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Abstract: Bioinspired moth-eye surface provides broadband antireflection features, which
significantly enhance performances in optical components/devices. However, their practical
uses are strictly limited due to poor mechanical stability of nano-patterns. In this study, we
artificially engineered moth-eye structures on polycarbonate substrate through a thin-film coating
of mechanically stable dielectric materials (i.e., Al2O3, Cr2O3, ZrO2, and TiO2 etc). The
geometry of Al2O3-coated moth-eye surface is designed by considering the effective medium
theory and confirmed by calculation of diffraction efficiency based on a rigorous coupled-wave
analysis method. The tailored Al2O3-coating on moth eye surface exhibit the improved hardness
while maintaining high optical transmittance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Suppression of light reflection at an optical interface between two materials of different refractive
indices is a crucial issue in many optical components/devices including transparent windows,
imaging lens, polymer optics, solar cells, and light-emitting diodes (LEDs). The performance of
optical components or devices is fairly limited by the Fresnel reflection loss at the top surface
of optical medium. Traditionally, thin film technology is commonly used for mass production
of antireflective coatings, however, there are still some drawbacks such as limited antireflection
(AR) ranges, thermal mismatch, and material selection problems [1–10]. Beyond multilayered
structures, over the past few decades, the biomimetic subwavelength structures (SWSs), originally
inspired by corneal of night active insects (e.g., moth-eye), have been well developed with various
nanofabrication methods including laser interference lithography, nanoimprint, metal thermal
dewetting process, focused ion beam (FIB) milling, and self-assembly nanosphere lithography
[11–25]. These AR SWSs with broadband and omnidirectional reflection features have also been
applied to various research fields such as, optical imaging, transparent windows, displays, LEDs,
photovoltaic and photocatalytic devices [13–15,26–41].
Despite of the advantage of AR SWSs, transferring this technology from bench-top status to

successful industrial level is limited due to poor mechanical stability of moth-eye nano-patterns.
For instance, in practical applications such as display, windows, and eye-glasses, the AR SWSs are
exposed to external physical contacts (e.g., scratches and/or pressures), which influences the AR
performance. This undesired effect is particularly noticeable in the situation of using polymeric
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materials, which is commonly used for large area and mass production of nanostructures. As
a simple route to improve hardness, dielectric materials with relatively higher hardness, such
as Al2O3, Cr2O3, ZrO2, and TiO2, etc., can be additionally coated on nanostructures, however,
there is another critical issue on matching of refractive index between dielectrics and polymers,
based on the effective medium theory [42–46]. To overcome material limitations and structural
properties in nanophotonics, fine tailoring in nanostructures is required [47–49].
In our previous work, we designed and optimized each SWSs for several applications with

different materials using optical simulation [50–55]. Based on these design schemes of SWSs,
in this study, we present antireflective moth-eye structures (AMSs) with an oxide coating for
hardness enhancement. AMSs are fabricated on PC substrate using hot embossing technique for
large area production, and Al2O3, as a hardness enhancement layer, was coated by atomic layer
deposition (ALD). Simulation results show RI profile and transmittance of AMSs for the filling
fraction and thickness of Al2O3 coating layer. From these results, we propose the optimal design
of Al2O3 coated AMSs. Experimentally, our fabricated sample shows hardness enhancement
maintaining improved transmittance. In the process, we conducted the transmittance measurement
and the scratch test in fabricated samples. Furthermore, we discuss optical properties for the
morphology of AMSs with oxide coating layers.

Fig. 1. Schematic illustration of antireflective moth-eye structures (AMSs) with Al2O3
monolayer on polycarbonate (PC) film. (b) Geometrical parameters of period, height, and
filling fraction (FF) of AMSs (c) Calculated effective refractive indices of the Al2O3 coated
AMSs on PC film. (d) Real part of electric-field distributions from three-dimensional finite-
difference time-domain simulations. (e) Measured transmittances of fabricated samples with
different Al2O3 coating thicknesses
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2. Optical properties of Al2O3 coated PC films

Figure 1(a) shows the schematic illustration of antireflective moth-eye structures (AMSs) with
Al2O3 monolayer coated on polycarbonate (PC) substrate for improvements of transmittance and
surface hardness. The geometrical parameters such as period (Λ), height (h), and filling fraction
(FF) were set to analyze optical performance depending on the parabolic moth-eye structure
as shown in Fig. 1(b). The effective refractive indices were calculated with each FF factors of
60% and 100% with 75 nm Al2O3 thickness. In Fig. 1(c), the effective refractive indices were
calculated by the volume weighted averaged refractive index between air and Al2O3 coated PC
films depending on the nanostructure height [5, 56,57]. The abrupt change of effective refractive
index was exhibited in FF 100%with 75 nm of Al2O3 layer, due to that Al2O3 has higher refractive
index than PC film. By modifying structural parameter of FF, the effective refractive index was
graded as shown in Fig. 1(c) right. In order to observe light propagations in antireflective films,
the Al2O3 coated moth-eye structures were calculated at 500 nm wavelengths by rigorous coupled
wave analysis (RCWA) with varying FF [58]. In E-field distribution, bare film, Al2O3 coating on
bare film, moth-eye film, and Al2O3 coating on Moth-eye film were simulated for four cases. In
the absence of the structure, high reflections were obtained due to the high refractive index of
Al2O3. The results, on the other hand, show that the reflection of the AMSs with Al2O3 layer
is significantly reduced. Transmittances of fabricated AMSs with different Al2O3 thicknesses
were measured by spectrophotometer (Cary 500 Scan UV-Visible Spectrophotometer, Varian)
from 400 nm to 800 nm wavelength ranges (Fig. 1e). The averaged transmittance (Fig. 1e inset)
exhibited the increased transmittance of AMSs. Enhanced transmittances of AMSs on PC films
were maintained with compared to the flat PC film even though of Al2O3 layer was coated.

3. Fabrication methods

Figure 2(a) shows the schemes of hot-embossing process using nanostructured nickel master
stamp (HT-AR-02, Temicon) to achieve AMSs on PC substrate. The nickel mold was cleaned
using acetone, isopropyl alcohol (IPA), and deionized (DI) water with blowing N2 gas for
self-assembled monolayer (SAM) treatment. The SAM of octadecyltrichlorosilane (OTS) was
treated to nickel stamps for releasing a PC replica from the nickel stamp. The annealing process
was subsequently performed for 5 min, at 120 °C using the hot plate. AMSs patterned PC
samples were fabricated under the pressure of 20 bar, temperature of 120 °C at the glass transition
temperature. Then, Al2O3 thin film was coated by using atomic layer deposition (Lucida D100
ALD system, NCD) at 80 °C. Trimethylaluminum (TMA) and H2O were used as the precursor,
and oxidant, respectively. The TMA pulse, N2 purge, H2O pulse, and N2 purge cycle was
repeated with base pressure of 500 mTorr and ∼0.1 nm/cycle growth rate. The fabricated samples
of photographs were shown in the Fig. 2(b), the glare-less PC films were obtained in all the
antireflective films. The field emission scanning electron microscope (FE-SEM, S-4700, Hitachi)
image was exhibited to figure out the uniformly coated Al2O3 on AMSs.
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Fig. 2. (a) Fabrication steps for Al2O3 coated moth-eye polycarbonate films (b) Photographs
of flat PC, moth-eye patterned PC, and Al2O3 coated moth-eye PC. (c) SEM images of top
view and cross sectioned view for fabricated samples varying Al2O3 deposition thickness
(0 nm, 50 nm, 75 nm, and 100 nm). The scale bar is 250 nm.

4. Nano-scratch testing of Al2O3 coated PC films

The mechanical property was measured by nano-scratch resistance measurement (NST3, Anton
Paar) with diamond stylus as illustrated in Fig. 3(a). The optical micrographs of fabricated
samples with different Al2O3 thicknesses were shown in Fig. 3(b). The AMSs on PC film

Fig. 3. (a) Schemes of scratch tests on samples (b) Optical microscope images of scratched
Al2O3 coated moth-eye PC. (c) Frictional coefficient versus lateral displacement depending
on the Al2O3 coating thickness.
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without Al2O3 coating (A 0 nm) shows clear scratch marks. Also, as the thicknesses of Al2O3 are
increased, gradually reduced scratch marks are observed. The scratch resistance was estimated
by friction coefficient versus lateral displacement as shown in Fig. 3(c). The results show that the
thicker Al2O3 increases the mechanical resistance. The average friction coefficient was reduced
about 20% in A 100 nm samples compared to A 0 nm.

5. Optical simulations

To verify the optical properties of Al2O3/AMSs on PC films with varying geometric parameters
for wide range applications, the numerical simulation was used. The rigorous coupled-wave
analysis (RCWA) was exploited to obtain transmittance spectra for periodic AMSs on PC films
(Diffract MOD, RSoft Design Group). In the RCWA calculation, a fifth diffraction order and
periodic boundary conditions were set for the diffraction efficiency. The un-polarized light was
achieved by averaging the TE/TM polarization. The normal incident plane wave was illuminated
on Al2O3/PC nanostructures. Optical constants of PC and Al2O3 were measured by ellipsometer
(UVISEL ER Benchtop AGAS, Horiba) and literature [57]. The material dispersion of optical
constants was considered for wavelength dependent numerical simulations. Effective refractive
indices were calculated by using MATLAB software (Mathworks, Inc) depending on their
structural parameter (i.e., FF of AMSs and thickness of Al2O3) with the fixed factors (i.e., height
of 300 nm and period of 250 nm), as shown in Fig. 4(a) and (b). Basically, the effective refractive
index profile of AMSs is highly dependent on FF. The main reason is that the difference in
effective refractive index between the AMSs and the PC substrate is determined by FF. Ideally,
without Al2O3 coating, the closely packed AMSs (i.e., FF 100%) is the smoothest in the refractive
index profile. However, since the Al2O3 coating causes an increase in the overall FF of the AMSs

Fig. 4. Calculated refractive index depending on (a) FF and (b) Al2O3 thickness. (c) Contour
plots of transmittance for FF and Al2O3 thickness. (d) Calculated average transmittance
depending on Al2O3 thickness and FF.
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with Al2O3, the refractive index profile of the AMSs with Al2O3 were optimized at the Al2O3
thickness of 75 nm with FF 60% of AMSs. Figure 4(c) shows the contour plots of aforementioned
geometries. In the case of AMSs without Al2O3 coating, the highest transmittance was obtained
with FF 100%. The result shows a tendency for the transmittance to increase with FF of AMSs
(Fig. 4(c) left). As shown in Fig. 4(c) right, the highest transmittance was observed in the
75 nm coated Al2O3. From these results, we note that the gradual profile of effective refractive
index causes increased transmittance as suppressing surface reflection. Figure 4(d) shows the
contour plot of the average transmittance of AMSs with Al2O3 thickness and FF. The result
shows the correlation between Al2O3 thickness and FF in the transmittance of AMSs, which
demonstrates the fact that AMSs with the lower FF require the thicker Al2O3 thickness for optimal
transmittance.
To analyze geometrical effects, we considered the deformation of AMSs as a parabolic ratio

defined by a geometrical change from the cylindrical shape (0%) to parabolic shape (100%), as
shown in Fig. 5(a). With varying the parabolic ratio, we calculated the effective refractive index
to form gradual profiles of effective refractive indices in Fig. 5(b). The refractive indices of
AMSs without Al2O3 were varied by changing parabolic ratio (dot line). Relatively, the gradual
profiles of effective refractive indices were achieved at the parabolic ratio from 60 to 100% (rigid
line) with the fixed factors (i.e. Λ is 250 nm, h is 300 nm, and FF is 60%). Figure 5(c) shows
the contour plots for transmittance of AMSs without and with Al2O3 coating (i.e., 75 nm). As
a result, with Al2O3 coating, the improvement in transmittance was confirmed at 60 to 100%.
Figure 5(d) shows the angle dependencies of Al2O3 coated moth-eye PC films, the improvement
of transmittance was maintained until ∼40 degree. Figure 5(e) shows the refractive indices of
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Fig. 5. (a) Schematic view of nanostructures with varying parabolic ratio. (b) Refractive
index profile of AMSs for the parabolic ratio with Al2O3 coating (i.e., 75 nm). (c) Contour
plots of transmittance of AMSs without and with Al2O3 coating (i.e., 75 nm). (d) Calculated
transmittance depending on the angle of incident light. (e) Calculated refractive index with
different coating materials (i.e., Si3N4 and SiO2).
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different materials, and our proposed scheme can be varied by designs depending on the various
applications with different materials.

6. Conclusion

We have designed and demonstrated the tailored Al2O3 coating on moth-eye structure for
enhancing mechanical and optical performances. We confirmed that increased optical and
mechanical properties were observed at uniformly coated Al2O3 monolayer by ALD deposition
on the existed moth-eye antireflective structure. We calculate and modify the graded refractive
index by varying structural parameter. The polycarbonate film coated with 75 nm Al2O3 thickness
exhibits the smoothest graph at 75% of filling fraction than 100%, with the fixed factors (period
is 250 nm and height is 300 nm). We notice that the effective refractive index easily calculated by
volume weighted averaging method through nano-structure geometric design. Additionally, our
proposed structure is applicable to various nanostructures which have different refractive index
materials.
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