ∈ (0, 1).

A.3 Proof of Proposition 2.6

The software provider’s problem given the license fee f is given by

πs(f, δ) = max
ps

(1− δ)(ps − f)

(
ᾱ− ps

1− γ

)
− Cs

2
(1− δ)2.

The first-order condition with respect to ps yields

ps(f) =
ᾱ(1− γ) + f

2

Qs(f) ≡ ᾱ− ps(f)

1− γ
=

ᾱ

2
− f

2(1− γ)

πs(f, δ) = (1− δ)
(ᾱ(1− γ)− f)2

4(1− γ)
− Cs

2
(1− δ)2.
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The hardware provider’s problem is then given by

max
ph,f,δ

phQh(ph) +
(
δps(f) + (1− δ)f

)
Qs(f)−

Ch

2
δ2

subject to (1) Qh(ph) ≥ Qs(f), (2) Qh(ph) ≤ ᾱ, and (3) πs(f) ≥ 0. The Lagrangian is

L(ph, f, λ) = phQh(ph) +
(
δps(f) + (1− δ)f

)
Qs(f)−

Ch

2
δ2

+ λ1

(
Qh(ph)−Qs(f)

)
+ λ2

(
ᾱ−Qh(ph)

)
+ λ3πs(f, δ).

The Kuhn-Tucker conditions are

∂L

∂ph
= Qh(ph) + phQ

′
h(ph) + λ1Q

′
h(ph)− λ2Q

′
h(ph) = 0

∂L

∂f
=
(
δp′s(f) + (1− δ)

)
Qs(f) +

(
δps(f) + (1− δ)f

)
Q′

s(f)− λ1Q
′
s(f) + λ3π

′
s,f (f, δ) = 0

∂L

∂δ
= (ps(f)− f)Qs(f)− Chδ + λ3π

′
s,δ(f, δ) = 0

Qh(ph) ≥ Qs(f) λ1 ≥ 0 λ1

(
Qh(ph)−Qs(f)

)
= 0

Qh(ph) ≤ ᾱ λ2 ≥ 0 λ2

(
ᾱ−Qh(ph)

)
= 0

πs(f, δ) ≥ 0 λ3 ≥ 0 λ3πs(f, δ) = 0

We solve this set of inequalities and equations. Given Assumptions 2.4 and 2.5, we will restrict our

attention to the interior solution case (λ1 = λ2 = λ3 = 0).

We have

ph =
ᾱγ + v

2
f =

ᾱ(1− γ)(1− δ)

2− δ

Qh =
ᾱγ + v

2γ
Qs =

ᾱ

2(2− δ)
.

Constraint (1) is satisfied for any γ. Constraint (2) implies that γ ≥ v
ᾱ . Assumptions 2.4 and

2.5 imply that this condition is satisfied. Finally, Constraint (3) implies that δ ≥ Cs
2Ch+Cs

. Since

Ch ≥ Cs, we have Cs
2Ch+Cs

∈
(
0, 13
]
. The first-order condition gives

δ(2− δ)2 =
ᾱ2(1− γ)

4Ch
.

As in Figure 2, the lower bound of γ, γ, in Assumption 2.5 guarantees that optimal δ exists. When

ᾱ2(1−γ)
4Ch

∈
[
1, 3227

]
, two δ’s satisfy the above first-order condition. However, we can show that one of

the δ’s that is greater than 2
3 is a saddle point.
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To see this, we check the second-order condition of the hardware firm’s problem. First note

that ∂2πh
∂ph∂f

= ∂2πh
∂ph∂δ

= 0 and ∂2πh
∂2ph

< 0. Thus, we only need to examine the condition for (f, δ). The

Hessian is given by

H =

(
∂2πh
∂2f

∂2πh
∂f∂δ

∂2πh
∂δ∂f

∂2πh
∂2δ

)
=

(
− 2−δ

2(1−γ) − ᾱ(1−γ)−f
2(1−γ)

− ᾱ(1−γ)−f
2(1−γ) −Ch

)
.

We know that − 2−δ
2(1−γ) < 0, and

|H| =
(2− δ)Ch

2(1− γ)
− (ᾱ(1− γ)− f)2

4(1− γ)2

=
2(1− γ)(2− δ)Ch − (ᾱ(1− γ)− f)2

4(1− γ)2
.

Since the denominator is positive, we only need to check the sign of the numerator. In order for H

to be negative semidefinite, we need

2− δ

2δ
− 1 ≥ 0 ⇔ δ ≤ 2

3
.

Thus, we conclude that when ᾱ2(1−γ)
4Ch

∈ [1, 3227), one of the solutions for δ that is greater than 2
3 is

a saddle point.

Thus, there is a unique δ that satisfies this condition if ᾱ2(1−γ)
4Ch

≤ 32
27 (after removing the saddle

point), which is equivalent to γ ≥ γ ≡ 1− 128Ch
27ᾱ2 . This condition is satisfied under Assumption 2.5.

We also showed that ∂δ
∂γ < 0. Thus, we can find a unique γ such that δ(γ) = Cs

2Ch+Cs
, and condition

(3) will be satisfied for any γ ≤ γ. Substituting δ = Cs
2Ch+Cs

into the above first-order condition,

we get
Cs

2Ch + Cs

(
2− Cs

2Ch + Cs

)2

=
ᾱ2(1− γ)

4Ch
⇔ γ = 1− 4(4Ch + Cs)ChCs

ᾱ2(2Ch + Cs)2
.

Assumption (2.5) guarantees that γ ≤ γ.

Finally, since the license fee is positive, it is easy to show that the hardware firm’s profits are

larger than ᾱv.

A.4 Proof of Proposition 2.8

Proof. First, we use the Envelope theorem to compute ∂πh
∂γ :

∂πh
∂γ

=
γ2ᾱ2 − v2

4γ2︸ ︷︷ ︸
increase in hardware profit

− ᾱ2

4(2− δ)︸ ︷︷ ︸
decrease in software profit

=
(γ2ᾱ2 − v2)(2− δ)− γ2ᾱ2

4γ2(2− δ)
.
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The denominator is positive, so we check the sign of the numerator.

numerator = γ2ᾱ2(1− δ)− v2(2− δ)

= v2(1− δ)

[
γ2ᾱ2

v2
− 2− δ

1− δ

]
.

Thus the sign of the numerator is determined by whether A(γ) ≡ γ2ᾱ2

v2
is greater/smaller than

B(γ) ≡ 2−δ
1−δ (an implicit function of γ through δ). First notice that ∂A(γ)

∂γ > 0 and ∂B(γ)
∂γ < 0 ∀γ.

The latter can be seen by
∂B(γ)

∂γ
=

∂B(γ)

∂δ

∂δ

∂γ
.

We know ∂B(γ)
∂δ > 0, and from Proposition 2.6, we have ∂δ

∂γ < 0 at the optimal δ. Then in order for

∂πh
∂γ > 0 to happen for some γ ∈ Γ, we need A(γ) > B(γ) at the upper bound of Γ, i.e.,

A(γ) > B(γ),

where γ is defined in Assumption 2.5. Since δ = Cs
2Ch+Cs

at γ = γ, we get

A(γ)−B(γ) =
γ2ᾱ2

v2
− 4Ch + Cs

2Ch
.

Let Cs = µCh for µ ∈ (0, 1]. Then A(γ)−B(γ) > 0 is equivalent to

Ch <
(2 + µ)2(2ᾱ2 − (4 + µ)v2)

8(4 + µ)µ
.

In order for this to hold, we require the RHS to be positive and this is equivalent to the conditions:

ᾱ >
√
2v and µ < 2(ᾱ2−2v2)

v2
. The first condition is guaranteed by Assumption 2.1. Note that in

the Full Outsourcing case, scenario 1 (interior solution case), this condition also guarantees a non-

empty range of γ in which ∂πh
∂γ > 0. That is, in that scenario, the increasing profits in γ happens

for γ >
√
2v
ᾱ . The second condition shows that the outsourced software development cost needs

to be low enough (relative to the in-house software development cost) so that the hardware firm

can outsource software production without lowering the license fee revenue (i.e., in order to keep

software developer’s profits greater than or equal to zero).

Finally, we can show that if
√
2v
ᾱ ∈ Γ, then

A(

√
2v

ᾱ
) = 2 < B(

√
2v

ᾱ
),

because B(γ) > 2 for γ ∈ (0, 1). In other words, the threshold of γ that changes the sign of ∂πh
∂γ

from negative to positive is larger than
√
2v
ᾱ , the threshold in the Full Outsourcing case. This
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finding is intuitive because in the endogenous outsourcing case, πh can be considered as a mixture

of πh in the Integration and Outsourcing cases. Since in the Full Integration case, ∂πh
∂γ < 0 ∀γ, we

need a larger γ than that in the Outsourcing case to compensate the large loss that comes from

the in-house software profit due to a high γ.
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