

BitUnits Whitepaper

BitUnits – Giving a bit to get started

A method for two parties (peer-to-peer) to electronically exchange digital assets and
value without having to deal with a middleman. BitUnits is powered by the Ethereum

Classic (ETC) blockchain

Abstract
BitUnits is a digital currency that allows for peer-to-peer exchange of value in the
same way you would use cash. These transactions are the result of a mathematical
construct or blockchain that remains neutral without the oversight of a financial
institution.

We created BitUnits on July 7, 2018 to help foster a more inclusive ecosystem.

Bitcoin is no longer a project that people can easily get involved in. Building a $2000
mining computer or investing in BTC isn’t plausible for those in poverty. It would also
be ridiculously expensive to airdrop BTC to people around the world who were
interested in joining the cryptocurrency market. With BitUnits - we are capable of
spreading tokens around so that we may all share in the revolution. We envision a
financially liberated world and for this technology to succeed cryptocurrency must be
shared with everyone. BitUnits will help spread the knowledge and use of

blockchain. Welcoming newcomers to embark on the technological revolution at no
cost.

BitUnits was created to expand the internet of money by introducing a new audience
to cryptocurrency. The ERC 223 standard was inspiration to began experimenting
with innovative ideas. There are few projects introducing potential investors who are
hesitant to join the volatile market. We are doing our part by offering a zero risk way
to get more people involved in the growing ecosystem.

The code was designed to create a rare digital asset that could be manually
distributed for several reasons. For one, we did not want to host an ICO or require
people to buy our token to experience this technology. Making the integration
process a learning experience for newcomers rather than solely an investment. The
supply was limited so that token holders would be rewarded for supporting the
ecosystem and if there was minimal growth. Our team is committed to see BitUnits
become valued not for it’s price point - but for being the project that familiarized
people with cryptocurrency.

Imagine living in a country where the currency was hyper-inflated by 25,000% and
wasn’t even worth the paper it was printed on. Those living in poverty are unable to
afford Bitcoin or Ethereum Classic. Investing in a virtual currency is nonsensical
when you can barely cover the essentials. Even if it was for their benefit in the future.
For the western world this would be a devastating situation to live in. Rendering
people unable to experience this technology for themselves. This is where BitUnits
comes in to play. We are here for those people. We are willing to spend the fees
UNITS into the hands of those who are less privileged than us. And to ensure that
BitUnits can be exchanged or sent to a third party we can even donate small
amounts of ETC to cover fees. Our goal is helping as many people reach blockchain
as we can.

BitUnits is helping the community transact in a manner that does not require a
middleman. This is the community we are trying to build. Spreading the blockchain
with everyone is crucial if we want to reshape the way we exchange goods, services,
and value. The knowledge and use of Bitcoin was gradually spread by word of mouth
since Satoshi released the protocol in 2009. And we want BitUnits’ to mimic this
growth over the next few years. First we will distribute 50% of the supply by airdrops
and engagements with the community. While also encouraging our community to
share what they’ve learned. Once the 50% distribution of BitUnits is complete and
we will begin building our community from the ground up. Offering a development
bounty for those interested in making a difference in the world.

Why use Ethereum Classic?

Ethereum Classic is a next generation blockchain platform that is capable of building
a new internet infrastructure – one that can dramatically enhance the way that
information and value are shared in the digital economy. Unlocking trillions of dollars
in untapped economic surplus in the process. The platform lets anyone build and use
decentralized applications, dApps for short, that run on blockchain technology. Like
Bitcoin, no one controls or owns Ethereum Classic – it is an open-source project built
by decentralized teams around the world. Unlike the Bitcoin protocol, Ethereum
Classic was designed to be adaptable and flexible. BitUnits is also one of the few
projects running on the Ethereum Classic network.

Openness
The rules of the game should be open for anyone to see and understand. No
registration, identification, or other preconditions should inhibit participation in any
layer of the system. Anyone is free to create their own client implementing an open
protocol. The network and it’s security is open to contribution. Enforcing restrictions
on any of these risks centralization and prevents the network from scaling. The ETC
platform is recommended to any new developers who have ideas of how we can use
blockchain technology to shape a better future.

Neutrality
It is important for everyone participating in blockchain-enabled cooperation to be on
an equal footing. The network is impartial to economic power, ethnicity, age, gender,
and profession. Rules are exactly the same for everyone, period. Without neutrality,
the system is inclined towards a specific group at the expense of another. A partial
network is less likely to gain universal acceptance and maximize network value for
everyone.

Immutability
Blockchain preserves a true and universally acceptable transaction history. One
immutable sequence of events. What’s true today will always be true, regardless of
business or political interests, and no amount of lobbying can change that. Since it’s
not possible to change history, no resources are wasted on the effort. Any sufficiently
motivated and determined groups seeking to exploit loopholes, will only diminish the
network value for everyone. The rules governing the blockchain network are known
in advance and are exactly the same for everyone. Only with 100% consensus can
the rules be changed.

We are committed to an open, neutral, and immutable blockchain. This philosophy
informs all our actions and positions towards any developments in the crypto world
and beyond. Subversion of any these principals should be met with resistance. All
changes that strengthen or introduce centralization on the blockchain should be

fought. Only developments that are conducive to decentralization and strengthening
the 3 key blockchain characteristics should be supported and encouraged. The
blockchain revolution will not be centralized. Let’s make sure of it.

Web 3.0: A platform for decentralized apps
Ethereum Classic is the perfect foundation to build a secure internet. As intended by
the developers the platform is a blank canvas and you have the freedom to build
whatever you want. The protocol is meant to be generalized so the core features can
be combined in arbitrary ways. Ideally, dApp projects will leverage the Ethereum
Classic blockchain to build solutions that rely on decentralized consensus to provide
new products and services that were not previously possible. Ethereum Classic is
perhaps best described as a decentralized ecosystem: the core protocol is supported
by various pieces of infrastructure, code, and a development community that is
comprised of ETC DEV, ETC Cooperative, IOHK Grothendieck, ETC Labs, and ETC
Commonwealth.

Moving Forward
The next financial revolution is inevitable and lays the foundation for emerging
nations to develop economic security. In the coming years, we’re likely to see the
first countries adopt their own cryptocurrencies. Many forms of assets, stocks, and
bonds will be tokenized and moved on the blockchain. A decentralized future is
assured with the precondition that people are involved and educated with the truth.

The HODL Incentive
Once listed on an exchange the countdown will commence for the long HODL
program which incentivizes the community to HODL BitUnits for one year. Holders
will be rewarded with their patience and commitment by receiving a percentage of
the lock up tokens. Continuing every year until the last token is distributed.

Our Decentralized Journey
BitUnits code was deployed on July, 2018. Since then we have commenced the
airdrop and laid the foundation for future developments. In 2018, we want to cultivate
a dynamic community of new cryptocurrency enthusiasts. Paving the way for the
next wave of future cryptocurrency hodlers and investors. Half of the 10,000,000
UNITS is allocated to integrating beginners for the first wave of distribution.
2,500,000 UNITS are for recruiting developers and advisors who want to make the
BitUnits vision a reality.

The Point of Sale / Wallet App

We are looking for developers to help us create a user friendly Point of Sale/wallet
app. The app would be a beneficial tool for integrating small businesses eager to join
the coin market. Making this app will provide small businesses with the ease of
transaction and record keeping for the businesses they run. The easy to use
interface will process transactions for the products they offer while managing
inventory and services. The app will accept BitUnits and many of the mainstream
coins and tokens, such as Bitcoin, Litecoin, and certainly Ethereum Classic. There
will be in app exchanging powered by ShapeShift. Later we’ll integrate lightning
payments and side chain features. Ideally, the store owner will enter their inventory
into the app, the prices in the local currency, barcodes, and descriptions of the
inventory.

The wallet features will allow people to store many private keys from the variety of
cryptocurrencies like many of the wallets we already have. When a merchant is
making a sale to a consumer, the teller scans in all of the items, the app will provide
the customer with the price in local currency they would like to use for payment, then
the camera will activate and wait for the customer to present their cryptocurrency ID
and email address which can be embedded in a QR code, the email is for the
receipt, and this is only if the customer has the option setup in their device.

The teller’s device will then present the total in the local currency and request the
payment in the specified cryptocurrency. The customer will then scan the teller’s
device for the address and send the payment. The receipt will be sent after the
purchase has been processed. The inventory of the merchant is also updated
instantly and the merchant also gets the records for that business day emailed to
their inbox.

This app is achievable and will profoundly improve the developing world. The same
would go for the community holding onto their BitUnits. Holders will earn a small
percentage of the unfrozen tokens. We think of maybe having 25,000 to 50,000
added into circulation every year until all of the BitUnits have all been distributed into
circulation.

We would like to thank you all in advance for the love and support.

Let’s revolutionize money and build a tool that will benefit us all. Money is the
language we use to communicate value and their is nothing more valuable than the
human spirit. We all deserve to live a wealthy and healthy life. Let us make a change
for all of humanity.

Graph Section and code and Team

BitUnits Emission

● Total Supply: 10,000,000

● 50% Community Airdrop
● 25% Development Bounty
● 10% Security Insurance Fund
● 15% Locked-up for Future Emission

BitUnits’ smart contract source code

http://etherhub.io/addr/0xd1c10d433c888e6d1841ff924d0ce45157f0d5cd#tab_addr_3

contract ERC223 {

 uint public totalSupply;

 function balanceOf(address who) constant returns (uint);

 function name() constant returns (string _name);

 function symbol() constant returns (string _symbol);

 function decimals() constant returns (uint8 _decimals);

 function totalSupply() constant returns (uint256 _supply);

 function transfer(address to, uint value) returns (bool ok);

 function transfer(address to, uint value, bytes data) returns (bool ok);

 event Transfer(address indexed _from, address indexed _to, uint256 _value);

event ERC223Transfer(address indexed _from, address indexed _to, uint256

_value, bytes _data);

}

contract ContractReceiver {

 function tokenFallback(address _from, uint _value, bytes _data);

}

contract ERC223Token is ERC223 {

 using SafeMath for uint;

 mapping(address => uint) balances;

 string public name;

 string public symbol;

 uint8 public decimals;

 uint256 public totalSupply;

 // Function to access name of token .

 function name() constant returns (string _name) {

 return name;

 }

 // Function to access symbol of token .

 function symbol() constant returns (string _symbol) {

 return symbol;

 }

 // Function to access decimals of token .

 function decimals() constant returns (uint8 _decimals) {

 return decimals;

 }

 // Function to access total supply of tokens .

 function totalSupply() constant returns (uint256 _totalSupply) {

 return totalSupply;

 }

// Function that is called when a user or another contract wants to

transfer funds .

function transfer(address _to, uint _value, bytes _data) returns (bool

success) {

 if(isContract(_to)) {

 return transferToContract(_to, _value, _data);

 }

 else {

 return transferToAddress(_to, _value, _data);

 }

}

 // Standard function transfer similar to ERC20 transfer with no _data .

 // Added due to backwards compatibility reasons .

 function transfer(address _to, uint _value) returns (bool success) {

 bytes memory empty;

 if(isContract(_to)) {

 return transferToContract(_to, _value, empty);

 }

 else {

 return transferToAddress(_to, _value, empty);

 }

}

 function isContract(address _addr) private returns (bool is_contract) {

 uint length;

 assembly {

//retrieve the size of the code on target address, this needs

assembly

 length := extcodesize(_addr)

 }

 if(length>0) {

 return true;

 }

 else {

 return false;

 }

 }

function transferToAddress(address _to, uint _value, bytes _data) private

returns (bool success) {

 if (balanceOf(msg.sender) < _value) revert();

 balances[msg.sender] = balanceOf(msg.sender).sub(_value);

 balances[_to] = balanceOf(_to).add(_value);

 Transfer(msg.sender, _to, _value);

 ERC223Transfer(msg.sender, _to, _value, _data);

 return true;

 }

function transferToContract(address _to, uint _value, bytes _data) private

returns (bool success) {

 if (balanceOf(msg.sender) < _value) revert();

 balances[msg.sender] = balanceOf(msg.sender).sub(_value);

 balances[_to] = balanceOf(_to).add(_value);

 ContractReceiver reciever = ContractReceiver(_to);

 reciever.tokenFallback(msg.sender, _value, _data);

 Transfer(msg.sender, _to, _value);

 ERC223Transfer(msg.sender, _to, _value, _data);

 return true;

 }

 function balanceOf(address _owner) constant returns (uint balance) {

 return balances[_owner];

 }

}

/**

 * @title SafeMath

 * @dev Math operations with safety checks that throw on error

 */

library SafeMath {

 /**

 * @dev Multiplies two numbers, throws on overflow.

 */

 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

 if (a == 0) {

 return 0;

 }

 uint256 c = a * b;

 assert(c / a == b);

 return c;

 }

 /**

 * @dev Integer division of two numbers, truncating the quotient.

 */

 function div(uint256 a, uint256 b) internal pure returns (uint256) {

 // assert(b > 0); // Solidity automatically throws when dividing by 0

 uint256 c = a / b;

// assert(a == b * c + a % b); // There is no case in which this doesn't

hold

 return c;

 }

 /**

* @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is

greater than minuend).

 */

 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

 assert(b <= a);

 return a - b;

 }

 /**

 * @dev Adds two numbers, throws on overflow.

 */

 function add(uint256 a, uint256 b) internal pure returns (uint256) {

 uint256 c = a + b;

 assert(c >= a);

 return c;

 }

}

pragma solidity ^0.4.24;

contract BitUnits is ERC223Token {

 using SafeMath for uint256;

 string public name = "BitUnits";

 string public symbol = "UNITS";

 uint public decimals = 4;

 uint public totalSupply = 10000000 * (10**decimals);

 address private treasury = 0xADACdb5BAF826FD607A00454C6ad1157E6bE4065;

 uint256 private priceDiv = 10000000;

 event Purchase(address indexed purchaser, uint256 amount);

 constructor() public {

 balances[msg.sender] = 10000000 * (10**decimals);

 balances[0x0] = 0 * (10**decimals);

 }

 function () public payable {

 bytes memory empty;

 if (msg.value == 0) { revert(); }

 uint256 purchasedAmount = msg.value.div(priceDiv);

 if (purchasedAmount == 0) { revert(); } // not enough ETC sent

 if (purchasedAmount > balances[0x0]) { revert(); } // too much ETC sent

 treasury.transfer(msg.value);

 balances[0x0] = balances[0x0].sub(purchasedAmount);

 balances[msg.sender] = balances[msg.sender].add(purchasedAmount);

 emit Transfer(0x0, msg.sender, purchasedAmount);

 emit ERC223Transfer(0x0, msg.sender, purchasedAmount, empty);

 emit Purchase(msg.sender, purchasedAmount);

 }

}

The team

Issatta C.
Founder, Lead dev.
iabcDigitals@BitUnits.Club
@BitUnits
Telegram

Rochelle C.
Co-Founder

Wari I
Community Manager,
Marketing

Abdulai M
Research and
Development

Francois P.
News and Public relations

https://twitter.com/BitUnits
https://t.me/joinchat/H9WjVg9W9yIlBNUBrvuazQ

