Memory Fusion Network for Multi-view Sequential Learning

Amir Zadeh, Paul Pu Liang, Navonil Manzumder, Soujanya Poria, Erik Cambria, Louis-Philippe Morency

Presenter: Amir Zadeh
Multi-view Sequential Data in AI

Multimedia

Self Driving Cars

Intelligent Personal Assistants

Robotics
Multi-view Sequential Data

Data that exhibits **Multiview** and **Sequential** properties.
Multi-view Sequential Data

Data that exhibits **Multiview** and **Sequential** properties.

Multiview: views with different distributions.
Multi-view Sequential Data

Data that exhibits **Multiview** and **Sequential** properties.

Sequential: data in each view is chronological.

\[t = 1 \quad t = 2 \quad t = 3 \quad t = 4 \quad t = \ldots \quad t = T \]

Interesting, here’s why I think the whole so much fun.
Research Goal

Supervised Multi-view Sequential Modeling

Multiview sequential data is mapped to a sequence of labels

\[t = 1 \quad t = 2 \quad t = 3 \quad t = 4 \quad t = \ldots \quad t = T \]

Interesting, here's why I think the whole so much fun.

Happiness

Multiview Data

Sequence of Labels
Challenge 1: Intra-view Dynamics

Visual View

$t = 1$
$t = 2$
$t = 3$
$t = 4$
$t = \cdots$
$t = T$

Smile
Smile
Expressive body language

Language View

$t = 1$
$t = 2$
$t = 3$
$t = 4$
$t = \cdots$
$t = T$

Interesting, here’s why I think the whole so much fun.

Positive word Positive phrase
Challenge 2: Cross-view Dynamics

Visual View

$t = 1$	$t = 2$	$t = 3$	$t = 4$	$t = \cdots$	$t = T$
Smile | Smile | Expressive body language

Language View

$t = 1$	$t = 2$	$t = 3$	$t = 4$	$t = \cdots$	$t = T$

here’s why | I think | the whole | so much fun.
Challenge 2: Cross-view Dynamics

Visual View

- $t = 1$
- $t = 2$
- $t = 3$
- $t = 4$
- $t = \cdots$
- $t = T$

Smile

Smile

Expressive body language

Language View

- $t = 1$
- $t = 2$
- $t = 3$
- $t = 4$
- $t = \cdots$
- $t = T$

Positive word

Interesting, here’s why

I think the whole

Positive phrase

so much fun
Multi-view Sequential Modeling Challenges

Challenge 1
Intra-view Dynamics
The dynamics within each view

Challenge 2
Cross-view Dynamics
The dynamics across views
System of RNNs:

- Parallel RNNs where each RNN encodes one view.
- Alignment has been defined between them.
Memory Fusion Framework

A two step fusion framework:

- **Delta-memory Attention Network**: Identifies cross-view dynamics across different modalities in each iteration of System of RNNs.

- **Multi-view Gated Memory**: Store the cross-view dynamics in a neural memory component.

Challenge 2
Memory Fusion Network (MFN)

Delta-memory Attention Network

Multi-view Gated Memory

System of LSTMs
Datasets

6 publicly available datasets

CMU-MOSI: utterance level multimodal sentiment analysis.
POM: video level speaker traits analysis.
IEMOCAP: utterance level multimodal emotion recognition.
ICT-MMIMO: video level multimodal sentiment analysis.
YouTube: video level multimodal sentiment analysis.
MOUD: utterance level Spanish multimodal sentiment analysis.

language, vision and audio views
Baselines

More than 20 baselines

Notable Baselines:

MV-LSTM: an extension of LSTM for multi-view learning.

MV-HCRF, MV-LDHCRF, MV-HSSHCRF: graphical models for multi-view learning.

Early Fusion LSTM: LSTM that concatenates all views into one single vector.

Dataset Specific Baselines: Tensor Fusion Network (TFN), Convolutional Multiple Kernel Learning (CMKL), Deep Fusion Network.
Experiments

Binary Classification: Accuracy, F1

Multi-class Classification: Accuracy, F1

Regression: MAE, Correlation
Multimodal Sentiment Analysis

CMU-MOSI BINARY ACCURACY SENTIMENT

ICT-MM MO BINARY ACCURACY SENTIMENT

YOUTUBE BINARY ACCURACY SENTIMENT

MOUD BINARY ACCURACY SENTIMENT

MFN SOTA1 SOTA2
Multimodal Speaker Traits and Emotion Recognition

- POM CONFIDENT 7-CLASS
 - MFN: 34.5
 - SOTA1: 26.6
 - SOTA2: 26.6

- POM DOMINANT 7-CLASS
 - MFN: 41.9
 - SOTA1: 35.1
 - SOTA2: 35.1

- POM PERSUASIVE 7-CLASS
 - MFN: 34.1
 - SOTA1: 28.1
 - SOTA2: 27.6

- IEMOCAP 9-CLASS EMOTIONS
 - MFN: 36.5
 - SOTA1: 36
 - SOTA2: 35.9
Delta-memory Attention

![Bar chart showing comparison between different sentiment analysis methods.](chart.png)

- CMU-MOSI Binary Sentiment
- ICT-MMMO Binary Sentiment
- MOUD Binary Sentiment
- POM Confident 7-class

Legend:
- MFN
- MFN (no Delta)
Multi-view Gated Memory

- CMU-MOSI Binary Sentiment
- ICT-MMMO Binary Sentiment
- MOUD Binary Sentiment
- POM Confident 7-class

Graph showing performance with MFN and MFN (no Delta) for different binary sentiment tasks.
ACL 2018 Workshop:
First Workshop and Grand Challenge on Computational Modeling of Human Multimodal Language
http://multicomp.cs.cmu.edu/acl2018multimodalchallenge/

CMU-MOSEI Dataset:
Largest dataset of multimodal sentiment analysis and emotion recognition

Contact: abagherz@cs.cmu.edu
Code: https://github.com/A2Zadeh/MFN
Training data: https://github.com/A2Zadeh/CMU-MultimodalDataSDK
Thank you!

Delta-memory Attention Network

Multi-view Gated Memory

System of LSTMs