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Abstract

This article describes a novel and interdisciplinary context for learning about
real-world sound waves. The ‘song’ of the plainfin midshipman fish consists
of an acoustical wave that is periodic but not sinusoidal. This acoustical signal
is the focus of active research in sound source localization by fishes, the effects
of hormones on hearing systems and the elucidation of neural mechanisms
involved in social acoustic communication. In this paper, we introduce the
reproductive biology and bioacoustics of the midshipman fish. We describe
the use of the advertisement ‘song’ of the male fish to visualize and interpret
the dramatically different displacement, velocity and acceleration waveforms,
to explore the roles of pressure and particle motion in production and detection
of acoustical waves and to apply Fourier analysis to understand the implica-
tions of the frequency spectrum in the production, transmission and reception
of sound in an aquatic environment.
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Introduction

A model to explain wave phenomena is a fundamental idea in science. The wave model is an
essential component for understanding light, sound and communication technologies. Waves
are an integral part of many physics topics and are becoming more important in all science
disciplines as science education becomes more interdisciplinary, therefore, it is critical to help
students develop and understand a wave model that is intuitive, flexible and interdisciplinary.
University physics students should have opportunities to apply the wave model to disciplines
outside of physics including the life sciences. Such opportunities can promote the application
of the wave model to complex, real-world phenomena that can be both exciting and rewarding
to students across a broad range of science disciplines. These opportunities can also help
budding physicists and engineers prepare to apply their knowledge to real-world problems
outside of their own disciplines.

Most introductory university physics courses feature a unit on waves using sound waves
as specific examples. Several decades of research have revealed both learner resources and
challenges associated with understanding wave phenomena [1-4]. The Mechanical Waves
Conceptual Survey was developed to provide a research-based assessment of student
understanding [5]. Several research-based curricula have been designed to help students
construct a model for waves that allows them to

* characterize the wavelength of periodic waves;
* relate and differentiate frequency, period, wavelength and wave speed; and
* distinguish wave propagation and particle motion.

Although these curricula can provide students with an excellent foundational under-
standing of waves, their scope is limited. Most curricula rely heavily, if not solely, on
sinusoidal waves as examples of periodic waveforms. Even when non-sinusoidal, periodic
waves are presented, they are often limited to geometric waves (square, triangle, sawtooth,
etc) and are rarely associated with sound waves. Many introductory textbooks provide a
mathematical relationship between acoustic pressure and particle motion for sound waves
because sound can be described in terms of either sound pressure or particle motion. But since
these presentations focus entirely on sinusoidal waves, the resulting displacement, velocity
and acceleration waveforms all have the same sinusoidal shape with differences in phase and
amplitude.

Several excellent, educationally oriented articles have been written that provide Fourier
analysis of non-sinusoidal sound waves. Some articles explore sound waves with a well-
defined harmonic structure (instrument strings [6], pipes [7], etc). In other studies, the sound
source has a less predictable set of resonant frequencies (wineglasses [8], brass instruments
[9], etc). We are not aware, however, of another educationally oriented article contextualizing
and analyzing a periodic, non-sinusoidal sound wave that is naturally produced during animal
communication. Yet, as we will see, among non-sinusoidal sound waves, the difference
between periodic and non-periodic waveforms has profound implications for the interpreta-
tion of harmonics.

While not well known to the public, the plainfin midshipman fish (Porichthys notatus),
the subject of active neuroscience research for the past 30 years, offers an exceptionally rich
context for interdisciplinary acoustic studies. Specifically, the midshipman model provides
students with novel opportunities:
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(i) To explore natural periodic waves that are not sinusoidal and are used in the context of

social communication.

(i) To visualize and interpret the dramatically different displacement, velocity and
acceleration waveforms for non-sinusoidal waves.

(iii) To recognize how pressure and particle motion play distinctly different roles in the
production and detection of sound waves.

(iv) To understand how Fourier analysis and harmonics have different implications in the
production, transmission and reception of sound in different acoustic environments.

In this paper, we will describe specific activities at the advanced high school or university
level that support these learning opportunities in an interdisciplinary context. Teachers who
want to explore the acoustic communication of the midshipman with their students can access
an interactive lecture tutorial along with acoustical data sets (see supplementary materials
available online at stacks.iop.org/EJP/40/025801 /mmedia).

Plainfin midshipman: crooners of the intertidal

Introduction to the reproductive biology and bioacoustics of the midshipman fish

The plainfin midshipman (Porichthys notatus) is a marine fish native to the eastern Pacific
ocean, ranging along the coast of North America from southeast Alaska to Baja, California
[10]. Named for the distinctive pattern of bioluminescent photophores distributed on its
underside (which resemble the pattern of brass buttons on a naval uniform), the midshipman
is perhaps best known for its ability to produce sound or ‘sing’, earning it the nickname of
‘California singing fish’. Typically found in deep water, these fish are primarily nocturnal,
resting in the substrate during the day and then rising into the water to feed on crustaceans and
smaller fish at night [11-13]. This behavior changes radically at the onset of the reproductive
season when they migrate from deep waters into the intertidal zone to spawn as shown in
figure 1.

Midshipman fish have three types of reproductive adult morphs: the female and two types
of males as shown in figure 1(c). Type I or ‘singing’ males build nests under rocky shelters in
the intertidal zone and produce relatively loud (153—-161 dB re 1 pPa at approximately 10 cm
from the source), long-duration (minutes to hours) advertisement calls or ‘hums’ to attract
mates at night. These calls can be loud enough to annoy local human populations [14]. The
fundamental frequency of a midshipman hum is established by the rapid contraction of sonic
muscles that surround the swim bladder in type I males as shown in figure 2. This adver-
tisement call attracts gravid females, which use the social signal to locate calling mates [15].

Once in the nest, the females lay their eggs on its roof, and the eggs are fertilized by the
nesting male. After spawning, females return to deeper waters while type I males remain in
the nest to care for the young as shown in figure 1(d). Nesting type I males may spawn with
multiple females during a single breeding season and will continue to guard their nests until
their young are free swimming, a period of approximately 30-40 d post fertilization [16].
Type II or ‘sneaker’ males employ a different reproductive tactic that does not involve
guarding nests or ‘singing’ to attract mates. Instead, they ‘sneak’ spawn in nests, trying to
steal fertilizations from the mates of type I males [17].

Midshipman have been the focus of research investigations of sound source localization
by fishes, the effects of hormones on hearing systems, and the elucidation of neural
mechanisms involved in social acoustic communication. We now suggest that midshipman
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Figure 1. (Clockwise from top left). (a) Type I male midshipman in his nest during low
tide. Note the bed of orange-yellow eggs on the underside of the nest roof (see top
arrow), which has been exposed to reveal the nest-guarding male (see bottom arrow).
(b) A cluster of four nests (see arrows) with roofs removed in the rocky intertidal zone
at low tide. (c) From left to right, all three reproductive adult morphs of the plainfin
midshipman: type II male, type I male, female. (d) Type I male guarding hatched
embryos (see arrow) in the nest. Reproduced with permission from Margaret
Marchaterre.

bioacoustics provide an ideal context for developing a flexible, interdisciplinary acoustical
wave model for advanced high school and undergraduate university students.

The periodic, non-sinusoidal, advertisement ‘hum’ of a male midshipman

Although type I male midshipman are capable of producing short-duration ‘grunt’ trains and
‘growls’, [17] their most significant vocal-acoustic signal is their long-duration multi-har-
monic ‘hums’ to attract gravid females for reproduction. The fundamental frequency of these
relatively long-duration hums varies between 79 and 105 Hz with water temperature. Fol-
lowing a brief transient period, both the waveform shape and the fundamental frequency of
the call remain consistent for the duration of the call [18], resulting in a remarkably stable
waveform. We recorded the natural advertisement call or hum’ from a type I male mid-
shipman calling from a semi-natural nest in an indoor tank at the University of Washington’s
Friday Harbor Laboratories on San Juan Island, WA. The waveform of the hum shown in
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Figure 2. Dissected swim bladder from a type I male plainfin midshipman. Note the
enlarged red sonic muscles (see white arrows) attached to the swim bladder which are
used to produce the reproductive advertisement call. Scale bar = 5 mm.
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Figure 3. Representative pressure waveform of the advertisement call or ‘hum’
produced by the type I male plainfin midshipman.

figures 3 and 4 was recorded using a mini-hydrophone (model 8103, Bruel and Kjaer) placed
near the nest entrance of the calling male and the acoustic signal was amplified using a
conditioning amplifier (model 2692-C, Bruel and Kjaer).

Complex periodic sound waves

A Google image search for ‘sound wave pressure’ quickly reveals that the overwhelming
majority of sound waves presented in educational materials are sinusoidal. Students can
describe sinusoidal waves with simple mathematical functions and readily construct graphical
representations of the waveforms. Nevertheless, over reliance on sinusoidal waves may leave
learners with the impression that either all sound waves are sinusoidal or all periodic waves
are sinusoidal, thus neglecting a great deal of the complexity of sound in nature. Anyone who
has recognized that different vowel sounds can have the same pitch should realize that non-
sinusoidal sound waves are fundamental to our auditory experience.
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Figure 4. Stability of the fundamental frequency of the male midshipman advertisement
call as a function of time.
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Figure 5. Comparison of the vocalization of two male fish at similar fundamental
frequencies.

Midshipman vocalizations provide consistent and scientifically relevant examples of
natural periodic, non-sinusoidal sound waves. The advertisement call of the midshipman can
be described as either a complex periodic wave or a combination of Fourier components. The
complex shape of the call’s waveform reveals details of the sound production mechanism for
individual fish. Figure 5 shows the vocalizations of two male fish at nearly the same fun-
damental frequency. The detailed shape of the waveform from an individual fish appears to
depend on subtle structural differences in the swim bladder and sonic muscles shown in
figure 2.

To the extent that any waveform is periodic and non-sinusoidal, it will have Fourier
components or harmonics that occur at integer multiples of the fundamental periodicity of the
wave. This is true for all periodic, non-sinusoidal waveforms but it may be surprising or even
counterintuitive to many learners. Students may believe that harmonics are always produced
by various resonant modes of the sound source. Although this idea applies in the many
common educational examples such as a guitar string or an organ pipe, it does not apply in
general to all sound production systems. As long as a male fish contracts their swim bladder
muscle with a precise fundamental frequency, the resulting complex waveform must include
harmonics at integer multiples of that frequency. The Fourier spectrum of a midshipman hum
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Figure 6. Fourier spectrum of a midshipman hum.

is shown in figure 6 and illustrates this principle. Note that the Fourier peaks are precisely
spaced at even intervals. The fundamental frequency of this call is 86.44 Hz. The harmonics
occur at 172.88 Hz, 259.33 Hz, 345.77 Hz, 432.21 Hz, 518.66 Hz, respectively. More sig-
nificantly, the ratios of each harmonic frequency to the fundamental frequency are 2.0001,
3.0001, 4.0002, 5.0002, and 6.0002, respectively. To three significant figures, the harmonics
occur at integer multiples of the fundamental frequency. The swim bladder does not have
resonant modes at precise integer multiples of the fundamental frequency. Rather, the fish
contracts his swim bladder periodically. The response of the bladder to each contraction is
nearly identical, which results in an almost perfectly periodic acoustical waveform. Because
the waveform is both periodic and non-sinusoidal, it is a mathematical necessity that the
harmonics occur only at integer multiples of the fundamental frequency. Like an acoustical
fingerprint, the amplitude and relative phase of these harmonics are determined by details of
the swim bladder structure for a particular fish.

The fact that harmonics do not correspond to resonant modes of the swim bladder does
not mean that the harmonics in the resulting waveform are not real and important. Lower
frequencies will propagate further in a deep water, free-field environment. The higher har-
monics are important because they propagate further in the shallow, intertidal waters where
midshipman nest and breed [19].

Particle motion: hearing in a completely different way than mammals

Physics textbooks introduce the idea that sound waves can be described either by oscillating
pressure or oscillating particle motion, which results from a mechanical disturbance. In
addition, various instructional materials allow students to visualize the pressure and particle
motion associated with sound waves [20]. The implications of particle motion for acoustical
measurement and perception, however, are often not explored in detail. This is not surprising,
considering that human ears and most microphones are designed to detect only sound pres-
sure oscillations. Like other fish, however, midshipman are able to detect sound through
either pressure or particle motion, providing an excellent opportunity for students to explore
the structure and function of a complex vocal-acoustic system that has been engineered
through natural selection. How can midshipman hear sound when the pressure variations are
less than 0.1% of atmospheric pressure? How can midshipman detect particles moving by
displacements of less than a micrometer? Why would these fish need to detect both pressure
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and particle motion? Can fish get any information from particle motion that they could not get
from pressure? At the nexus of biomechanics, sensory neuroscience and evolution, these
types of questions are relevant to professional scientists along with students of biology,
physics and engineering.

The mechanisms that fish use to detect pressure and particle motion are completely
different. Changes in pressure cause the swim bladder to expand and contract, which can be
detected in some fish, like female midshipman, because their swim bladder extensions project
close to the saccule, which is its main organ of hearing. The close proximity of the swim
bladder to the inner ear in females is thought to allow the saccular end organ to detect local
particle motion produced by pressure-wave induced vibrations of the swim bladder when
exposed to sound. This indirect mechanism for sound pressure detection is posited to increase
the overall auditory sensitivity of the fish [21]. All fishes are thought to be sensitive to the
particle motion component of sound via their otolithic end organs (inner-ear end organs
containing otoliths made of dense calcium carbonate, also known as ‘ear stones’) that
essentially function as inertial accelerometers [22, 23]. This common mode of hearing in
fishes enables them to detect particle motion—the directional vector component of sound—as
opposed to sound pressure, which is a scalar quantity containing no directional information.
As inertial accelerometers, the otoliths are set in motion by the motion of the medium and the
body of the fish moves with the same displacement, direction, and phase as the water because
fish tissue has about the same acoustic properties as water. Otoliths are denser than water and
will thus move with smaller amplitude and lag in phase relative to the fish’s body. The
resulting net movement of the otolith relative to the saccular hair cells generates neural
impulses which are sent to the brain where the auditory information is later decoded to
perceive sound. The mechanism described above is very similar to the way otolithic end
organs in the human vestibular system function [24].

Developing an intuitive model linking particle motion to sound pressure

We have created an interactive lecture tutorial that teachers can use to guide learners through
a multi-step analysis of a midshipman waveform (see supplementary materials). This activity
enables learners to work through a conceptual analysis linking sound pressure to particle
acceleration, velocity and displacement. Midshipman vocalizations provide an ideal context
for this analysis because they represent a real physics example of a waveform for which both
pressure and particle motion are significant. Furthermore, they are not symmetrical in time,
and they produce visibly different waveforms for acceleration, velocity and displacement.
This activity supports learners in the following conceptual learning goals:

* Translating waveforms between the time domain and the spatial domain.
* Relating particle acceleration to spatial gradient in pressure.
* Translating between graphs of acceleration, velocity and displacement.

Figure 7 illustrates the various waveforms that learners explore as they work through this
activity. In these figures and in the tutorial materials, several locations (d; through d4) and
corresponding times (t; through t4) have been labeled to allow learners to focus on significant
features of the waveform. A set of slides, instructor’s notes and data files are included as
supplementary materials.

In addition to practicing the conceptual learning goals listed above, learners can also gain
new insights into the particle motion associated with a travelling sound wave in water.
Specifically, they can see that the average particle velocity in a sound wave, shown in
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Figure 7. (a) Pressure as a function of time. (b) Pressure as a function of distance in
front of the hydrophone. (c) Acceleration as a function of distance. (d) Particle
acceleration as a function of time. (e) Particle velocity as a function of time. (f) Particle
displacement as a function of time.

figure 7(e), is directly proportional to the pressure, shown in figure 7(a). Pressures above the
ambient pressure are associated with regions where the particle velocity is in the same
direction as the wave propagation. Students can readily correlate this relationship between
pressure and particle velocity with results from a simulation of a traveling sound wave [25].
They can also consider the very small average particle velocity (~3 x 10" *ms™') and
particle displacement (~3 x 10~ ' m) associated with a midshipman hum. Finally, they can
also recognize that the maximum particle velocity is exceedingly small compared to the
disordered thermal motion of the water molecules.

Conclusions

We have described a novel context for exploring naturally occurring periodic sound waves.
The non-sinusoidal waveforms associated with midshipman vocalizations provide an ideal
context for exploring relationships between pressure and particle motion in a sound wave.
Students can analyze real waveforms to identify the direct relationship between pressure and
locally averaged particle velocity. They can recognize that pressures above the ambient
pressure are associated with regions where the particle velocity is in the same direction as the
wave propagation. By exploring the complex relationships between acceleration, velocity and
displacement of particles, students can also gain a quantitative appreciation for the magnitude
of these quantities in a naturally occurring sound wave. These learning opportunities are
encountered in an interdisciplinary context that lies at the cutting edge of neuroscience
research.
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