Elaboration on Potential Outcomes (EPO) and the Consultative Salesperson:
Investigating Effects on Attributions and Performance

Forthcoming, Journal of Personal Selling & Sales Management

Christopher R. Plouffe
Professor of Marketing, and
Robin T. Peterson Endowed Chair in Marketing
Department of Marketing
College of Business
New Mexico State University
BC # 338, MSC 5280
1320 E. University Avenue
Las Cruces, NM, USA 88003-8001
Phone: 575-646-6713
Email: cplouffe@nmsu.edu

Frederik Beuk
Assistant Professor of Marketing
University of Akron
College of Business Administration
Polsky 569C – Department of Marketing
259 South Broadway Street
Akron, OH 44325-4804
Phone: 330-972-7903
Email: beuk@uakron.edu

John Hulland
Professor of Marketing, and
Emily H. and Charles M. Tanner, Jr. Chair in Sales Management
Terry College of Business – 104 Brooks Hall
University of Georgia
Athens, GA 30602
Phone: 706-542-3764
E-mail: jhulland@uga.edu

Gergana Y. Nenkov
Associate Professor of Marketing
Carroll School of Management
Boston College
Fulton Hall 442, 140 Commonwealth Avenue
Chestnut Hill, MA 02467-3800
Phone: 617-552-1018
Email: gergana.nenkov@bc.edu
Sales cycles in most industries are getting longer and more complex, not shorter and simpler (see Bradford et al. 2010; Cespedes 2014; Dixon and Adamson 2011; Plouffe et al. 2013). Given this reality, salespeople every day have to answer tough questions surrounding “should I now engage in behavior x, y, or z with respect to this customer and sales opportunity at this time?” (e.g., Chakrabarty et al. 2014; Kapelianis and Guesalaga 2015; Plouffe et al. 2016).

As a consequence, current best practices and the conventional “in the field” wisdom recommend that the salesperson be thinking and strategizing “several moves ahead” about the sales cycles and customer opportunities they pursue (e.g., Cespedes 2014; Lay et al. 2009; Schmidt et al. 2015). The operative question is how – how does this actually work?

Consider the different phases and stages of the sales cycle and process (see Moncrief and Marshall 2005; Plouffe et al. 2013). As a given sales cycle starts and then begins to evolve, the salesperson must constantly assess the costs versus benefits of expending more (or less) of their own time and energy on the opportunity (i.e., behavior), as well as the requisite level(s) of firm and personal resources to be deployed (Bonney et al. 2016; Bonney et al. 2014). As the sales cycle moves along, the salesperson will have to make “on the fly” judgments about whether or not they will “win” or “lose” the business (e.g., Adamson et al. 2012; Bradford et al. 2010), as well as assessments as to which specific selling behavior(s) will move them closer to success (e.g., a completed sale) and further away from the prospect of failure (e.g., losing the business to a competitor).

Given the preceding, it seems logical that a thorough pre-decision consideration of the potential outcomes of current sales behavior should lead to more thoughtful sales decision-making and, therefore, better performance. More critically, it should also help salespeople in
understanding the underlying reasons for their performance, as we know from past work that salespeople make very different attributions when characterizing successful versus unsuccessful sales (e.g., Dixon et al. 2003; Dixon et al. 2001; Teas and McElroy 1986). However, not all salespeople will engage in such thorough pre-decision consideration of potential outcomes. Some individuals are more predisposed than others to engage in “Elaboration on Potential Outcomes” (or EPO) when deciding how to behave (Nenkov et al. 2008), and this chronic predisposition affects a variety of behaviors, from self-control (Nenkov et al. 2008), to susceptibility to context effects (Nenkov et al. 2009), to intentions to donate (Demir and Kumkale 2013). Therefore, an important question arises: to what extent does a salesperson’s predisposition to engage in pre-decision outcome elaboration (i.e., EPO) – to sift through the broad range of possible outcomes and behavioral choices across the entire sales cycle – affect both their own performance, and how – or to what – do they attribute it to (i.e., their attributional states)?

Given the more complex buyer-seller interface and longer sales cycles that salespeople must navigate today (e.g., Adamson et al. 2012; Bradford et al. 2010; Cespedes 2014; Plouffe et al. 2013; Stevens and Kinni 2007) as well as their increasingly pivotal role as marketing “decision-makers” (e.g., Bonney et al. 2016; Hughes and Ahearne 2010), the current research proposes that a renewed examination of how specific individual-level variables may impact both salesperson attributions and their selling performance is warranted (as per Dixon et al. 2001, p. 74; Evans et al. 2012, pp. 92-92). The present study thus attempts to expand what is currently known about: (i) the specific variables that underlie both positive and negative sales attributions, and (ii) the effects of such variables as drivers of objective sales performance.

In this research, we introduce an individual-specific construct that is relatively new and that has not been previously examined in the sales context: Elaboration on Potential Outcomes
(or EPO). Nenkov, Inman, and Hulland (2008) theoretically develop, operationalize, and validate EPO as a stable, individual-difference construct that represents a generalized, context-independent predisposition toward thinking about the potential outcomes of one’s behavior. This construct is multidimensional, and encompasses distinct dimensions dealing with different aspects of the outcome consideration process: (i) a Generation/Evaluation dimension (EPO-Gen) that reflects the extent to which individuals tend to generate and evaluate potential consequences of an action before they make decisions; and (ii) a Relative Positive/Negative Outcome focus dimension (EPO-Rel) that reflects the relative extent to which people tend to focus on positive versus negative consequences of their decisions (see Nenkov et al. 2008; Nenkov et al. 2009). Specifically, the current research examines the influence of EPO while also accounting for two other person-specific constructs – (i) self-efficacy and (ii) trait competitiveness – that have been found in past work to play an important role in understanding salesperson attributions and performance. Leveraging both survey responses and archival data in the form of objective sales performance measures for 301 salespeople drawn from two large consultative selling organizations, the results ultimately show that all three individual-level constructs help to explain attributions for selling success, but are only weakly linked to attributions for failure. In addition, the effects of these constructs – and in particular, EPO – on sales performance are noteworthy, even after accounting for previous sales experience.

The balance of the paper proceeds as follows. First, we begin by highlighting three key trends in the environment within which the sales role is performed today, and argue that sales research might benefit from an updated, enhanced construct-level understanding of the drivers of modern sales performance, as well as a deeper understanding of how such constructs might impact salespeople’s attributions for their own successes versus failures. Next, we begin the
theoretical development of the present study by reviewing three relevant areas of past research – (i) salesperson attributions research; (ii) research defining and testing the Elaboration on Potential Outcomes (EPO) construct; and (iii) sales performance work – in each case, finishing by advancing relevant hypotheses. We then detail the methodology used to collect the data reported in the article, with the study’s analyses and key findings following. The paper concludes with a consideration of the work’s theoretical contributions, a discussion of practical implications for the sales role and associated management challenges, and finally, a summary of the study’s limitations as well as promising directions for future research.

A MORE COMPLEX SALES & BUSINESS ENVIRONMENT,
AND THE SALESPERSON AS DECISION-MAKER

Three significant trends have radically affected the sales role in recent years, suggesting the need for a renewed examination of salesperson-specific variables germane to selling success today. The first trend is a marked increase in the total length of time required to manage and close deals (i.e., “sales cycles” are getting longer. See Bradford et al. 2010; Evans et al. 2012; Moncrief and Marshall 2005; Rackham and DeVincentis 1999; Stevens and Kinni 2007). Sales cycles have gotten longer and more complex in many industries today because customers: (i) are more risk averse; (ii) take much more time up-front to vet and screen prospective vendors, and identify decision criteria and priorities; and (iii) involve more people in the decision-making unit / buying center (see Cespedes 2014; Dixon and Adamson 2011; Lay et al. 2009). These longer and more complex sales cycles often result in buyer-seller relationships that persist over multiple sales campaigns, creating years- and even decades-long buyer-seller interactions (Ahearne et al. 2010a; Bradford et al. 2010; Stevens and Kinni 2007). As a consequence, salespeople today are often tasked with becoming “problem-solvers”, “navigators”, and “trusted advisors” for their customers (e.g., Bradford et al. 2010; Plouffe and Barclay 2007; Shannahan et al. 2013b).
However, research has not to-date fully explored the specific variables needed for successful job performance in this new environment, nor how these changes influence salespeople’s attributions for their own successes versus failures (e.g., Dixon and Tanner 2012; Evans et al. 2012; Johnson 2006; Plouffe et al. 2009; Ulaga and Loveland 2014).

A second trend that creates the impetus for the present study has been the shift towards “solutions-selling” (e.g., Le Meunier-FitzHugh et al. 2011; Sawhney 2006; Tuli et al. 2007). Under this strategy, salespeople approach their customers with a “what do you need” mentality and then integrate various products and services – both internally (e.g., across product lines) and externally (e.g., with selected business partners) – to meet these needs (Plouffe et al. 2016; Tuli et al. 2007). However, firms are also learning that the sales competencies and person-specific variables needed to make this market-facing strategy actually work in practice are different than those of the past (Bradford et al. 2010; Cespedes 2014; Dixon and Tanner 2012; Miller et al. 2002; Plouffe et al. 2016). For example, when the selling task and process are less complicated, differences between experts and novices matter less (see Szymanski and Churchill 1990). However, consistent with recent work in the sales area (e.g., Chakrabarty et al. 2014; Shannahan et al. 2013b), when the sales process and role become more complicated, the effect of person-specific variables – like the EPO-construct we investigate in the present research – stand to potentially have a greater impact and role than in the less complicated selling scenarios of yesteryear.

A third trend which is markedly impacting the sales role in recent years is the evolution of the salesperson as a strategic “decision-maker”. While salespeople have always had to make decisions and both act and react to the customer (especially “live” within discrete customer interactions – for example, specific sales calls. See Spiro and Weitz 1990), the two trends
outlined above – (i) shorter sales cycles coupled with (ii) an increasing focus on solutions selling – have exacerbated the critical importance of salesperson decision-making. Some recent research has begun to explore this. For example, Hughes and his colleagues (2013; 2010) investigate salesperson decision-making in the context of which brands within the overall product portfolio the salesperson chooses to focus on given their finite time selling into the retail channel. Similarly, Fu et al. (2010) as well as Ahearne et al. (2010b) examine salesperson decision-making with respect to the effort expended on new versus existing products. Recent research has also exposed that in making decisions regarding their customers and selling opportunities, salespeople often “chase” and overvalue potential gains (i.e., winning the business / closing the sale) while undervaluing potential losses and the overall value of their selling time and effort being allocated elsewhere (see Bonney et al. 2016; Bonney et al. 2014). Given the preceding, it could well be that the salesperson’s pre-decision elaboration (i.e., EPO) may be a highly germane factor which impacts how they make decisions, what they attribute success and or failure to, and also, how they ultimately perform.

These shifts and trends impacting the sales role therefore call for an updated and enhanced understanding of: (i) which salesperson-specific variables might underlie superior selling performance in this new environment, (ii) how such variables may affect salespeople’s attributional states, and (iii) what the impact of the preceding might be on sales performance?

THEORETICAL FRAMEWORK & HYPOTHESIS DEVELOPMENT

In this section, we review the three relevant areas of past work germane to the present study: (i) salesperson attributions research, (ii) selected individual difference variables including EPO, trait competitiveness, and self-efficacy, and (iii) sales performance work, particularly as it relates to extant variables and attributions. Figure 1 represents this work’s overriding conceptual
framework, and maps the study’s hypotheses. In the top right portion, EPO’s proposed relationships with the attributions salespeople make for their sales successes and sales failures is explored. The bottom right portion of reflects the anticipated relationship between EPO and sales performance.

--------------------------- Please insert Figure 1 about here --------------------------

Salesperson Attributions Research

The theory of attribution describes how individuals attempt to understand the causes of events they observe (Johnson 2006; Kelly 1967). Attributions for successes and failures are particularly important in the sales context, as they have been found to influence salespeople’s expectations of future success and guide their subsequent behaviors and decision making (e.g., DeCarlo et al. 2007; Dixon et al. 2001; Teas and McElroy 1986). Following Dixon, Spiro, and Jamil (2001) and Teas and McElroy (1986), we focus on five categories of potential causal influences that have also been found in past research to affect salespeople’s causal attributions: (i) personal effort, (ii) ability, (iii) task difficulty, (iv) strategy, and (v) luck.

In terms of the boundaries and scope of the present study, it is important to understand the sales context within which these attributions are being made today. Existing work in this area has focused almost exclusively on the discrete, transactional, individual “sales call level” as its focal unit of analysis (see for example Dixon et al. 2003; Johnson 2006; Spiro and Weitz 1990). However, as already noted, selling today is increasingly relational and more complex, with a marked shift toward longer sales cycles and an increased customer demand for solutions-oriented selling. Consistent with this changing sales landscape, the present study adopts as its attributional level of analysis the complete “customer opportunity” (or more simply put, the “sale”). This, then, encompasses the full range of selling behaviors, strategies, activities,
decision-making, and buyer-seller interactions across the entire buyer-seller sales cycle, from first contact through to the customer’s ultimate purchase decision (i.e., a sales vs. no sale).

Individual Difference Variables in Sales Research

In this new selling environment, critical salesperson-specific variables that are likely to have the greatest impact are those that aid in information processing, promote a focus on the future, facilitate decision-making, and foster innovativeness in tackling the new challenges and opportunities that every sales cycle presents (e.g., Evans et al. 2012; Hughes and Ahearne 2010). Below, we begin by introducing the Elaboration on Potential Outcomes (EPO) construct as a potentially relevant variable for explaining salespeople’s attributions, decision-making, and ultimately, their performance in this type of selling environment. We then review (i) self-efficacy and (ii) trait competitiveness as more established, individual-specific traits that have been used in past research to account for attributional and performance differences. Our intent in focusing on these latter constructs is to use them as controls in our model in order to determine the incremental explanatory contribution gained by including the EPO construct.

Elaboration on Potential Outcomes (EPO) – Nenkov, Inman, and Hulland (2008) conceptualize EPO as a stable, individual-difference construct that represents a generalized, context-independent predisposition toward thinking about potential outcomes. This construct is multidimensional and encompasses distinct dimensions dealing with different aspects of the outcome consideration process: (i) a *Generation/Evaluation* dimension (EPO-Gen) that reflects the extent to which individuals tend to generate the potential consequences of an action before they make decisions and evaluate the likelihood and importance of the consequences they have generated; and (ii) a *Relative Positive/Negative Outcome* focus dimension (EPO-Rel) that reflects the relative extent to which people tend to focus on positive versus negative
consequences of their decisions. The distinct EPO dimensions converge on a single latent variable and each dimension reflects this latent variable imperfectly, making EPO a multifaceted construct. While robustly developed and still relatively new to the literature (see Nenkov et al. 2008; Nenkov et al. 2009), EPO has more recently been applied to examine consumer spending decisions (Haws et al. 2012), donation decisions (Demir and Kumkale 2013), as well as individual self-control in goal attainment (Nenkov et al. 2014).

A predisposition to engage in a thorough consideration of the consequences of one’s decisions (i.e., EPO-Gen) has been found to enhance self-regulation effectiveness (Nenkov et al. 2008) and reduce decision-making shortcomings people ordinarily exhibit, such as employing shortcut strategies (e.g., heuristics) or weighing positive and negative consequences differently and falling prey to context effects (see Nenkov et al. 2009).

In the sales context, individuals who are high in EPO-Gen should, therefore, more fully consider the broad range of possible consequences of their current sales activities and decisions. Elaboration on the potential outcomes of current behavior provides important feedback about the potential of the behavior to move one closer to their goals (Carver and Scheier 1998), and makes one more conscious of the standards against which to compare those outcomes (Nenkov et al. 2008). Such information about potential outcomes provides individuals guidance about what they need to do to achieve their goals, instilling a sense of control over these outcomes. If individuals have a sense of control over their obtained outcomes, they would be more likely to take responsibility for these outcomes and attribute them to controllable and internal sources.

Because a thorough pre-decisional outcome elaboration involves a consideration of not only positive, but also negative outcomes, we expect that high EPO-Gen salespeople will have a perception of greater control over events across the entire sales cycle, independent of the value of
the sales outcome achieved (i.e., successful or unsuccessful). They will thus be more likely to attribute both successful and unsuccessful sales opportunities to controllable and internal causes (i.e., effort, ability, strategy).

\[H1: \text{Salespeople with a higher level of EPO-Gen will be more likely than others to attribute their (a) successful and (b) unsuccessful sales to:} \]
\[(i) \text{ effort;} \]
\[(ii) \text{ ability; and} \]
\[(iii) \text{ strategy.} \]

According to the principle of regulatory reference, individuals use different points of reference in the process of self-regulation, and can regulate their behaviors by focusing on either achieving a positive outcome (e.g., closing a sale) or avoiding a negative outcome (not losing a sale. See Pham and Higgins 2005). A relative focus on positive or negative outcomes (i.e., EPO-Rel), triggers distinct self-regulatory orientations: focusing on the positive outcome of closing a sale probably increases sensitivity to gains and triggers greater eagerness to achieve those gains, while focusing on the negative outcome of losing a sale likely increases sensitivity to losses and triggers a greater vigilance to assure safety (Nenkov et al. 2008). High EPO-Rel individuals tend to focus on the positive outcomes of their current behaviors, which is related to an increased sensitivity to – and greater eagerness toward – achieving gains (i.e., an achievement orientation. See Nenkov et al. 2008).

According to regulatory fit theory (Higgins 2002), when people obtain outcomes that are consistent with their orientation they would “feel right” about these outcomes. This should make them more likely to take responsibility and attribute them to internal and controllable factors. Therefore, when high EPO-Rel salespeople achieve a positive outcome that fits their orientation towards approaching positive outcomes (e.g., a successful sale), they should attribute it to
controllable and internal factors, whereas a negative outcome that does not fit their orientation (e.g., an unsuccessful sale) should be attributed to external and uncontrollable factors. Thus:

\[H2a: \text{Salespeople with a higher level of EPO-Rel will be more likely than others to attribute their successful sales to:} \]

(i) effort;
(ii) ability; and
(iii) strategy.

\[H2b: \text{Salespeople with a higher level of EPO-Rel will be more likely than others to attribute their unsuccessful sales to:} \]

(i) task difficulty; and
(ii) bad luck.

To assess the relative value of the EPO construct over and above other constructs, we compare it to two frequently examined variables in sales research: (i) self-efficacy and (ii) trait competitiveness. Self-efficacy (e.g., Fu et al. 2010; Gupta et al. 2013; Sager et al. 2006) and trait competitiveness (e.g., Brown et al. 1998; Shannahan et al. 2013a) have both frequently been shown to explain variance in sales behaviors and salesperson decision-making, including attributions of success and failure (see Brown et al. 1998; Dixon et al. 2001; Krishnan et al. 2002; Teas and McElroy 1986; Wang and Netemeyer 2002). In addition, these constructs have been shown to be significant predictors of sales performance, generally with \(R^2 \) values in the 5-20% range, and almost always operationalized with subjective / self-reported measures of performance (See Churchill et al. 1985; Rich et al. 1999; Sitser et al. 2013; Vinchur et al. 1998; Wang and Netemeyer 2002).

Self-Efficacy – Personal self-efficacy represents an individual’s confidence in his/her ability to perform specific tasks – especially those that are new or otherwise unfamiliar (Krishnan et al. 2002). Individuals high in self-efficacy weigh, integrate, and evaluate information about their abilities, and then make their choices and assign effort accordingly (Bandura 1997; Fu et al. 2010). Teas and McElroy (1986) suggest that individuals who have
high self-esteem are more likely to believe their successes are the result of personal effort and ability. Dixon, Spiro and Jamil (2001) argue that task specific self-efficacy is a closely-related, and more relevant, personal construct than global self-esteem in the task- and goal-oriented context of personal selling (see also Paulhus 1983). Therefore, highly self-efficacious salespeople are more likely to attribute their successes to internal, stable, and/or controllable causes (i.e., effort, ability, strategy). Conversely, when faced with failure, high self-efficacy individuals are more likely than others to attribute the failure to both external and unstable causes (Bandura 1997; Teas and McElroy 1986; Weiner 1986) since they fundamentally believe in their ability to successfully complete the task (Gist and Mitchell 1992). Thus, attributions to task difficulty/complexity and luck are more likely to occur for failures.

Competitiveness – Both logic and past work support the notion that a strong competitive instinct is a positive attribute for salespeople to possess (Krishnan et al. 2002; Olson et al. 2001). Competitiveness, a dimension of achievement motivation (as per Wang and Netemeyer 2002), represents an individual’s “enjoyment of interpersonal competition and the desire to win and be better than others” (Spence and Helmreich 1983, p. 41). Weiner and Kukla (1970) found that individuals high in achievement motivation are more likely to take personal responsibility for successes (i.e., perceive successful outcomes as determined by ability or effort, rather than luck) than individuals low in achievement motivation. Thus, we expect that salespeople high in competitiveness are more likely than others to attribute their successes to internal, controllable causes (effort, ability, and strategy), and failures to external, uncontrollable causes (task difficulty, luck).

Individual Difference Variables and Sales Performance
Individuals who tend to anticipate the potential consequences of their behavior will be more motivated in pursuing these consequences (Pham and Higgins 2005), and hence more likely to succeed in achieving them. Previous research has found that EPO-Gen, which is related to anticipation of outcomes and thus to the individual’s motivation and success, is a positive predictor of a number of behaviors resulting from self-regulation effectiveness (e.g., lack of procrastination, responsible credit card use, healthy eating and regular exercising, saving for retirement, etc. See Haws et al. 2012; Nenkov et al. 2014; Nenkov et al. 2008). We would thus expect that in the sales context, high EPO-Gen should be related to better sales performance because high EPO-Gen salespeople are in a constant state of assessing their own strategy, decision-making, and possible outcomes as the sales cycle and customer opportunity develops (i.e., as new information presents itself, competitive dynamics unfold, and customer reactions / decisions occur, etc.). Thus, we suggest that high EPO-Gen salespeople will follow strategic selling approaches (e.g., Dixon and Adamson 2011; Stevens and Kinni 2007) and execute specific selling activities and behaviors that are most likely to result in sales success and enhanced performance. Given this:

H3a: EPO-Gen is positively related to sales performance.

As discussed earlier, individuals can regulate their behaviors by referring to either a positive or a negative outcome (see Pham and Higgins 2005). For example, two people might covet the same goal in terms of approaching a positive outcome (e.g., successfully closing a sale) versus avoiding a negative outcome (e.g., losing a sale), differing neither in their motivation to achieve the goal nor in their expectations, but only in their approach for actually achieving that goal. EPO-Rel – which is related to the overall outcome reference value and not related to
motivation or success – has previously not been found to predict individual’s engagement in behaviors resulting from self-regulation effectiveness (Nenkov et al. 2008).

However, in the sales context, a wide variety of research suggests that positive mental attitudes result in a positive reference value that helps improve sales performance. For example, Schweingruber (2006) describes how a positive mental attitude helps door-to-door salespeople regulate themselves in the face of adversity and rejection, while Schulman (1999) argues how learned optimism improves sales productivity. In a consultative selling context, higher EPO-Rel will be associated with the salesperson’s ability to identify and visualize possible win-win situations, rather than a focus on recognizing and avoiding a potential lose-lose outcome. Therefore, we expect that EPO-Rel is also positively related to sales performance:

\[H3b: \text{EPO-Rel is positively related to sales performance.} \]

METHOD

Data Collection Approach and Achieved Samples

To test the research model, a survey questionnaire including measures for the three individual-specific variables, success and failure attributions, and various control variables (e.g., sales experience) was developed and administered to the sales personnel in two large organizations operating in different industries: (i) FitCo; and (ii) Realty Corp (both firms’ identities are disguised at management’s request).

FitCo is a respected manufacturer and seller of high-end, “gym quality” fitness equipment (e.g., weight machines; cardio machines such as exercise bikes, treadmills and elliptical trainers). The FitCo salespeople are key account managers who sell to nationally-based health club chains, international hotel chains, state and municipal governments, sports leagues
and franchises, golf and country clubs, and the like. FitCo’s customers are typically purchasing agents or senior-level executives, with the typical sales cycle lasting 6 to 9 months.

Realty Corp is a large division of a leading U.S. residential real estate firm. Its sales agents (i.e., realtors) handle both the “buy” and “sell” sides of real estate transactions for consumers in a multi-state area in the Pacific Northwest. Typical sales transactions – at the time our data was collected – were completed in 3-4 months. Both firms are relevant to our research because both salesforces utilize a consultative sales process with their customers (Crom et al. 2003; Rackham and DeVincentis 1999) and their sales campaigns involve many decision-points, thought, reflection, and strategizing across a sales cycle that lasts several months.

The survey was sent to all FitCo account managers worldwide (n=175), as well as to all Realty Corp agents working in the studied division (n=617). Senior management at both firms supported the study by pre-announcing the survey to their salesforces and by agreeing to provide objective measures of performance for each responding salesperson. The design and execution of the survey followed Dillman’s (2008) tailored design method (TDM), with other guidance coming from work on online data capture and e-mail administered surveys (e.g., Messer and Dillman 2011). All responses were recorded through a secure third-party survey web-hosting service.

At the close of the survey, 109 useable responses had been obtained for FitCo (representing a response rate of 62.3% for this firm), and 192 cases for Realty Corp (a 31.1% response rate). Table 1 summarizes the survey response rate by firm, the sample-specific mean respondent characteristics, and provides a comparison with the average US sales representative. Missing data were not a significant issue, with the recommendations of Hair et al. (2005) and Allison (2002) being used to impute missing values for a very small number of cases where this
was a problem. To assess non-response bias, the procedures recommended by Armstrong and Overton (1977) were used to compare early versus late respondents as a proxy to assess potential response bias. This analysis led us to conclude that non-response bias was not a factor given the collected data.

Measures

Scales to test the study’s hypotheses were drawn from published research, and are described in more detail below (see the Appendix for all measurement items and item loadings). Unless noted otherwise, all constructs were measured using 7-point “disagree/agree” Likert scaling.

Self-Efficacy: We use the three positively worded items from Kohli, Shervani and Challagalla (1998) to measure self-efficacy. The original scale also included reverse coded items, but confirmatory factor analysis revealed that these items loaded on a separate, negative factor.

Trait competitiveness: To assess trait competitiveness, we used the scale employed by Brown, Cron, and Slocum (1998) which was, in turn, refined with the addition of a fifth item by Plouffe, Sridharan, and Barclay (2010).

Elaboration on Potential Outcomes (EPO): Following Nenkov, Inman, and Hulland (2008), we measured the three EPO dimensions as recommended: (i) generation/evaluation (6 items); (ii) positive focus (3 items); and (iii) negative focus (4 items). As detailed earlier, the generation/evaluation dimension (EPO-Gen) captures the degree to which individuals generate potential consequences of their behavior before making decisions, and subsequently evaluate the likelihood and significance of those decisions. As suggested by the scale’s developers, the other
two dimensions were combined to form a relative focus measure (EPO-Rel) by dividing the difference between the positive and negative outcome focus scores by their sum.

Successful and Unsuccessful Sales Attributions: As recommended by Dixon, Spiro, and Jamil (2001), we separately assessed attributions for both successful and unsuccessful sales conditions. Respondents were first asked to recall a recently completed successful sales opportunity (i.e., a complete sales cycle / deal with a specific customer that closed in their favor), and to then complete three items for each of the five different potential attributions (i.e., effort, ability, task, strategy, and luck). This was followed by a similar set of questions that focused the respondent on a recently completed unsuccessful sale. To be consistent with the original measurement / item anchoring approach of Dixon, Spiro, and Jamil (2001), for all of these items, a six point scale was utilized ranging from “strongly disagree” to “strongly agree” (with no neutral point).

Performance: Past work looking at the effects of salesperson variables on performance has almost exclusively been operationalized using subjective measures of performance supplied by salespeople themselves (for representative examples, see: Deeter-Schmelz and Sojka 2007; Krishnan et al. 2002; Wang and Netemeyer 2002). The present study employs objective performance measures, both because much less attention has been paid to the relationship between salesperson variables and objective performance, and because we wish to minimize the possibility of common method bias (see Bommer et al. 1995; Campbell et al. 1993; Jaramillo et al. 2003l; Plouffe et al. 2009; Rich et al. 1999). The objective measures of sales performance were supplied by the management teams at each participating firm for all survey respondents. FitCo provided three objective measures of salesperson performance: (i) Total Orders Created (or TOC, which is the total sales, in dollars, generated by each salesperson for the most recently...
completed fiscal year at the conclusion of the survey); (ii) Total Number of Credit Applications for the most recent year (i.e., since nearly 100% of the sales made by FitCo were financed, their management relied heavily upon this measure of salesperson performance, as it highlighted the salesperson’s ability to move prospects through all phases of the sales cycle, including the credit application process); and (iii) Ancillary Sales (i.e., additional products and/or services bundled in beyond the ‘base-level’ fitness machines. For example, extended warranties, maintenance plans, and future machine software upgrades). Realty Corp provided four measures of performance for their salespeople: (i) Total Sales, in Units (i.e., the total number of completed real estate transactions in the most recent fiscal year at the conclusion of the survey); (ii) Net Adjusted Gross Commission Income (i.e., commission income after all marketing and administrative fees are paid by the agent back to Realty Corp); (iii) the Original List Price Value of all Properties Sold in the most recent fiscal year; and (iv) Total Sales Revenue Generated (in dollars). For the management teams of both FitCo and Realty Corp, these measures of salesperson performance were deemed the most reliable and widely examined in terms of the internal evaluation of each firm’s sales personnel. For FitCo, the three combined performance measures exhibited a composite reliability (CR) of 0.79. The items load on a single factor with an Eigenvalue of 2.17, explaining 72.3% of the variance. For Realty Corp, the four performance measures yielded a composite reliability (CR) of 0.94, loading on a single factor with an Eigenvalue of 3.42 and explaining 85.5% of the variance. We standardized the performance within each firm to allow for comparisons between the two firms (cf. Plouffe et al. 2016).

The correlations between the constructs are reported in Table 2. Note that the three internally-focused attributions (effort, ability, and strategy) are moderately correlated with one another, both for the successful and unsuccessful sales conditions. Similarly, the two externally-
focused attributions (task difficulty and luck) are moderately correlated. This is consistent with past work (see Dixon et al. 2001; Teas and McElroy 1986) showing that attributions made by salespeople tend to be grouped together primarily on the basis of whether they are internally- or externally-focused. Nevertheless, all variance inflation factors are well within acceptable norms, ranging from 1.17 to 2.72, indicating multicollinearity is not a serious issue given our data.

The measurement models for the constructs were assessed through confirmatory factor analysis (CFA) using AMOS 21. As a first step, the measurement items for successful sales attributions were investigated, followed by the measurement items for unsuccessful sales attributions. Thirdly, the measurement items for the independent variables (i.e., EPO) and controls (i.e., self-efficacy, trait competitiveness, and sales experience) were inspected. All three measurement models exhibited acceptable levels of fit to the data per the recommendations of Hu and Bentler (1999). The root mean square error of approximation (RMSEA) are between 0.03 and 0.07; non-normed fit indices (NNFI) are between 0.95 and 0.98; and the comparative fit indices (CFI) are between 0.97 and 0.99. Only the Chi-square statistics for the successful attributions CFA ($\chi^2_{(69)} = 90.47$, $p = 0.04$), the unsuccessful attributions CFA ($\chi^2_{(67)} = 117.41$, $p < 0.00$), and the combined EPO and controls CFA ($\chi^2_{(226)} = 308.75$, $p < 0.00$) were significant. The standardized factor loadings were all above 0.70, except for two items that were maintained to preserve consistency with prior research. Convergent validity was further supported by composite reliabilities all well above 0.85. In support of discriminant validity, the square root of the average variance extracted (AVE) for each construct was greater than its highest correlation coefficient, see Table 2.
ANALYSIS AND RESULTS

The conceptual model was tested using Structural Equation Modeling (SEM), an appropriate multivariate data analytic technique to employ given that the present research focus is on theory testing (Bentler and Chou 1987) rather than theory building (Bagozzi 1984). We first compared the variance in the key variables for each of the two firms. Controlling for sales experience, Levene’s statistic is non-significant for all but one key variable, ranging between 0.02 and 3.59 (p = 0.06 – 0.96). The exception is for the self-efficacy variable. Salespeople at FitCo reported lower levels of self-efficacy ($M = 4.63$, $SD = 2.02$) than those at Realty Corp ($M = 6.01$, $SD = 0.72$). Given the similarity in the sales task and role of the salespeople across the two examined firms (i.e., consultative sales task, longer sales cycles, etc.), and the fact that the variance patterns for virtually all of the variables are highly comparable, we pooled the data from both firms, thus allowing for the simultaneous analysis of all 301 cases.

In SEM, relatively poor fit in one part of a model can be masked by a high degree of fit in another part of the model. To mitigate this risk, we separately investigated the attributions for (i) successful sales, (ii) unsuccessful sales, and (iii) objective sales performance. Simultaneously, we assess whether models including EPO perform superior to models without EPO.

The fit for the successful sales attributions model is good ($\chi^2 = 3.72$, df = 2, $p = 0.15$). Hu and Bentler (1999) suggest that a Comparative Fit Index (CFI) greater than 0.95 and a Root Mean Square Error of Approximation (RMSEA) below 0.05 are indicative of a good balance between Type I and Type II errors when assessing model fit. Similarly, a Normed Fit Index (NFI), and Goodness of Fit Index (GFI), greater than 0.95 are indicative of good model fit (Bentler 1990), as is a normed Chi-square (χ^2/df) between 1 and 5. For the successful sales attributions model without EPO, the model fit is below commonly accepted norms: $\chi^2 = 44.26$, p
Including EPO, all indicators meet or exceed these commonly accepted norms: \(\chi^2/df = 1.86, \text{RMSEA} = 0.05, \text{CFI} = 0.997, \text{NFI} = 0.994, \text{GFI} = 0.997 \). Finally, a Chi-square difference test (see Yuan and Bentler 2004) indicated that the model including EPO performs significantly better than the model without EPO. Most notably, the portion of explained variance (R\(^2\)) in Effort Attributions improves from 13.4 to 21.8% when adding EPO. Likewise, the R\(^2\) for Ability Attributions improves from 19.8% for the model without EPO to 29.8% for the model including EPO, see Table 3.

The fit for the unsuccessful sales attributions model is insufficient, violating at least one commonly accepted fit criterion in both the models with and without the EPO construct. With EPO included, the RMSEA of the model exceeds Hu and Bentler’s (1999) threshold of 0.05. Without EPO, the \(\chi^2 \)-criterion reaches significance, also implying bad model fit. Moreover, the explained variance in each of the constructs ranges between only 1.4 and 4.9%, see Table 4. We will speculate about possible reasons for the poor model fit of the unsuccessful sales attributions model, and discuss the potential implications of this, in the ensuing discussion.

The fit for objective sales performance is good (\(\chi^2 = 0.77, p = 0.68, \chi^2/df = 0.39, \text{RMSEA} = 0.00 \text{ CF} = 1.00, \text{NFI} = 0.99, \text{GFI} = 0.99 \)), and based on the Chi-square difference test, significantly better than the more parsimonious model without EPO. As noted in Table 5, with the inclusion of the EPO variables, the effects of both self-efficacy and trait competitiveness on sales performance disappear. This is an interesting finding worthy of further deliberation. What could explain this finding? On the one hand, it could be that the EPO variables “supersede” the
importance of these two much examined variables in the sales literature. Put differently, it could be that EPO matters “more” than they do, though the approach we use in the present research (SEM) does not allow for a definitive determination on this assertion one way or another (see Bentler and Chou 1987). On the other hand, recent research has shown that many of the variables frequently studied in the sales literature are indeed sales context specific. For example, the recent finding that trait competitiveness boosts sales performance only in circumstances where the company corporate culture is seen as highly competitive (Schrock et al. 2014). Likewise, recent meta-analytic research findings bring into question the very nature of the self-efficacy variable, suggesting that self-efficacy itself may simply be a function of past performance, and not the driving force behind future performance (see Sitzmann and Yeo 2013). On the whole, then, we believe the objective performance-based results reported in the present study show enough promise that EPO, as a salesperson-level individual-specific variable, should be considered as a potential variable of consequence going forward.

Table 6 offers a summary of all hypothesized relationships, achieved results, p-values and associated significance levels, and whether or not a given, hypothesized relationship was supported. In sum, we find support for all hypothesized relationships regarding successful sales attributions (H1a, H2a) and objective performance hypotheses (H3), but do not find support for the unsuccessful sales attribution hypotheses (H1b, H2b).

DISCUSSION

The present research had as its focal objective the exploration of a relatively new construct (EPO), previously unexplored in the sales literature. The goal was to juxtapose EPO
versus two well-established constructs in the salesperson performance literature (i.e., self-efficacy and trait competitiveness), layering all this within a classic, well-established salesperson attributions-based, sales opportunity-level win/loss theoretical framework. The findings proved promising in many respects, and therefore portend potential implications of both practical and theoretical significance in terms of furthering our understanding of the multi-faceted sales role. In this regard, the study makes several important contributions which we now attempt to summarize.

First, we find that EPO – a personality variable previously unexplored in the sales context – may indeed play a key role in shaping salespeople’s attributions for sales successes, even when other variables previously examined in the sales literature have been accounted for. More specifically, when EPO-Gen and EPO-Rel are included as predictors of successful sales attributions, they significantly enhance model fit for effort, ability, and strategy attributions, but are not significantly associated with either task difficulty or luck. For unsuccessful sales, we find that neither EPO, nor self-efficacy and competitiveness, satisfactorily explain the variance in attributions.

These results suggest that salespeople who are more likely to consider the future outcomes of their current sales efforts (i.e., high EPO-Gen) are likely to attribute their successes to internal and controllable factors, but this variable is unrelated to their attributions for failures. Similarly, salespeople who tend to focus on positive and successful conclusions to the sales opportunities they are working on (i.e. high EPO-Rel) also attribute their successes to internal and controllable factors, but are not more likely to attribute their failures to external causes (e.g., bad luck). As such, this signals to a valuable learning and accrued in-role experience component for such high EPO salespeople – learning and experience that would presumably help in
subsequent sales campaigns and efforts over time. These findings therefore very much mesh with the key theme articulated at the outset of this article on the emergence of the salesperson as decision-maker (see Bonney et al. 2016; Hughes and Ahearne 2010). Simply put, and as the data and findings show, EPO seems as if it can play a key role in better understanding why salespeople have won the deals and customer opportunities they have won, versus those they have lost. In the case of wins, of course the salesperson’s ability to proactively envision the future and “course-correct” their sales strategy and behavior as the customer sales cycle / sales opportunity evolves will probably manifest itself more than the case of “losses”. This is because losses necessarily introduce a much wider host of both micro-level (e.g., sales territory assignment) and macro-level factors (e.g., firm-level decisions, such as 4 P marketing mix decisions, like pricing strategy) that themselves may actually be seen by the salesperson as the reason for lost sales (see Dixon et al. 2003; Morris et al. 1994). In short and in the case of successful sales, high EPO individuals are probably more likely to attribute their success to internal causes. In the case of a failed sale, however, high EPO and low EPO salespeople are probably not very different; no matter how much they value self-control, there’s not much one can do about negative, random events or exogenous factors (i.e., we are all more likely to attribute failure to random, external causes).

Beyond this, a few words are warranted on the finding that the three variables which were examined in this research explained little in terms of the salesperson’s unsuccessful sales attributions. Perhaps other, potentially more germane variables to the unsuccessful sales condition may be in an enhanced position to offer insights here, with procrastination/avoidance (e.g., Silver et al. 2006) and conscientiousness (e.g., Barrick et al. 1993) being two such possibilities. In addition, the changing and increasingly complex nature of the sales process
likely impacts sales attributions for missed opportunities more than attributions for successful sales opportunities. In the end, a successful sales opportunity is still a win. However, in light of today’s longer and more complex consultative sales cycles (e.g., Bradford et al. 2010; Evans et al. 2012; Plouffe et al. 2013; Stevens and Kinni 2007), a sales opportunity that has not yet closed may or may not be the same as a lost sale. Not only can attributions for lost sales differ between salespeople, but the actual definition of what constitutes a lost sale may have increasingly become an individual perception. This is something that future research should consider, tricky as it might be.

Put differently, longer sales cycles may make it ultimately more difficult for salespeople to truly distinguish between a lost opportunity, and an opportunity that simply needs more time to materialize. This is a basic “sales strategy” issue, versus a “time and process” allowance for the salesperson’s behavior and activity to “play out” issue, across the entire sales cycle. It should be noted that even in Dixon et al.’s (2001) original work in this area, the unsuccessful sales attribution condition showed more problematic model fit and non-significant findings than the successful sales opportunities condition.

The present research also showed that the two dimensions of EPO improved the fit and amount of variance explained in objective sales performance compared to a model that only accounted for self-efficacy and competitiveness. Thus, in pursuing this approach and achieving these findings, this work has heeded calls scholars have made which argue that potentially path-breaking insights into the drivers of selling performance might be achieved by more closely considering constructs and theories from the realm of consumer behavior (see Plouffe et al. 2008, p. 89; Williams and Plouffe 2007, p. 413) and rational decision-making (Dixon et al. 2001, p. 74). In addition, the performance-related findings are also noteworthy because objective
measures of selling performance were employed in the present research – an approach that is less frequently pursued in the sales performance stream of marketing scholarship to this point (see Evans et al. 2012; Plouffe et al. 2009). Finally, past research suggests that when objective measures of sales performance are employed, R^2 values in the area of 5-10% variance explained are considered both noteworthy and significant in a practical sense (see Bommer et al. 1995; Plouffe et al. 2009; Rich et al. 1999; Vinchur et al. 1998). Thus, while the impact of EPO, trait competitiveness, and self-efficacy on performance were relatively modest in absolute terms, they nevertheless seem important.

THEORETICAL CONTRIBUTIONS

The present study makes important theoretical contributions to the literature on both outcome elaboration (Nenkov et al. 2008) and pre-decision deliberation (e.g., Gollwitzer 2012) by examining the effects of outcome elaboration on salesperson attributions and their resultant performance. Specifically, the results show that salespeople’s tendencies to engage in outcome elaboration (i.e., EPO) are associated with their attributions for successful sales outcomes. This finding in the consultative selling context extends past research outside of sales scholarship. For example, engaging in thorough pre-decision outcome elaboration has been found to have numerous beneficial effects, such as enhancing self-regulation effectiveness (Nenkov et al. 2008), reducing susceptibility to context effects (Nenkov et al. 2009), engendering impartial processing of information (Beckmann and Gollwitzer 1987), and increasing open-mindedness and receptivity to available information (Heckhausen and Gollwitzer 1987). The present results therefore augment these findings by showing that individuals who tend to generate more positive consequences (i.e., EPO-Rel), on average, also appear to be more successful (i.e., given the
objective sales performance measures examined in the context of our study). Prior work on EPO-Rel has not found an effect of regulatory reference (either positive or negative) on performance (Nenkov et al. 2008), whereas our results suggest that in the sales context, salespeople who focused on achieving positive outcomes appeared to be more successful (again, given objective sales performance measures). A possible driver behind this finding is that unlike previous EPO studies where performance was exclusively contingent upon the decisions of the individual studied, performance in sales depends upon both the seller and the buyer (e.g., Bradford et al. 2010; Weitz and Bradford 1999). Having a tendency to visualize positive rather than negative outcomes may not only provide motivation for the salesperson, but may also influence the buyer’s likelihood of wanting to do business with the salesperson (Plouffe et al. 2016).

Prior work has linked individual EPO tendencies to self-control, susceptibility to context effects, goal pursuit, intentions to donate, and has examined EPO in various situational contexts – such as financial decision making, healthy eating and exercising, personal goal pursuit, and even organ donation (Demir and Kumkale; Haws et al. 2012; Nenkov et al. 2014; Nenkov et al. 2008; Nenkov et al. 2009). Current findings theoretically help extend this growing literature in two important ways. First, our results add to the long-standing discourse on attribution theory in sales (e.g., Dixon et al. 2001; Teas and McElroy 1986), by showing that EPO is related to attribution style, with individuals who are predisposed to elaborate on potential outcomes and those who tend to focus on positive outcomes being more likely to make internal attributions for their successful sales outcomes. Second, we examined a new application context (selling) and decision-making role (salespeople) where the EPO construct seems to play a meaningful role.
Considering the study’s theoretical implications for sales research, the finding that EPO may be a variable of importance to consider going forward is also noteworthy. Scholars have long espoused that sales is a complex, multi-faceted role (e.g., Bradford et al. 2010; Plouffe and Barclay 2007; Walker et al. 1977; Weitz and Bradford 1999), and that gathering an understanding of the drivers of success and performance in this role – especially innate, individual-level variables – is paramount (see Churchill et al. 1985; Plouffe et al. 2009; Vinchur et al. 1998). In addition, investigating the potential impact of new variables that gel well with changes in the selling environment is important (per Evans et al. 2012; Gupta et al. 2013). This is especially the case because managers today continue to have a tendency to characterize the requirements for modern “selling success” in terms of variables, behaviors, and processes that have always “worked” (Adamson et al. 2012; Stevens and Kinni 2007; Ulaga and Loveland 2014). This despite the fact that there is little-to-no evidence that these “tried and tested” variables, factors, and strategies are the same ones which would prove most efficacious in today’s evolved selling environment (Cespedes 2014; Dixon and Adamson 2011; Evans et al. 2012; Plouffe et al. 2013). While continued examination and deeper study of EPO in the sales context is of course prudent, the preliminary results reported here do show that EPO is an intriguing individual-level personality variable that can perhaps play an ongoing role in further unraveling the complexities associated with both performance – and the attributions of performance successes and failures – in the sales role.

MANAGERIAL IMPLICATIONS & PRACTICAL CHALLENGES

The study’s findings also have important implications for those charged with the hiring, retention, management, and coaching and training of salespeople. Identifying salespeople with
the potential to succeed remains a persistent problem for sales managers (Stevens and Kinni 2007; Ulaga and Loveland 2014), and is in fact growing more difficult with the shift towards longer sales cycles and more cumbersome customer-level decision-making (e.g., Bradford et al. 2010; Dixon and Adamson 2011), as well as an increased focus on both solutions-oriented (Tuli et al. 2007) and multi-stakeholder selling (Plouffe and Barclay 2007; Plouffe et al. 2016). In addition and as underscored in the article’s introduction, the fact that the salesperson is now increasingly an autonomous decision-maker (e.g., Bonney et al. 2016; Hughes and Ahearne 2010) only exacerbates and compounds the critical importance of sales managers getting their coaching, training, and first-level supervision of salespeople “right”.

In terms of the selection and screening of salespeople, while both managerial and anecdotal accounts as well as the latest scholarship in the sales realm all signal that salesforces should continue to hire for the well-explored variables of personal competitiveness and self-efficacy (e.g., Crom et al. 2003; Deeter-Schmelz and Sojka 2007; Gupta et al. 2013; Schrock et al. 2014; Stevens and Kinni 2007), the results presented here argue for the inclusion of EPO as a new and potentially important sales personnel selection variable which seems germane to the sales role today. In addition to looking for salespeople high in both self-efficacy and competitiveness, managers should also seek high-EPO individuals in their sales personnel screening and selection processes. Given the high monetary costs associated with hiring, training, and developing salespeople (Lassk et al. 2012), and the time investment involved (Stein 2006), the inclusion of EPO as an additional new-hire screening filter may be both warranted and prudent.

The focus of this narrative to this point has been on less experienced salespeople and potential new hires to the sales profession. This raises an important question: what should managers do with incumbent and longer-tenured sales professionals – especially marginal and
lower performers – who may be “low” on this important variable? Extant research has
demonstrated that individual orientations can be made chronically (i.e., trait-wise) or temporarily
(i.e., situationally) more accessible to the individual (see Avnet and Higgins 2006; Higgins 1997;
Higgins 2000). More specifically and as it pertains to the present research, past work has shown
that EPO can be primed and that this priming can temporarily change the behavior of individuals
with lower levels of EPO, thus enhancing their self-regulation and making them less susceptible
to context effects (see Nenkov et al. 2008; Nenkov et al. 2009). This line of research and
thinking thus suggests that EPO tendencies can temporarily be altered, perhaps through direct
intervention (e.g., managerial suggestions / coaching) or via situational determinants (e.g., the
salesperson themselves taking deeper stock of the customer/account/sales opportunity-level
information before them in any given sales cycle). Therefore, developing sales management
coaching techniques (e.g., mentoring) and behavioral interventions (e.g., customer account
coverage policies) that encourage salespeople to think more deeply about the potential
consequences of their “downstream” (Plouffe et al. 2013) sales cycle activities and strategies
across their entire customer opportunity portfolio could help ameliorate the chronic performance
gaps between low, mid-, and high-performers which have long been witnessed in the sales
domain (e.g., Braden and Freimer 1991; Churchill et al. 1985; Plouffe et al. 2009; Stevens and
Kinni 2007; Vinchur et al. 1998).

LIMITATIONS & FUTURE RESEARCH DIRECTIONS

A first limitation of the present study concerns the cross-sectional nature of the data that
was reported. Salespeople were asked to reflect upon recent sales opportunities that had been
both won and lost. While this approach yielded useful data, there are several concerns associated
with this approach, each somewhat related to the others. One, to what extent did the salespeople
pick the “right” sales opportunity to focus on? Thinking about different win / loss situations could potentially have yielded different results. Two, the objective measures of performance that were provided by the two examined sales organizations reflect an entire year’s worth of selling results, whereas the sales cycles for the opportunities our respondents were asked to consider (i.e., to generate the attributions) were likely shorter than that. Thus, there is a nomological and causal disconnect between the study’s attributional and performance measures, though this is widely acknowledged as a shortcoming with this style of research (Bentler 2001; Shugan 2007).

Building on the previous point, a second limitation of the present study is that it is not possible to test the mediating effects of attributions between the individual-specific variables and performance. That noted, the variables should be relatively stable over time (Pham and Higgins 2005), and our performance measures likewise reflect average success over an extended period of time (per Campbell et al. 1993). However, the attributions that were measured are more context-specific. So while the design employed in the study does not permit for a test of attributions as mediators of the individual difference variable–performance relationship, it may be possible to push this further using an experimental design, where shorter-term, more discrete performance measures could be employed.

A final limitation pertains to the generalizability of the study’s findings. Examining the salesforces at two large firms operating in two distinct industries raises the question as to what extent the results can be generalized to other types of salespeople and the sales function / role at large. Therefore, additional work in other industry settings and perhaps even with other types of boundary-focused marketing personnel seems prudent.

In terms of future research directions, several are suggested. It appears that EPO-Gen and EPO-Rel both play important roles in influencing performance, depending on the nature of
the selling task. Future work might therefore examine how different selling contexts affect the relative importance of these (and perhaps other) individual-specific variables. Also, the evolving nature of the sales process (e.g., Bradford et al. 2010; Cespedes 2014; Moncrief and Marshall 2005; Plouffe et al. 2013) may impact the way salespeople perceive and react to lost sales opportunities. Further work on this important topic may be required to adequately understand these changes. Additionally, it may be fruitful to explore whether or not there are interactions between the distinct dimensions of the EPO construct. Prior research has noted a positive correlation between EPO-Gen and a negative outcome focus (Nenkov et al. 2008), suggesting the possibility that salespeople who are more likely to engage in a thorough predictions outcome elaboration may also be more likely to focus on negative potential outcomes.

One other intriguing avenue for future research regarding EPO and the sales role might pertain to the sales experience / “career stage” of the salesperson (e.g., Cron 1984). If one were to solely consider, for example, high EPO salespeople, one might expect some differences on key dimensions such as turnover and attrition (see Boles et al. 2012) given the tenure and length of time / experience one had in the sales role. Over the short term (for the sake of argument, say one year or less in the sales role), it could be that high-EPO hires burn out and/or quit at a higher rate because they are innately wired for greater self-control. However, on the other hand, if they can survive in sales past some critical threshold or timeframe (e.g., greater than one year), the high EPO salesperson might actually be more likely to be successful and perform at a higher level. So these types of avenues might prove fruitful for further inquiry regarding EPO and the sales role.

CONCLUSION

Using survey responses from 301 salespeople drawn from two different sales organizations, the present research provided reasonable, preliminary evidence that salespeople’s
tendency to engage in pre-decision elaboration on potential outcomes (EPO) has an impact on their attributions for selling success and sales performance, even after accounting for the effects of the more heavily studied variables of self-efficacy and trait competitiveness. The present study thus: (i) makes several important theoretical contributions, (ii) provides intriguing directions for follow-on work – especially related to the EPO variable in selling and sales performance research, and (iii) suggests multiple practical implications for both salespeople and those who manage and supervise them.
Works Cited

Schweingruber, David (2006), "Success through a Positive Mental Attitude?: The Role of Positive Thinking in Door-to-Door Sales," The Sociological Quarterly, 47 (1), 41-68.

Sitser, Thomas, Dimitri van der Linden, and Marise Born (2013), "Predicting Sales Performance Criteria with Personality Measures: The Use of the General Factor of Personality, the Big Five and Narrow Traits," Human Performance, 26 (2), 126-49.

Figure 1: Conceptual Framework

Data Source: Cross-Sectional Survey Data

- Attributions for Recent Successful Sale
 - Effort
 - Ability
 - Strategy

- Attributions for Recent Unsuccessful Sale
 - Task
 - Luck
 - Effort

 - Ability
 - Strategy

Data Source: Objective Full Year Performance Data

Sales Performance

Study Controls: Sales Experience; Trait Competitiveness; Self-Efficacy
TABLE 1
Survey Response Rates and Sample Descriptive Characteristics, by Firm

<table>
<thead>
<tr>
<th></th>
<th>FitCo</th>
<th>Realty Corp</th>
<th>Average US Sales Rep¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound Sample (n)</td>
<td>175</td>
<td>617</td>
<td></td>
</tr>
<tr>
<td>Completed Surveys (n)</td>
<td>109</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Firm-Specific Response Rate</td>
<td>62.3%</td>
<td>31.1%</td>
<td></td>
</tr>
<tr>
<td>Useable responses (n)</td>
<td>109</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Pooled Responses (Response Rate), all firms</td>
<td>301 / 792 = 38.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (mean)</td>
<td>28.3</td>
<td>42.1</td>
<td>39.9</td>
</tr>
<tr>
<td>% of sample with College-level education</td>
<td>85.3%</td>
<td>88.5%</td>
<td>77%</td>
</tr>
<tr>
<td>Gender Mix (% male)</td>
<td>70.6%</td>
<td>41.8%</td>
<td>50.8%</td>
</tr>
<tr>
<td>Years Selling Experience (mean)</td>
<td>6.9</td>
<td>14.1</td>
<td>n/a</td>
</tr>
</tbody>
</table>

TABLE 2
Correlations Between Constructs

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Objective Performance</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>2 EPO-Gen</td>
<td>0.27 **</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>3 EPO-Rel</td>
<td>0.18 **</td>
<td>-0.03</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Success attribution</td>
<td></td>
</tr>
<tr>
<td>4 Effort</td>
<td>0.13</td>
<td>0.31 **</td>
<td>0.22 **</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>5 Ability</td>
<td>0.17 *</td>
<td>0.35 **</td>
<td>0.27 **</td>
<td>0.74 **</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>6 Task</td>
<td>-0.11</td>
<td>-0.03</td>
<td>-0.10</td>
<td>-0.11</td>
<td>-0.09</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>7 Strategy</td>
<td>0.12 ^</td>
<td>0.24 **</td>
<td>0.21 **</td>
<td>0.53 **</td>
<td>0.53 **</td>
<td>-0.03</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Luck</td>
<td>0.00</td>
<td>-0.09</td>
<td>-0.17 *</td>
<td>-0.29 **</td>
<td>-0.23 **</td>
<td>0.50 **</td>
<td>-0.23 **</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure attribution</td>
<td></td>
</tr>
<tr>
<td>9 Effort</td>
<td>-0.05</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.20 **</td>
<td>-0.18 **</td>
<td>0.11</td>
<td>-0.09</td>
<td>0.22 **</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Ability</td>
<td>-0.06</td>
<td>-0.08</td>
<td>-0.03</td>
<td>-0.16 *</td>
<td>-0.30 **</td>
<td>0.10</td>
<td>-0.15 *</td>
<td>0.16 *</td>
<td>0.51 **</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Task</td>
<td>0.06</td>
<td>0.09</td>
<td>-0.06</td>
<td>0.19 **</td>
<td>0.13 ^</td>
<td>-0.03</td>
<td>0.24 **</td>
<td>-0.11</td>
<td>0.02</td>
<td>0.10</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Strategy</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.04</td>
<td>0.00</td>
<td>-0.08</td>
<td>0.08</td>
<td>0.02</td>
<td>0.08</td>
<td>0.33 **</td>
<td>0.43 **</td>
<td>0.05</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Luck</td>
<td>0.02</td>
<td>0.00</td>
<td>-0.20 **</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.23 **</td>
<td>0.01</td>
<td>0.35 **</td>
<td>0.12 ^</td>
<td>0.10</td>
<td>0.25 **</td>
<td>0.13 ^</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td>14 Sales Experience</td>
<td>0.14 ^</td>
<td>0.06</td>
<td>0.10</td>
<td>0.12 *</td>
<td>0.11</td>
<td>-0.01</td>
<td>0.05</td>
<td>0.07</td>
<td>-0.07</td>
<td>0.07</td>
<td>-0.17 **</td>
<td>-0.02</td>
<td>-0.07</td>
<td>-0.03</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>15 Self-efficacy</td>
<td>0.07</td>
<td>0.24 **</td>
<td>0.32 **</td>
<td>0.21 **</td>
<td>0.31 **</td>
<td>-0.25 **</td>
<td>0.48 **</td>
<td>-0.42 **</td>
<td>-0.06</td>
<td>-0.11</td>
<td>0.17 *</td>
<td>-0.11</td>
<td>-0.11</td>
<td>0.09</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>16 Competitiveness</td>
<td>0.07</td>
<td>0.25 **</td>
<td>-0.06</td>
<td>0.29 **</td>
<td>0.34 **</td>
<td>0.08</td>
<td>0.23 **</td>
<td>-0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.13 ^</td>
<td>0.01</td>
<td>0.03</td>
<td>-0.17 **</td>
<td>0.09</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Values on the diagonal in bold are the square roots of the Average Variance Extracted (AVE) (see Fornell and Larcker 1981).

** p < 0.001 * p < 0.01; ^ p < 0.05
TABLE 3
Attributions for Successful Sales

<table>
<thead>
<tr>
<th>IV</th>
<th>DV</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>IV</th>
<th>DV</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Ability</td>
<td>0.14</td>
<td>2.57</td>
<td>*</td>
<td>SE</td>
<td>Ability</td>
<td>0.27</td>
<td>5.12</td>
<td>**</td>
</tr>
<tr>
<td>Comp</td>
<td>Ability</td>
<td>0.30</td>
<td>5.94</td>
<td>**</td>
<td>Comp</td>
<td>Ability</td>
<td>0.34</td>
<td>6.54</td>
<td>**</td>
</tr>
<tr>
<td>SalesExp</td>
<td>Ability</td>
<td>0.11</td>
<td>2.26</td>
<td></td>
<td>SalesExp</td>
<td>Ability</td>
<td>0.15</td>
<td>2.77</td>
<td>*</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Ability</td>
<td>0.25</td>
<td>4.78</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Ability</td>
<td>0.24</td>
<td>4.62</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R² = 29.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV</th>
<th>DV</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>IV</th>
<th>DV</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Effort</td>
<td>0.06</td>
<td>1.02</td>
<td>0.31</td>
<td>SE</td>
<td>Effort</td>
<td>0.18</td>
<td>3.23</td>
<td>**</td>
</tr>
<tr>
<td>Comp</td>
<td>Effort</td>
<td>0.26</td>
<td>4.90</td>
<td>**</td>
<td>Comp</td>
<td>Effort</td>
<td>0.30</td>
<td>5.55</td>
<td>**</td>
</tr>
<tr>
<td>SalesExp</td>
<td>Effort</td>
<td>0.13</td>
<td>2.39</td>
<td></td>
<td>SalesExp</td>
<td>Effort</td>
<td>0.16</td>
<td>2.85</td>
<td>*</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Effort</td>
<td>0.23</td>
<td>4.31</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Effort</td>
<td>0.21</td>
<td>3.86</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R² = 21.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV</th>
<th>DV</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>IV</th>
<th>DV</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Strategy</td>
<td>0.41</td>
<td>7.51</td>
<td>**</td>
<td>SE</td>
<td>Strategy</td>
<td>0.46</td>
<td>9.15</td>
<td>**</td>
</tr>
<tr>
<td>Comp</td>
<td>Strategy</td>
<td>0.19</td>
<td>3.57</td>
<td>**</td>
<td>Comp</td>
<td>Strategy</td>
<td>0.20</td>
<td>3.98</td>
<td>**</td>
</tr>
<tr>
<td>SalesExp</td>
<td>Strategy</td>
<td>0.03</td>
<td>0.58</td>
<td>0.56</td>
<td>SalesExp</td>
<td>Strategy</td>
<td>0.04</td>
<td>0.85</td>
<td>0.40</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Strategy</td>
<td>0.11</td>
<td>1.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Strategy</td>
<td>0.11</td>
<td>1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R² = 27.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

χ² (n = 299) = 3.74, df = 2, p = 0.15, RMSEA = 0.05, CFI = 1.00, NFI = 0.99, GFI = 1.00.

χ² (n = 299) = 44.26, df = 8, p < 0.00, RMSEA = 0.12, CFI = 0.94, NFI = 0.93, GFI = 0.97.

** p < 0.001 * p < 0.01; ^ p < 0.05
Table 4
Attributions for Unsuccessful Sales

<table>
<thead>
<tr>
<th>Attribution</th>
<th>Model including EPO</th>
<th>Model without EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>DV</td>
<td>β</td>
</tr>
<tr>
<td>SE</td>
<td>Ability</td>
<td>-0.09</td>
</tr>
<tr>
<td>Comp</td>
<td>Ability</td>
<td>0.01</td>
</tr>
<tr>
<td>SalesExp</td>
<td>Ability</td>
<td>-0.16</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Ability</td>
<td>-0.05</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Ability</td>
<td>0.02</td>
</tr>
<tr>
<td>SE</td>
<td>Effort</td>
<td>-0.03</td>
</tr>
<tr>
<td>Comp</td>
<td>Effort</td>
<td>0.09</td>
</tr>
<tr>
<td>SalesExp</td>
<td>Effort</td>
<td>0.10</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Effort</td>
<td>-0.09</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Effort</td>
<td>-0.07</td>
</tr>
<tr>
<td>SE</td>
<td>Luck</td>
<td>-0.05</td>
</tr>
<tr>
<td>Comp</td>
<td>Luck</td>
<td>0.02</td>
</tr>
<tr>
<td>SalesExp</td>
<td>Luck</td>
<td>-0.00</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Luck</td>
<td>0.00</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Luck</td>
<td>-0.18</td>
</tr>
<tr>
<td>SE</td>
<td>Strategy</td>
<td>-0.10</td>
</tr>
<tr>
<td>Comp</td>
<td>Strategy</td>
<td>0.01</td>
</tr>
<tr>
<td>SalesExp</td>
<td>Strategy</td>
<td>-0.05</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Strategy</td>
<td>-0.03</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Strategy</td>
<td>0.00</td>
</tr>
<tr>
<td>SE</td>
<td>Task difficulty</td>
<td>0.19</td>
</tr>
<tr>
<td>Comp</td>
<td>Task difficulty</td>
<td>0.10</td>
</tr>
<tr>
<td>SalesExp</td>
<td>Task difficulty</td>
<td>-0.01</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Task difficulty</td>
<td>0.01</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Task difficulty</td>
<td>-0.11</td>
</tr>
</tbody>
</table>

χ² (n = 299) = 9.09, df = 4, p = 0.06, RMSEA = 0.065, CFI = 0.98, NFI = 0.97, GFI = 0.99.

χ² (n = 299) = 24.06, df = 14, p = 0.045, RMSEA = 0.05, CFI = 0.97, NFI = 0.93, GFI = 0.98.

p < 0.001 *p < 0.01; ^p < 0.05
TABLE 5
Objective Sales Performance Results

<table>
<thead>
<tr>
<th>Model including EPO</th>
<th>Model without EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>DV</td>
</tr>
<tr>
<td>SE → Obj. Perf</td>
<td>0.04</td>
</tr>
<tr>
<td>Comp → Obj. Perf</td>
<td>0.07</td>
</tr>
<tr>
<td>SalesExp → Obj. Perf</td>
<td>0.14</td>
</tr>
<tr>
<td>EPO-Gen → Obj. Perf</td>
<td>0.15</td>
</tr>
<tr>
<td>EPO-Rel → Obj. Perf</td>
<td>0.16</td>
</tr>
</tbody>
</table>

$R^2 = 9.1\%$

$\chi^2_{(n = 299)} = 0.77$, df = 2, $p = 0.68$, RMSEA = 0.00,
CFI = 1.00, NFI = 0.99, GFI = 0.99.

$R^2 = 4.8\%$

$\chi^2_{(n = 299)} = 12.59$, df = 4, $p = 0.01$, RMSEA = 0.085,
CFI = 0.91, NFI = 0.89, GFI = 0.92.

** p < 0.001 * p < 0.01; ^ p < 0.05
TABLE 6
Summary of Results

<table>
<thead>
<tr>
<th>IV</th>
<th>DV</th>
<th>Estimate</th>
<th>t-value</th>
<th>p</th>
<th>Hypothesis</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO-Gen</td>
<td>Win Effort</td>
<td>0.23</td>
<td>4.31</td>
<td>**</td>
<td>H1a (i)</td>
<td>Supported</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Win Ability</td>
<td>0.25</td>
<td>4.78</td>
<td>**</td>
<td>H1a (ii)</td>
<td>Supported</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Win Strategy</td>
<td>0.11</td>
<td>1.96</td>
<td></td>
<td>H1a (iii)</td>
<td>Supported</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Lost Effort</td>
<td>-0.09</td>
<td>-1.48</td>
<td>n.s.</td>
<td>H1b (i)</td>
<td>Not supported</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Lost Ability</td>
<td>-0.05</td>
<td>-0.84</td>
<td>n.s.</td>
<td>H1b (ii)</td>
<td>Not supported</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Lost Strategy</td>
<td>-0.03</td>
<td>-0.54</td>
<td>n.s.</td>
<td>H1b (iii)</td>
<td>Not supported</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Win Effort</td>
<td>0.21</td>
<td>3.86</td>
<td>**</td>
<td>H2a (i)</td>
<td>Supported</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Win Ability</td>
<td>0.24</td>
<td>4.62</td>
<td>**</td>
<td>H2a (ii)</td>
<td>Supported</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Win Strategy</td>
<td>0.11</td>
<td>1.99</td>
<td></td>
<td>H2a (iii)</td>
<td>Supported</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Lost Task</td>
<td>-0.11</td>
<td>-1.81</td>
<td>n.s.</td>
<td>H2b (i)</td>
<td>Not supported</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Lost Luck</td>
<td>-0.18</td>
<td>-2.97</td>
<td>*</td>
<td>H2b (ii)</td>
<td>Not supported</td>
</tr>
<tr>
<td>EPO-Gen</td>
<td>Obj. Perf</td>
<td>0.15</td>
<td>2.44</td>
<td></td>
<td>H3a</td>
<td>Supported</td>
</tr>
<tr>
<td>EPO-Rel</td>
<td>Obj. Perf</td>
<td>0.16</td>
<td>2.73</td>
<td>*</td>
<td>H3b</td>
<td>Supported</td>
</tr>
</tbody>
</table>

** p < 0.001; * p < 0.01; ^ p < 0.05
APPENDIX
Measurement Items

Self-Efficacy (Kohli et al. 1998)
Chronbach’s alpha = 0.881, Composite Reliability = 0.926, AVE = 0.807
1. I am good at selling. 0.906
2. I know the right thing to do in selling situations. 0.882
3. I am good at finding out what customers want. 0.906

Trait Competitiveness (Brown et al. 1998)
Chronbach’s alpha = 0.873, Composite Reliability = 0.907, AVE = 0.662
1. I enjoy working in situations involving competition with others. 0.718
2. It is important to me to perform better than others on a task. 0.812
3. I feel that winning is important in both work and games. 0.831
4. I try harder when I am in competition with other people. 0.842
5. Being # 1 is important to me. 0.857

Elaboration on Potential Outcomes (EPO) (Nenkov et al. 2008)

Generation Dimension
Chronbach’s alpha = 0.910, Composite Reliability = 0.929, AVE = 0.685
1. Before I act I consider what I will gain or lose in the future as a result of my actions. 0.739
2. I try to anticipate as many consequences of my actions as I can. 0.809
3. Before I make a decision I consider all possible outcomes. 0.848
4. I always try to assess how important the potential consequences of my decisions might be. 0.849
5. I try hard to predict how likely different consequences are. 0.867
6. Usually I carefully estimate the risk of various outcomes occurring. 0.847

Positive Focus Dimension
Chronbach’s alpha = 0.811, Composite Reliability = 0.888, AVE = 0.726
7. I keep a positive attitude that things always turn out all right. 0.822
8. I prefer to think about the good things that can happen rather than the bad. 0.874
9. When thinking over my decisions I focus more on their positive end results. 0.859

Negative Focus Dimension
Chronbach’s alpha = 0.827, Composite Reliability = 0.886, AVE = 0.661
10. I tend to think a lot about the negative outcomes that might occur as a result of my actions. 0.693
11. I am often afraid that things might turn out badly. 0.866
12. When thinking over my decisions I focus more on their negative end results. 0.854
13. I often worry about what could go wrong as a result of my decisions. 0.827
Sales Attributions – Successes (Dixon et al. 2001)

Effort
Chronbach’s alpha = 0.874 Composite Reliability = 0.922, AVE = 0.798
1. I put forth the effort needed to make this sale. 0.831
2. I worked hard and it paid off. 0.939
3. I put in the necessary time to make this sale. 0.907

Ability
Chronbach’s alpha = 0.910, Composite Reliability = 0.929, AVE = 0.769
1. I have the necessary skills. 0.898
2. I have the knowledge and skills required to be successful. 0.910
3. My sales abilities led to my success. 0.821

Task
Chronbach’s alpha = 0.841, Composite Reliability = 0.851, AVE = 0.667
1. Most sales reps find this type of sale to be pretty easy. 0.552
2. This type of sale is relatively easy for just about everyone. 0.975
3. Most reps find this type of sale easy to close. 0.865

Strategy
Chronbach’s alpha = 0.847, Composite Reliability = 0.909, AVE = 0.770
1. I picked the right strategy for this type of client. 0.770
2. My sales strategy was right for this client. 0.920
3. I used the right strategy for this type of situation. 0.933

Luck
Chronbach’s alpha = 0.896, Composite Reliability = 0.929, AVE = 0.815
1. As luck would have it, the sale just happened. 0.759
2. It just worked out by chance. 0.973
3. It was just good luck 0.961

Sales Attributions – Failures (Dixon et al. 2001)

Effort
Chronbach’s alpha = 0.948 Composite Reliability = 0.942, AVE = 0.866
1. I didn’t work hard enough. 0.888
2. I didn’t put in the necessary time to make this sale. 0.944
3. I didn’t put forth the effort needed to make this sale. 0.959

Ability
Chronbach’s alpha = 0.872, Composite Reliability = 0.909, AVE = 0.759
1. I needed more skill and knowledge to be successful. 0.714
2. I need to improve my skills to be successful. 0.904
3. I need to increase my knowledge in order to be successful. 0.974

Task
Chronbach’s alpha = 0.891, Composite Reliability = 0.907, AVE = 0.766
1. This type of sale is difficult for everyone. 0.794
2. Everyone finds this to be a tough selling situation. 0.842
3. This was a difficult selling situation. 0.979
Strategy
Chronbach’s alpha = 0.927, Composite Reliability = 0.915, AVE = 0.786
1. I used the wrong selling strategy for this type of situation. 0.705
2. I picked the wrong strategy for this type of client. 0.965
3. My sales strategy was incorrect for this type of client. 0.965

Luck
Chronbach’s alpha = 0.923, Composite Reliability = 0.950, AVE = 0.865
1. This situation was just an unlucky one. 0.857
2. It was just an unlucky break. 0.972
3. It was just bad luck. 0.957

Sales Experience (Plouffe et al. 2013)
Chronbach’s alpha = 0.927, Composite Reliability = 0.934, AVE = 0.782
1. How long have you been in sales in this industry (in years)? 0.797
2. How long have you been in sales with your current employer (in years)? 0.806
3. How long have you been selling the products you currently represent (in years)? 0.963
4. How long have you been selling in your current sales territory (i.e., the specific customer accounts, industry verticals, and/or geographies you cover in years)? 0.956

Note: All but two factor loadings are above the generally accepted cut-off of 0.70 (as per Nunnally 1978). As our measures are based on established instruments, and the violations of the cut-off rule are modest, we maintain these items for consistency with the original items.