

MATHS

HSC EXTENSION 1 MATHEMATICS

BINOMIAL THEOREM

CONTENTS

Binomial Theorem	2
The Pascal Triangle	2
Factorial Notation	
The Binomial Theorem	
Greatest coefficient and greatest term	7

BINOMIAL THEOREM

THE PASCAL TRIANGLE

When the coefficients in the expansions of $(1 + x)^n$ are arranged in a table, the result is known as the Pascal triangle

Draw Pascal's Triangle:

Basic properties of the Pascal triangle:

- 1. Each row starts and ends with 1
- **2.** Each row is reversible
- 3. The Sum of each row is 2^n
- **4.** [The addition property] Every number in the triangle, apart from the 1s, is the sum of the number directly above, and the number above and to the left

Exercise 1

1. Using Pascal's triangle of binomial coefficients, give the expansions of each of the following:

a.
$$(1+x)^6$$

b.
$$(1-x)^9$$

c.
$$(1+2y)^4$$

d.
$$\left(1 - \frac{1}{r}\right)^8$$

e.
$$\left(1 + \frac{2}{x}\right)^5$$

- 2. Find the value of k if in the expansion of $(1 + 2kx)^6$
 - **a.** The terms x^4 and x^3 have coefficients in the ratio 2: 3
 - **b.** The terms in x^2 , x^3 , x^4 have coefficients in an arithmetic progression

Further work with the Pascal Triangle

- The terms of $(x + y)^n$: The expansion of $(x + y)^n$ has n + 1 terms, and in each term the indices of x and y are whole numbers adding to n
- That is, the expression $(x + y)^n$ is homogenous of degree n in x and y together, and so also is its expansion
- The definition of ${}^{n}C_{r}$ Define the number ${}^{n}C_{r}$ to be the coefficient of x^{r} in the expansion $(1+x)^{n}$
- The symbol is usually read as 'n choose r' and the notations ${}^{n}C_{r}$ and ${n \choose r}$ are both used for these coefficients
- The expansion of $(1+x)n = {}^{n}C_{0} + {}^{n}C_{1} x + {}^{n}C_{2} x^{2} + \cdots + {}^{n}C_{n} x^{n}$
- There are n+1 terms, and the general term of the expansion is term in $x^r = {}^{n}C_{r}x^r$
- Alternatively, using sigma notation, the expansion can be written as

$$(1+x)^n = \sum_{r=0}^n \binom{n}{r} x^r$$

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r$$

Basic properties of the Pascal's triangle

1. Each row starts and ends with 1, i.e.:

$$\binom{n}{0} = \binom{n}{n} = 1$$
 for all cardinals n

2. Each is reversible

$$\binom{n}{r} = \binom{n}{n-r}$$
 for all cardinals n and r with $r \le n$

3. The sum of each row is 2^n

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$$

Exercise 2

1. Use Pascal's triangle to expand each of the following

a.
$$(x + y)^4$$

b.
$$(r-s)^6$$

c.
$$(a-b)^9$$

d.
$$(3x + 2y)^4$$

e.
$$\left(\frac{1}{2}r + \frac{1}{3}s\right)^5$$

f.
$$\left(x + \frac{1}{x}\right)^6$$

2. Use Pascal's triangle to expand each of the following:

a.
$$(1-3x^2)^3$$

b.
$$\left(\sqrt{x} + \sqrt{y}\right)^7$$

c.
$$\left(\frac{2}{x} + 3x^2\right)^5$$

d.
$$(x^2 + 2y^3)^6$$

3. Simplify the following without expanding the brackets

a.
$$y^5 + 5y^4(x - y) + 10y^3(x - y)^2 + 10y^2(x - y)^3 + 5y(x - y)^4 + (x - y)^5$$

b.
$$x^3 + 3x^2(2y - x) + 3x(2y - x)^2 + (2y - x)^3$$

4. Find the coefficient of:

a.
$$x^3$$
 in $(2-5x)(x^2-3)^4$

b.
$$x^5$$
 in $(x^2 - 3x + 11)(4 + x^3)^3$

c.
$$x^0$$
 in $(3-2x)^2 \left(x+\frac{2}{x}\right)^5$

5.

a. Show that
$$(3 + \sqrt{5})^6 + (3 - \sqrt{5})^6 = 20608$$

- **b.** Show that $(2+\sqrt{7})^4+(2-\sqrt{7})^4$ is rational
- **6.** Expand $(x + 2y)^5$ and hence evaluate:
 - **a.** $(1.02)^5$ correct to five decimal places
 - **b.** $(0.98)^5$ correct to five decimal places
 - c. $(2.2)^5$ correct to 4 significant figures