

MATHS

HSC MATHEMATICS

PHYSICAL APPLICATION OF CALCULUS

CONTENTS

P	hysical Applications of Calculus	2
	Rates of Change	
	Differentiating to find the rate	
	-	
	Integrating to find the function	
	Questions with a diagram or a graph instead of an equation	
	Motion in a straight line	
	Graphical representations of motion	7

PHYSICAL APPLICATIONS OF CALCULUS

RATES OF CHANGE

A rate of change is the instantaneous rate at which a quantity Q is changing with respect to time. Mathematically, this is written as $\frac{dQ}{dt}$ (although you also might sometimes see \dot{Q}). Graphically, the rate of change is the gradient of a graph of Q.

Rates of change questions will usually require you to either differentiate a given function to find the rate, or integrate a given rate to find the original function. Some questions may give you a graph instead of a function.

DIFFERENTIATING TO FIND THE RATE

These sorts of questions will provide you with an equation where a quantity Q is given as a function of time t. Differentiating this function will give you a formula for the rate of change of Q.

Example:

Assume that at any given time where t > 0, the volume of a pool in litres is given by the equation $V = 3t^2$ where t is in hours. At what rate is the volume changing after 3 hours?

STEP 1: Differentiate STEP 2: Substitute STEP 3: Check units

INTEGRATING TO FIND THE FUNCTION

Sometimes, a question will instead give you the rate at which a quantity Q is changing over time t. Integrating this equation will give you the original function for Q. The constant c of integration can be found subbing in the value of Q at a particular time t (this will be provided in the question).

Worked example:

A valve is slowly opened in a pipeline such that the volume flow rate $\frac{dV}{dt} = 1.3 \text{t m}^3 \text{s}^{-1}$. Find an expression for the volume then calculate the total volume of water that flows through the valve in the first 10 seconds.

STEP 1: Integrate

STEP 2: Find c

STEP 3: Substitute

STEP 4: Check units

QUESTIONS WITH A DIAGRAM OR A GRAPH INSTEAD OF AN EQUATION

In some problems, you will be given a graph of either Q against t or $\frac{dQ}{dt}$ against t. These problems will require careful attention to zeroes, turning points and inflexion points. You will also often be asked to draw another rough sketch (usually $Q \vee t$ if given $\frac{dQ}{dt} \vee t$ and vice versa)

Graph of Q against t:

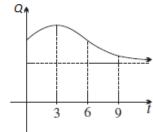
Important features:

- Zeroes indicate instants when Q = 0
- Gradient indicates the rate of change $\frac{dQ}{dt}$
- Turning points (when $\frac{dQ}{dt} = 0$) indicate instants when the quantity is not changing/maxes or mins
- Inflexion points $(\frac{d^2Q}{dt^2} = 0)$ indicate instants when the rate of change is a maximum or a minimum

Example:

The graph to the right shows the temperature T of a patient suffering form Sydmond's syndrome at time t hours after her admission to hospital at midnight.

- a) When did her temperature reach its maximum?
- **b)** When was her temperature increasing most rapidly, and when was it decreasing most rapidly?
- c) What happened to her temperature eventually?
- d) Sketch the graph of the rate $\frac{dT}{dt}$ at which the temperature is changing.



Graph of $\frac{dQ}{dt}$ against t:

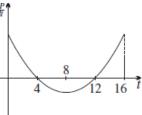
Important features:

- Zeroes indicate instants when the quantity is not changing
- When the graph is above the *x*-axis, the quantity is increasing. When the graph is below the *x*-axis, the quantity is decreasing
- Gradient indicates the rate at which the rate of change is changing
- Turning points indicate instants when the rate of change stays the same
- The area under the curve can be used to find Q (because integrating $\frac{dQ}{dt}$ gives Q)

Example:

Frog numbers were increasing in the Ranavilla district, but during a long drought, the rate of increase fell and actually became negative for a few years. The rate $\frac{dP}{dt}$ of population growth of the frogs has been graphed as a function of the time t years after careful observations began.

- a) When was the frog population neither increasing nor decreasing?
- **b)** When was the frog population decreasing and when was it increasing?
- c) When was the frog population decreasing most rapidly?
- **d**) When, during the first 12 years, was the frog population at a maximum?
- e) When, during the years $4 \le t \le 16$, was the frog population at a minimum?
- f) Draw a possible graph of the frog population P against time t



Further examples:

- 1. The share price \$P\$ of the Eastcom Bank t years after it opened in 1st January 1970 was $P = -0.4t^2 + 4t + 2$
 - **a.** What was the initial share price?
 - **b.** What was the share price after one year?
 - c. At what rate was the share price increasing after two years?
 - **d.** By letting $\frac{dP}{dt} = 0$, show that the maximum share price was \$12, at the start of 1975
 - **e.** The directors decided to close the bank when the share price fell back to its initial value. When did this happen?
- **2.** For a certain brand of medicine, the amount *M* present in the blood after *t* hours is given by $M = 3t^2 t^3$, for $0 \le t \le 3$
 - **a.** Sketch a graph of M against t, showing any stationary points and points of inflexion.
 - **b.** When is the amount of medicine in the blood a maximum?
 - **c.** When is the amount of medicine increasing most rapidly?
- **3.** A certain brand of medicine tablet is in the shape of a sphere with diameter 5mm. The rate at which the pill dissolves is $\frac{dr}{dt} = -k$, where r is the radius of the sphere at time t hours, and k is a positive constant.
 - **a.** Show that $r = \frac{5}{2} kt$
 - **b.** If the pill dissolves completely in 12 hours, find k