
 

 

 

The Dynamics of a Cantilever 
 

Research Question: How does the vertical depression of a cantilever 

respond to a change in the distance at which an external force is 

applied to the cantilever? 

 

Physics Internal Assessment  



 

Introduction 

Beams are an essential part of engineering. A beam which is rigidly connected at one end to a 

fixed support and free to move at the other end is called a cantilever beam.1 Various 

infrastructures such as traffic lights, roofs2, diving-boards, and bridges3 are constructed by 

employing the fundamental knowledge of cantilevers.4 

 

As a child, I played Jenga- a game which employs the concept of cantilevers to evoke 

children’s interest. As the game progressed, more and more cantilevers5 were made, making 

the game full of suspense. This curiosity rose further after realising the importance of 

cantilevers in mechanical engineering because I often watch videos of bridges, balconies 

and roofs collapsing just like the wooden blocks in Jenga. Hence, I decided to conduct an 

experiment to analyse the behaviour of a cantilever. 

 

I wanted to test a variable which is less commonly experimented. I chose the distance at 

which the force is exerted on the cantilever as my independent variable. The aim of this 

experiment is to analyse the behaviour of a cantilever and then answer the following research 

question: How does the vertical depression of a cantilever respond to a change in the 

distance at which an external force is applied to the cantilever? 

 

Consider a cantilever, fixed at one end, M, 

and loaded at a distance(cm), d. The end, 

N, is depressed to N’ and s or [N’-N] 

represents the vertical depression at the 

free end. Note that N may not be at the 

same height(cm) level as M. There can be 

an initial vertical depression before any 

external force is exerted on the cantilever. 

The force exerted downwards by load- mg 

(Newtons), is equally and oppositely 

opposed by reaction force, R, acting 

upwards at the supported end M. If we exert the force at a distance farther from the 

suspension point M than d, the vertical depression(cm) is theoretically going to increase. 

However, as the force is exerted for longer periods of time and as the distance increases more 

and more, the upper layer of the filaments at the point of suspension are more likely to get 

elongated while the lower layer of filaments gets compressed. This may lead to a permanent 

deformation of the cantilever. 

 

                                                      
1 Michels, W. C. (1956). International Dictionary of Physics and Electronics. New Jersey: Van Nostrand. 

Retrieved from Questia School. 
2 The Function and Aesthetics of Cantilevers. (n.d.). Retrieved August 26, 2017, from 

http://blog.buildllc.com/2016/02/the-function-and-aesthetics-of-cantilevers/ 
3 Cantilever Bridge Facts, Design and History. (n.d.). Retrieved August 26, 2017, from 

http://www.historyofbridges.com/facts-about-bridges/cantilever-bridge/ 
4 T. (n.d.). Cantilever. Retrieved July 28, 2017, from http://science.jrank.org/pages/1171/Cantilever.html 
5 Smith, D. (2016, November 10). How to beat anyone at Jenga. Retrieved August 26, 2017, from 

http://www.wired.co.uk/article/how-to-beat-anyone-at-jenga 

Diagram 1. Cantilever Model 



 

The relationship between distance d and vertical depression s is determined below. It is not a 

linear relationship, so I have used logarithms to linearize it: 

s ∝ dn 

s = kdn  (Equation 1) 

log(s) = log(kdn) 

log(s) = log(dn) + log(k) 

log(s) = nlog(d) + log(k)       (Equation 2)6 

d = distance in centimetres 

s = vertical depression in centimetres 

n = constant 

k = constant 

 

I have decided to measure the vertical depression(cm) for the distances(cm): 10,20,30,40,50, 

60,70,80 and construct a relationship between s and d, by calculating n and k for the 

cantilever in the experiment. I have chosen a cantilever with a low thickness (0.10cm) so that 

the vertical depressions in the experiment are large and observable. 

 

This research is significant because the relationships between the distance(cm) and vertical 

depression(cm) of cantilevers can assist engineers to identify optimal lengths of materials for 

their industrial projects. Hence, it is a crucial part of mechanical engineering. 

 

Hypothesis 

There is a logarithmic linear relationship between the distance(cm) at which the force is 

exerted and the vertical depression(cm) on the cantilever, given that the force exerted on the 

cantilever remains constant. This is in the form: log(s) = nlog(d) + log(k), or, s=kdn, where s 

represents vertical depression (cm), d represents distance (cm), and k and n are constants. 

 

Variables 

Independent Variable: Distance of slotted-mass from cantilever’s point of suspension (cm).   

The calibration on the beam is used to measure this variable. The slotted-mass is tied to a 

string of negligible mass and hung. Masking tape ensures that the string does not slide. 

Distance (cm) intervals are:10cm, 20cm, 30cm, 40cm, 50cm, 60cm, 70cm, 80cm. 

Dependent Variable: Vertical depression of the cantilever beam (cm). 

This is measured by placing a wooden ruler next to the end of the cantilever beam. Readings 

are taken at eye-level using a set-square once the metal beam stops vibrating. 

Controlled Variables:  

Table 1. Identifying and analysing controlled variables 

Variable to be controlled Why and how the variable is to be controlled 

Mass of slotted-mass (g) The force exerted on the cantilever is directly proportional to the mass of 

the slotted-mass because Force=(mass)*(acceleration due to gravity), 

where force is in Newtons and acceleration due to gravity is in ms-2. 

Reduction in the mass will reduce the force, reducing the vertical 

depression and vice versa. 

Hence, this variable will be kept constant by using the same slotted-mass 

of 99.9 grams (or 0.0999 kilograms) throughout the experiment. 

                                                      
6 Homer, D., & Bowen-Jones, M. (2014). Physics: course companion. Oxford: Oxford University Press.  
p17 Linearizing graphs 



 

The metal beam 

(cantilever) 

Any changes in the length, width, thickness and material will change the 

physical properties of the cantilever beam. This will affect the rate of 

change of vertical depression (∆s) during the experiment. 

Therefore, the easiest way to keep these properties controlled is by using 

the same beam throughout the experiment. 

Length of metal beam 

suspended from the table 

If there is an increase in the length of beam suspended, the suspended 

mass of the beam will increase, increasing the initial force (mg) on the 

beam, causing a higher vertical depression. This change in vertical 

depression can be mistaken as a change due to change in distance, and 

this reduces the accuracy and precision of the results. 

Therefore, a G-clamp will be firmly attached, so that the length of beam 

suspended remains constant throughout the experiment. 

 

Materials 

Table 2. Showing materials and properties 

Material Properties 

1×Metal beam (a calibrated metal ruler) Length: 103cm; Width: 2.80cm, Thickness: 0.10cm 

Vernier Caliper (measure beam’s properties) Uncertainty: (±0.01 cm) 

1×Slotted-mass Mass: 99.9 grams 

Electronic Balance Uncertainty: (±0.1 grams) 

1×Wooden Ruler Length: 100cm; Uncertainty: (±0.05 cm) 

1×G-Clamp - 

Masking Tape - 

String - 

Table or Bench - 

 

Method 

Diagram 2. Showing the experimental set-up for the experiment 

 

Observations and measurements before commencing 

1. Ensure that the length of the metal beam on the table is 10 cm while the remaining 93 cm 

is suspended in air. This is easily ensured as the beam is calibrated. 



 

2. Measure the mass of the slotted-mass using the electronic balance as it is a controlled 

variable. 

3. Ensure that the beam is not supported by any other solids apart from the table and G-

clamp. 

4. Measure the initial vertical displacement using the wooden ruler. Avoid parallax error by 

using a set square, or any other instrument, to take eye-level reading. 

5. Calculate the initial vertical depression of the beam. The initial vertical depression is the: 

(Displacement between the point of suspension and the floor – initial vertical 

displacement). 

Collection of Raw data 

6. Move the string 10 cm along the calibrated beam. Put masking tape if the string slips 

downwards and wait for the beam to become still. 

7. Measure the vertical displacement using the wooden ruler from the end of beam to floor. 

8. Measure the vertical displacement for the other distances(cm): 20,30,40,50,60,70,80. 

9. Similarly collect raw data for trial 2 and trial 3 by repeating steps 6,7 and 8. 

Processing the Raw data 

10. Calculate the vertical depression using the formula: 

Vertical depression (cm) = (Displacement between the point of suspension and the 

floor – Vertical displacement) 

 

Risk Assessment 

There are no significant risk assessments. However, metal beam has sharp edges and should 

be used carefully when taking eye-level reading. The string used to hang the slotted-mass 

breaks frequently during the experiment, so anything placed below the set-up will be 

damaged. A cushion can be placed at bottom to prevent damages to the lab flooring. This is a 

safe experiment with little to no environmental and ethical issues in the methodology. 

 

Data and Analysis 

 

Table 3. Raw data showing distance(cm) and vertical displacement(cm)  

 Vertical displacement between the end of the beam from the floor 

a/ cm 

∆𝑐𝑚 =  ±0.1 

 

Distance 

d/ cm 

∆𝑐𝑚 =  ±0.05 

Trial 1 Trial 2 Trial 3 Mean Displacement 

a/ cm 

 

0.0 44.5 44.5 44.5 44.5 ± 0.0 

10.0 43.7 44.3 42.6 43.5 ± 0.9 

20.0 41.5 41.8 40.2 41.2 ± 0.8 

30.0 39.0 38.6 38.0 38.5 ± 0.5 

40.0 36.0 35.6 34.9 35.5 ± 0.6 

50.0 33.2 32.2 31.8 32.4 ± 0.7 

60.0 28.1 27.7 27.1 27.6 ± 0.5 

70.0 26.1 25.9 25.1 25.7 ± 0.5 

80.0 24.5 24.0 23.5 24.0 ± 0.5 



 

All data in Table 3 except the uncertainty for the distance column has been formatted to 1 

decimal place. The uncertainty of ±0.05 is important for calculating the uncertainty of the 

trials in Table 4 and hence has not been formatted to 1 decimal place. 

Data Calculation  

Example 1 

The mean vertical displacement for row 2 

in Table 3 was calculated using the 

formula:  

(𝑎1  +  𝑎2  +  𝑎3)

3
 

= 
(43.7 + 44.3 + 42.6)

3
 

= 43.53 cm 

= 43.5 cm (1 decimal place) 

 

Calculation of uncertainty of mean vertical 

displacement for row 2: 

(𝑅𝑎𝑛𝑔𝑒)

2
 

= 
(44.3−42.6)

2
 

= ±0.85 cm 

= ±0.9 cm (1 decimal place) 

Table 4. Processed data showing distance(cm) and vertical depression(cm) 

 Vertical depression of the beam   

s/ cm 

∆𝑐𝑚 =  ±0.1 

 

Distance 

d/ cm 

∆𝑐𝑚 =  ±0.1 

Trial 1 Trial 2 Trial 3 Mean Depression 

s/ cm 

 

0.0 46.3 46.3 46.3 46.3 ± 0.0 

10.0 47.1 46.5 48.2 47.3 ± 0.9 

20.0 49.3 49.0 50.6 49.6 ± 0.8 

30.0 51.8 52.2 52.8 52.3 ± 0.5 

40.0 54.8 55.2 55.9 55.3 ± 0.6 

50.0 57.6 58.6 59.0 58.4 ± 0.7 

60.0 62.7 63.1 63.7 63.2 ± 0.5 

70.0 64.7 64.9 65.7 65.1 ± 0.5 

80.0 66.3 66.8 67.3 66.8 ± 0.5 

Data Calculation 

Example 2 

The vertical depression for the first trial and first row was calculated using the formula:  

(Displacement between the point of suspension and the floor) – (Vertical displacement) 

= 90.8 – 44.5 

= 46.3 cm 

Calculation of uncertainty for the vertical depression of the beam: 

= (±0.05) + (±0.05) 

= ±0.10      

= ±0.1 cm (1 decimal place) 

Example 3  

The mean vertical depression for second row in Table 4 was calculated using the formula:  

= 
(𝑠1  + 𝑠2  + 𝑠3)

3
 



 

= 
(47.1 + 46.5 + 48.2)

3
 

= 47.27 cm 

= 47.3 cm (1 decimal place) 

Calculation of uncertainty of mean vertical depression for row 2: 

Range

2
 = 

(48.2 − 46.5)

2
 

= ±0.85 cm 

= ±0.9 cm (1 decimal place) 

Graphical Analysis 

Graph 1. Showing a cubic relationship between distance and mean depression 

 

Graph 2, showing a quadratic relationship between distance and mean depression 
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Graph showing a cubic relationship between distance and depression
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Graph 3, showing a linear relationship between distance and mean depression 

 

Data collected and graphs support a cubic relationship because Graph 1 intersects 8 out of 9 

plotted error bars (Distance (cm) = 0, 10,20,30,40,50,70,80), whereas Graph 2 intersects 6 out 

of 9 plotted error bars (Distance (cm) = 10,20,30,40,50,70) and Graph 3 intersects 4 

(Distance (cm) = 10,20,50,80). This is contradictory7 to the hypothesis. The reason for the 

cubic relationship could be the deformation of the metal beam during the experiment. 

However, this needs to be proven. 

 

Data in Table 4 suggests that deformation has taken place. This is because range for the final 

6 distances is derived using the formula: (Trial 3 - Trial 1), as the 3rd trial consistently had 

the largest magnitude and the 1st trial had the lowest. There is an increasing trend in the 

magnitude of vertical depressions as the trials are carried out. 

Table 5. showing evidence of deformation on the beam 

Distance 

d/ cm 

∆𝑐𝑚 =  ±0.1 

Vertical depressions of the beam for the three trials 

s/ cm 

∆𝑐𝑚 =  ±0.1 

Trial 1 < Trial 2 < Trial 3 

30.0 51.8 < 52.2 < 52.8 

40.0 54.8 < 55.2 < 55.9 

50.0 57.6 < 58.6 < 59.0 

60.0 62.7 < 63.1 < 63.7 

70.0 64.7 < 64.9 < 65.7 

80.0 66.3 < 66.8 < 67.3 

 

                                                      
7 Gleason, R. E. (n.d.). On the Complete Logarithmic Solution of the Cubic Equation[PDF]. Annals of 

Mathematics. 
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Graph showing a linear relationship between distance and depression



 

Also, when the distance (cm) is 10.0 and 20.0, the largest vertical depression is in Trial 3. 

Therefore, Trial 3 has the largest vertical depression in all 8 trials and Trial 1 has the lowest 

vertical depression in 6 consecutive data recordings. It can now be concluded that the beam 

was an inelastic body because it did not return to its original state after deformation. This led 

to results which support a cubic relationship. 

Since deformation is proven, a logarithmic linear relationship can be constructed, in line with 

the hypothesis, between distance and mean vertical depression: 

log(s) = nlog(d) + log(k) 

d = distance 

s = mean vertical depression 

 

n = constant (gradient) 

k = constant (log(k) is y-intercept)         

Table 6. converting the data into logarithmic form 

Distance 

d/ cm 

∆𝑐𝑚 =  ±0.10 

Log (d) Mean Depression 

s/ cm 

 

Log (s) 

10.000 1.000 47.300 ±  0.900 1.675 ± 0.008 

20.000 1.301 49.600 ±  0.800 1.695 ± 0.007 

30.000 1.477 52.300 ±  0.500 1.718 ± 0.004 

40.000 1.602 55.300 ±  0.600 1.743 ± 0.005 

50.000 1.699 58.400 ±  0.700 1.766 ± 0.005 

60.000 1.778 63.200 ±  0.500 1.801 ± 0.003 

70.000 1.845 65.100 ±  0.500 1.814 ± 0.003 

80.000 1.903 66.800 ±  0.500 1.825 ± 0.003 

 

Data has been formatted to 3 decimal places because the maximum place value for the 

uncertainties is thousandths8. 

Data calculation 

 

Calculating uncertainty in logarithmic 

calculations:  

Log(s) = log10(s) 

±log(s) = uncertainty of log(s) 

±s = uncertainty of s 

±log(s) = 0.434 × (
±𝒔

𝒔
)         (Equation 3)9 

Example 4 

Calculation of log (s) and its uncertainty for 

row 1 in Table 6: 

Log (s) = log10 47.300 ± 0.434×( 
0.900

47.300
) 

Log (s) = 1.6749 ± 0.00826 (3 decimal places) 

Log (s) = 1.675 ± 0.008 

 

The equation that defines the relationship between distance and vertical depression of the 

cantilever used in this experiment can be derived by plotting a graph. 

 

                                                      
8 Place Value. (n.d.). Retrieved August 05, 2017, from 

http://www.enchantedlearning.com/math/decimals/placevalue/ 
9 Error Propagation in Arithmetic Calculations[PDF]. (n.d.). 

https://terpconnect.umd.edu/~toh/models/ErrorPropagation.pdf 

 



 

Graph 4, showing a logarithmic linear relationship between distance and mean depression 

 

log(s) = nlog(d) + log(k) 

log(k) = 1.477 (y-intercept) 

n = 0.176 (gradient) 

log(s) = 0.176log(d) + 1.477 (Equation 4) 

s = kdn 

k = 101.477 = 30.0 

s = 30.0d0.176 (Equation 5) 

 

The line of best-fit in Graph 4 does not intersect any plotted error bars. At first, this line was 

manually steepened to intersect more error bars. However, since the previous lines of best-fit 

were auto-generated by the software, this line was left unaltered. Furthermore, worst fit 

lines do not intersect most points either, so calculating uncertainty in the equation 

would not be useful. However, the equation is verified below by calculating the percentage 

difference between measured and calculated vertical depressions. Be the differences 

negligible, the equation is accepted, and vice-versa. 

 

Table 7. Comparing the measured and calculated data 

Distance 

d/ cm 

Measured depression 

s1/cm 

Calculated depression 

s2/cm 

s2 = 30.0d0.176 

 

Difference 

z/cm 

z = |s1-s2| 

% Difference 

z’/% 

z’ = (
𝑧

𝑠1
)(100) 

10 47.3 ± 0.9 45.0 2.30 4.86% 

20 49.6 ± 0.8 50.8 1.20 2.42% 

30 52.3 ± 0.5 54.6 2.30 4.40% 

40 55.3 ± 0.6 57.4 2.10 3.80% 

50 58.4 ± 0.7 59.7 1.30 2.23% 

60 63.2 ± 0.5 61.7 1.50 2.37% 

70 65.1 ± 0.5 63.4 1.70 2.61% 

80 66.8 ± 0.5 64.9 1.90 2.84% 
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The percentage differences are negligible (largest is 4.86%). z is very small compared to s1. 

Hence, the data collected supports the equation and the equation is accepted. 

 

Conclusion 

This was an experiment to apply the cantilever theory on an actual cantilever and determine 

the relationship between distance(cm) and vertical depression(cm). 

After collecting and processing the data from the experiment, it can be concluded that the 

results support the hypothesis. “Given that the force exerted on the cantilever remains 

constant”, there is evidence of a “logarithmic linear relationship between the distance(cm) at 

which the force is exerted and the vertical depression(cm) on the cantilever”. First, the mean 

vertical displacement was measured, stated in Table 3, which was then used to calculate 

mean vertical depression in Table 4. Then, the relationship between distance(cm) and vertical 

depression(cm) was determined using Graphs 1,2 and 3. The data was converted into 

logarithmic form in Table 6 and plotted in Graph 4 where variables n and k, also proposed in 

the hypothesis, were calculated using the trend-line in Graph 4. The following equations were 

formed: 

log(s) = 0.176log(d) + 1.477 (Equation 4) 

s=30d0.176 (Equation 5) 

The equations are rearrangements of each other. Random and systematic errors led to the line 

of best fit in Graph 4 not intersecting any error bars. This is largely due to deformation of the 

cantilever that is also listed in introduction- “This may lead to a permanent deformation of 

the cantilever.”, and is proven using Table 5. A modification in the methodology, which is 

stated in the Evaluation, can help reduce this error. Nevertheless, this equation was 

verified in Table 7 by comparing the magnitudes of vertical depression calculated using the 

equation, with the magnitudes of mean vertical depression measured in the experiment. The 

negligible percentage differences (highest being 4.86% and lowest being 2.23%) between the 

calculated and measured vertical depressions support the acceptance of this equation.  

Hence, the research question: “How does the vertical depression of a cantilever respond 

to a change in the distance at which an external force is applied to the cantilever?” was 

worthy of investigation and is answered: As theory answers it qualitatively, a cantilever 

was tested to answer this question quantitatively. The response of vertical depression of the 

cantilever to a change in the distance at which an external force is applied to the cantilever is 

in the form: s=30d0.176, or, log(s) = 0.176log(d) + 1.477, where s represents vertical 

depression in centimetres, d represents distance in centimetres (10,20,30,40,50,60,70,80). 

 

Evaluation 

Further research suggestions 

The relationship between distance and vertical depression can be calculated for diving boards 

to help divers determine where they should jump from on the diving board based on their 

mass. This captures my interest because I will be able to apply Physics to real-life situations. 

 

Weaknesses, improvement and strengths 

The experiment was acceptably accurate and precise. While it was conducted within the 

parameters of a school lab, some improvements in the methodology and investigation can 

improve the accuracy of this research. 



 

 

Table 8. Possible systematic errors 

Source of error 

and its effect 

Significance & evidence Improvements 

Systematic errors affecting accuracy 

Beam 

deformation: The 

deformation of 

the metal beam 

increased the 

magnitude of 

vertical 

depression as the 

experiment 

progressed. 

High significance because the 

beam was supposed to be a 

controlled variable. As it got 

deformed, the vertical depression 

increased as the time of the 

experiment increased. The 

precision and accuracy of the 

data and the equations decreased. 

Evidence is shown in Table 5.   

Deformation is a natural phenomenon. But, a change in 

methodology so that initial vertical depression (when 

distance(cm) = 0) is calculated before each trial, instead 

of only at the start of the experiment, can reduce the 

error. For example- if the initial vertical depression for 

Trial 2 is significantly higher than Trial 1, it can be 

inferred that the beam is deformed and it can be 

replaced by a new identical beam before continuing the 

experiment. Thicker beams can be used as they are 

unlikely to deform as much the beam used.  

Random errors affecting precision 

String length: The string used to 

hang slotted-mass from the beam 

broke thrice and the length of the 

string was not kept constant. 

Furthermore, the masking tape 

obscures vision from seeing that the 

string is placed at the right point.  

Low significance because 

the force exerted is [mass × 

gravity] and the length of 

string is not a factor. The 

masking tape is necessary 

to prevent the string from 

sliding. 

Use a string that is not made of a series of 

intertwined and twisted fibres because these 

fibres can break and weaken the string. 

Groove the beam at points where the mass 

is to be hung. This prevents string from 

sliding. Or, scotch tape can be used for 

transparent vision. 

Wooden ruler calibration: It is 

calibrated to 1 decimal place which 

creates an uncertainty of 0.05cm in 

every reading. So, the actual 

vertical displacement could be 

higher or lower. 

Low significance because 

an uncertainty of 0.05cm is 

small. (less than 1% 

percentage uncertainty). So, 

precision is barely affected. 

An increase in the number of trials can 

reduce the significance of this error. 

Parallax error: Although readings 

were taken at eye-level, there are 

differences between the apparent 

and real magnitude of readings. So, 

the actual reading could be higher 

or lower. 

High significance as we 

cannot quantify the 

uncertainty this factor has 

caused. It contributes to 

inaccuracy in 

measurements. 

Take eye-level readings from a fixed point 

at a fixed distance to prevent changes in the 

apparent magnitudes of readings. This way, 

the readings will have higher precision. To 

improve accuracy, use inch tape instead of 

a wooden ruler at it is more adjustable. 

 

Table 10. Possible strengths and their effects 

Strength  Effect 

Beam with the smallest 

magnitude of thickness, 

0.10cm, was chosen. 

The beam’s ∆vertical depression and ∆vertical displacement was higher than 

other beams in the lab. This reduced the proportion between errors and vertical 

depressions, making the results more precise. 

String was used to hang 

the slotted-mass instead 

of sticking the mass to 

the beam. 

If the slotted-mass was stuck to the beam, the force would spread across the area 

of slotted-mass that is in contact with the beam instead of being applied only at 

the distance required. The string has a negligible surface area , making it easier 

to make sure that the force is only applied at the distance required. 
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	Independent Variable: Distance of slotted-mass from cantilever’s point of suspension (cm).
	The calibration on the beam is used to measure this variable. The slotted-mass is tied to a string of negligible mass and hung. Masking tape ensures that the string does not slide. Distance (cm) intervals are:10cm, 20cm, 30cm, 40cm, 50cm, 60cm, 70cm, ...
	This is measured by placing a wooden ruler next to the end of the cantilever beam. Readings are taken at eye-level using a set-square once the metal beam stops vibrating.
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	1. Ensure that the length of the metal beam on the table is 10 cm while the remaining 93 cm is suspended in air. This is easily ensured as the beam is calibrated.

