
Fastron: An Online Learning-Based Model and
Active Learning Strategy for Proxy Collision

Detection

Nikhil Das, Naman Gupta, Michael Yip
Electrical and Computer Engineering
University of California, San Diego

Abstract: We introduce the Fastron, a configuration space (C-space) model to be
used as a proxy to kinematic-based collision detection. The Fastron allows iter-
ative updates to account for a changing environment through a combination of a
novel formulation of the kernel perceptron learning algorithm and an active learn-
ing strategy. Our simulations on a 7 degree-of-freedom arm indicate that proxy
collision checks may be performed at least 2 times faster than an efficient poly-
hedral collision checker and at least 8 times faster than an efficient high-precision
collision checker. The Fastron model provides conservative collision status pre-
dictions by padding C-space obstacles, and proxy collision checking time does
not scale poorly as the number of workspace obstacles increases. All results were
achieved without GPU acceleration or parallel computing.

Keywords: configuration space, collision detection

1 Introduction

Configuration space (C-space) is a space that completely defines every kinematic configuration of
the robot [1]. Robot configurations that are not in collision with workspace obstacles comprise
the Cfree regions of C-space, and the Cobs regions denote configurations in which the robot is in
collision with a workspace obstacle. Checking for collisions is often a computational burden for
robots working in environments with obstacles, but is a necessity for processes in which the robot
must interact with or navigate through its environment, such as with Rapidly-Exploring Random
Trees (RRTs) [2], a sampling-based motion planning algorithm.

A difficulty in working with C-space is that obstacle geometries generally do not trivially map from
the workspace to C-space [1, 3]. Sampling-based motion planners instead spend a large majority of
their computation time on performing collision checks [4] to infer C-space obstacles. In the case
of workspaces with moving obstacles, Cobs changes non-trivially, which makes maintenance of an
updated map in C-space for collision detection a bottleneck in performance. Specialized hardware
such as FPGAs [5] accelerates the collision detection step, but algorithmic solutions may reduce the
overall computation, which in turn may further improve hardware-based solutions.

1.1 Contributions

Realizing the high cost involved in kinematic-based collision detections (KCDs), we seek to de-
crease the computational cost of collision checking by learning a proxy collision detector that effi-
ciently learns and maintains C-space representations that change over time. In this paper, we present
the Fastron algorithm, a fast technique to generate and update an approximate C-space representa-
tion for proxy collision checking.

The purpose of these efforts is to reduce the computation required for collision checking for pro-
cesses that suffer from a large number of KCDs so that more resources may be dedicated toward
other computationally-intensive tasks, including further sampling for fine motion planning or model
updates for reinforcement learning algorithms. Integrating the Fastron into motion planning algo-
rithms is an obvious utilization, yet other highly-iterative applications that rely on collision detection

1st Conference on Robot Learning (CoRL 2017), Mountain View, United States.

could benefit from the Fastron, such as reward evaluation for reinforcement learning for simulated
robot manipulation tasks and approximate object interactions in physics or CAD simulations.

A learning-based approach to modeling C-space is advantageous because a lightweight model and
intelligent information gathering may be used in lieu of dense representation and sampling of a
typically large-dimensional space. The Fastron is based on a modification of the kernel perceptron
learning algorithm and uses a novel active learning strategy to reduce the total number of KCDs in
favor of faster, proxy collision checks. Active learning algorithms select which samples to query so
as to potentially reduce the number of queries to an oracle (who provides true labels at a higher cost)
to perform during training or model updates [6, 7]. In the case of C-space estimation, active learning
is useful when selecting on which samples accurate yet costly KCDs should be performed. The
Fastron algorithm updates iteratively using periodic snapshots of obstacles’ shapes and locations in
the reachable workspace. Prior knowledge of all potential obstacle geometry models and trajectories
is not required.

The novel contributions of this paper are:

1. a simple yet efficient method to learn and represent C-space obstacles using a kernel per-
ceptron decision boundary

2. a modified kernel perceptron that allows both addition and removal of support points, and
3. an active learning strategy to efficiently search for collision status changes in a changing

environment, where there is limited computation time between control cycles.

1.2 Related Work

As with our Fastron method, previous works have utilized machine learning-based models to ap-
proximate Cfree and Cobs based on sampled configurations and use active learning strategies to
guide the search for new information to update or refine the models. The following are contributions
toward representing C-space environments with learning-based models.

Pan et al. [6] use an incremental support vector machine (SVM) to learn an accurate representation
of C-space between two objects in an offline step. Their active learning strategy exploits the structure
of the SVM-based hyperplane to add new points in order to construct a near-perfect representation of
C-space obstacles. A new classifier must be precomputed for each pair of objects, thereby increasing
the training time and proxy collision detection time. Additionally, since the models are learned in an
offline stage, the geometry models of all workspace obstacles must be known a priori, which is not
always a luxury. Online implementations would fare poorly when new obstacles are introduced into
the workspace since this would require learning a completely new SVM model, which is unsuitable
for real-time applications.

Huh and Lee [8] use Gaussian mixture models (GMM) to represent Cfree and Cobs, from which
proxy collision detection is performed by assigning a query configuration the same label as the clos-
est Gaussian. Their iterative GMM technique allows the model to update when workspace obstacles
move to intersect a planned trajectory. A limitation of the GMM approach is the model may not fit
irregularly-shaped Cobs regions effectively as GMMs use a limited number of Gaussians. Addition-

Hyperplane

Model
Fastron

Collision

Detector

Subset R of D

Marked for Relabeling

Updated Collision

StatusesKinematic-Based

Collision Detector

Fastron Model

Update

Dataset of

Configurations D

Snapshot of

Workspace Obstacles

Exploitation Stage

Exploration Stage

Hyperplane Model

Exploitation Selections

Exploration Selections

Active Learning

Fastron Algorithm

Figure 1: Pipeline of Fastron algorithm for generating and updating the C-space model used for fast
collision checking.

2

ally, the underlying generative models are updated to fit new information, which consequently does
not guarantee the resulting discriminative classifier immediately fits the new information.

Burns and Brock [9] use a k-nearest neighbors (k-NN) model for C-space, which is not intended
to be used in the case of moving workspace obstacles. Pan and Manocha [10] also use a k-NN
model, accelerated by locality-sensitive hashing. Their method significantly reduces the time re-
quired for collision checking for sampling-based motion planners by building a database to use for
k-NN queries. Though not implemented in a changing environment, they propose their method can
extend to a changing environment by gridding the workspace and only performing collision checks
on configurations associated with dynamic cells.

2 Methods

In this section, we provide a detailed description of the Fastron algorithm. The steps of the algorithm
are summarized in the block diagram in Fig. 1. The algorithm cycles through two steps: updating
the collision boundary model (2.1) and active learning to search for collision status changes (2.2).

2.1 Modeling C-Space Using Perceptron

We require (and the Fastron offers) a model that

1. is fast to train,
2. is fast in classifying query configurations,
3. adequately fits training data,
4. attempts to reduce mistakes where Cobs configurations are classified as Cfree,
5. has an easily exploitable structure to facilitate the search for collision status changes, and
6. can efficiently account for collision status changes without retraining from scratch.

The batch kernel perceptron algorithm, which identifies a set of support points defining a separating
hyperplane between two classes, satisfies the first three requirements and thus serves as the base
model for the algorithm. We modify the kernel perceptron to satisfy the remaining requirements.
This section describes the original batch kernel perceptron algorithm and our modifications. Pseu-
docode for the modified perceptron is shown in Algorithm 1.

Algorithm 1: Fastron Model Updating
Input: Weight vector α; hypothesis vector F ; Gram matrix G for a dataset D; true labels y for D; conditional

bias parameter r+; maximum number of updates maxUpdates
Output: Updated weight vector α; updated hypothesis vector F

1 for iter = 1 to maxUpdates do
// Remove redundant support points

2 while ∃ i s.t. yi(Fi − αi) > 0 and αi 6= 0 do
3 j ← argmaxi yi(Fi − αi)
4 Fi ← Fi −Gijαj ∀i
5 αj ← 0

// Margin-based prioritization
6 if yiFi > 0 ∀i then
7 return α, F
8 else
9 j ← argmini yiFi

// One-step weight correction with conditional biasing
10 if yj > 0 then
11 ∆α← r+yj − Fj

12 else
13 ∆α← yj − Fj

14 αj ← αj + ∆α
15 Fi ← Fi +Gij∆α ∀i
16 return α, F

3

2.1.1 Training and Classification with Original Kernel Perceptron

The original batch kernel perceptron algorithm trains a model that may be used to classify a query
point into one of two classes. During training, the model updates when it encounters a training point
that it would misclassify. Given a training dataset D of N labeled samples, the kernel perceptron
algorithm learns a hypothesis f(x), which has the form

∑
i αiK(xi, x), where α ∈ RN is a sparse

weight vector, K(·, ·) is the Gaussian kernel function, and xi is a sample in D with a known label
yi ∈ [−1,+1]. The Gaussian kernel is defined as K(xi, xj) = exp(−γ‖xi − xj‖2), where γ is
a parameter specifying the narrowness of the Gaussian. The goal of the perceptron algorithm is to
define αi such that the margin yif(xi) for each training point xi is positive. The original algorithm
learns αi by shuffling D and computing yif(xi) for each xi. Whenever yif(xi) ≤ 0, yi is added to
αi. This shuffle and update procedure is repeated until all training points have a positive margin or
an epoch limit has been reached.

The hypothesis at each sample can be written in vector form as F = Gα, where the ith element of
F is f(xi) and G is the kernel Gram matrix for the N datapoints. To avoid redundant matrix-vector
multiplications, we can store F and add (or subtract) the ith column of G whenever we increment
(or decrement) αi. The update rule for the original kernel perceptron may thus be written as

αi ← αi + yi (1)
F ← F + yiG∗i (2)

where G∗i is the ith column of G.

The support set S is the set of points in D with a nonzero weight in α. The support points that
comprise S may be used to classify a query configuration x as ŷ(x) = sgn

(∑
i:xi∈S αiK(xi, x)

)
.

We may use this classification as a proxy collision check where ŷ = ±1 represents an in-collision
or a collision-free status, respectively.

2.1.2 One-Step Weight Correction and Conditional Biasing

The original kernel perceptron algorithm increases the weight of a misclassified point xi by yi, but
xi will still be incorrectly classified if the magnitude of the margin ‖yif(xi)‖ prior to update is
greater than 1. The appropriate value to assign to weight αi to ensure xi is correctly classified may
be easily realized based on the requirement that the resulting margin must be positive. It is evident
that for xi to be classified correctly, αi must equal ryi −

∑
j 6=i αjK(xj , xi), where r > 0. We can

avoid computing the summation in the second term by noting the change in αi after the update is
∆αi = ryi−

∑
j αjK(xj , xi) = ryi− f(xi). Thus, the update rule for our modified perceptron is:

αi ← αi + ∆αi (3)
F ← F + ∆αiG∗i (4)

-180 -120 -60 0 60 120 180

Joint 1 Angle (degrees)

-180

-120

-60

0

60

120

180

Jo
in

t 2
 A

ng
le

 (
de

gr
ee

s)

C
obs

C
free

(a)

-2 -1.5 -1 -0.5 0 0.5 1

X

-2

-1.5

-1

-0.5

0

0.5

1

Y

(b)

Figure 2: (a) Decision boundary (black curve) and support points (red and blue points) learned by
our modified kernel perceptron. (b) Workspace representations of Cfree support points from our
modified kernel perceptron (blue 2 DOF manipulators) and a workspace obstacle (gray polygon).

4

Algorithm 2: Fastron Active Learning Strategy
Input: KCD allowance A; exploitation proportion p; support set S; dataset D; Gram matrix G; maximum

number of nearest non-support points kNS

Output: Set of points R ⊂ D to be relabeled with oracle collision detection function
// Exploitation Stage

1 if |S| ≤ A then
2 R← S
3 for k = 1 to kNS do
4 if |R| < pA then
5 R← R ∪ knnsearch(D\S, S, k)
6 else
7 R← sample(S,A)
// Exploration Stage

8 R← R ∪ sample(D\R,A− |R|)
9 return R

The advantage of this modification is the misclassified point xi is guaranteed to be modeled correctly
after the update, which generally reduces the total number of update iterations. To increase the safety
of the hyperplane, we conditionally set r depending on the label of the support point we are adding
to S. More explicitly, we define a conditional bias parameter r+ > 1, and we set r = r+ when
yi > 0 and r = 1 when yi < 0. When r+ is greater than 1, Cobs configurations have a larger
influence on the update to the hyperplane compared to Cfree configurations which slightly pads
the C-space obstacles, thereby potentially reducing the false negatives (misclassification of a Cobs
configuration as Cfree) when compared to the original perceptron algorithm.

2.1.3 Margin-Based Prioritization

The magnitude of a point’s margin indicates how confidently the point is assigned to its predicted
label. By updating the weight associated with the most negative margin, the most erroneous point is
forced to be correctly classified using the one-step weight adjustment described above. Thus, rather
than shuffling the data and running through D in a random order, we choose to update αi where
i = argminj yjf(xj). The advantage of margin-based prioritization is that the support points end
up closer to the decision boundary, granting the ability to exploit the structure of the model when
searching for collision status changes near the boundary.

2.1.4 Redundant Support Point Removal

A support point should be removed from S (but remain in D) when it is redundant. Redundant
support points are those that will be correctly classified even if their corresponding α value is 0, i.e.,
{xi|xi ∈ S∧yi(Fi−αi) > 0}. Support points are removed in decreasing order of positive resultant
margin by setting the weight to 0 and updating F accordingly. The removal step is complete once
yi(f(xi)− αi) < 0 ∀i, i.e., removing another support point will cause it to be misclassified.

Redundant support point removal is useful when the collision status of the points in D change in
response to moving obstacles, causing the updated decision boundary to shift away from previous
support points. Redundant support point removal ensures that the support points are as close as
possible to the hyperplane. With the original perceptron algorithm which does not include redundant
support point removal, it is possible that eventually S = D, which slows classification by forfeiting
the sparsity of the model.

2.2 Active Learning for Efficient Relabeling

In response to a changing environment, the collision statuses of the points in D must be updated
before updating the hyperplane model. To know with absolute certainty which points have switched
labels, KCD must be performed on each point in D, which is clearly a time-consuming and poten-
tially unnecessary process. Instead, the Fastron selects a subset R of D to relabel, where the size of
R is set by a user-defined allowance A for the total number of KCDs to perform per model update.

Points are added to R using a two-stage active learning strategy. A common active learning strategy
is to balance exploitation of the current model and exploration of the entire space, which is the

5

technique the SVM C-space approach uses [6]. The Fastron adopts a similar active learning strategy,
but in the interest of efficient model updating, the Fastron relabels preexisting samples in D rather
than generating entirely new samples. This allows the Fastron to take advantage of distances stored
in the Gram matrix rather than reevaluating the kernel values.

Our strategy selects at least pA points in the exploitation stage, where p is a user-defined proportion
of the allowance dedicated for exploitation. The remainder of the allowance is exhausted in the
exploration stage. The following subsections describe how the two stages create the subset R.
Pseudocode is provided in Algorithm 2, and an example subset R is shown in Fig. 3.

2.2.1 Exploitation Stage

Assuming that movements of the workspace obstacles cause small perturbations of the correspond-
ing C-space obstacles, the Fastron first checks for status changes near the boundary of the C-
space obstacles. This is accomplished by exploiting the structure of the perceptron model, which
typically has its support points near the decision boundary when using our modified perceptron.

-180 -120 -60 0 60 120 180

Joint 1 Angle (degrees)

-180

-120

-60

0

60

120

180

Jo
in

t 2
 A

ng
le

 (
de

gr
ee

s)

C
obs

C
free

Exploitation
Exploration
Support Point

Figure 3: Example subset R selected by the active
learning strategy for relabeling via KCD.

At the beginning of each model update, R is
initialized to the empty set. All current support
points are then included in R. In the case that
including all support points will exceed the al-
lowanceA, A support points are randomly cho-
sen to be included in R. After adding support
points to R, if |R| is less than pA, each sup-
port point’s ith-nearest non-support point is it-
eratively included until either the resulting |R|
is greater than or equal to pA or kNS |S| non-
support points have been included in R, where
kNS is a user-defined amount.

Distance information between points is conve-
niently available in Gram matrix G, and since
the values of G do not change throughout the
lifetime of the Fastron algorithm, costly con-
ventional k-NN searches or more efficient ap-
proximations are not necessary. Line 5 in Al-
gorithm 2 assumes the k-NN search utilizes G.

2.2.2 Exploration Stage

If the collision check allowance is not yet exhausted, the remainder of the allowance is utilized by
randomly selecting A−|R| configurations fromD\R. The purpose of this random exploration step
is to search for new or drastically different C-space obstacles, such as when a new object enters the
reachable workspace or an existing object moves quickly.

3 Experimental Results

3.1 Experiments on 2 DOF Manipulator

We perform preliminary experiments on a 2 DOF manipulator to easily visualize both the workspace
and C-space. We create random convex polygonal workspace obstacles, and use the Gilbert-
Johnson-Keerthi (GJK) algorithm [11] for KCDs. We perform all 2 DOF simulations in MATLAB
without the use of GPU acceleration or parallel computing to demonstrate its native speed.

We compare the collision detection time of Fastron-based collision detections (FCDs) and KCDs un-
der increasingly difficult conditions (increasing number of workspace obstacles). We use N = 625,
kernel width γ = 10, and conditional bias parameter r+ = 100 for our Fastron model parameters,
where γ and r+ were selected via cross-validation. In the interest of generating a safe model, recall
(true positive rate, or percentage of Cobs configurations correctly classified) is our primary metric
for performance. High values of recall indicate that the model rarely considers Cobs configurations
to be in Cfree. Table 1 demonstrates the performance of FCD for various numbers of workspace

6

Number of Obstacles

1 2 3 4 5

FCD Recall (%) 98.3 98.3 98.5 98.9 98.9
FCD FPR (%) 3.6 6.7 11.5 13.9 16.0
FCD Time (µs) 33.8 37.9 39.2 39.6 40.5
Ratio of KCD to FCD Time 4.9 7.5 9.4 11.1 12.0

Table 1: Recall, false positive rate, and collision check time of FCDs for 2 DOF manipulator with
various number of obstacles. KCD timings scale poorly with obstacle number, while FCDs do not.

A = 0.1N A = 0.3N A = 0.5N
Recall FPR Time Recall FPR Time Recall FPR Time

N = 100 75.0 6.5 1.5 84.2 7.5 3.4 85.5 7.8 4.7
N = 400 94.6 2.7 5.6 95.4 3.3 12.6 93.9 2.9 16.6
N = 625 91.0 2.0 8.3 95.4 2.2 18.8 95.7 2.0 26.2
N = 900 94.5 1.6 13.2 96.5 1.6 26.4 93.8 1.4 36.3
N = 1225 95.6 1.3 17.0 95.9 1.4 37.5 95.6 1.0 48.4

Table 2: Recall (%), false positive rate (%), and model update time (ms) for various dataset sizes N
and exploitation stage proportions p for 2 DOF manipulator in a changing environment.

obstacles. Recall remains high (over 98%) as the number of obstacles increases. Table 1 also in-
cludes false positive rate (FPR) to demonstrate the effect of padding due to conditional biasing in a
more crowded workspace. FPR increases along with the number of obstacles because the Fastron
has a bias toward labeling configurations as Cobs in regions of uncertainty, namely near the deci-
sion boundary. The speed improvement of FCD over KCD drastically increases as the number of
obstacles increases, showing FCDs are more resilient to obstacle count than KCDs.

We evaluate the performance of the Fastron in an environment with a moving randomly-generated
polygon under various dataset sizes N and relabeling allowances A, with γ = 10, exploitation
proportion p = 0.8, and a maximum nearest non-support point number kNS = 4. We tabulate the
average recall, FPR, and update time (model updating and active learning) over 10 second trials
in Table 2. Compared to the static case shown in Table 1, recall is lower in the moving obstacle
case possibly because all collision status changes may not have been detected. However, recall
is still large (over 90%) for N larger than or equal to 400. Update time worsens as p increases
because more KCDs are required. FPR decreases for increasing N because when there are more
points distributed in C-space, there is a decreased requirement for the Fastron to be conservative by
padding C-space obstacles in regions of uncertainty.

3.2 Experiments on 7 DOF Manipulator

We apply the Fastron algorithm to a simulated 7 DOF PR2 arm in a C++ ROS environment with
shape primitives as workspace obstacles. KCD is performed using either the Flexible Collision
Library (FCL) [12] collision checker or GJK in the Bullet physics library. In the FCL cases, the
actual PR2 arm mesh is used. While FCL may be used for high-precision collision checking, it is
a popular collision checking framework and starts with a broad phase collision check which makes
many collision checks fast. In the GJK cases, we simplify the arm as a set of oriented bounding

Number of Obstacles

1 2 3

FCL FCD Recall (%) 92.8 95.3 98.1
FCD FPR (%) 14.3 22.9 30.9
FCD Time (µs) 4.1 4.0 4.2
Ratio of KCD to FCD Time 8.1 9.4 10.3

GJK FCD Recall (%) 91.6 94.0 96.0
FCD FPR (%) 7.2 11.1 32.6
FCD Time (µs) 3.6 4.0 4.6
Ratio of KCD to FCD Time 2.0 2.7 2.9

Table 3: Recall, false positive rate, and collision check time of FCDs for 7 DOF manipulator with
various number of obstacles. KCD timings scale poorly with obstacle number, while FCDs do not.

7

A = 0.1N A = 0.3N A = 0.5N
Recall FPR Time Recall FPR Time Recall FPR Time

FCL N = 1000 98.9 36.0 2.7 98.9 38.2 2.9 98.8 37.5 3.1
N = 4000 96.1 18.4 29.1 95.7 17.3 31.7 94.7 15.6 32.8
N = 8000 90.2 8.5 116.5 90.2 8.2 130.6 87.8 6.7 138.1

GJK N = 1000 95.2 16.7 2.2 94.5 14.9 2.3 94.1 14.5 2.4
N = 4000 93.4 9.5 29.3 92.0 7.6 30.8 91.0 7.0 31.8
N = 8000 93.1 7.7 123.3 91.7 5.9 131.5 90.6 5.1 138.4

Table 4: Recall (%), false positive rate (%), and model update time (ms) for various dataset sizes N
and exploitation stage proportions p for 7 DOF PR2 manipulator.

boxes to provide an instance of a high-speed but low-fidelity collision checking framework. We do
not rely on GPU acceleration or parallelization to speed up any part of the algorithm. In all following
simulations, we use a fixed value of kernel width γ = 10 and conditional bias parameter r+ = 2.

With a dataset of size N = 4000, the recall is sufficiently large (over 90%) with both FCL and GJK
KCDs as shown in Table 3. FPR increases as the number of obstacles increases because the C-space
is high dimensional so the spacing of the 4000 points cause the Fastron to pad the C-space obstacles
more. The speed improvement of the FCD over KCD increases as the number of obstacles increases.

We evaluate the performance of the model in changing environments under various dataset sizes N
and relabeling allowances A by considering the average recall, false positive rate, and update time
with exploitation proportion p = 0.5 and a maximum nearest non-support point number kNS = 4.
Table 4 shows that update time increases with A because active learning involves KCDs. Recall
decreases asN increases but is generally above 90%, and false positive rate improves asN increases.

We demonstrate one use case of the Fastron algorithm by implementing a standard RRT [2] using
FCDs and KCDs for collision checks, henceforth referred to as FCD-RRT and KCD-RRT, respec-
tively. We choose the standard RRT due to its simplicity, yet we note that dynamic RRTs and other
variants designed for moving obstacles will see similar benefits from the Fastron. We repeatedly
compute an RRT from scratch over the course of a 10 second trial, translating the workspace obsta-
cle between each RRT plan to simulate a changing environment. The obstacle is randomly placed
such that the arm cannot take a straight approach to the goal configuration. We use N = 4000 and
A = 0.3N for the RRT experiments.

When using FCL for KCDs, the average time spent in the collision checking stage of the FCD-RRTs
is 108 ms, while 399 ms is required for the KCD-RRT’s collision checking stage. When using GJK
for KCDs, the collision checking stage takes 104 ms for FCD-RRTs and 164 ms for KCD-RRTs.
Model updating and active learning (which together take around 30 ms) are included when timing
the FCD-RRTs’ collision checking stages. As the collision checking stage is 3.7 times faster in the
high-precision FCL case and 1.6 times faster in the low-fidelity GJK case, the Fastron demonstrates
the collision check bottleneck sampling-based motion planners face may be lessened, especially if
KCDs needed for information gathering are parallelized.

4 Concluding Remarks

We present the Fastron algorithm as a method to quickly represent and update a learning-based C-
space model to be used for fast, proxy collision detection. We note that the Fastron complements, but
not entirely supplants, kinematic-based collision checks because KCDs still serve as an oracle for
acquiring information about the changing environment. The advantage of utilizing a learning-based
model to represent C-space is a dense representation is not required. Instead, only a few support
points represent the decision boundary between Cfree and Cobs, whose structure may be exploited
to reduce costly query evaluations of the oracle KCD function.

A limitation of the Fastron method is FPR increases as the obstacle number increases due to the
C-space obstacle padding. Another limitation is the necessity to store the dataset D and the Gram
matrix G to speed up model updates. In future work, we will determine a method to incorporate
resampling (rather than relabeling) to increase model precision and a method to provide a confidence
score on the classification output to facilitate active learning by guiding the information search
toward regions of low confidence.

8

References
[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.

Principles of Robot Motion: Theory, Algorithms, and Implementations, 2005.

[2] S. M. Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical
report, 1998.

[3] Y. K. Hwang and N. Ahuja. Gross motion planninga survey. ACM Computing Surveys (CSUR),
24(3):219–291, 1992.

[4] M. Elbanhawi and M. Simic. Sampling-Based Robot Motion Planning: A Review. IEEE
Access, 2:56–77, 2014. ISSN 2169-3536. doi:10.1109/ACCESS.2014.2302442.

[5] S. Murray, W. Floyd-Jones, Y. Qi, D. Sorin, and G. Konidaris. Robot Motion Planning on
a Chip. In Proceedings of Robotics: Science and Systems, AnnArbor, Michigan, June 2016.
doi:10.15607/RSS.2016.XII.004.

[6] J. Pan, X. Zhang, and D. Manocha. Efficient penetration depth approximation using active
learning. ACM Trans. Graph., 32, 2013.

[7] G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. In
ICML, pages 839–846. Citeseer, 2000.

[8] J. Huh and D. D. Lee. Learning high-dimensional Mixture Models for fast collision detection
in Rapidly-Exploring Random Trees. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 63–69, May 2016. doi:10.1109/ICRA.2016.7487116.

[9] B. Burns and O. Brock. Toward Optimal Configuration Space Sampling. In Proceedings of
Robotics: Science and Systems, Cambridge, USA, June 2005. doi:10.15607/RSS.2005.I.015.

[10] J. Pan and D. Manocha. Fast probabilistic collision checking for sampling-based motion plan-
ning using locality-sensitive hashing. The International Journal of Robotics Research, 35(12):
1477–1496, 2016. doi:10.1177/0278364916640908. URL http://dx.doi.org/10.1177/
0278364916640908.

[11] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing the distance
between complex objects in three-dimensional space. IEEE Journal on Robotics and Automa-
tion, 4(2):193–203, Apr 1988. ISSN 0882-4967. doi:10.1109/56.2083.

[12] J. Pan, S. Chitta, and D. Manocha. FCL: A general purpose library for collision and proximity
queries. In 2012 IEEE International Conference on Robotics and Automation, pages 3859–
3866, May 2012. doi:10.1109/ICRA.2012.6225337.

9

https://books.google.com/books?id=S3biKR21i-QC&lpg=PR15&ots=bkART4SEWO&dq=principles%20of%20robot%20motion&lr&pg=PR15#v=onepage&q=principles%20of%20robot%20motion&f=false
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6722915
http://dx.doi.org/10.1109/ACCESS.2014.2302442
http://www.roboticsproceedings.org/rss12/p04.pdf
http://www.roboticsproceedings.org/rss12/p04.pdf
http://dx.doi.org/10.15607/RSS.2016.XII.004
https://pdfs.semanticscholar.org/bab5/a033437baf6be3f219ad65d295e8b7947155.pdf
https://pdfs.semanticscholar.org/bab5/a033437baf6be3f219ad65d295e8b7947155.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.6090&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7487116
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7487116
http://dx.doi.org/10.1109/ICRA.2016.7487116
http://www.roboticsproceedings.org/rss01/p15.pdf
http://dx.doi.org/10.15607/RSS.2005.I.015
http://journals.sagepub.com/doi/pdf/10.1177/0278364916640908
http://journals.sagepub.com/doi/pdf/10.1177/0278364916640908
http://dx.doi.org/10.1177/0278364916640908
http://dx.doi.org/10.1177/0278364916640908
http://dx.doi.org/10.1177/0278364916640908
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=2083
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=2083
http://dx.doi.org/10.1109/56.2083
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6225337
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6225337
http://dx.doi.org/10.1109/ICRA.2012.6225337

	Introduction
	Contributions
	Related Work

	Methods
	Modeling C-Space Using Perceptron
	Training and Classification with Original Kernel Perceptron
	One-Step Weight Correction and Conditional Biasing
	Margin-Based Prioritization
	Redundant Support Point Removal

	Active Learning for Efficient Relabeling
	Exploitation Stage
	Exploration Stage

	Experimental Results
	Experiments on 2 DOF Manipulator
	Experiments on 7 DOF Manipulator

	Concluding Remarks

