Genetic Structure of the Copperhead (Viperidae: *Agkistrodon contortrix*) at its Most Northern Distribution

Brenna A. Levine1, Charles F. Smith2, Marlis R. Douglas1,3, Mark A. Davis1, Steven J. Beaupre1, Gordon W. Schuett4, and Michael E. Douglas1,3

1Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701
2Department of Biology, Wofford College, Spartanburg, South Carolina, 29303
3Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, 61820
4Department of Biology, Georgia State University, Atlanta, Georgia 30302

Introduction

Studies of genetic diversity and population-level parameters in North American pitvipers are largely focused on species that warrant conservation concern. Little attention, however, has been paid to the molecular ecology of the Northern Copperhead snake (*Agkistrodon contortrix mokasen*), a non-threatened pitviper species. Studying the genetic structure, mating system, and history of genetic bottlenecks of wild Northern Copperhead populations will provide baseline information for comparative studies with threatened sympatric species.

Methods and Materials

- After DNA extraction, 253 individuals were genotyped at 22 variable tetra-nucleotide microsatellite loci
- Population assessed for historical genetic bottleneck, multiple paternity, and genetic structure with the use of genetic software programs

Results

Genetic Structure:
- Six clusters (gene pools) detected in each of five hibernacula
- Significant admixture found in most individuals

Historical Bottleneck:
- Genetic bottleneck occurred during the span from 1882 to 1945
- Concurrent with building of Bradley Hubbard Reservoir

Multiple Paternity:
- 71% of litters were singly sired, while 29% were doubly sired

Discussion

This study details a population of North American pitvipers that has maintained genetic diversity in spite of a recent genetic bottleneck. and is the first to document multiple paternity in a wild population of Copperhead snakes. Population level parameters assessed in this study provide baseline information for comparative studies with threatened sympatric pitviper species.

Species and Study Site

- Samples collected from 5 hibernacula near Meriden, CT
 - 116 adult blood samples
 - 137 juvenile skin sheds

Figure 1. *Agkistrodon c. mokasen* adult (http://siteswofford.edu/smithcf/field-and-lab-research-photos/)

Figure 2. *Agkistrodon c. mokasen* tissue samples were collected from 5 hibernacula around Bradley Hubbard Reservoir in Connecticut

Figure 3. Example of allelic variation at 4 microsatellite loci (different colors) in 4 individuals (different rows)

Figure 4. Significant paternal skew (*) found in one of four double sired litters

Figure 5. Proportion of adult *A. c. mokasen* from five dens assigned to six genetic clusters (K) in Connecticut.

Figure 6. Six genetic clusters were identified, with significant admixture present in most individuals.

Acknowledgments

We wish to thank Steve Maysmann for his assistance with genetics software programs, Aubrey and Jared Reynolds for laboratory assistance, the Illinois Natural History Survey for funding my summer molecular fellowship, and the WM Keck Center for Comparative and Functional Genomics for quick processing of samples.

References