A molecular assessment of European populations of *Indotyphlops braminus* (DAudin, 1803)

The alarming rates at which species are introduced, directly or indirectly from human intervention, as well as their potentially deleterious impact on native biota, make biological invasions a major threat to biodiversity at a global scale (SImberloff et al. 2013). Among vertebrates, reptiles are largely involved in invasion processes, both as alien invaders and as native sufferers (Lever 2003; Kraus 2009). Because of that, early detection of allochthonous populations and inference of invasion pathways are crucial to develop successful management strategies.

Phylogeographic analysis and population genetics are now widely used to reveal invasion pathways in reptiles. Namely, by analyzing selected genetic markers of a number of introduced specimens and fitting these sequence data into the known phylogeographic and population structure for a given species in its native range, it is possible to determine their allochthonous status, the source area and even the number of invasion events (Kolbe et al. 2007; Graciá et al. 2011; Silva-Rocha et al. 2012; Michaelides et al. 2013).

The Flowerpot Snake *Indotyphlops braminus* (DAudin, 1803) (formerly Ram-photyphlops braminus (see Hedges et al. 2014; for a recent generic rearrangement of
The fossorial typhlopid is restricted to warm areas with high humidity, usually in the tropics (OTA et al. 1991). However, its parthenogenic reproduction (KAMOSAWA & OTA 1996), small size (up to 175 mm SVL with a diameter of only 5 mm) and association with garden plants have allowed the species to spread from India, where it is said to be native (KRAUS 2009), to numerous tropical and subtropical regions from Asia, Oceania, Africa and the Americas (GLOBAAL INVAsIVE SPECiES DATABASE 2013). Closer to Europe, it has been reported from the Canary Islands (LÓPEZ-JURADO et al. 2006; URIOSTE & MATEO 2011), Madeira (JESUS et al. 2013), Northern Africa (BAHA EL DIN 2001; JOGER et al. 2012) and, more recently, from the Balearic Islands and Southern Iberian Peninsula (MATEO et al. 2013) apparently in gardens and greenhouses with tropical plants.

In the present study, mitochondrial markers were used to assess the putative origin(s) of some of these European populations, namely those from the Canary Islands and Iberia. By combining newly generated sequences from these and other regions as well as those deposited in genetic databases, the authors aimed at elucidating the invasion pathways of this alien snake species.

Ten specimens of *I. braminus* were collected from Tenerife (Canary Islands) and Almería (Southern Spain), which were added to samples previously collected from Equatorial Guinea, Seychelles and Comoro Islands. Precise information on the geographic locality and specimen codes of all the samples are given in Table 1.

From all of the above specimens, genomic DNA was extracted using the DNeasy Blood & Tissue Kit from QIAGEN GmbH (Hilden), following the manufacturer’s instructions. The ribosomal 16S rRNA gene was amplified for all samples using the primers from PALUMB (1996). The PCR reaction was carried out in a total volume of 25 μl, containing 2.5 μl of 10X Reaction Buffer, 3.0 mM of MgCl₂, 0.5 mM of each dNTP, 0.2 mM of each primer, 1 U of Taq DNA polymerase (Invitrogen™ with W-1), 1.25 μl of detergent W-1 and approximately 100 ng of template DNA. The PCR cycle program was the same as the one recommended by Invitrogen™ with an annealing temperature of 50 °C.

All amplicons were sequenced directly from the PCR products on an ABI Prism® 377 DNA automated sequencer and all sequences were deposited in GenBank. Further, three 16S rRNA sequences of *I. braminus* were added from GenBank (Table 1). The obtained sequences were aligned using MAFFT v.7.017 (KATOH & STANDLEY 2013) with default parameters (gap opening penalty = 1.53; gap extension penalty = 0.123; progressive method = FFT-NS-2).

The 16S rRNA fragments obtained in this study consisted of 361 bp and were all identical among each other and with two entries in GenBank. The only exception...
was the sequence downloaded from GenBank with accession number JN172940 from South India, which showed a total of eight polymorphic positions compared to the remaining sequences.

It is obvious that the present results do not completely allow ascertaining the population sources for Canarian and Iberian *L. braminus*. Even if markers with faster mutation rates could provide better detail, it has already been reported that in scenarios of repetitive introductions, inferring the exact colonization patterns may prove difficult if not impossible (Rocha et al. 2005, 2010). In fact, European populations shared the same haplotype not only between them, but also with other unrelated populations from three continents (see localities in Table 1), suggesting repeated invasions. Partheno-
genetic reproduction, enhancing the colonizing potential of the species, may also account for this genetic uniformity (see Freitas (2011) for a similar case in the parthenogenetic lacertid *Darevskia unisexualis* (Darevsky, 1966)). Significantly, the only divergent sequence came from India, already pointed to (without any genetic evidence) as the native range of the species (Kraus 2009).

At present, no impacts of this snake on the native biota have been described either at a global level (GlobInvSpecDB 2013) or for Spain (Mateo et al. 2013). Although effects on native reptiles may be unlikely, the analysis of the impact on the arthropod communities deserves deeper investigation (Mateo et al. 2011). Also, the species seems to be spreading across the Canarian Archipelago associated with plant gardening (Urioñe & Mateo 2011). Hence, a simple principle of caution recommends preventing new introductions and monitoring the populations already naturalized in Europe using both censuses and genetic markers.

ACKNOWLEDGMENTS: The lab work was funded by the project PTDC/BIa-BEC/101256/2008 of Fundação para a Ciência e a Tecnologia (FCT, Portugal) and partially by the project “Biodiversity, Ecology and Global Change”. CR is supported by a post-
doc fellowship under the project “Genomics Applied To Genetic Resources”. Both projects are co-financed by North Portugal Regional Operational Programme 2007/2013 (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).


SUBMITTED: January 3, 2014

AUTHORS: Catarina RATO 1), Iolanda SILVA-ROCHA 1), Emilio GONZALEZ-MIRAS 2), Francisco RODRIGUEZ-LIQUÈ 3), Beatriz FARIÑA 4), Miguel A. CARRETERO 1) (Corresponding author < carretero@ciBio.up.pt >).

1) - CiBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Nº 7, 4485-661 Vairão, Vila do Conde, Portugal.

2) - SERBAL Sociedad para el Estudio y Recuperación de la Biodiversidad Almeriense. C/ Baqueira Beret 2, 04720 Agudulce (Almería), Spain.

3) - C/ Almeria 40, 3º B, 04720 El Parador (Almería), Spain.

4) - Cl. Alhelí, 5. 38296 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.