NORTH QUEENSLAND NATURALISTS’ CLUB
Meets at Cairns Public School, Abbott Street, Cairns,
usually on second Tuesday in alternate months, at 8 p.m.

NEXT MEETING, TUESDAY, 10th JULY, 1945.
Address by L. J. WEBB, Bureau of Tropical Agriculture, South Johnstone.

MEETINGS OF CLUB

New Members Elected: S. H. Martin, Cairns; Harold Armstrong, Cairns; Gordon Stephens, Edge Hill; J. Williamson, Georgetown; G. O’Leary, Cairns.

8th May, 1945: Coloured cinematograph, “North Queensland as Seen Through the Eyes of a Naturalist.”

New Members Elected: Leonard Simpson, Cairns; Pte. J. McN. Pow, A.I.F., Victoria; Sgt. B. Shipway, A.I.F., Perth, W.A.

Check List of N.Q. Orchids now available at 1/- per copy, from Hon. Secretary.

RELICS OF THE HINCHINBROOK ISLAND ABORIGINES
(By S. E. STEPHENS, Cairns.)

Some 65 to 70 years ago the Hinchinbrook Island tribe or aboriginals was fairly strong. No accurate records appear to be extant of the number of individuals comprising the tribe, but residents of the Cardwell district in 1875 to 1880 report that they were numerous over the greater part of the island at that time. This tribe of people was distinctive in having a pronounced Jewish cast of features. The men were above the average of aboriginal stature, and the tribe was considered peaceable.

On a recent visit to Hinchinbrook Island, an area that was evidently a favourite camping ground, was inspected. The spot must have been an ideal one from the native point of view. A lightly wooded and grass flat of some 30 to 40 acres was bounded on the north by a small fresh water stream and on the south by a spur of hills descending to the sea in Hinchinbrook Channel to form a high headland. In front was a sandy beach shelving gently into the Channel to a submerged coral bed some two hundred yards from the shore. Stony banks at the mouth of the creek were thickly studded with oysters and a small mangrove patch provided shelter for numerous fishes. Here the natives erected a stone fish trap, a simple stone wall ingeniously devised to catch the fish coming in with the rising tide to feed close inshore. The walls are roughly semi-circular in shape, extending from the beach to low water mark, about 100 yards out. Several bays are formed in the outer sweep of the wall and are connected with the main enclosure by narrow openings. The whole of the outer portion of the wall is built about a foot higher than the inshore ends and a dividing wall runs from the beach to the outer rim. The effective operation of the trap depends on the habit of feeding fish. As the tide rises fish follow the water in
and feed along the beaches and shallows, then as the tide falls they make out again to deeper water. The rising tide first covers the inner ends of the trap walls, and the fish are able to move freely over them along the enclosed portion of the beach, but are hindered from moving straight through by the dividing wall. When the tide begins to fall the outer rim of the wall is first exposed and effectively bars the fish as they attempt to move straight out to the deep water. The bays in the wall more effectively prevent the escape of the fish, and the aboriginal was able to collect them at his leisure when the tide was low.

Although it must be now considerably over fifty years since the last aboriginal tended the trap, the walls are still in fair repair and are a tribute to the skilful native building. They present a fine exhibit of the manner in which the native has brought nature to his aid by cultivating the small rock oyster to provide a living mortar for the stones. Fish is still caught in the trap and garnered daily by numbers of sea birds.

On the foreshore and at several spots along the banks of the stream the sites of old traps are denoted by mounds of shells, stones and ashes—the aboriginal kitchen middens. The largest of these evidently marking the main tribal camp, is situated just off the top of the beach about midway between the creek and the headland. It is about 120 feet in diameter and 3 feet high, and is composed entirely of shells, stones, ashes, and a few bones. The shells indicate that the aboriginal was partial to a range of shell fish not appreciated by the white race, for, in addition to two species of oyster (Ostrea) the following were found in considerable numbers: Potamides sp., Melagria sp., Chione spp., Arca sp., Pinna sp. and Nerita sp., whilst odd land snail shells (Thecites pachystyla) were also present. The bones collected from the midden included dugong (Haliaeetus dugong), turtle (Chelonia midas), a tooth probably of wild pig, and small bones probably of animals such as the smaller marsupials.

Evidence of the aboriginal tool maker collected in the mound was a partly-shaped stone axe head, and piles of stone chips and flakes. The axe head was perfectly roughed out as may be seen in the plate, but the

PORTION OF THE OUTER WALL OF ABORIGINAL FISH TRAP ON HINCHINBROOK ISLAND.

SHells taken from kitchen middens.

Within the mound was a large quantity of stone flake. These flakes were of various sizes, the larger being several inches in length, and they had been chipped for the purpose of making tools or weapons. The flake was worked on in various ways, the most common method being by the use of a stone hammer or anvil. The process of flaking involved the removal of small chips from the surface of the stone by striking it with a hammer or anvil. This process was repeated until the desired shape was achieved. The stone flakes were then used to make tools such as knives, axes, and scrapers. These artifacts were used by the aboriginal people for a variety of purposes, including cutting, scraping, and flakes. The stone flakes are an important indicator of the presence of aboriginal activity in this area.

STONE FLAKE SHAPED FOR AN AXE HEAD, AND KNIVES MADE FROM GLASS BOTTLE.

CHIPPING OF THE FACE PRODUCED A FAULTY CRACK WHICH EVIDENTLY CAUSED THE STONE TO BE DISCARDED.

FINISHED SPECIMENS OF THE TOOLMAKERS' ART LOCATED IN THE MOUND WERE THE GLASS KNIVES ALSO SHOWN IN THE PLATE. THESE KNIVES SHOW GREAT SKILL AND DELICACY OF TOUCH IN THE MANNER IN WHICH THE GLASS HAS BEEN FLAKED FROM EACH SIDE TO PRODUCE A STRAIGHT CUTTING EDGE OF RAZOR SHARPNESS.

TWO OTHER SMALLER MOUNDS LOCATED ON THE CREEK, ONE ON THE NORTH BANK AND THE OTHER ON THE SOUTH BANK WERE RESPECTIVELY 35 FT. BY 21 FT. HIGH AND 40 FT. BY 21 FT. HIGH. SHELLS OF THE ABOVE SPECIES, STONES AND ASH, WERE LOCATED IN THEM.

A FURTHER MOUND CONTAINING ONLY SHELLS AND ASHES WAS LOCATED HIGH UP ON THE SOUTHERN HEADLAND ABOVE A LARGE EXPOSED ROCK FACE. FROM THIS SPOT AN EXTENSIVE VIEW OF HINCHINBROOK CHANNEL, AND THE COASTLINE FOR MANY MILES IS OBTAINED. IT APPEARS REASONABLE TO ASSUME THAT THE HINCHINBROOK TRIBE MAINTAINED A LOOK-OUT POST AT THIS SPOT TO WARN ANY APPROACHERS TO THEIR DOMAIN.

MIGRATION OF LARVAL CRABS

NEW GUINEA.

BY MAURICE F. LEASK.

It was a day of glorious sunshine on 11th February, 1945, that we camped on the Raihu (Allo) River at Rumble's Crossing. Upstream, some two miles, from the sea. Almost two weeks ago the last heavy rain fell—5 inches in one night—when Whittaker Bridge was washed away.

The Raihu at Rumble's Crossing is 70 yards wide from jungle to jungle. Water occupies only 30 yards, the remainder being shingle bank chiefly on the inside of the bend. Pebbles are mainly of fast size, consisting of diorite, porphyry, quartz and granodiorite. The stream on most of this "reach" is in three main channels, with numerous log snags scattered around. Owing to its shallow depth, the water is remarkably swift.

It was on the West bank we noticed the larval crabs' swimming in a long shoal upstream. They were half an inch long, and in the clear water resembled half-grown tadpoles. A closer examination revealed that the shoal was apparently endless; it was followed for at least 30 yards upstream.

In general the tiny swimmers followed the water's edge fairly closely. Where a backwater occurred they fairly shot forward in a streaming line. They clung to the rocks in shoals, coming round in a graceful semi-circle; then in a stretch of comparatively low water they spread out to its full width and swam a little more slowly. But when the current came to the rapids, where some had been swept down, a stream, thousands were held up, and they piled up over the pebbles. Some were just in the water, some took to the land and crawled over half-dry pebbles. Upstream, ever upstream, they surged in a seething mass with a kind of "head" or front that was just making way.

A note from the Australian Museum reads: "The magpie or post-natal stage of some crab (Order Decapoda), probably a species of Sesarma. Representatives of this genus are plentiful along the streams of New Guinea, both along the shores and inland for quite long distances from permanent water. Very little is known of the larval stages of crabs, and a complete study of a life history on the spot is necessary before one can be certain of specific identity."
Ahead of this front the shoal had extended, and where the water channel divided some shot forward again up a medium paced current, while others took the rapids again. Here was a temporary slowing up, and many crabs were held up on a tiny crest or line of pebbles running across the stream. At this break they tried to make their way to the outer edges, there to proceed, following an irresistible urge to make the long journey, perhaps to the clayey land or the soaked swamps reaching down to the river banks.

On 4th March, 1945, three weeks later, the same spot was visited and the crabs were still there, making upstream as before. Considering it was three weeks later, and the river was in flood, flowing with muddy water almost from bank to bank, this was the more remarkable. Specimens were taken and preserved in methylated spirits and despatched for determination.

If anything the crabs were there in greater numbers—they could be picked up by the handful just like a swarm of bees could. At times when disturbed, they took to the land, where they progressed with a gait not quite typical of shore crabs in that it was not nearly so much a sideways progress.

EDIBLE PLANTS OF NORTH QUEENSLAND.

By H. FLECKER.

COMBRETACEAE:

132. Terminalia Catappa L., Indian Almond.
 Kernels of nuts eaten as dessert. Excellent flavour.
133. T. sericarpa F. Muell., Ngo-go-ro.
 Fruit edible.
134. T. platypylla F. Muell., Durin.
 Ripe fruit eaten. (Palmer).
135. Quisqualis indica L.
 In East Indies young shoots eaten raw or cooked.

MYRTACEAE:

136. Eucalyptus terminalis F. Muell., Long Fruited Bloodwood.
 Leaves and small branches. Particles of sugar or gum fall off or
 are scraped off, pounded and roasted (Palmer).
137. Psidium guajava L., Native of Tropical America. White Guava.
 Fruit eaten cooked or raw.
138. Myrtus exaltata Bail.
 Fruit used for jam making (Cowley).
139. Eugenia Smithii Poir., Lilly Pilly.
 Fruits edible.
140. E. hemilampra F. Muell.
 Fruits fleshy, sharp acid flavour, useful for preserving (Bailey).
141. E. cormiflora F. Muell.
 Fruit eaten raw.
142. E. Tierneyana F. Muell.
 Red fruit makes good jam (Bailey).
143. E. grandis Wight, Waargoon-waargoon.
 Fruit edible.
144. E. suborbicularis Bentli., Pudginjacker.
 Ripe fruit eaten (Bailey).
145. E. Wilsonii F. Muell.
 Fruit used for jam making.
146. E. Banksii Britt et Moore.
 Fruit edible.
147. E. Bungadininnie Bail.
 Fruits eaten.
148. E. eucalyptoides F. Muell.
 Fruit used for jam making (Bailey).
149. E. paniculata Banks et Sol.
 Fruit used for jam and wine making.

(To be Continued.)