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Three-dimensional Hysteresis Compensation Enhances Accuracy of

Robotic Artificial Muscles

Jun Zhang, Anthony Simeonov and Michael C. Yip

Abstract—Robotic artificial muscles are compliant and can
generate straight contractions. They are increasingly popular as
driving mechanisms for robotic systems. However, their strain
and tension force often vary simultaneously under varying
loads and inputs, resulting in three-dimensional hysteretic re-
lationships. The three-dimensional hysteresis in robotic artificial
muscles poses difficulties in estimating how they work and how
to make them perform designed motions. This study proposes
an approach to driving robotic artificial muscles to generate
designed motions and forces by modeling and compensating
for their three-dimensional hysteresis. The proposed scheme
captures the nonlinearity by embedding two hysteresis models.
The effectiveness of the model is confirmed by testing three
popular robotic artificial muscles. Inverting the proposed model
allows us to compensate for the hysteresis among temperature
surrogate, contraction length, and tension force of a shape
memory alloy (SMA) actuator. Feedforward control of an SMA-
actuated robotic bicep is demonstrated. This study can be
generalized to other robotic artificial muscles, thus enabling
muscle-powered machines to generate desired motions.

Index Terms—Robotic artificial muscles, hysteresis, inverse
compensation, shape memory alloy actuator.

I. INTRODUCTION

A
RTIFICIAL muscles are broadly defined as materials that

can change their shapes under external chemical or phys-

ical stimuli [1], [2]. In this study, we define a subset of artificial

muscles as robotic artificial muscles, which can generate

straight contractions in their cross-sectional directions during

activation. Although conventional technologies such as electric

motors and hydraulic actuators can be well characterized to

operate effectively, they are non-ideal in many situations where

their form factor, force, size, and weight do not properly

match an application’s needs. Robotic artificial muscles, such

as shape memory alloy (SMA) actuators, McKibben actuators,

and super-coiled polymer (SCP) actuators (Fig. 1(a)-(c)), offer

many advantages over conventional technologies in terms

of power-to-weight ratio, force-to-weight ratio, and inherent

compliance [3]. They can be utilized as driving mechanisms

for robotic systems and have shown strong potential in novel

robotic applications such as safe human-robot interaction,

legged robotics, robotic prostheses and orthoses, and soft

robotics.

To practically employ robotic artificial muscles, it is crucial

to understand how they work and how to make them generate

designed motions and forces. The full utilizations of robotic

artificial muscles are challenged by the three-dimensional and
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Fig. 1. Popular robotic artificial muscles. (a). A Flexinol shape memory alloy
(SMA) actuator (Dynalloy, Inc). (b). A McKibben actuator. (c). A super-coiled
polymer (SCP) actuator.

coupled hysteresis – any of the two variables among input,

strain, and tension force are often hysteretic (Fig. 2). In

practical applications, such as an SMA-actuated robot hand

for grasping an object with different temperatures and weights,

the strain and tension force of the SMA actuators would

vary under varying loads and inputs, resulting in complicated

hysteretic relationships. There have been limited studies on

three-dimensional hysteresis models with coupled variables

for robotic artificial muscles. Furthermore, the hysteresis

properties of different artificial muscles are often different,

thus a generalizable and data-driven modeling and control

methodology is highly desirable.
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Fig. 2. Three-dimensional hysteresis in robotic artificial muscles.

This study proposes an approach to describing, estimat-

ing, and compensating for the three-dimensional hysteresis

in robotic artificial muscles. The proposed method is used

to drive robotic artificial muscles to generate designed mo-

tions and forces. The effectiveness of the proposed model

is confirmed by testing the modeling performance for the

hysteresis behaviors in an SMA actuator, a McKibben actuator,

and an SCP actuator. The proposed method enables accurate

compensation for the hysteresis in a broad range of robotic



2

artificial muscles and further facilitates roboticists to drive

machines powered by robotic artificial muscles to generate

designed motions. This work extends our recent conference

paper [4] in the following aspects: (1) the verification of the

proposed model for a McKibben actuator and an SCP actuator,

(2) the derivation and experimental validation of the inverse

compensation algorithm for the three-dimensional hysteresis

in an SMA actuator, (3) the feedforward angle control of

an SMA-actuated robotic bicep system, and (4) the improved

structure and presentation throughout the paper.

The main contributions of this paper are as follows:

1) An accurate and generalizable model for characterizing

and estimating the three-dimensional hysteresis in dif-

ferent robotic artificial muscles. The proposed scheme

captures the nonlinearity by recursively embedding two

hysteresis models. The adopted embedding procedure

results in a more superior modeling capability than other

approaches, as briefly discussed in Section III.B and

detailed in [4].

2) The derivation of the inverse algorithm to compensate for

the three-dimensional hysteresis based on the proposed

model. We show that inverting the proposed model al-

lows us to compensate for the hysteresis among input,

contraction length, and tension force of an SMA actuator

for position and force control. To show its use in practice,

the feedforward angle control of an SMA-actuated robotic

bicep is demonstrated, where strain and tension force are

coupled and vary continuously.

II. RELATED WORK

Several popular robotic artificial muscles exhibiting three-

dimensional hysteresis are highlighted:

SMA Actuators: SMAs are a class of materials that can

contract and elongate under stimulus such as thermome-

chanical variation [5]. They have been widely utilized in

robotic systems [6]–[8]. However, the characterization of the

hysteresis among temperature, strain, and tension force was a

challenging task [5], [8]. A number of physics-based models

have been proposed, but the analysis was often constrained

to particular types of SMAs and could not faithfully capture

the hysteresis [9]. The full derivation of these models was

often complicated since molecular-level physics was used [10].

Phenomenological models that did not depend on physics

have also been proposed; however, the existing methods could

only capture the hysteresis between two domains and were

thus limited in many applications where strain and tension

force varied simultaneously. For example, a Preisach model

was employed for current – strain hysteresis of an SMA

actuator [11], but under a constant tension force. An adaptive

neuro-fuzzy inference system model was realized for an SMA

actuator at various frequencies, but only the voltage – strain

hysteresis was captured [12]. Similarly, a generalized Prandtl-

Ishlinskii model was adopted for position control, only the

temperature – deflection hysteresis was compensated [13]. The

existing methods could not faithfully capture or compensate

for the three-dimensional and coupled hysteresis in SMA

actuators.

McKibben Actuators: Pneumatic artificial muscles, such as

the McKibben actuators, can convert energy from compressed

air to mechanical motion. They can be directly coupled to a

mechanical joint without additional gearing mechanisms [14].

While they have been utilized in various robotic applications

[15], [16], the hysteresis brought difficulties in modeling and

controlling these artificial muscles [14]. Although static mod-

els have been derived, the hysteresis was often not captured

[16], [17]. The pressure – length hysteresis of a dual pneumatic

artificial muscle system was modeled by a series of Prandtl-

Ishlinskii models [18], the experiment focused on isobaric

cases, and the overall model was complex since an individ-

ual model was employed for the system under a particular

pressure. In [19], a Maxwell-slip model was proposed as a

lumped-parametric model for pneumatic artificial muscles. The

virgin curve equation was adopted to describe the friction

force. Since it only considered isotropic friction, the proposed

model could not capture the hysteresis among pressure, strain,

and tension force simultaneously.

SCP Actuators: SCP actuators can generate large con-

tractions when thermally activated. They have demonstrated

significant mechanical power and good dynamic range [20],

[21], thus is a compelling robotic artificial muscle [22]. SCP

actuators could be manufactured by continuously twisting

carbon nanotube yarns, nylon fishing lines, or sewing threads

until coils were formed [21]. It was known that hysteresis

resulted from the friction of the coiled threads [21], [22],

and could cause up to 30% strain difference under the same

input [23]; however, the majority of the existing studies either

utilized linear models [22], [24], [25] or complicated physical

models [26], both of which failed to capture the hysteresis

among temperature, strain, and tension force. A hysteresis

model was adopted for an SMA-fishing-line actuator, but the

analysis assumed constant tension force [27]. We recently

proposed an approach to capture and compensate for the

voltage – strain hysteresis in an SCP actuator, but the strain

– tension force hysteresis was approximated as a polynomial

term [23].

Modeling and control of systems with two-dimensional

hysteresis has been an active research area. Unlike physics-

based models which were derived based on material properties

[10], [28], phenomenological models (i.e. Preisach model,

Krasnoselskii-Pokrovskii model, Prandtl-Ishlinskii model,

Maxwell-Slip model, Duhem model, and Bouc-Wen model)

were directly derived based on numerical data and could

often capture different hysteresis behaviors [19], [29]–[33],

thus were more widely utilized. With success in modeling,

a significant amount of effort has been spent on the control

of hysteretic systems. A predominant class of feedforward

control strategies involved approximate cancellation of the

hysteresis through inverse compensation [34]–[38]. For exam-

ple, in [36], an analytical inverse of a generalized Prandtl-

Ishlinskii model was derived and experimentally validated.

A nonlinear inverse filter was constructed to compensate for

the hysteresis in a galfenol actuator [34]. Furthermore, to

improve the control performance, feedback controls have been

developed. Traditional methods like the proportional-integral-

derivative controls and more advanced methods [13], [38] have
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been implemented in a variety of systems.

The Preisach model was one of the most effective two-

dimensional hysteresis models that has been widely adopted

[31], [32], [35]. The model was formulated by a weighted

superposition of delayed relays. Practical model implementa-

tion involved discretization of the model parameters (weight

function) to obtain a finite number of parameters [32]. The

identification of the Preisach model could often be solved

efficiently [31], [35]. In this study, we adopted the Preisach

model and its inverse to construct the proposed modeling

and compensation approach, because the Preisach model had

a proven modeling capability for saturated and assymetric

hysteresis behaviors [31], [35], [39], [40] and its inverse could

be numerically computed [31]. However, new methods are

required since the hysteresis in robotic artificial muscles is

three-dimensional and coupled.

Compared to two-dimensional hysteresis, multi-dimensional

hysteresis is significantly more challenging to deal with – the

task of collecting sufficient data to cover the parameter space

becomes significantly more burdensome. Very few strategies

on multi-dimensional scenarios exist, and they have some

noticeable limitations for the hysteresis in robotic artificial

muscles. A vector Preisach model was proposed to capture

the isotropic hysteresis of the magnetization process [41];

however, the amplitude and phase inputs were considered to

be independent but not coupled. A multi-dimensional Bouc-

Wen model was presented to compensate for the hystere-

sis in a two-degree-of-freedom piezoelectric actuator [29];

however, the modeling capability was limited due to a low

number of parameters. A multi-dimensional Prandtl-Ishlinskii

model was presented [42], but each input was assumed to

independently influence the output. The inverse of a multi-

dimensional Prandtl-Ishlinskii model was further derived [43],

but the model was additively formulated, which did not

necessarily work for robotic artificial muscles. A recently

proposed coupled Prandtl-Ishlinskii model was also based on

an additive formulation [44]. We proposed a composite model

for the hysteresis among current, resistance, and deflection

of a vanadium dioxide microactuator [38], but the model

was intrinsically two-dimensional since the resistance was an

intermediate variable solely dependent on the current. Thus,

despite several studies catering to specific applications, the

general problem of three-dimensional and coupled hysteresis

in robotic artificial muscles remains unsolved.

III. CHARACTERIZATION AND DISCUSSION

A. Characterization

In this study, we chose the SMA actuators as the main

example to test the proposed method, considering that they

could be electrically controlled and have been widely used in

robotic applications. SMA actuators exhibit three-dimensional

hysteresis among temperature, strain, and tension force. Note

that other robotic artificial muscles might have alternative

hysteretic elements (e.g., pressure for Mckibben actuators).

The strain was quantified as the contraction length, and was

defined as the change of actuator length with respect to its

resting length. The contraction length increased when the

actuator was elongated, and decreased during contraction. Due

to the lack of sensitive temperature sensors for thin muscle-

form factors, it was difficult to directly and accurately measure

the temperature of SMA actuators. Thus, the voltage applied

across the SMA actuator, resulting in Joule heating, was used

as a temperature surrogate q(T ) =V .

To fully capture the hysteresis, a series of static relation-

ships were obtained based on a temperature surrogate (q(T )),
contraction length (L), and tension force (F) measurement

system. Since the time constant of the thermal dynamics was

approximately 5 s, each voltage step was held for 30 s to

ensure that the steady-state values were reached. Note that this

experiment was to obtain the static hysteresis, by incorporating

the thermal dynamics of the system ( [9], [22], [45]), accurate

model predictions could be achieved for faster motions.

We began by capturing the two-dimensional hysteresis be-

tween F and q(T ), L and q(T ), and L and F :

F – q(T) Hysteresis: The hysteresis between tension force

and temperature surrogate was obtained when the actuator

was close to its resting length. A small pre-tension of 0.5 N

was utilized to prevent the actuator from being slack under

low voltages. Fig. 3(a) shows the corresponding hysteresis

measurements. The force range was [0.5, 15.2] N, and the

voltage range was [0, 6] V.

L – q(T) Hysteresis: The hysteresis between contraction

length and temperature surrogate under different tension forces

was captured. Tension forces were generated by attaching

weights to the actuator. A position sensor was utilized to mea-

sure the contraction length. Since the actuator length changed

with different loading forces, the initial contraction length

values of each hysteresis curve were different, implying that a

single two-dimensional hysteresis model is not sufficient. The

hysteresis curves were saturated at low and high temperatures

and are asymmetric (Fig. 3(b)).

L – F Hysteresis: The hysteresis between contraction length

and tension force was obtained under constant temperatures

(Fig. 3(c)). The initial forces were close to zero, and the

initial contraction lengths of different hysteresis curves were

different. The hysteresis curves under different temperatures

exhibited different profiles, further complicating the modeling.

In practical applications, it is often desirable to control

the strain and the tension force of SMA actuators to follow

designed sequences by applying voltages – the modeling and

compensation of the F − q(T ) hysteresis and the L − q(T )
hysteresis are thus treated in detail in this study.

B. What should be a Good Model for Robotic Artificial

Muscles?

From Fig. 3, it is seen that the relationship between con-

traction length, force, and temperature surrogate of the SMA

actuator is hysteretic and coupled together. The hysteresis

curves exhibit different shapes under different conditions.

Individual hysteresis model could be separately identified and

then combined to obtain the overall model. However, then

the model will be overly complicated. This work attempts to

propose an efficient three-dimensional model that can capture

the coupled hysteresis.



4

0 2 4 6
0

5

10

15
F

or
ce

 (
N

)

Voltage (V)

(a)

0 2 4 6

−10

−5

0

5

Voltage (V)

Le
ng

th
 (

m
m

)

 

 

1.176N
3.136N

5.096N
7.056N

(b)

0 5 10
−4

−2

0

2

4

6

Force (N)

Le
ng

th
 (

m
m

)

 

 

0V
3.37 V
4.43 V

(c)

Fig. 3. The three-dimensional hysteresis of an SMA actuator between the (a) F −q(T ), (b) L−q(T ), and (c) L−F hysteresis.

Denote Hi, i = 1,2, · · · ,5 are Preisach models with different

parameters. Without loss of generality, L is the output, F and

q(T ) are inputs. One option is that the length is expressed

as the weighted summation of two independent hysteresis

models: L = H3[F ]−H4[q(T )]. A similar additive multivari-

able hysteresis model has been proposed [43]. However, this

approach only works for cases where all of the hysteresis

curves have similar profiles except with different offsets. For

example, the hysteresis between L and q(T ) would be the

same except with a shift under a different constant F , which

is not true for SMA actuators, as shown in Fig. 3(b). Another

option is to simplify the relationship between F and q(T )
as linear, and embed the linear relationship into the overall

model as L = H5[F − a1 · q(T )− a0], where a0 and a1 are

constants. Although this model can generate different L−q(T )
hysteresis curves under different constant F , the F − q(T )
relationship is simplified to be hysteresis-free and linear, which

would generate significant errors if the F − q(T ) relationship

is hysteretic. The above two approaches have been tested to

be ineffective for SMA actuators in our recent study [4].

In this study, we propose a model that can effectively cap-

ture and estimate the full hysteresis relationships by embed-

ding a two-stage Preisach model: the proposed approach first

characterizes the F − q(T ) hysteresis as F = H1[q(T )] when

the actuator is close to its resting length, and then embeds the

relationship into the overall model as L = H2[F −H1[q(T )]].
Compared to the aforementioned approaches, the proposed

method is more accurate [4]. The detailed derivation of the

model is provided in Section IV.

IV. THREE-DIMENSIONAL HYSTERESIS MODELING

To model the hysteresis shown in Fig. 3, a group of two-

dimensional hysteresis models could indeed be employed, but

the computation would be overly complicated. In this section,

an efficient three-dimensional hysteresis model is proposed for

capturing the hysteresis in robotic artificial muscles. The for-

mulation and identification of the model are described. Though

we describe the following sections with Temperature as the

input and Tension and Strain as the inter-coupled hysteretic

outputs, it is important to point out that the formulations are

generalizable for different forms of input (i.e. temperature,

current, pressure, etc.) and are therefore valid for robotic

artificial muscles with different activation mechanisms.

A. Steady-state Voltage as Temperature Surrogate

The independent variables describing the SMA actuators

are temperature, contraction length, and tension force. Direct

temperature measurement of the SMA actuator is a challeng-

ing task – the SMA actuators utilized in this work had a

diameter of 0.203 mm, and conventional thermocouples or

laser thermometers could not work properly at such a small

scale. To obtain the temperature of the SMA actuator, we

adopted the concept of temperature surrogate [38]. Based on

existing thermal models of the SMAs, the constant (quasi-

static) voltage V could be expressed as a single-valued and

monotonically increasing function of T , namely, V = q(T ).
For illustration purposes, we provided an example based on

the thermal model of Joule heating [45]. The thermo-electric

model of the SMA actuators was written as

dT (t)

dt
=−d1(T (t)−T0)+ d2V

2(t), (1)

where d1 and d2 were positive constants relevant to the density,

volume, heat transfer coefficient, resistance, and surface area

of the SMA actuators, and T0 was the ambient temperature.

This model has been validated in [22], [38]. It is noted that the

resistance of the SMA actuators might undergo mild changes

during phase transition – the resistance change was less than

15% [46] and was approximated to be constant.

Under a constant voltage V , the steady-state temperature T

would be reached. V could be expressed in terms of T :

V =

√
d1

d2

(T −T0) = q(T ). (2)

The function q(T ) in Eq. (2) was indeed single-valued and

strictly increasing, and thus was a legitimate surrogate for T .

Under dynamic conditions, the temperature of the SMA

actuators cannot be directly correlated with voltage based on



5

Eq. (2); however, the relationship between temperature and

voltage is available, as expressed in Eq. (1). By identifying

the additional model parameters in Eq. (1) and combining it

with the proposed model, the performance of SMA actuators

can still be modeled. This study proposes modeling and

compensation methods considering the surrogate temperature

based on Eq. (2), and the consideration of the temperature in

dynamic conditions is a future study of this work.

B. Proposed Model

The proposed model was constructed from embedding two

Preisach models.

1) F − q(T ) Hysteresis: A Preisach model with parameter

(weight function) ω was adopted to model the F − q(T )
hysteresis under resting length condition (L ≈ 0):

F(t) = H1[q(T (·));ζ0](t)

=

∫

P0

ω(β ,α)γβ ,α [q(T (·));ζ0(β ,α)](t)dβ dα + c0,

(3)

where P0 was the Preisach plane and defined as

P0
△
= {(β ,α) : q(Tmin)≤ β ≤ α ≤ q(Tmax)}, (4)

[q(Tmin),q(Tmax)] was the temperature surrogate (quasi-static

voltage) range, γβ ,α was the hysteron, which was the basic

element of the Preisach model, c0 was a constant bias.

The output of the hysteron at time t depended on the

current and the history of the temperature surrogate q(T (τ)),
0 ≤ τ ≤ t. ζ0(β ,α) ∈ {−1,1} was the initial hysteron output,

the hysteron at t could be expressed as:

γβ ,α [q(T (·));ζ0(β ,α)](t)=





+1 if q(T (t))> α
−1 if q(T (t))< β
ζ0(β ,α) if β ≤ q(T (t))≤ α.

(5)

Practical model implementation involved discretization of

the weight function ω to obtain a finite number of parameters.

The weight function was approximated as a piecewise constant

function – the weight wi j was constant within cell (i, j),
i = 1,2, · · · ,N1; j = 1,2, · · · ,N1 − i + 1, where N1 was the

discretization level and {wi j} were the model parameters.

The discretization level is often empirically determined by

considering the accuracy and complexity of the discretized

model [31]. The weights were usually constrained to be either

non-negative or non-positive such that the resulted model

could describe monotonic hysteresis [31], [35].

At time n, the output of the discretized Preisach model could

be expressed as

F(n) = H1[q(T (n))] =
N1

∑
i=1

N1+1−i

∑
j=1

wi jsi j(n)+ c0, (6)

where wi j was the weight for cell (i, j), and si j(n) was the

signed area of the cell (i, j), which was fully determined by

the temperature surrogate q(T ) up to time n.

Note that L≈ 0 and L was assumed not present in the model.

Since a small pre-tension of 0.5 N was used, H1(0) = 0.5 N.

The model parameters consisted of the weights {wi j} and the

constant bias c0.

2) L−F − q(T) Hysteresis: F(n) = H1[q(T (n))] (Eq. (6))

held only when L(n) was zero. By embedding the F − q(T )
hysteresis, a three-dimensional model among L, F , and q(T )
was formulated as

L(n) = H2[F(n)−H1[q(T (n))]] =
N2

∑
i=1

N2+1−i

∑
j=1

µi j pi j(n)+ c1,

(7)

where N2 was the discretization level for H2, {µi j} were

the parameters of the model, and c1 was a constant bias.

Considering that the hysteresis between F and q(T ) was em-

bedded, F−H1[q(T )] was the input of the high-level hysteresis

model H2. The negative term of H1[q(T )] was introduced

due to the fact that the hysteresis between contraction length

and temperature surrogate was monotonically decreasing (Fig.

3(b)).

When the tension force was close to zero and no voltage

was applied, the actuator would remain its resting length, so

H2(0) = 0 mm.

3) Model Identification: The identification of the F −q(T )
hysteresis model, H1 in Eq. (6), could be reformulated as a

constrained linear least-squares problem and solved efficiently

with the MATLAB command lsqnonneg [31], [35], [38].

After the identification of H1, the identification of the pro-

posed model, H2 in Eq. (7), could also be efficiently realized

by the linear least-squares algorithm. For ease of presentation,

the model parameters were rewritten in the following vector

form:

D =
(
d1 d2 · · · dN2(N2+1)/2 c1

)⊤
, (8)

where dk = µi j, k = (i− 1)(2N2 − i+ 2)/2+ j− 1. The input

sequence was denoted as F(n)−H1[q(T (n))], n = 1,2, · · · ,N,

and the corresponding pi j(n) could be calculated by track-

ing the evolution of the input history up to time n. By

stacking pi j(n) into a row of a matrix: P(n,k) = pi j(n),
and P(n,N2(N2 + 1)/2 + 1) = 1. The output of the model

L̃ =
(
L̃(1) L̃(2) · · · L̃(N)

)⊤
could be expressed as

L̃ = PD. (9)

Denote the experimental contraction length measure-

ment under input sequence z(n) = F(n)−H1[q(T (n))], n =
1,2, · · · ,N, as

Z =
(
z(1) z(2) · · · z(N)

)⊤
. (10)

The model parameters, D, could be calculated such that ‖PD−
Z‖2

2 was minimized under the sign constraints of the weights.

The weights of {µi j} were constrained to be non-negative in

this study.

If the hysteresis is relatively small, the resulted weights of

the Preisach model will be primarily located close to the β =α
line. If the hysteresis is more significant, a larger portion of

the major weights will be located away from the β = α line.

More details about the Preisach model can be found in [23],

[31], [32], [35], [38], [41].
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C. Linear Model

Since the linear model had a low computational cost and

an efficient inverse model, this approach has been widely

adopted in existing studies [14], [16], [22], [35], where the

hysteresis behavior was roughly approximated as a linear

or polynomial relationship. By simplifying the relationship

between F and q(T ) as linear, and embedding the relationship

into an overall linear expression, the linear model was adopted

as a comparison method:

L = k2(F − k1 ·q(T )−F0), (11)

where k1, k2 and F0 were constants. F0 was the pre-tension

term. The model identification was realized with the linear

regression algorithm using MATLAB command polyfit. This

is a “no hysteresis” model – it simplified the hysteretic rela-

tionships to be hysteresis-free and linear, thus would generate

significant errors. Furthermore, this approach could not capture

the shape differences among different hysteresis curves. For

example, when the tension force changed from a constant

value, F , to another constant value, F
′
, the only effect to the

modeled L− q(T) profile was a changed offset k2 · (F
′
−F).

V. THREE-DIMENSIONAL HYSTERESIS COMPENSATION

In this section, we describe how to invert the three-

dimensional hysteresis model, and how to realize feedforward

control of an SMA actuator and an SMA-actuated robotic

bicep system.

A. Inverse Compensation Algorithm

1) Proposed Algorithm: Inverse compensation is a feedfor-

ward control scheme widely adopted for nonlinear systems

[31]. An inverse hysteresis strategy can be employed to

approximately cancel out the system hysteresis (Fig. 4(a)).

Considering that the proposed model was constructed based

on a two-stage Preisach model, a corresponding two-stage

inverse was derived to invert the proposed model. The derived

inverse algorithm could be employed for tension force control

and contraction length control of SMA actuators, such that

tension force and contraction length could follow desired

sequences.

Denote the reference tension force as Fd , the goal of inverse

compensation was to find the required temperature surrogate

(voltage step) input q̂(T ), such that Fd ≈ H1[q̂(T )]. The input

q̂(T ) could be calculated by inverting H1 as

̂q(T (n))≈ H−1
1 [Fd(n)]. (12)

While the inverse of the Preisach model was not provided here,

the detailed analysis could be found in [31], [35], [37].

Further denote the reference contraction length as Ld , the

goal was to find q̂(T ), such that Ld ≈ H2[Fd −H1[q̂(T )]]. This

could be realized by inverting H2 and H1 sequentially. First, the

input of the high-level model H2, Fd −H1[q̂(T )], was obtained

by inverting H2:

Fd(n)−H1[ ̂q(T (n))]≈ H−1
2 [Ld(n)]. (13)
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Force F

LengthL
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Fig. 4. Illustration of the inverse compensation of (a) a general hysteretic
system, and (b) the three-dimensional hysteresis in SMA actuators.

The input q̂(T ) could then be calculated by inverting H1 as

̂q(T (n))≈ H−1
1 [Fd(n)−H−1

2 [Ld(n)]]. (14)

Eq. (14) was the inverse of the proposed model, and the

scheme was also illustrated in Fig. 4(b).

It is noted that other possible model inverse expression can

be derived, depending on the model expression. For example,

when F is chosen to be the output, L and q(T ) are inputs, the

length - voltage model and force - length model can be adopted

for inverse. In practical applications, it is often desirable that

the SMA actuator produces a sequence of predefined force or

strain values [32], [38]. To solve such a problem, the proposed

inverse algorithm is utilized multiple times.

2) Linear Model Inverse: The inverse of the linear model

could be conveniently realized. Given the reference contraction

length and tension force, the input q̂(T )L could be obtained as

q̂(T )L =
1

k1
(Fd −F0 −

Ld

k2
). (15)

This approach was implemented to control the tension force

and contraction length of the SMA actuator as a comparison.

Unlike the inverse of the Preisach model, the inverse of the

linear model was another linear function.

B. Feedforward Control of Robotic Bicep

Applications such as robotic arms [16], [22], rehabilitation

robots [15], medical robots [9], biomimetic robots [7], and soft

robots [6], are prime systems for robotic artificial muscles to

be implemented. To show the use of the proposed method

in practice, a one-link robotic bicep actuated by three SMA

actuators (Fig. 5(a)-(b)) was chosen in this study. Admittedly

simple, similar working mechanisms have been widely used

[16]. Furthermore, the changes in temperature, strain, and ten-

sion force of the SMA-actuated robotic bicep were continuous.

This was different from the experimental testing of an SMA

actuator, where the tension force change was discrete and

realized by manually adding weights. The proposed method in

this study can be further applied to more sophisticated systems

powered by multiple robotic artificial muscles since each of

them can be individually modeled and controlled.
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In feedforward control of the robotic bicep, the goal was

to calculate the control input such that if applied, the system

could achieve a desired static configuration. The schematic of

the robotic bicep was provided (Fig. 5(c)). The control variable

was chosen to be the angle of the robotic bicep, θ , which

was defined as the angle between the forearm and the upward

vertical direction.

1) Quasi-static Analysis: Quasi-static equilibrium analysis

of the robotic bicep was conducted (Fig. 5(c)). Given the

weight at the end of the bicep, mweight, the weight of the

forearm itself, marm, and the system configuration, the actuator

tension force to maintain equilibrium was calculated as the

angle varied throughout the operating range. The known

quantities of the system configuration were the distance from

the pivot (A) to the clamp along the arm, x; the height of

the clamp, a; the vertical distance from the pivot (A) to the

top actuator connection point (D), y; and the length of the

forearm, l. The bicep angle, θ , was defined as the angle

between the forearm and the upward vertical direction. The

combined tension force of the three SMA actuators, 3F , was

calculated using the following moment balance:

3Fr = mweightgl sinθ +
marmgl sinθ

2
, (16)

where the center of mass of the bicep was assumed to be in

the center of the forearm. This was a legitimate assumption

since a uniform aluminum rod was used as the forearm. The

additional moment introduced by the clamp was not included

in the analysis, considering that the clamp was very close to

the pivot, and its mass was significantly less than the aluminum

rod.

The perpendicular distance from the pivot point to the

actuator force line of action (r =AR) was calculated in the

following derivations: first, line segment c =AC and the angle

γ between line segment AC and the forearm, were determined

using right triangle relationships as

c2 = a2 + x2,
γ = tan−1(a/x).

(17)

Then, denote κ = θ − γ , the contraction length of the actuator

was obtained by using the law of cosine relationship as

L = z0 −
√

c2 + y2 − 2cycos(κ), (18)

where z0 was the resting length of the actuator. Angle δ
between the actuators and the downward vertical direction

could be determined as

δ =
cos−1(c2 − z2 − y2)

−2zy
, (19)

where z was the current length of the actuator and could be

obtained from Eq. (18). Finally, r could be calculated from r =
ysinδ . The tension force of each SMA actuator was obtained:

F =
1

3
·
(2mweight +marm)gl sin θ

2ysinδ
. (20)

2) Feedforward Control: Under the quasi-static condition,

the angle θ of the robotic bicep determined the tension force

F and the contraction length L of the SMA actuators. It was

calculated that when the system was under an equilibrium

angle θd , the corresponding contraction length of the actuators

Ld was

Ld = z0 −
√

c2 + y2 − 2cycos(θd − γ). (21)

The corresponding tension force Fd of each SMA actuator was

Fd =
(2mweight +marm)gl sinθd

6ysinδ
. (22)

With the computed contraction length (Eq. (21)) and tension

force (Eq. (22)) of the SMA actuators, the control inputs,

q̂(T ), could be calculated based on the proposed compensation

scheme (Eq. (14)) or the inverse of the linear model (Eq. (15)).

VI. EXPERIMENTAL SETUP

A. SMA Actuator

The experimental testbed (Fig. 6) consisted of an SMA

actuator (Dynalloy, Inc) with a resting length of 27 cm and

a diameter of 0.203 mm, a position sensor (SPS-L035-LATS,

Honeywell) with 0.04 mm resolution for contraction length

measurement, a load cell (LSP-2, Transducer Techniques)

to measure the tension force, and a servo motor (MX-28,

Dynamixel) with an aluminum capstan to control the length

of the SMA actuator. Similar to [4], [22], [23], a tangential

blower fan (QG030-198/12, Ebm-papst) was utilized to pro-

vide an approximately even airflow environment. The SMA

actuator had a dark blue color and was highlighted with

a more bright color for visualization purposes. Contraction

length measurement was performed by accurately sensing the

position of a magnet with an array of magnetoresistive sensors.

The magnet and the weights were hung on the actuator to

generate tension forces. The weights containing ferrous metals

were kept a distance from the magnet to ensure accurate mea-

surements. The additional mass of the magnet and components

hung on the actuator was 20 g. Fig. 6(a) shows the setup

for L − q(T ) hysteresis measurement, and Fig. 6(b) shows

the setup for F − q(T ) and L−F hysteresis measurements.

Temperature surrogate was realized by applying voltage steps

with a pulse-width-modulated circuit. Data acquisition was

realized in LabVIEW software.

The SMA actuator with a diameter of 0.203 mm was

chosen in this work since they produced large forces (15 N)

and exhibited fast responses (time constant closes to 5 s).

As the SMA actuator became thicker, the response became

slower. Note that since the proposed approach was based on a

phenomenological model (Preisach model), this study applied

to SMA actuators with other diameters and materials, as well

as other types of robotic artificial muscles.

B. Robotic Bicep

A one-link robotic bicep system actuated by three SMA

actuators in parallel was developed (Fig. 5(a)). The system

consisted of a mounted vertical structure made of plywood,
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Fig. 5. (a). The experimental setup for the robotic bicep system. (b). A schematic of the human bicep-forearm system. (c). Illustration of the robotic bicep
for quasi-static analysis.

TABLE I
MODELING, VERIFICATION, AND CONTROL PERFORMANCE FOR THE SMA ACTUATOR AND SMA-ACTUATED ROBOTIC BICEP

Average error Average error Standard deviation Standard deviation
proposed linear proposed linear

F −q(T ) identification 0.8% 2.2% 0.8% 1.7%
F −q(T ) verification 0.9% 2.7% 0.7% 1.7%
F −q(T ) compensation 1.3% 2.1% 0.8% 1.5%

L−q(T ) identification 2.9% 14.1% 3.4% 9.9%
L−q(T ) verification 3.4% 12.6% 5.2% 9.9%
L−q(T ) compensation 4.9% 11.5% 5.5% 9.5%

Robot control (sinusoidal) 1.8◦ 3.4◦ 0.8◦ 1.7◦

Robot control (random) 1.6◦ 4.2◦ 1.1◦ 2.9◦

(a) (b)

Fig. 6. The experimental setup for (a) L−q(T ) hysteresis, and (b) L−F and
F −q(T ) hysteresis measurements of an SMA actuator.

with a metal rod at the top for connecting one end of the

SMA actuators, and symmetric bearing assemblies (602ZZ,

VXB) at the bottom of the structure to house a rotating shaft.

A 3D printed connector (M200, Zortrax) attached an 8 mm

diameter, 30 cm long aluminum rod perpendicularly to the

shaft, and a capacitive quadrature encoder (AMT103, CUI)

was mounted on the bottom outer structure to measure the

shaft rotation with an accuracy of 0.176◦. The aluminum rod

acted as the movable link, and featured a 3D printed clamp for

easy connection to the other end of the SMA actuators. The

weight of the rod was 40 g. A fan was used for even airflow

environment and was not shown in Fig. 5(a). The clamp and

top metal rod were tightened in place for a rigid connection

between the arm structure and the SMA actuators. A 100 g

weight was hung from the end of the actuated link. The system

was designed to mimic a human bicep-forearm system lifting

a weight through some angles of rotation (Fig. 5(b)), and was

developed such that the SMA actuator connection points can

be easily modified.

It was noted that the lengths of the three SMA actuators

were all close to 27 cm. This would allow us to assume an

equal performance of each actuator, and the identified model

and control algorithm in this study could be directly employed.

Three SMA actuators were utilized to increase the amount of

weight that could be lifted by the robotic bicep. Although

the adopted SMA actuators exhibited similar properties, the

small length difference among the actuators was likely to cause

certain modeling and control discrepancies.

VII. RESULTS

A. Performance Metric

The performance was measured by the average absolute

errors and the standard deviation divided by the corresponding

output range:
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Eaverage =

M

∑
i=1

|ei|/M

P
× 100%, (23)

σ =

√
M

∑
i=1

(ei − ē)2

P
× 100%, (24)

where M was the number of data-points to be evaluated, ei

denoted the error of the ith point, P was the output range, and

ē was the average error. They were denoted as the average

error and the standard deviation percentages.

In this paper, we consider the quasi-static relationships,

which is based on the steady-state values after transient

process, so the specific time information is irrelevant. Instead,

the term “index” refers to the numbering of the quasi-static

voltage, contraction length, and tension force values.

B. Model Identification

To obtain the experimental F−q(T) hysteresis and L−q(T )
hysteresis, the voltage input was chosen to be in the form

of damped oscillations (Fig. 7(a)) [23], [31]. Under resting

length condition, the F − q(T ) hysteresis was obtained. The

L − q(T ) hysteresis under different tension forces was also

measured (Fig. 3). The discretization levels of the Preisach

models H1 and H2, N1 and N2, were empirically chosen to be

10 and 20, respectively, since the resulted model is accurate

but not over complicated. Further increasing N1 and N2 did

not produce substantial improvement in modeling accuracy,

but would further complicate the model.

H1 was identified based on the F−q(T) hysteresis. Fig. 7(b)

shows that the proposed model could accurately capture the

F −q(T ) hysteresis. Fig. 7(c) and Fig. 8(d) shows the model-

ing error results. A total of 37 data points were employed for

the modeling error analysis. The average error and standard

deviation percentages were 0.8% and 0.8%, respectively, as

shown in Table I. It was identified that the constant term

c0 = 7.89 N, and the model parameters were shown in Fig. 8(a)

(left): Since the F − q(T ) hysteresis was mild, the identified

parameters of the Preisach model H1 were primarily located

close to the β = α line. While this indeed meant that a

linear model could be used, it would be shown later that

the adoption of a hysteresis model still delivered considerably

more improved accuracy.

H2 was identified based on the L − q(T ) hysteresis and

the identified H1. The modeling performance was shown in

Fig. 8(b)-(d). Since 37 different voltage steps were applied

to the actuator under each tension condition, and four ten-

sion conditions were tested, a total of 148 data points were

employed for the analysis. The average modeling error and

standard deviation percentages were calculated as 2.9% and

3.4%, respectively (Table I). The hysteresis saturated at high

temperatures (Fig. 3(b)) and was captured by the model. The

model parameters were provided in Fig. 8(a) (right), and the

constant term c1 = 1.39 mm. The parameters of H2 were small

at high α and β values, contributing to the saturating profile.

Since the L− q(T ) hysteresis was significant, a considerable
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Fig. 7. (a). The voltage steps input. (b). Modeling performances and (c)
modeling error comparisons with the proposed model and the linear model
of the F −q(T ) hysteresis.

number of model parameters were located away from the

β = α line.

The average time for each contraction length calculation was

0.78 ms. The computations were run in MATLAB software on

a desktop HP 280 G1 MT with Intel(R) Pentium(R) G3260

CPU at 3.30 GHz and 12 GB memory.

C. Model Comparison

For comparison purposes, a linear model was also realized.

The parameters of the linear model were identified as k1 = 2.69

N/V, k2 = 0.88 mm/V and F0 =−0.15 N. As can be seen, the

identified pre-tension (F0) was not accurate since the applied

pre-tension value was 0.5 N. The modeling performance of

the F − q(T ) hysteresis was obtained (Fig. 7(b)-(c) and Fig.

8(d)), and the modeling performance of the L−q(T) hysteresis

was calculated (Fig. 8(b)-(d)). The average errors and standard

deviations for the F − q(T ) hysteresis and the L − q(T )
hysteresis were presented (Table I). The linear model produced

about 160% larger error than that of the proposed model for

the F−q(T ) hysteresis, and around 300% larger error than that
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Fig. 9. Modeling results of the L−q(T ) hysteresis under F = 3.136 N with
the proposed model (left) and a two-dimensional Preisach Model (right).

of the proposed model for the L−q(T ) hysteresis. The average

time for each contraction length calculation was 0.07 ms.

Although the computation of this approach was more efficient

than that of the proposed model, its modeling performance

was much worse.

The comparison between the proposed model and an ex-

isting two-dimensional hysteresis model was then conducted.

Since two-dimensional hysteresis models could not be directly

employed to characterize three-dimensional hysteresis, we

only considered a special case – the L−q(T ) hysteresis when

the tension force was held at 3.136 N. A conventional two-

dimensional Preisach model was identified and compared with

the proposed model, as shown in Fig. 9. The discretization

level of the Preisach model was also chosen to be 20 for a

fair comparison. The average errors of the proposed model

and the Preisach model were 0.44 mm and 0.33 mm, respec-

tively. The standard deviations of the proposed model and the

Preisach model were 0.53 mm and 0.37 mm, respectively.

Although the Preisach model produced approximately 30%

less error than the proposed model, it could not work for

three-dimensional cases where the tension force also changed.

While more detailed comparisons with other existing two-

dimensional hysteresis models were not provided in this study,

the comparison of those models could be found in [32], [38].

The proposed approach was further tested and compared

with a linear model for characterizing the hysteresis in other

popular robotic artificial muscles. The McKibben actuators

and SCP actuators exhibited coupled hysteresis. Fig. 10(a)-

(c) shows the hysteresis in a McKibben actuator between

Force, Pressure, and Length [18]. The discretization levels

of the Preisach models H1 and H2, N1 and N2, were both

chosen to be 20. It was confirmed that the proposed model

could successfully capture the three-dimensional hysteresis

in the McKibben actuator, as shown in Fig. 10(g). Since

the Force – Pressure relationship was approximately linear,

both approaches had good performance for modeling Force –

Pressure hysteresis. Fig. 10(d)-(f) shows the hysteresis in an

SCP actuator between Force, Voltage, and Length [22], [23].

The discretization levels of the Preisach models H1 and H2,

N1 and N2, were chosen to be 10 and 20, respectively. The

modeling results are provided in Fig. 10(h). The effectiveness

of the proposed model was further validated.
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Fig. 10. Three-dimensional hysteresis in a McKibben actuator between the (a) Force – Pressure, (b) Length – Force, and (c) Length – Pressure hysteresis.
The data was from [18] and obtained by an online web plot digitizer (http://arohatgi.info/WebPlotDigitizer/). Since the Length – Pressure hysteresis was
obtained from two serially connected actuators, this hysteresis was provided here only for illustration purposes. Three-dimensional hysteresis in an SCP
actuator between the (d) Force – Voltage, (e) Length – Voltage, and (g) Force – Length hysteresis. It was found in experiment that the F − q(T ) hysteresis
was mild and the magnitude was dependent on the pre-tension force. The modeling error comparison results were provided for the (g) McKibben actuator
and the (h) SCP actuator.

D. Model Verification

The model identification results showed that the proposed

model could effectively capture the three-dimensional hystere-

sis in the SMA actuator under the damped-oscillation voltage

input. To confirm that the model could reliably estimate

tension force and contraction length under any reasonable

inputs, additional experiments utilizing random inputs were

conducted.

To verify the model for the F−q(T ) hysteresis, a randomly-

chosen voltage input (Fig. 11(a)) consisting of 74 different

steps was applied to the SMA actuator when the actuator

was close to resting length. The experimental measurements

of the steady-state force values were obtained (Fig. 11(b)).

Fig. 11(c) shows the force estimation errors under the proposed

model and the linear model. The model verification for the

L− q(T ) hysteresis was also conducted. A different random

voltage steps input (Fig. 12(a)) was applied to the actuator

under different tension forces. The experimental measurements

of the steady-state contraction length values were obtained

(Fig. 12(b)), and each data point was obtained from a single

trial under a constant tension condition. Since 51 different

voltage steps were applied to the actuator under each tension

condition, and four tension conditions were tested, a total of

204 samples were adopted for analysis. Fig. 12(c) shows the

contraction length estimation errors under the proposed model

and the linear model. The corresponding average estimation

errors and standard deviations were summarized (Table I). The

proposed model produced more accurate estimations than the

linear model.

E. Inverse Compensation

The inverse compensation was first examined in feedforward

force control. The reference force sequence was chosen to
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Fig. 11. (a). A random voltage steps input for model verification. (b). The
corresponding steady-state tension force measurements. (c). Errors in tension
force predictions based on the proposed model and the linear model.

be a series of random profiles (Fig. 13(a)). Corresponding

temperature surrogate (voltage step) inputs were computed off-

line based on the inverse algorithms of the proposed model

and the linear model, and then applied to the actuator. The

control errors were calculated based on 74 force control results

(Table I and Fig. 13(b)). The proposed scheme outperformed

the linear model inverse method. The inverse compensation

was further examined in contraction length control. Similarly,

the reference contraction length sequence was chosen to

be a series of random profiles (Fig. 13(c)). Corresponding

temperature surrogate input values were computed. Since 30

different voltage steps were applied to the actuator under each

tension condition, and four tension conditions were tested, a

total of 120 control steps were adopted. The control errors

of the proposed approach and the linear model inverse were

obtained (Table I and Fig. 13(d)). The effectiveness of the

proposed compensation method was evident.

The proposed method was compared with existing studies

on control of robotic artificial muscles. It was found that the

control accuracy of the proposed compensation algorithm was

not higher than existing methods. This can be explained as

follows: Firstly, a predominant class of the existing studies

focused on two-dimensional hysteresis while holding the third-

dimensional property as a constant [11]–[13], [18]. Although

accurate characterization and compensation were achieved,

these models could not work for many practical cases where
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Fig. 12. (a). A random voltage steps input for model verification. (b). The
experimental steady-state contraction length measurements under different
tension forces. (c). Errors in contraction length predictions based on the
proposed model and the linear model.

the third-dimensional property also changes. This study pro-

posed an approach that can capture and compensate for the

three-dimensional hysteresis. The computational cost of the

proposed method is comparable to that of the two-dimensional

hysteresis compensation. Secondly, most of the existing studies

adopted feedback controls [12], [13], [22], [47], where the

input to the system was updated in real-time by comparing

the desired output and the current status of the system. The

realization of feedback control required additional sensing

equipment, which was often undesirable considering the cost

and complexity. The proposed method was a feedforward

control strategy that required no sensing equipment.

F. Robotic Bicep

The feedforward control of the robotic bicep was demon-

strated. The operating range was calculated to be 47.5◦ based

on the system configuration, and experimentally verified by

measuring the arm’s maximum moving angle range under no

voltage and the peak voltage. We considered the quasi-static

angle control of the robotic bicep. The dynamics of the SMA

actuators and robotic bicep have been explored in existing

literature [9], [16] and the control of the dynamical system is

one of the future directions of this study.
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Fig. 13. (a). A randomly chosen reference force sequence. (b). Inverse
compensation results for F − q(T ) hysteresis with the proposed inverse
compensation and the linear model inverse. (c). A randomly chosen reference
contraction length sequence. (d). Inverse compensation results for L− q(T)
hysteresis with the proposed approach and the linear method.

Experiments were conducted to examine the feedforward

control performance. To achieve an equilibrium angle θd ,

the corresponding contraction length Ld and tension force Fd

of the actuators were calculated. The required voltage steps

were then computed based on the proposed model inverse and

the linear model inverse, respectively. Similarly, each voltage

step was also held for 30 s. The speed of the robotic bicep

movement depended on the dynamics of the SMA actuators.

Under each voltage step, the majority portion of the biecp

movement was completed within 3 s in this study.

The reference angle sequence was chosen to be a sinusoidal

profile consisting of 40 values (Fig. 14(a)). The corresponding

tension force and contraction length values were calculated.

Two voltage step sequences were obtained based on the inverse

algorithms for the proposed model and the linear model, re-

spectively. The control performance was shown (Fig. 14(b) and

Table I). The linear model-based controller produced around

90% larger errors than the proposed strategy. Furthermore, the

reference angle sequence was chosen to be a random profile

(Fig. 14(c)). The control performance was provided (Fig. 14(d)

and Table I). The effectiveness of the proposed scheme was

further validated.

VIII. CONCLUSION AND DISCUSSION

In this study, we proposed a methodology to capture

the three-dimensional hysteresis in different robotic artificial

muscles by recursively embedding two Preisach models. We

showed that modeling and inverting the proposed model al-

lowed us to drive the SMA actuators to generate designed

contraction length and tension force. To show its use in

practice, feedforward control of an SMA-actuated one-link

robotic bicep was demonstrated, where strain and tension force

of the SMA actuators varied continuously. This work can be

applied to many relevant studies and is generalizable in the

following aspects:

Any existing two-dimensional hysteresis models can be

adopted as the embedding element to construct the proposed

model. Although the Preisach model was utilized in this

study because of its proven effectiveness, the proposed scheme

was not constrained to any hysteresis models. This has great

practical usages since different embedding elements can be

chosen based on different applications. In cases where control

accuracy is more important than computational and storage

costs, the Preisach model with a large number of model

parameters can be utilized; in cases where efficient imple-

mentation is more desirable, other hysteresis models that have

simpler model structures can be employed, such as the Prandtl-

Ishlinskii model and the Bouc-Wen model. More discussions

on the properties and comparisons of the existing hysteresis

models can be found in [32], [38].

The proposed model is a phenomenological approach. The

model derivation is independent of material’s physical prop-

erties. When the values of the model parameters change,

the model can capture different hysteresis behaviors. This

is why the proposed methodology works for SMA actuators

with other diameters and materials, as well as other types of

robotic artificial muscles, such as the McKibben actuators,

SCP actuators, and ionic polymer-metal composite (IPMC)

artificial muscles [48], [49]; preliminary results are provided in

Fig. 10(g)-(h). Note that other robotic artificial muscles might

have alternative hysteretic elements. For example, for IPMC

artificial muscles, the hysteresis variables are stress, bending

displacement, and voltage. Furthermore, the proposed study

can be generalized to compensate for the hysteresis in a broad

range of robotic artificial muscles since the compensation can

be realized by inverting the corresponding hysteresis model.

Like other phenomenological models, the model parameters

need to be identified for a particular system with experiments.

By utilizing the relationship between the hysteresis profile and

other actuator specifications (e.g., material, diameter, fatigue,

and length), the number of required experiments can be
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Fig. 14. Robotic bicep angle control results. (a). A sinusoidal-profile reference
angle sequence and corresponding control performance. (b). Corresponding
angle control errors with the proposed inverse compensation and the inverse
of the linear model. (c). A random-profile reference angle sequence and the
corresponding control performance. (d). Corresponding control errors with the
proposed inverse compensation and the inverse of the linear model.

reduced. For example, SMA actuators with the same diameter

and temperature but with different lengths can often generate

the same strain [5], so no additional experiments are needed

if the strain is of interest.

Our method is able to describe higher-dimensional coupled

hysteresis beyond three dimensions. Multi-dimensional hys-

teresis with coupled inputs can be constructed by embedding

a multi-stage hysteresis model. To illustrate the idea, denote

Ti, i = 1,2, · · · ,N − 1, as hysteresis models, Y as the out-

put, and X1,X2, · · · ,XN−1 as inputs that are coupled. First,

model the hysteresis between X1 and X2 as X2 = T1[X1].
By embedding T1, a three-dimensional model is obtained:

X3 = T2[X2 −T1[X1]]. An N-dimensional hysteresis model can

be obtained through further embedding:

Y = TN−1[XN−1 −TN−2[XN−2−·· ·T2[X2 −T1[X1]] · · · ]. (25)

Unlike several existing multi-dimensional hysteresis models

that considered independent input variables [41], [42], this

model can describe coupled hysteresis between input variables.

The proposed model is also different from [43], [44] in that

the formulation of the proposed model is not constrained to

be additive. While only the detailed analysis of the three-

dimensional case is provided, the proposed method may also

apply to higher-dimensional scenarios.

Several future areas of development can be considered:

This study considered the quasi-static hysteresis and the

steady-state performance, the analysis including the system

dynamics will be considered. In dynamical systems, the quasi-

static hysteretic relationships may or may not hold, depending

on whether there is rate-dependent hysteresis or not. For

rate-independent hysteretic systems, system properties can be

described well by jointly considering the system dynamics

and the static hysteresis. For example, for SMA actuators,

the thermal dynamics between the voltage and temperature,

expressed in Eq. (1), should be considered. For rate-dependent

hysteretic systems, additional dimensions to the hysteresis

modeling will need to be added.

Our method used voltage as a surrogate variable to infer

temperature, and the study with actual temperature measure-

ments in real environments will be studied. The temperature

of SMA actuators is dependent on the actuator’s proper-

ties and the ambient environmental conditions, such as the

ambient temperature and air flow. By conducting additional

experiments to estimate the thermal dynamics properties, the

relationship between voltage and temperature of the actuator

can be obtained. It may also be of interest to use a dedicated

thermal imaging device for accurate temperature measurement.

Although the proposed study can effectively compensate for

the hysteresis, remaining errors still exist. In cases where

feedback control is possible, the proposed feedforward control

strategy can be used in conjunction with feedback control to

further reduce the uncompensated errors and achieve desirable

control performances.
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