1. General Introduction

1.1 Introduction

Kant is one of the great modern philosophers of science. In his *Critique of Pure Reason* he developed a scientific epistemology that he used to produce a philosophy of science in his *Metaphysical Foundations of Natural Science* (1786). In this he laid the philosophical foundations for Newtonian science. Through the years his approach has been reworked and adapted in such a manner that it could ground all classical mathematical science, including the theories of relativity (Friedman 2001:31, 47).

In the second part of the First *Critique*, Kant engaged with the problem of freedom. In the third antinomy (conflict of laws) he showed how the transcendental idea of freedom, that is, absolute spontaneity, can be introduced without contradiction as a different kind of causality (this is sometimes called “freedom” although it is not the same as practical freedom; it is merely a precondition for practical freedom). He conceptualized this as a different kind of effective causality in opposition to deterministic causality.

In the *Critique of the Power of Judgment* Kant developed this concept of causality further when he formulated another part of his philosophy of science. He now calls the spontaneous causality of the First *Critique* that is grounded in the transcendental idea of freedom, “causality of freedom” and the “concept of a causality through freedom” (*KU* 5:195-196). He develops the idea further in the context of non-extended parts and wholes as a “spontaneity of a cause” (*KU* 5:411), which is conceptualized in analogy with human ends. In this formulation, Kant allowed for the possibility that some products of nature are not produced in accordance with mechanistic (deterministic) laws. In this essay, I show how these concepts can be fruitfully introduced in that domain of physics where determinism has broken down, namely in quantum physics.

The question of non-determinism in quantum physics goes back to the early pioneers; it is central to the Copenhagen interpretation. Bohr understood quantum indeterminism as involving spontaneity. This was formally introduced in the context of Von Neumann’s formulation of quantum mechanics in terms of two conflicting maxims, namely the deterministic evolution of quantum states and the so-called reduction of the wave packet (called the “projection postulate”) that introduces an indeterministic (spontaneous, according to Bohr) aspect into physics.

The question became even more accentuated in the context of Bell’s inequality. Since the Aspect experiment confirmed the violation of Bell’s inequality in quantum mechanics, the debate regarding non-determinism has intensified since determinism is assumed in this inequality as Redhead has demonstrated (Redhead 1987:102). The violation of Bell’s inequality is therefore also a violation of determinism. Redhead has furthermore shown that the Bell inequality can be reformulated to show that the violation thereof negates even what might be called “stochastic” determinism, that is, that there are not even stochastic causal links between the particles in the two arms of the Aspect experiment (Redhead 1987:102).

There are various responses to the question of non-determinism in quantum physics. Some merely assert the fact of such non-determinism taken in the more positive sense as absolute spontaneity (Cartwright 1983); others have tried to adhere to a purely deterministic
view (for example, Bohm’s theory). In this case, action-at-a-distance may be assumed (which contradicts special relativity) or even the idea of “many worlds”. In this essay, I develop a Kantian solution to this problem in which determinism and non-determinism are reconciled. In this regard, I understand non-determinism in quantum physics in terms of spontaneity (in accordance with the Kantian concept of spontaneous causality). I argue that we have good reasons to subscribe to a Kantian interpretation of quantum physics in which such spontaneity is conceivably part of our understanding of how the world is like.

In the same manner that Kant’s philosophy answered the quest for the mathematical grounding of Newtonian physics, Bohr made use of it in his effort to formulate an adequate response to the new kind of observations found in quantum physics (Pringe 2007). Since that time various authors have developed Kantian approaches, epistemically grounding both quantum mechanics and quantum field theory (Bitbol 2007; Auyang 1995). Various methodological approaches have been developed, some of which focus on Kant’s Third Critique (Pringe 2007). In contrast, I follow an ontological approach, albeit not in a dogmatic (realist) sense but in accordance with Kant’s Critical metaphysics. As such, I am not primarily concerned with Kant’s epistemology insofar as this concerns objective knowledge, but rather with Kant’s idea of absolute spontaneity which he incorporates in his regulative conception of ‘final causality’ in the Third Critique, which in my view describes quantum collapse. (In this essay I am only concerned with Kant’s Critical philosophy, not his pre- or post-Critical philosophy. I also do not engage with his practical philosophy).

My view is a weak ontological reading—not in any constitutive sense but merely in a regulative or reflective sense—of Kant’s Critical metaphysics which is then applied to quantum physics. I take Kant as presenting us with a positive conception of the noumenal realm as being ontologically distinct from systemic nature—with these realms finding their application in the quantum and classical ‘worlds’ respectively—without a corresponding epistemic commitment in terms of objective knowledge since no sensible intuition of the noumenal realm is possible. As I am primarily concerned with the contradictory principles of determination and absolute spontaneity and not with experience as such, an ontological approach instead of a methodological one (in which the difference between nature and the noumenal realm would be a transcendental one) makes sense.

I argue that the classical and quantum realms belong to different ontological modes of existence (the first consisting of matter but not the second which nonetheless is a genuine feature of reality even though it is not directly cognizable (Auyang 1995:75; Cartwright 1999:232) and that the non-determinism in quantum mechanics involves not merely the logical possibility of spontaneity, but that such a spontaneous causality (in accordance with the Kantian conception in this regard) becomes conceivable in our hypothetical understanding of what the world is like (i.e., our metaphysical view of the world). To put it differently: Kant provides as with a conceptualization of what the world may hypothetically be like if such spontaneity really exists. I argue that in Kant’s metaphysical system this spontaneous causality governs a non-spatio-temporal potentiality (as is conceptualized in the context of Kant’s “final causality” in the Third Critique), similar to Bohm’s quantum potential. This potentiality allows non-extended “wholes-and-parts” in the noumenal/supersensible realm to produce “material parts and aggregated wholes” in nature. I apply this concept to quantum collapse which takes superpositions of states (wholes-and-parts) to reduced states.

In my approach the mere logical possibility of freedom is contrasted with the conceivability thereof – by which I mean the conditions under which freedom can be conceived of as a real possibility. As such, my view is not concerned with the mere conceivability of freedom but rather with its conceivability under certain conditions. These conditions are 1) a problematically assumed, ontologically distinct, supersensible mode of existence which is different in kind from the sensible word (A420/B448) (i.e., it is not the kind of existence
associated with matter) through which such transcendental freedom becomes possible (as the ruling principle of this mode of existence) and 2) that this realm has the ability to (absolutely spontaneously) produce outcomes in nature. Both the supersensible realm and this spontaneous causality are understood as ideas of reason which belong to Kant’s regulative or reflective metaphysics (in the First and Third Critiques respectively). I argue that this is the Kantian position (see chapter 2), although he does not formally introduce such “conditions” in the context of his discussion of freedom in the First Critique. The conceivability of freedom also involves the construction of a conception of such spontaneous potentiality in the framework of an ontologically distinct supersensible realm in the Third Critique (see chapter 3).

Although my concept of “conceivability” belongs within the context of Kant’s Critical metaphysics which takes us beyond the possibility of experience, it nonetheless translates into the Kantian conception of “transcendental” insofar as this concept captures the possibility of and conditions for absolute spontaneity (freedom). It is true that Kant does not formally state this, but one may suggest that this underlies his conception of ‘transcendental freedom’ (i.e., that it is not merely a transcendental idea of reason). Even though these conditions cannot be satisfied in Kant’s way of thinking (since these are beyond sensible reach) and absolute spontaneity can therefore be no more than an idea of reason, the progress of science had made it possible to engage with these conditions in a way that Kant never thought possible.

The Kantian approach may therefore be fruitfully applied to contemporary science. Within this context, I introduce the questions that I engage with in this essay: How is absolute spontaneity possible and how can it be accommodated in physics as part of our overall conception of the world? I use the philosophy of science that Kant developed in the Third Critique, which involves exactly such spontaneity, to engage with the problem.

1.2 Outline

The problems with such an approach are two-fold. The first concerns Kant’s conception of this other kind of non-deterministic causality and the second his conception of the noumenal realm. These are in fact interwoven problems since such a causality can only be conceivably introduced as something that can in principle exist as a genuine feature of reality (albeit not as part of material reality) when the noumenal realm is taken as an ontologically distinct realm “outside” nature, that is, where the deterministic laws of systemic nature do not apply.

Although Kant speaks of noumena as “outside/beyond” nature in both the First and Third Critiques (see A279/B334, KU 5:360) this should not be understood in a physical sense (as implying substance-dualism) but rather as ‘not belonging to’ systemic nature, which refers to the totality of mechanistic causal relations. The noumenal realm does not belong to systemic nature where mechanism rules. (I use the expression “deterministic causality” as a general concept in contradistinction with “spontaneous causality”. “Mechanistic causality” (or: mechanism) is a more narrow idea of reason used in the context of the Kantian concept of systemic nature).

Even though the Kantian “worlds” of material and noumenal objects (noumena) can be clearly differentiated from each other, there is no reason why these cannot at the same time belong to one world of reality (which in part exists beyond our sensible reach). Although Kant calls noumena “objects” (B306), they are obviously not similar to classical objects. They should be regarded as “objects” in an abstract sense and I prefer to call them “entities”. As such, they can co-exist with material objects in one world. (This is similar to real and imaginary numbers belonging to one numerical system; see the discussion in chapter 4). Kant does, in fact, bring these two worlds together in one conceptual structure in the Third Critique. Accordingly, I distinguish between two ontologically distinct “modes of existence” belonging to one world insofar as this refers to the totality of the reality of our existence. One may call my view a “third alternative” insofar as it is not a two-aspect or two-object view, neither a one-
world or two-world view but rather a two-aspect and two-object as well as one-world and two-world view.

In the Third Critique, the noumenal realm is taken as the substratum of systemic nature and plays a very important role in the philosophy of science that Kant developed in that Critique. My interpretation allows for a remarkable and rather straightforward correspondence with contemporary theories in physics. As such, the Kantian concept of systemic nature refers to the “classical world” (where the theories of relativity apply; it is exactly this Kantian conception of nature which makes this application possible), his concept of the noumenal realm as the substratum of systemic nature finds confirmation in the pre-measurement “quantum world” (noumena are identified with quantum entities) and his concept of spontaneous potentiality as a causality finds its application in the reduction of the wave packet. (One should be careful not to confuse this Kantian conception of “nature” with our contemporary concept, which includes both the classical and quantum worlds.) As such, his philosophy of science in the Third Critique becomes applicable to the study of the above-mentioned problems in quantum physics. I argue that Kant's metaphysical position as described above can be formulated as a working hypothesis which prescribes the characteristics that the quantum realm should have for it to be taken as conforming to this interpretation.

My application of Kant's philosophy of science requires that the Kantian concepts be understood in a specific manner, especially that the noumenal realm refers to an ontologically distinct realm outside (henceforth: systemic) nature, problematically assumed. In this regard, my interpretation stands in contrast with current interpretations (in both the two-object and two-aspect views—see chapter 2) which assume that the noumenal realm, especially in the First Critique, does not refer to an ontologically distinct realm outside nature. In my view the First Critique lays the foundations for both parts of Kant's philosophy of science as presented in the Metaphysical Foundations as well as the Third Critique, and it would be very strange indeed if his view of the noumenal realm in the First Critique differs substantially from that in the Third Critique (as is often asserted) where it is presented as the substratum of nature (and human nature) (KU 5:196, 409, 429).

To arrive at an interpretation of Kant’s First Critique as well as that of his philosophy of science in the Third Critique which allows for a sensible application to the problem of spontaneity in quantum physics, I present my view in three parts which also constitutes the three main chapters.

1. I argue that the most viable interpretation of the noumenal realm in the First Critique (and therefore also in his Critical philosophy in general) is to understand it as a realm outside Kant's conception of systemic nature (governed by mechanism), regulated by the transcendental principle of freedom (as an absolute spontaneous, albeit, effective causality). In this manner this principle of freedom does not merely become logically possible; it becomes conceivable as something that could really exist if the world is conceived in accordance with Kantian philosophy. I present this reading as an alternative in Kantian interpretation in contrast with the two-object and two-aspect views (which include about all streams of Kantian interpretation; I also discuss or mention views that are an exception to this general description (Langton 1998; Hanna 2006). I show that Kant’s two-aspect and two-object views are reconciled in this manner.

2. I present a new reading of Kant's philosophy of science in the Third Critique that is in agreement with my new reading of the First Critique (with the focus on the noumenal realm and other relevant concepts). I show that the conception of such a realm, now called the supersensible realm, is essential to the concepts that Kant develops in this part of his philosophy of science. I also show that Kant now argues for the conceivability of both such a realm and a different kind of causality, namely of “final” causes, which is named in analogy to the achievement of human ends. I argue that this causality involves a certain potentiality according
to which non-extended wholes-and-parts (in the supersensible realm) can produce material parts and aggregated wholes in nature and builds upon the transcendental idea of freedom introduced in the First Critique. This aspect of Kant’s philosophy of science stands apart from that presented in the Metaphysical Foundations of Natural Science which is directed to the study of matter (grounded on the epistemology developed in the Analytic part of the First Critique).

3. I show that, although Kant himself did not foresee this possibility, his philosophy allows us to engage with the noumenal realm empirically (albeit indirectly). This is possible when we rework it in such a manner that time is combined not with space, but with mathematical space (Kant calls such space-forms that are constructed through reason and applied to noumena, “ideal” space—see below), as is done in quantum mechanics. (This effectively unites Kant’s two “worlds” into one “world”). I argue that the pre-measurement quantum realm adheres to the three basic requirements/conditions that Kant has for the supersensible realm, namely that it is supersensible, that it is beyond space/time and that it is outside nature (where all interactions are governed by mechanistic causality). As such the quantum realm can be conceived of as an ontologically distinct realm. The concept of absolute spontaneous causality can, therefore, be ascribed to that realm without contradiction and I argue that Kant's approach enables us to positively conceive how this is possible.

I take the reduction of the wave packet as adhering to this kind of causality, namely as a physical event that happens in various contexts, also outside measurement, for example during atomic decay which is the paradigmatic indeterminate process. In my Kantian interpretation of quantum physics, I develop a unified conceptual framework in which spontaneous and deterministic causality are reconciled. When these two kinds of effective causality are regarded as heterogeneous laws that govern two ontologically distinct modes of existence, namely the quantum and classical modes, the well-known measurement problem in quantum physics (that involves the above-mentioned conflict in laws) is resolved. New light is also thrown on some interesting features in quantum mechanics, for example, non-separability and non-locality.

In this manner three interpretations are developed, namely 1) a new interpretation of the First Critique, 2) an interpretation of Kant's philosophy of science in the Third Critique that is consistent with 1), and 3) a new Kantian interpretation of quantum physics. These interpretations are not independent of each other—together they constitute a consistent interpretation of the First and Third Critiques (and the Critique of Practical Reason, although that is not included in the discussion) that is also consistent with contemporary science. In general, my interpretation of Kantian metaphysics is consistent with special and general relativity as well as quantum physics (quantum field theory and quantum mechanics) (see chapter 4, Appendix 3 & 4).

In contrast with reconciling theories such as natural theology and final causes in nature which assume the reconciliation of determinism and indeterminism (either for reasons such as divine premotion or merely through the underdetermination of empirical facts), my interpretation of Kantian metaphysics also explains how that could conceivably be achieved within our world in posing a concrete hypothesis in this regard with application to quantum physics. The great challenge for all such theories is to show how the real possibility of absolute spontaneity could be established—for which any Kantian calls upon practical reason (even though Kant says that his philosophy could provide no such “proof”). What I discover in Kant’s Critical philosophy, is that he provides another strategy in this regard which does not proceed through practical reason (even though practical reason first suggests it—in the same way that the possibility of experience is first suggested by experience itself).

In the First and Third Critiques, Kant provides the necessary (and I think, sufficient) conditions (albeit not the proof) for the real possibility of absolute spontaneity (which I call
the “conceivability” thesis) – which I show in this essay to be satisfied in quantum physics (see chapter 4). This means that we have good reason to think (since the conditions are satisfied) that absolute spontaneity is real (for us) (see section 4.7) and that it co-exists with mechanism as the guiding principles of the quantum and classical modes of existence respectively (which are unified through quantum mechanics into one world).

This does not mean that the existence of absolute spontaneity (or the supersensible realm) is asserted in a dogmatic realist sense but merely that the conditions for its real possibility had been satisfied. It also does not constitute an epistemic claim in accordance with Kant’s conception of “objective” knowledge since the corresponding epistemic conditions in this regard are not satisfied. (In contrast with mere indeterminism, spontaneity cannot be demonstrated through direct empirical means since it belongs to the supersensible realm.) It may, however, be taken as a certain kind of epistemic claim (in satisfying the necessary conditions) which belongs to Kant’s philosophy albeit not the objective Kantian kind. In this my approach goes far beyond that which other reconciling theories can do. In general, my approach also has greater explanatory power.

1.3 Methodology
In deciding on a methodology for my interpretation of Kantian philosophy, I considered what may be called the hermeneutical problem. This problem is that the overall interpretation of a text and the particular arguments are interwoven. In all interpretation, the particular arguments are important whereas for all arguments the overall interpretation is important. The reason for this is that our understanding of philosophical works always involves certain assumptions underlying our premises that are not made explicit. There are so many strings of thought in the overall work (the horizon behind the work) that we can think of it as a thing in itself beyond the possibility of ever bringing those ideas in any objective sense into our premises and arguments. Kant explicitly acknowledged this problem when he argued that reason always has certain limits insofar as we as humans are sensibly and conceptually constrained. In Kant’s formulation of the antinomies, he shows that conflicting paradigms (even mechanism and freedom) that cannot be shown to be true in any final sense, may even under certain conditions both be true.

In this context, I believe that a typical Kantian approach should not be to even try to establish final conclusions in this regard. It should rather acknowledge that the above-mentioned problem makes it impossible to arrive at final conclusions when trying to understand the works of philosophers. As such it is better to speak of interpretations: that we develop certain interpretations that are not truth statements. We can never do better than presenting various interpretations. This is especially relevant in the interpretation and understanding of Kant’s philosophy.

In my reading, I observed two strategies in dealing with the hermeneutical problem in the work of historical philosophers and especially Kant. The first strategy is to try and reconstruct the author's arguments and in that manner to arrive at some conclusion that we may attribute to the author. In this case, the project is often implicitly guided by a preconceived paradigmatic commitment to an overall interpretation of the work (say the two-object view) which is never made explicit. Although some seemingly final conclusions are sometimes arrived at, there cannot be any metaphysical commitment to truth because of the implicit assumptions. The other approach is to start with a broad interpretation (a contextualization) and to proceed within this context with particular reconstructed arguments. In this case, the paradigmatic commitments are made explicit from the start. As such there are also no truth claims to be made. We can call this the analytic and continental approaches and in Kantian studies both are well presented in the literature (for the first, see Guyer 1987, Langton 1998, etc.; for the second, see Allison 2004, Allais 2004, etc.).
The hermeneutical problem is especially relevant to my own approach since I am not committed to any of the current paradigms in Kantian interpretation (namely the two-object and two-aspect views). I can therefore neither start with particular arguments (which always depend on some overall interpretation) nor work from within any accepted paradigm. The result is that readers who have different paradigmatic commitments (standing outside my newly introduced paradigm) might read the work in their own terms, understanding the terminology in their own way and not as I do.

The problem is alleviated by the fact that my interpretation accepts the two-aspect view insofar as Kant’s epistemology is concerned (i.e., in the Analytic part of the First Critique), but not insofar as Kant's views regarding freedom and the noumenal realm are concerned (i.e., in the Dialectic part; for which I hold a two-object view). These two-aspect and two-object views can be reconciled in my ontological approach (which involves a regulative/reflective metaphysics) since no constitutive claims are make regarding freedom or the noumenal realm. The acceptance of the two-aspect view allows me to use a continental approach according to which I first provide a contextualization of Kant’s overall program (i.e., give my own take on it) before proceeding with arguments regarding the details of Kant's concepts and their relation to each other.

We find the same problem in mathematical texts where mathematical formulations are sometimes thought of as giving precise descriptions of what happen in the same manner that precise formulations of arguments are often conceived of. This is an extensive problem and I am not going to discuss it in any detail. What is of importance, however, for my own approach, is that there are always various ways to understand the physics behind the equations (and even the equations themselves). This is why various interpretations of quantum physics have been developed.

In the chapter where I give my Kantian interpretation of quantum physics—I develop my ideas in a formal manner but have on purpose not included any equations—I have tried to present my understanding of the mathematics and the physics involved without taking the short route through mathematics where presenting equations is regarded as stating “obvious” truths or interpretations. Although mathematical expressions can provide logical (methodological) possibilities, the understanding of how this relates to what the world is like goes beyond that. In not including equations I try to facilitate the reader's engagement with my own paradigm of understanding quantum physics. Even in this case I, again, give a contextualization of my Kantian approach before commencing with the detailed discussion.

I follow the continental approach throughout (in all the main chapters), starting with contextualization before engaging with the details of Kant’s position. I develop an interpretation of Kant’s philosophy in the First Critique, of his philosophy of science in the Third Critique, and eventually produce a new Kantian interpretation of quantum physics in which I use these interpretations. In the final, instance I produce arguments for my position but I do not try to establish any final conclusions. I nevertheless hope that my arguments will be convincing and my interpretations sophisticated enough to accommodate the many strings of Kantian thought into a unified perspective.

1.4 Conclusion

Kant’s philosophy is not easy to engage with. The historical context in which he presented his major work played an important role in the formulation of the traditional two-object view in which Kant is read primarily as an idealist. This has changed over the last fifty years or so with the wide acceptance of the two-aspect view (see Gardner 1999). I believe that this has brought more balance to Kantian interpretation. The problem, however, is that Kant’s conception of freedom is still understood for the most part in moral terms.
In this essay I try to change that view and show that freedom (understood as absolute spontaneity) constituted an essential part of Kant’s scientific thought—both in the groundwork that he laid in the First *Critique* as well as in the Third *Critique*. Once this is recognized, the way is prepared for the application of these Kantian concepts to contemporary scientific debate. There is no short route—the work presented here involves many detailed discussions of seemingly forgotten concepts. But I hope that in the end, it will be worth the effort for the reader.

2. Kant’s Conception of Noumena in the *Critique of Pure Reason*

In this chapter, present an ontological reading of Kant’s First *Critique* in which I argue that the most viable interpretation of the noumenal realm in this *Critique* (and also in his Critical philosophy in general) is to understand it as a realm outside Kant’s conception of nature (systemic nature governed by mechanism), regulated by the transcendental principle of freedom (as an absolute spontaneous, albeit, effective causality). In this manner this principle of freedom does not merely become logically possible; it becomes conceivable as something that could really exist if the world is perceived in accordance with Kant’s Critical metaphysics.

2.1 Introduction

Kant’s conception of noumena and a noumenal realm figures prominently in the writings of his Critical period and is interwoven in the arguments of all three *Critiques*. There can be no doubt that he regarded it as an important part of his philosophy. The problem is, however, that it became one of the most problematic aspects (one could even say the most problematic) of his philosophy.

Outside Kant’s moral philosophy his conception of the noumenal realm has little influence and there seems to be a consensus that we should rather forget that he gave such prominence to it in both the *Critique of Pure Reason* (the First *Critique*, except insofar as it relates to his moral conception), as well as the *Critique of the Power of Judgment* (the Third *Critique*), where it forms part of his philosophy of science. Scientifically minded philosophers believe that some damage-control is needed to purify the non-moral aspects of Kant's philosophy from this relic of an ancient mode of thinking. They regard the noumenal realm as a “quasi-theological” realm (O’Shea 2010:525) which represents eighteenth-century ideas which are ‘now thought to be nothing more than ghosts of earlier ways of thought’ (Butts 1990:13). I present a different perspective and show how we can make positive use of this Kantian conception.

Almost all scholarly views can broadly be allocated into two schools of Kantian interpretation, namely the (traditional) two-object view and the two-aspect view. The “two-object” (or “two-world”) view is the oldest and goes back to Christian Garve’s first review of the First *Critique* in 1782 (Feder/Garve 2000). It understands noumena as referring to the everyday objects of our senses considered outside our cognition of them, i.e., the unknowable “real” things (in the world as it really is) which stand in contrast with the representations in our “mental realm”. Also accommodated are noumenal beings/things such as God, the soul, the world, etc. In recent times P. F. Strawson (1966) and Paul Guyer (1987) have been the best known proponents of this view.

The two-aspect view goes back to Kuno Fischer in his debate with Adolf Trendelenburg in the 1860s (Bird 2010b:486-499). This is called the “two-aspect” (or “one world”) view because the same things that we encounter in experience are taken from two different standpoints, namely as they appear to our senses, adhering to the epistemic conditions of cognition, and as we can think them beyond that as things in themselves. Some of these interpreters, like Henry Allison, view things in themselves (equated with noumena of which we can know nothing) in mere methodological (epistemic) terms (Allison 2004). Others, like
Karl Ameriks, hold that things in themselves could also have ontologically distinct (i.e., noumenal) intrinsic properties (Ameriks 1992; Langton 1998; Allais 2004; Hanna 2006).

In this essay I argue that the noumenal realm is transcendent to our senses, not in the sense of being the “real” outside the confines of our senses, but in the sense of being outside the Kantian conception of “nature” (by which I mean systemic nature where mechanism rules (A419/B447)) and consisting of ontologically distinct entities (noumena). My interpretation stands in contrast with the mentioned interpretations (as they are generally understood; there are exceptions such as Langton (1998)) which assume that the noumenal realm, especially in the First Critique, does not refer to an ontologically distinct realm outside nature (except insofar as the soul or God are concerned). In my view the First Critique lays the foundations for both parts of Kant's philosophy of science as presented in the Metaphysical Foundations as well as the Third Critique, and it would be very strange indeed if his view of the noumenal realm in the First Critique differs substantially from that in the Third Critique where it is presented as the substratum of nature (and human nature). As such I propose that Kant’s view of the noumenal realm in the First Critique is consistent with that in the Third Critique.

When studying the Kantian conception of noumena (and otherwise), we may order Kant’s program in the First Critique into three paradigmatic moves, which ground the three basic aspects of his philosophy, namely his transcendental idealism, empirical realism (which together constitute his epistemology), and his conception of freedom. To understand Kant's concept of noumena we must explore its place in this overall program insofar as it is associated with other related concepts, namely things in themselves and the transcendental object. Since my presentation of the first two moves is in agreement with the epistemology of the two-aspect view and do not contain anything new per se (except the manner of ordering them), I only discuss these concepts insofar as they directly relate to Kant’s concept of noumena. Since Kant’s conception of space and time are closely connected to his conception of noumena, I also bring that into the discussion when I engage with these concepts and their relation to each other (see also Appendix 1).

The third Kantian move, which concerns his concept of freedom, is my primary concern. Although Kant’s goal in this part is to establish the groundwork for his ideas about practical freedom, my essential concern here is with Kant's concept of transcendental freedom. In this regard, I take this move not merely as establishing the logical possibility of freedom in the context of a methodological approach, but as designed to establish the conceivability of freedom in the context of Kant’s Critical metaphysics which includes a particular conception of noumena as entities that are ontologically distinct from the objects of nature.

In Kant’s Critical metaphysics freedom becomes conceivable as something that may really exist if certain basic conditions for the possibility of freedom (both as an effective spontaneous causality and practical freedom) are introduced. Although Kant does not formally mention “conditions” in this regard, this is in line with Kant's manner of thinking and transcendental philosophy in general. These necessary conditions are 1) that transcendental freedom be ascribed to an intelligible realm of noumenal objects (noumena) beyond the Kantian concept of “nature” (the mechanism of nature makes absolute spontaneity impossible) and 2) that such noumena have the ability to absolutely spontaneously produce phenomena in the world of experience.

This is how I view Kant's conception of noumena: it makes the transcendental idea of freedom as an absolute spontaneous causality (as well as practical freedom) conceivable. In my view, the noumenal realm refers to an ontologically distinct metaphysical realm, problematically assumed, outside the Kantian conception of nature (A255). Although other authors also adhere to various ontological views, mine is distinct in the sense that I take the objects of nature and noumenal objects outside nature as two ontologically distinct kinds of objects. Noumena are obviously not material objects and the word “object” should be regarded
merely in abstract terms (the ontological distinction between classical objects and noumena becomes clear when I explore the concepts of things in themselves, the transcendental object and noumena). This is not a dogmatic (realist) assertion of what noumena are like; rather, I argue that we have good reasons to think that the world would be like this if transcendental freedom is to be realistically assumed as something that may really exist in our world (even though we cannot prove the real possibility of freedom—see A558/B586).

Although Kant does not explicate his idea of the noumenal realm in any detail in the First Critique, I argue that we have every reason to think that he adhered to the same conception of the noumenal realm throughout his Critical period, but especially in the Third Critique. Since the noumenal realm forms part of Kant’s philosophy of science in the Third Critique, especially in the part called Critique of the Teleological Power of Judgment, we can safely assume that Kant regarded this concept as consistent with science. My approach shows how he achieves that.

2.2 Things in Themselves, the Transcendental Object, and Noumena
In the First Critique, Kant is concerned with the question: How is mathematical science (and mathematics) possible for humans with our discursive form of cognition, i.e., that needs both sensibility (intuitions) and concepts of the understanding for the cognition of objects (Friedman 2001:10)? In it he develops an epistemology in accordance with the conditions for and limitations of human knowledge. He establishes the limits of pure reason and undoes all “proud ontologies” (A247), but at the same time shows how certain ideas like freedom, which could conceivably be true, can be fruitfully introduced.

Within Kant’s overall program, I distinguish three paradigmatic moves. Kant’s first two moves are interwoven in the first part of the First Critique, namely in the Transcendental Analytic (using arguments from the Transcendental Aesthetic and Logic). The third move is made in the Transcendental Dialectic. With each move, another concept is introduced that has some bearing on our limits of knowledge, namely things in themselves, the transcendental object and noumena themselves, all of which are closely interconnected. The relation between these concepts is discussed in section 2.4 (on noumena).

2.2.1 Things in themselves
The first move concerns Kant’s transcendental idealism. Kant presents his project as an inquiry into the possibility of establishing something about objects a priori before they (as real objects) are given to us (Bxvii). According to Kant, it is not the objects which make representations possible, but representations which make objects possible—in the first case the relation would be empirical and not able to establish necessary and universally valid principles for mathematics and the natural sciences, in the second case

[although] the representation in itself... does not produce its object as far as its existence is concerned, the representation is still determinant of the object a priori if it is possible through it alone to cognize something as an object (A93/B125, italics in the original).

Central to the possibility of a priori cognition is Kant’s well-known Copernican turn (see Bxvii-xviii). The essence of this Critical turn in Kant’s philosophy is the acknowledgment that we as humans do not have access to objects of the senses, except through our human faculties. Objects are always objects “for us” (B138). In the same way that Copernicus incorporated the perspective (movement) of the observer in our understanding of the heavens, so Kant saw that we have no choice but to incorporate the human perspective in cognition in general. Our cognition of objects are dependent on our cognitive faculties – we do not have unconditioned access to the world.
Within such an anthropocentric model (Allison 2004:xvi), which would always be subjective, it is nonetheless possible, according to Kant, to obtain objective cognition when various epistemic conditions which are necessary, and presumably together sufficient for that, are adhered to (Allison 2004:12). Such conditions involve the human abilities which make cognition possible in the first place (Gardner 1999:83), namely the pure (a priori) forms of sensibility, namely space and time, the pure “form of sensibly intuiting” (i.e., the manner/form in which intuitions are given for synthesis with concepts; Allison 2004:15, 114) as well as the pure forms (concepts) of the understanding, all of which relate to objects completely a priori (A86/B118; A88-89/B120-122). The pure form of space provides the manifold (B154, B156, A157/B196) in which the “form of sensibly intuiting” is combined into a unity through apprehension (B129-131, A429/B457 n.; Allison 2004:193). The formal conditions which make our experience of objects possible at the same time make them into possible objects of experience.

This mind-dependence of appearances (the manner in which objects appear to the mind) constitutes Kant's philosophy as a form of “idealism” (Allais 2004:656). It differs from both Berkeley's “dogmatic” (or “material”) idealism and Descartes’s “skeptical” (or “empirical”) idealism in that it is both “formal” and “critical”. It is formal because it concerns the formal conditions (involving the “forms” of the mind) under which objects can be cognized and it is 'critical' because it involves a reflection on the limits of discursive cognition (Allison 2010:112). Kant calls his philosophy “transcendental idealism”. By “transcendental” Kant means that his idealism is concerned with the possibility of and conditions for (objective) experience, and as such with a priori cognition.

Kant’s transcendental philosophy, however, does not only concern the a priori possibility and conditions of cognition; it is also occupied with the concepts of “objects in general” (A12) which refer to objects as we can conceptualize them in general, even beyond the restrictions of sensibility (see A35/B52, A57/B81, A252 etc.). When we abstract the subjective constitution of the senses from these objects in general, we are left with “objects in themselves” of which we cannot know anything (they are beyond the reach of our senses). Kant writes: “What may be the case with objects in themselves and abstracted from all this receptivity of our sensibility remains entirely unknown to us” (A42). In this way, the concept of things in themselves in contradistinction to things as they appear to our senses is introduced into Kant's philosophy (Bxxvi).

2.2.2 The transcendental object

The second move concerns Kant’s realism. Kant now establishes the necessary a priori (i.e., before experience) conditions for achieving actual empirical cognition (empirical truth) when objects are given in empirical intuition (perception). This move complements the discussion of the possibility (a priori conditions) of experience with that of the actuality of experience and the necessary and objective world of experience. Since the concept of the transcendental object is related to the actuality of experience, I consider only that in the discussion.

For experience to be actual, it must involve not merely establishing something about objects a priori before they (as real objects) are given to us (Bxvii), but also about the real objects of the senses (both inner and outer objects). Objects must not only conform to our cognition; cognition must also incorporate the real in objects. A priori cognition does not mean that no a posteriori data is involved (Bird 2010a:127). On the contrary, the determinate judgment that a cognition is true or false must involve both a priori (transcendental) rules (only general rules can have necessary and strict universal application) as well as particulars (when pure apprehension is particularized in experience) which are brought under those rules. The undetermined (unconceptualized, i.e. not brought under rules) object of an empirical intuition
is called “appearance” (A20/B34); the determined object is called “phenomenon” (A249-9/B305).

This mind-independence of appearances constitutes Kant’s philosophy as a form of “empiricism” (Allais 2004:656). Kant describes this aspect of his philosophy as “empirical realism”. The term “empirical” refers to the givenness of objects; that outer objects are given from outside us in the senses (B166). The term “real” refers to their independent existence, which is not inferred, but directly perceived as ‘matter’ in appearances:

[T]he transcendental idealist is an empirical realist, and grants to matter, as appearance, a reality which is not inferred, but is immediately perceived. (A372, italics added)

Whereas the conception of objects, which precede perceptions, signify mere (though real) possibility, perceptions provide the material for these conceptions, and as such “is the sole characteristic of actuality” (B273).

The manner in which real objects are given to us in perception involves an “effect” on the mind. Although this effect is in some sense “caused” by objects (our bodies are objects in a causal relation with other objects), this should not be confused with objects as the ground or “cause” (taken in the weak sense, i.e., merely as something that is necessary for something else to happen) of appearances (Allison 2004:65). What does Kant mean by this ground? Kant’s realism accepts that we are directly aware that appearances are not merely in the mind but involve independently existing objects outside the mind (A372-373). We are aware that appearances of objects relate to objects existing independently of us.

When we conceptualize appearances as phenomena, this necessarily includes in the concept the presupposition of such a ground for these phenomena (A252). Without such a transcendental ground, phenomena would not be possible for us. In this case, the term “transcendental” does not refer merely to human conditions for the possibility of experience but to external conditions, i.e., that objects really exist independent of us. There must be real objects for us to have experience of them.

Kant now introduces the concept of the “transcendental object” as the ground of phenomena. Since this concept involves everyday objects to the extent that they exist beyond our perceptual reach, it stands in some relation to the concept of things in themselves (this relation is explored in more detail below). The transcendental object does not refer to any particular object; it is the completely undetermined thought, i.e., we do not even have a concept of it except merely that it is the object of sensible intuition in general (as a mere “nothing” for us), which is the same for all appearances (A251, A253). As belonging to the real world before our cognition thereof, it is “given in itself prior to all experience” (A495/B523).

Although the transcendental object, as the ground of appearances, stands forever outside experience, the transcendental matter (and its form) belonging to the transcendental object can be brought to consciousness as the matter (and its real form) given in sensibility (see also Allison 2004:70, Appendix 1). As such Kant speaks of “things themselves which appear” (A268/B324), i.e., which are brought into sensibility. Clearly the transcendental object, as the mere intelligible ground of appearances in general, is merely something corresponding to ‘sensibility as a receptivity’ (A494, italics added), forever outside sensibility.

2.2.3 Noumena

Kant’s third move is made in the last part of the First Critique (in the Transcendental Dialectic, i.e., the Logic of Illusion). I understand this Kantian move as establishing the conceivability of freedom. Whereas the first two moves constitute a way of ordering Kant’s epistemology (in accordance with the two-aspect view), my understanding of this move presents a new reading of the Dialectic within the framework of his overall program. In my understanding Kant’s goal
with this last part of the First Critique is not only to establish the limits of pure reason and to undo all “proud ontologies” (A247); it is to show how freedom can be saved even though pure reason is limited in its reach.

In my reading, Kant is not merely introducing the possibility of freedom as just another topic in the course of his discussion in the Dialectic. On the contrary, his overall aim is to argue that transcendental freedom as an effective absolute spontaneous causality is conceivable under certain conditions which include a particular conception of noumena. When we want to understand how noumena fit into Kant’s overall program, we have to take this goal into account. As such, Kant’s conception of noumena should not be considered in the context of his epistemology but in the context of his conception of freedom. It is my opinion that only when we take the conceivability of freedom as the overall goal of Kant’s third move, would our interpretation of the First Critique do justice to Kant’s philosophy.

Kant’s arguments for the conceivability of freedom—and especially transcendental freedom—in his Critical metaphysics are indissolubly linked with his conception of noumena. Since all experience of material things (matter) is governed by causality according to the second analogy (consistent with the mechanism of nature), the possibility of transcendental freedom as an absolute spontaneous causality is only conceivable if it can be ascribed to an intelligible world of noumenal entities beyond nature (i.e., ruled by absolute spontaneity where mechanistic causality does not apply), and if such noumena have the absolute spontaneous ability to produce phenomena in the world of experience. These are the necessary and presumably sufficient conditions for the possibility of absolute spontaneous causality that Kant argues for in this part of the First Critique.

The only way in which freedom can be secured in Kant’s critical discussion of the limits of cognition (established in the previous part of his work), is within the framework of the correct use of another human faculty, namely reason. Reason has the impulse to proceed beyond the sensible world. This, however, is a dangerous space where various illusions lurk and Kant discusses the possible pitfalls but also shows how freedom can be fruitfully introduced as a transcendental idea of reason.

This move is of great importance for Kant since freedom plays a very important part of his philosophy. We can even say that his philosophy can be regarded as a philosophy of freedom. He says in the Critique of Practical Reason (the Second Critique) that freedom is the foundation of his philosophy (KpV 5: 3-4). In the First Critique, he demonstrates its conceivability, in the Second Critique he uses this as the basis for his moral philosophy (speculative reason creates the space which is to be filled by practical reason; see Bxxii and Allison 1990:243). In the Critique of the Power of Judgment (the Third Critique) he engages with the problem regarding the gap between the realms of nature and freedom. For my purposes, this move is important since it is so closely linked to his conception of noumena and the noumenal world.

2.3 Introducing the Noumenal Realm

In the first part of the First Critique Kant is primarily concerned with the possibility and conditions of human cognition. In the Dialectic, he proceeds with an investigation into the possibilities of achieving cognition beyond our sensible reach. He shows that since the cognition of objects beyond sensibility, i.e., of things as they are in themselves, is not possible, no ontology thereof can be established (A247). However, our natural questions regarding metaphysics can be put to good use in both scientific inquiry and morality (Guyer 2000:14).

Since our understanding is restricted by sensibility, and the principles of the understanding can be related only to objects of sensibility, this faculty cannot be used to explore the domain of things in themselves. For this, another faculty is needed, namely the higher faculty of reason. Reason has the characteristic that, in its logical use, it seeks for a synthesized
whole (A307/B364, A409/B436). For any conditioned, it demands the unconditioned in the series of conditions (i.e., the whole).

Reason, therefore, proceeds from the categories of the understanding (that allow such a synthesis) to an absolute whole, in which case these are called concepts of reason or “transcendental ideas” (A311/B368). Three kinds of such ideas are possible, namely ideas of rational psychology, rational cosmology, and rational theology, generated according to the three kinds of rational inference (the relation of a property to the subject, to another property, and to its ground; see Guyer 2000:63, and A334/B334).

The cosmological ideas are of special interest in our discussion since they are the only ones which presuppose an object (A479/B507). They are therefore of particular importance when we study the limits of cognition, which always require real objects. In this case, the demands of reason for the unconditioned can only be satisfied under the following assumption: “when the conditioned is given, then so is the whole series of conditions subordinated one to another, which is itself unconditioned, also given” (A308/B365). Kant calls these unconditioned wholes “principles” (of reason). When the absolute whole is taken to be the sensible world as a whole, the various conditions thereof, as given by the applicable categories, can be synthesized in this manner.

Kant’s philosophy suggests two competing strategies for thinking the unconditioned, namely proceeding from the transcendental idealist and the empirical realism perspectives respectively. In bringing these thesis and anti-thesis positions into conflict in the framework of the antinomies (a conflict of laws), Kant demonstrates the errors of the dogmatic rationalist and dogmatic empiricist positions (Allison 1990:13).

When the principles of reason are used “constitutively” this would enable us to expand both the conceptual structure and the empirical conditions which apply to the sensible world (in objective cognition) beyond the boundaries of possible experience. The antinomies show that this cannot succeed. Kant, however, also introduces the “regulative” use of reason in which the unconditioned is given merely as a problem and where these principles guide scientific research towards an ever more complete understanding of objects, insofar as they may be empirically given (see B537, B692, and Cicovacki 2010:88). As such these antinomial conflicts open new avenues for thinking.

In this regard the difference between the “mathematical” and “dynamical” antinomies is important. The primary difference is that the mathematical principles are concerned with the manner in which appearances must be given in space and time, whereas the dynamical principles concern the existence of appearances (Allison 2012:17). The two dynamical principles are concerned with the modes (third antinomy) and ground (fourth antinomy) of existence. The thought of the unconditioned in these cases suggests ‘absolute spontaneous’ causality (the cosmological idea of freedom) and the existence of a necessary being. The empirically unconditioned would deny these.

The mathematical principles are concerned merely with accumulation or division within sensible conditions (within appearance), whereas the dynamical principles in their consideration of existence alone (i.e., no magnitudes of the series of conditions are considered; A536/B564) can easily be absolved from those conditions (the condition of appearances can be outside the series of appearances, see A531-2/B559-560). As such, the transcendental and empirical use of reason (i.e. the thesis and anti-thesis positions) can be extended to conceptualize both the intelligible and sensible worlds, where the last is now taken not as an accumulative world-whole but as “nature”. This is obviously not material nature (as an aggregate), but a concept of nature as a (systemic) whole.

Kant defines his concept of nature as follows:
He mentions in a note to this passage that (systemic) nature is comprised of the totality of causal relations (mechanism), which should be distinguished from “material nature” as an aggregate (I discuss the difference between aggregates and systems in more detail in chapter 3).

Cosmological ideas such as nature (all world-concepts) are “transcendent” to our experience even though they are confined to the world of appearances (where nature is now taken as a total system of existence) (A420/B448). At the same time they do not overstep the object, namely appearances, in kind, but have to do only with the sensible world (not with noumena), they nevertheless carry the synthesis to a degree that transcends all possible experience. (A420/B448)

In this quotation Kant is clearly taking the realm of noumena as “overstepping” the sensible world (nature) in kind, that is, that it is another realm of existence apart from nature. As such the noumenal realm corresponds with the realm of freedom, which Kant often contrasts in this manner with nature.

As a concept distinct from the causality of the second analogy, the “mechanism of nature” is only introduced in the second edition of the First Critique in the context of the third antinomy (see Bxxvii-xxx, A419/B447 n., and KdU 5:379). As such “mechanism” is a transcendental idea of reason (similar to the transcendental idea of freedom) which applies to nature as a whole. Mechanism is a regulative concept that belongs to the concept of systemic nature, whereas the causality of the second analogy is a rule of the understanding which applies to phenomena (Allison 2012:202-2033). Both are, however, deterministic concepts of causality. (All the transcendental ideas of reason, including that of noumena, are regulative instead of constitutive ideas and as a body of thought that takes us beyond the bounds of knowledge they constitute his Critical [regulative] metaphysics).

Now in the dynamical antinomies, the anti-thesis position thinks the unconditioned in the framework of sensible conditions whereas the thesis position does not merely think the unconditional, it also thinks it outside sensible conditions in an intelligible (noumenal) world. Instead of creating a conflict of reason, this represents a real (logical) possibility. The value of the dynamical antinomies, when viewed in this manner (with the thesis position taken outside possible sensible conditions), is that existence in two different worlds can be brought into interaction with each other, i.e., an intelligible cause can produce phenomenal effects or a necessary being can bring forth contingent existences.

Since the mode of existence in an intelligible world outside nature is not governed by mechanism we can without contradiction ascribe transcendental freedom to it. As such freedom, as a different type of effective causality, namely of absolute spontaneity, becomes conceivable as a transcendental idea that belongs to that other mode of existence outside nature (Kant views this as the only alternative kind of causality, see A532/B560). Whereas nature is a system of existence regulated by mechanism, the noumenal realm is a system of existence regulated by transcendental freedom.

Absolute spontaneity as an effective cause of phenomena has no previous causal links in the structure of causal relations governed by the second analogy (in the world of phenomena) or even in nature (governed by mechanism); this is why it is viewed as beginning “a series of occurrences entirely from itself” (A534/B562, italics in the original). Kant says:
Accordingly, a causality must be assumed through which something happens without its cause being further determined by another previous cause, i.e., an absolute causal spontaneity beginning from itself. (A446/B474, boldfacing in the original)

As such the grounds for transcendental freedom (that is, noumena) stand forever outside the causal chain of events that constitute nature; it can, however, without contradiction produce outcomes which interact with the causal chains of the phenomenal world. As such it is not “incompatible” with nature (A558/B586).

2.4 Kant's Conception of Noumena
With this background, we can now consider Kant's concept of noumena in more detail. I now argue that Kant regards noumena as intelligible objects outside the world of the objects of nature. As said before, I believe that we can only understand Kant's conception of noumena and a noumenal realm when we consider it within the framework of his conception of transcendental freedom.

I argue that Kant introduces the conception of noumena as something that can really exist in a conceivable manner and not merely as a logical possibility (as we find in the epistemic two-aspect view). In this regard, Kant is also concerned with the question of how (in what manner) they would be possible if they exist. This is what Kant's conception of noumena is about: it makes his conception of freedom conceivable in the framework of his Critical metaphysics.

As such noumena are conceptualized as real (in the sense of really existing) entities which adhere to different rules than the mechanism of nature, namely in accordance with the principle of transcendental freedom which operates as an effective causality that may produce phenomenal outcomes. Although we cannot prove the reality or even the real possibility of freedom (A558/B586), we can think its logical possibility and, when using reason, argue its conceivability.

According to Kant, practical freedom, i.e., freedom associated with human action, is grounded on transcendental freedom:

It is especially noteworthy that it is this transcendental idea of freedom on which the practical concept of freedom is grounded, and the former constitutes the real moment of the difficulties of the latter, which have long surrounded the question of its possibility (A534/B562, italics added; see also B461-462).

Although the transcendental idea of freedom is necessary for the concept of practical freedom, only the latter regulates human action and morality; the first is a concept of speculative reason, not practical reason. We, therefore, find that Kant also discusses freedom in the human domain (from A546/B574 on) only after he shows how transcendental freedom is conceivable as a different kind of causality once the existence of noumena is assumed (A531/B559-A545/B573). It is also in the context of transcendental freedom that the realms of nature and freedom are first introduced (A537/B565). Although Allison (1990:24) follows a mere epistemic (methodological) two-aspect approach, he also distinguishes in this regard between transcendental freedom as effective cause and the freedom associated with causal agents. In my view, transcendental freedom is an effective spontaneous causality that is non-agential but necessary for agency.

We can even make a slightly stronger claim than before. Since we need freedom to assert personal responsibility (morality), and this only becomes possible through the transcendental idea of freedom, Kant believes that he has good reasons to think that noumena are conceivable, even though we can never know that they really exist. On this particular point, Andrews Reath writes:
Kant thinks that we can make warranted assertions about noumena if we have grounds for thinking of entities that are governed by laws different in kind from the causal laws governing the occurrence of events in space and time. Such assertions would be a way of conceiving of such entities, but are not knowledge claims. (Reath 2010:276)

We can now say that Kant formulates his conception of noumena at the end of the Analytic, in a section called “On the ground of the distinction of all objects in general into *phenomena* and *noumena*” (italics in the original), with his discussion of transcendental freedom in the antinomies in mind. Kant's most important statement in this regard is: “For if appearances are things in themselves, then freedom cannot be saved” (A537/B565). Kant says that for (transcendental) freedom to be conceivable, we need to go beyond appearances, which are governed by causality, to things in themselves.

What does Kant mean by “things in themselves” in this context? Throughout the First *Critique* Kant often mentions that this concept refers to things considered outside the conditions in sensibility. But this is quite a broad conception (as I will now show), which includes various considerations of things in different contexts.

2.4.1 Noumena in the negative sense

When speaking about things in themselves in the context of freedom (although Kant often does not make this explicit) Kant has something specific in mind, namely noumena, taken in the negative sense. In the second edition of the First *Critique*, he introduces noumena in the negative sense, which should be distinguished from noumena in the positive sense (B308-309). What are noumena in the negative sense? By this expression, Kant means that *we cannot positively cognize noumena* in the sense of knowing something about them (for this, the concept of the object must be synthesized with some intuition, as explained in the first part of the First *Critique*) (B309-311). Since we do not have any sensible intuition of noumenal objects (they are pure objects of understanding), we cannot cognize them. As objects which may have a real possible existence outside nature they should be distinguished from, for example, mathematical objects (which are not pure “objects of the understanding” since they may be accessible through pure sensibility).

Although noumena in the negative sense are not objects of our sensible intuition, *they could very well be objects of another kind of intuition* (B308). Although Kant, in general, refers to intellectual intuitions in this regard, according to which some intellect (albeit not ours) can capture things as they are in themselves, this is not necessarily the case here – he could just be making a general statement regarding such a possibility without any specifics (see Appendix 2 for another possibility). *Kant mentions that we cannot assert that no such intuition exists* (A255/B311).

The possible existence of noumenal objects existing apart from the objects of nature can never be excluded. As such, they would be entities of another kind of intuition, but outside our sensible reach. *Although outside our sensibility, they would, nonetheless, be real entities of the world (albeit not real for us).* Kant’s conception of noumena in the negative sense captures this possibility, although only problematically (i.e., the concept contains no contradiction). Kant writes

> [T]here may even be beings of understanding to which our sensible faculty of intuition has no relation at all, our concepts of understanding, as mere forms of thought for our sensible intuition, do not reach these in the least; thus that which we call noumenon must be understood to be such only in a negative sense... The concept of a noumenon, i.e., of a thing that is not to be thought of as an object of the senses but rather as a thing in itself (solely through a pure understanding), is not at all contradictory; for one cannot assert of sensibility that it is the only...
possible kind of intuition... In the end, however, we have no insight into the possibility of such noumena, and the domain outside the sphere of appearances is empty (for us), i.e., we have an understanding that extends farther than sensibility problematically, but no intuition, indeed not even the concept of a possible intuition, through which objects outside the field of sensibility could be given. (B309-311, italics in the original)

At this point in the discussion, it is important to distinguish between the positive content of the conception of noumena and noumena in the positive sense (a difference which is ignored, for example, by Allison 2004:63). Noumena in the positive sense must be “grounded” on some intuition (B308-309). Alternatively, they can, according to Kant’s explication in the Second Critique, be grounded in our practical use of reason which is not our concern here (Allison 1990:242). The positive conception of noumena, on the other hand, is not grounded on any sensible intuition; it is merely a concept with reference to a possible existing object which can be an object for another kind of intuition than our own.

The positive content of the concept of noumena (i.e., not noumena in the positive sense) is determined by the third antinomy. We have seen that the only manner in which the thesis and antithesis positions can be reconciled, and the conceivability of transcendental freedom in Kant's metaphysics established, is when such freedom transcends not only sensibility (and the second analogy) but is also assigned to the realm outside nature (and mechanism). Absolute spontaneity is only possible in a realm outside nature since nature is governed by mechanism (which excludes such spontaneity).

As such transcendental freedom is ascribed to noumena, which would belong to another mode of existence outside nature where mechanism does not apply, and which is only accessible to another kind of intuition than our own. This antinomy is after all concerned with (modes of) existence. Although Paul Guyer views these concepts differently than I do, he is certainly right when he writes that

their affirmation [i.e., of the two sides of the dynamic antinomies] is taken to refer to what might exist in a noumenal or supersensible world of things in themselves. (Guyer 2000:17)

Such an existence would not merely be outside the conditions of sensibility; it would really be outside space and time. The reason for this is immediately clear: according to the Kantian conception of noumena they could only exist outside the conception of nature (and mechanism) and as such, they would forever be outside the reach of our sensibility which is restricted to the objects of nature. Only objects in nature can become objects of sensibility and as such be perceived via our forms of sensibility, namely space and time. The reason for this is that objects outside nature would not stand in a community with us in accordance with the third analogy since they do not belong to the causal structure of our world. We cannot become aware of them. They, therefore, cannot be perceived with our kind of sensibility in space and time. As a mode of existence outside space and time, this would encompass a realm that we can merely think and as such it would be ontologically distinct from our sensible world. Even in the First Critique Kant mentions the distinction between these conceptualized worlds:

The division of objects into phenomena and noumena, and of the world into a world of sense and a world of understanding, can therefore not be permitted at all in the positive sense, although concepts certainly permit a division into sensible and intelligible ones. (B312, italics in the second edition only)

He later spells out that this involves existence outside time (and space) when he says:
[T]his acting subject, in its intelligible character [i.e., as noumenal ground], would not stand under any conditions of time... insofar as it is a noumenon, nothing happens, thus no alteration requiring a dynamic time-determination is demanded, and hence no connection with appearances as causes is encountered in its actions. (A540-1/B568-9)

Of special importance to my interpretation is the fact that Kant regards noumena as real entities which are ontologically different from the objects of the senses. This is why Kant contrasts the two kinds of objects with each other and refers to noumena as “other objects” than those given in the senses:

[I]f we call certain objects, as appearances, beings of sense (phenomena), because we distinguish the way in which we intuit them from their constitution in itself, then it already follows from our concept that to these we as it were oppose, as objects thought merely through the understanding, either other objects conceived in accordance with the latter constitution, even though we do not intuit it in them, or else other possible things, which are not objects of our senses at all, and call these beings of the understanding (noumena) (B306, italics added, except for phenomena and noumena, which are in the original).

Kant here distinguishes between two types of noumena, namely those objects which constitute the substratum of sensible objects in the framework of things as they are in themselves and those which have no relation to the objects of the senses whatsoever (things like angels). In my understanding of this passage, both kinds of noumenal objects are outside nature; they exist not merely outside our perception within the framework of nature (then they would be part of the mechanistic chains of nature and we would not be able to ascribe transcendental freedom in any conceivable manner to them).

At this point, my interpretation shows some agreement with the (traditional) two-object view which also takes Kant’s conception of noumena (in the negative sense) as referring to ontologically distinct objects seriously. The difference, however, is that they view the everyday objects outside our sensible reach, i.e., as they are “really” in themselves, as noumena, whereas I consider noumena as objects that would exist outside nature. (I discuss the difference between the views in more detail in section 2.5.1.)

Although the concepts of things in themselves and noumena (in the negative sense) may in some contexts be considered as the same, as Kant sometimes implies (when they refer to entities outside nature as in A537/B565), these concepts do not always coincide as per the (traditional) two-object view (and even the two-aspect view). The reason why they are not the same is that these concepts originate from very different considerations, namely from Kant’s transcendental idealism (things in themselves, see section 2.2.1) and his conceptualization of freedom (noumena, see section 2.2.3).

We can now say that Kant affirms a positive conception of noumena, which refer to real but ontologically distinct objects, which can only be taken in the negative sense as problematically assumed. This conception is different from merely considering objects outside the conditions of sensibility; it refers to objects of the understanding which can be given in some intuition, although not a sensible one (see A255 and B311). As such, noumena as objects of our thoughts would constitute a different mode of existence than that given in sensibility, although we cannot cognize them because of our particular form of sensibility (A253).

Kant construes noumena and the noumenal realm in these terms to make the possibility of freedom (both as effective spontaneous causality and practical freedom) conceivable. Without such a noumenal ground for the phenomenal effects of spontaneous causality, conceptualized in this manner, the transcendental idea of freedom (albeit logically possible) would not necessarily be conceivable. For this, an ontologically distinct noumenal realm outside nature—which is outside space and time (since it is outside nature), and governed by
absolute spontaneity (which is excluded in the framework of the mechanism of nature)—is a compound necessary condition for the possibility of freedom.

Insofar as transcendental freedom is conceived of as an effective spontaneous causality that noumena have to produce outcomes in nature, it is, in turn, a necessary condition, not only for the possibility of practical freedom (see A534/B562 and B461-2), but also for the possibility of the potentiality that non-extended wholes-and-parts (my terminology) have to produce outcomes (material parts and aggregated wholes) in nature in accordance with Kant's philosophy of science in the Third Critique (see chapter 3). In this essay, I am, however, not concerned with the specifics of how exactly Kant brings the concepts of transcendental freedom and practical freedom together.

2.4.2 The difference between noumena and the transcendental object

We can now further delineate Kant’s conception of noumena (henceforth taken in the negative sense). Although things in themselves encompass the transcendental object (A268/B324 etc.), this is not what Kant means by noumena (contra what is often accepted to be the case). The difference is simple: noumena are objects of understanding conceptualized in a positive manner whereas the transcendental object is merely the empty thought that real objects of sensibility underlie appearances (see the discussion in section 2.2.2). The concept of noumena is introduced to make the idea of freedom conceivable; the concept of the transcendental object is introduced to enforce Kant's philosophy as an empirical 'realism'. These moves are clearly distinct in Kant's overall program. Indeed, Kant actually emphasizes the point that the transcendental object is not a noumenon:

The object to which I relate appearance in general is the transcendental object, i.e. the entirely undetermined thought of something in general. This cannot be called the noumenon; for I do not know anything about what it is in itself, and have no concept of it except merely that of the object of a sensible intuition in general, which is therefore the same for all appearances. (A253)

Allison (2004:59) takes this as a reference to noumena in the positive sense (i.e., that noumena in the negative sense can still be equated with the transcendental object), but there is no reason to think so. The reason that Kant gives why the transcendental object cannot be taken as a noumenon is not that we do not know anything about it (which would refer to noumena in the positive sense), but also that we have no concept of it (which does not apply to noumena in the negative sense; we can form such concepts – see section 2.4.1). As such noumena and the transcendental object can therefore not be the same! Since Allison does not distinguish between noumena in the positive sense and the positive conception of noumena in the negative sense, he wrongly interprets this passage as only referring to noumena in the positive sense.

We find this distinction between the transcendental object and noumena also elsewhere in the First Critique (see below). Although it is true (as Kant mentions) that we can conceive of a conceptual non-sensible representation of the transcendental object (i.e., all concepts assume some intellectual representation of objects), and therefore in some very weak sense can consider it a noumenon, this representation remains absolutely empty for us, we cannot even form a definite concept of what it is. As such it is not a noumenon as Kant conceptualizes it (A251 and A289/B345).

We can articulate the difference between noumena in the negative sense and the transcendental object by referring to two other places where Kant discusses both of these together in the same passage. The first of these is in the first edition (A251-252) where Kant, in his discussion of the ground of appearances, first mentions the transcendental object, but then adds that one can add the concept of noumena in this regard:
But the cause on account of which, not yet satisfied through the substratum of sensibility, one must add noumena that only the pure understanding can think to the phenomena, rests solely on this [i.e. namely, that sensibility and its field, i.e., that of appearances, are themselves limited by the understanding]. (A252, my italics, 'noumena' and 'phenomena' italicized in the original)

In this quotation, it is clear that Kant regarded these as different concepts, which belong to different aspects of his philosophy (see sections 2.2.2 and 2.2.3). He clearly states that the transcendental object serves as the transcendental ground for objects given in sensibility whereas noumena serve as an intelligible cause for a different kind of phenomena (so produced). Although this quotation comes from the first edition (when noumena in the negative sense have not yet been introduced) and is removed in the second edition, the Kantian position that noumena (in the negative sense) may be the cause behind some phenomena is often repeated in the Transcendental Dialectic in a context totally different from that in which the transcendental object is taken as the mere ground or “cause” in a weak sense of phenomena (as discussed in section 2.2.2).

The other passage appears in both editions of the First Critique (A538-540/B567-568). In the first part of the passage (A538-539/B567) Kant again discusses these two kinds of “causes” (these should not be confused with the two effective causes in Kant's philosophy, namely mechanism and absolute spontaneity) in the context of another more general concept of the transcendental ground of appearances, in which phenomena which originate from both these ‘causes’ are included in the transcendental object. This concept differs slightly from the one previously discussed which is the ground of the appearances of everyday objects. Also, whereas the first is a mere ‘nothing’ for us (A251 and A253; see also section 2.2.2), the second involves a certain conceptualization which aligns it with the concept of things in themselves (see below for a discussion of things in themselves in this regard).

The important point, however, is that Kant again mentions that two origins for phenomena can be distinguished in this context, namely “the property through which it appears [i.e., as the mere ground of appearance]” and “another causality” which produces only its effects as appearance. The first serves as the mere transcendental ground of phenomena and the second as the absolute spontaneous causality (which would be a different kind of ‘cause’ than the previous one) behind a different kind of phenomena.

In the second part of the text at A540/B568, Kant uses the concept of the transcendental object in the usual sense (section 2.2.2) when discussing these two kinds of “causes”. In this case, the concept of noumena is contrasted with that of the transcendental object (in the usual sense). Now he states quite clearly that the noumenal ground (or: intelligible character) of phenomena – which would be outcomes of absolute spontaneous causality and would contribute to the observable empirical character – is different from the transcendental object. Kant writes in the first part:

For since these appearances, because they are not things in themselves, must be grounded in a transcendental object determining them as mere representations, nothing hinders us from ascribing to this transcendental object, apart from the property through which it appears [i.e. as the mere ground of appearance], also another causality that is not appearance, even though its effect is encountered in appearance. (A538-5399/B567, boldfacing in the original)

And in the second part:

This intelligible character [which he explicitly says is a noumenon in the next paragraph; see A541/B569] could of course, never be known immediately, because we cannot perceive anything except insofar as it appears, but it would have to be thought in conformity with the empirical character, just as in general we must ground appearances in thought through a
transcendental object, even though we know nothing about it as it is in itself (A540/B568; my accentuation).

I have now discussed three places where Kant clearly distinguishes between the transcendental object and noumena (A252, A253, A540/B568). In these passages, Kant makes a distinction between the transcendental object as the mere transcendental ground of sensible objects and noumena as the ground for the possibility of an absolute spontaneous causality (at least explicitly in the last two passages; A252, A540/B568). In my interpretation, I merely accept what seems to be quite straightforward in Kant's position.

The difference between the transcendental object (as the mere transcendental ground of appearances of objects of the senses) and noumena in the negative sense is substantial. The transcendental object is the transcendental ground for the appearances of sensible objects; noumena are the ground for an absolute spontaneous causality with its effects in the phenomenal realm. In the first case Kant speaks of “things themselves which appear” (A268/B324); in the second he says that only the “effects [of the intelligible cause] appear” (A537/B565). The transcendental object contains matter in the transcendental sense (the transcendental ground of empirical matter); whereas noumena do not contain any such matter (A357). The first is a mere general concept without any content, whereas the second is a concept which includes particular characteristics through which transcendental freedom becomes conceivable. The first embodies merely the thought of something outside the conditions of sensibility; the second is often asserted to be outside space and time, yes, outside nature.

It can, in fact, be shown that the transcendental object cannot be the same as noumena. The transcendental object is the ground of those appearances that “appear” in the normal progress of experience, i.e., in accordance with empirical laws (A495/B523). It is that which belongs to the real world of experience (which is directly perceived as such) before our cognition of it: it is “given in itself prior to all experience” (A495/B523). This is why Kant includes even the “real things of past time” in the transcendental object – they belong to possible perceptions as part of a regressive series (“under the guidance of history or in the footsteps of cause and effect”) (A495/B523, my italics).

The transcendental object clearly grounds those appearances which stand under the analogies (causality), and which we think as belonging to nature and the mechanistic laws which govern nature. Although we do not actively restrict the transcendental object to be the ground of the objects of nature (then it would be a positive conception), it is nevertheless true that the transcendental object as the ground of everyday objects belongs within the concept of nature.

Noumena, on the other hand, belong to the realm outside nature where the rules ascribed to nature (mechanism) do not apply. As such, they are governed by another law, namely the law of absolute spontaneity (transcendental freedom). In this essential aspect noumena (and therefore noumena as such) can never be given in sensibility—only the effects thereof which appear can be so given. They stand forever apart from sensibility (objects have to be objects of nature to be given as such in sensibility): this means that noumena belong to a supersensible realm beyond nature. There is, therefore, a gap between noumena (outside of nature) and appearances (even though noumena can be the effective cause behind certain appearances). Kant again refers to this gap between the realms of nature and freedom in the Third Critique (KdU 5:175) (which I understand as the gap between systemic nature and the noumenal realm). We can put it differently: it is not merely that noumena are governed by a different law (absolute spontaneity); noumena can also never be part of the community of objects in accordance with the third analogy. Objects have to be in causal relation with each other to be part of the community of objects which at any time coexist. As Kant puts it:
[T]he light, which plays between our eye and the celestial bodies, produces a... community between us and them and thereby shows us that they coexist. (A213/B260)

We cannot even become aware of the coexistence of noumena because their mode of existence does not stand in a community with our mode of existence. As such noumena are supersensible and forever outside the possible reach of our type of sensibility. Whereas we are directly aware that appearances of the objects of the senses are real and as such are grounded by the transcendental object (although we cannot know anything thereof), we cannot even become aware of noumena at all.

From this it follows that noumena are *not* the “ground” of appearances in the same sense as is the transcendental object; although they would have to be thought in conformity with the empirical character, *just as* in general we must ground appearances in thought through a transcendental object. (A540/B568, my italics)

Instead, noumena are the conceivable spontaneous cause of certain appearances as Kant says:

> Of it [a noumenon] one could say quite correctly that it begins its effects in the sensible world **from itself**, without its action beginning **in it** itself [i.e., the effect does not originate within the framework of the world of sense as a new beginning in time]. (A541/B569, boldfacing in the original)

Although noumena may cause appearances, they stand apart from such appearances and can therefore not be the direct ground of appearances in the sense of the transcendental object. In my view Kant differentiates between the transcendental object and noumena, ascribing the *transcendental object to nature* (where mechanism rules and absolute spontaneity is excluded) and noumena to the *realm outside nature* (where transcendental freedom becomes possible). Since these concepts are mutually exclusive they cannot be collapsed into each other. In my view, it is exactly this difference that allows the necessary space to accommodate transcendental freedom as the principle governing the noumenal realm. The problem with the (traditional) two-object view is that the transcendental object and noumena are collapsed into one conception which is taken as referring to everyday objects outside our perception of them (which belong to nature!), in which case it is difficult to see how freedom can be saved.

2.4.3 Epistemic intelligibilia

We have now seen that the concept of noumena belongs to the space between noumena in the positive sense (too strong a concept) and the transcendental object (too weak a concept). We can, however, delineate the conception of noumena even more precisely by considering things as they are in themselves in more detail. Although things in themselves are forever outside the *possibility* of experience, this can be taken in various possible senses, for example, as discussed above, as the transcendental ground of ordinary objects in their existence outside the conditions of experience (i.e., the transcendental object). This is, however, not what Kant means by noumena.

Things in themselves can also be outside the possibility of experience in two other senses as determined by the third antinomy: in their constitution as belonging to the totality of causal relations in nature (mechanism) and as being outside nature in the realm of freedom (A533/B561). As mentioned before (section 2.4.1), Kant extends the transcendental and empirical use of reason in the thesis and anti-thesis positions of the third antinomy to the intelligible and sensible worlds, where the last is taken as “nature”. As such the unconditioned can be ascribed either to nature or the realm of freedom, but always outside the possibility of our cognition of it, not even in the progress of experience (A483/B512 and A493/B521).
In the antithesis position the unconditioned incorporates the absolute totality of all causal interactions in nature (mechanism), which we think to be real, but which can also never be brought as such into experience (i.e., as an infinite magnitude of causal relations, for only finite magnitudes can be given in our cognition: see B383). This absolute totality of causal relations is accessible only to a God's eye view.

Although Kant never develops the idea of the unconditioned in the framework of nature any further in the First Critique, one may allow that he included this within the framework of the "something actual" in things in themselves (i.e., that we can think that such an absolute totality of causal relations really exists) which he mentioned in the preface to the second edition (Bxx). As such he says that the unconditioned can be present in things in themselves:

the unconditioned must not be present in things insofar as we are acquainted with them (insofar as they are given to us), but rather in things insofar as we are not acquainted with them, as things in themselves. (Bxxi, my italics)

The unconditioned is present in things as they are in themselves, outside our cognition of them.

The relations of ordinary objects of experience, insofar as they are given as appearances in sensibility, adheres to the principle of causality, but insofar as they (as objects of our thoughts) belong to nature, they are governed by the general mechanical laws of nature. As such, the relations of appearances are thought to be part of the unconditioned totality of causal relations (mechanism) in the framework of nature which includes an aspect that stands forever outside sensible conditions, i.e., that belongs to things as they are in themselves. In this case, we form a positive conception of something real in the framework of things in themselves which goes beyond the empty concept of the transcendental object, which also has reference to objects of the senses in their existence outside our sensibility in nature.

These unknowable aspects in things in themselves stand within the framework of the concept of nature (I am considering only the antithesis position). As such it does not involve another mode of existence than that governed by mechanism. This means that it involves no more than an epistemic aspect of things in themselves (an ontologically different aspect would require a different mode of existence). The interesting thing about such aspects of things is that, since they cannot appear in sensibility, they can also not be presented in space and time which are the conditions of sensibility (being outside space and time is often taken to imply an ontological difference, but this is not the case with the Kantian conception).

Although these unknowable aspects remind us of Kant's conception of noumena as being outside space and time, Kant never relates this to noumena. The reason is simple: For Kant the anti-thesis position (in which this possibility appears) involves one mode of existence (the concept of nature) whereas the thesis-position allows for another mode of existence (i.e., noumena) outside nature. Although Kant merely mentions this unknowable aspect of things in themselves (i.e., the unconditioned in them) in the First Critique (as discussed above), it nonetheless forms part of his philosophy.

We can, therefore, include such genuinely unknowable aspects in a positive conception of the objects of nature outside our perception of them. I call such aspects in our conception of objects in themselves epistemic intelligibilia. Although Allais (2004) also thinks that Kant allows for something genuinely unknown in the framework of the causal structure of nature (and shows how we can viably conceive that), she does not relate it to the unconditioned in Kant’s philosophy and also does not present it as a clearly delineated formal aspect within the framework of the concept of things in themselves.

This is, however, not what Kant means by noumena in his discussion of the third antinomy. Working from the thesis-position, Kant assigns noumena to a transcendent intelligible world outside nature which in the mathematical antinomies were left empty (a mere
Noumena are placed outside nature and as such, they do not fall under the conditions that regulate phenomena, namely space and time, as well as the laws of nature in accordance with mechanism.

The reason why noumena and the noumenal world are outside space and time, is that they belong to a totally different mode of existence outside nature. As such, a different ontology belongs to that world. Only when noumena are conceptualized in these terms would transcendental freedom become conceptually conceivable and can we think that totally different laws govern the noumenal world, namely that of absolute freedom. This is why Kant can distinguish the two worlds as that of nature and freedom (A541/B569, etc.).

Even if it were possible, for argument's sake, that the whole of nature “be revealed to us”, and that we would therefore somehow gain knowledge of epistemic intelligibilia, for which a faculty of cognition different “in degree” from ours would be needed, i.e., to cognize the infinite totality of causal relations in nature (the unconditioned), it would still not be possible to know anything about the realm outside nature, for which a faculty different “in intuition and kind” would be needed. In his discussion of these things, Kant writes:

For they [who think we can know the inner in things] would have us to be able to cognize things, thus intuit them, even without senses, consequently they would have it that we have a faculty of cognition entirely distinct from the human not merely in degree but even in intuition... Observation and analysis of the appearances penetrate into what is inner in nature, and one cannot know how far this will go in time [in the progress of experience]. Those transcendental questions, however, that go beyond nature, we will never be able to answer, even if all of nature is revealed to us... (A279/B334, italics mine)

The question arises: can we not, in some manner, also include epistemic intelligibilia within the Kantian conception of noumena? (That is, whether the concept of noumena might somehow accommodate mechanism). In my view there are at least three reasons for not doing so:

(1) Kant presents noumena as a different kind of existence than nature to which epistemic intelligibilia belong (A420/B448),

(2) I have shown that noumena and the transcendental object are mutually exclusive concepts, which means that noumena exclude epistemic intelligibilia (since epistemic intelligibilia are merely a positive conception of the transcendental ground of objects), and

(3) in a historic context, the Kantian concept of noumena is modeled on Leibniz’s monads, which belong to another realm of existence outside that of the phenomenal realm (see below, and also Cicovacki 2010:85 and Friedman 2010:243).

2.4.4 The twofold nature of things in themselves

I have now distinguished between three concepts within the broader concept of things as they are considered in themselves, namely the transcendental object, epistemic intelligibilia and noumena. Since epistemic intelligibilia is merely a positive conception of the transcendental ground of objects which are thought to belong to nature, it collapses into the transcendental object when the concept is taken as empty since that concept also concerns the objects of nature (but only without any positive conceptualization thereof). This means that things in themselves have a twofold structure consisting of epistemic intelligibilia and noumena as positive conceptions which belong to the realm of nature and the realm of freedom respectively (in Kant’s view these realms are mutually exclusive, ruled by irreconcilable principles).

Both epistemic intelligibilia and noumena can conceivably include genuinely unknowable aspects of objects, outside time and space. Epistemic intelligibilia (and the
transcendental object) would belong to an intelligible realm (a mere intelligible realm in the case of the transcendental object) which has only epistemological significance. Insofar as epistemic intelligibilia may, however, be considered as ultimately knowable (which may have been Kant’s view; see A279/B334), things in themselves as that which are truly unknowable would reduce to noumena (B310). This would also be the case insofar as things in themselves are the substratum from which phenomena could be spontaneously produced (A400). (In the Third Critique Kant allows that even the totality of nature can be so produced; see KdU 5:381, 388, 409, etc.; and see also chapter 3 below). In contrast with epistemic intelligibilia, noumena also have ontological significance in the context of Kant’s Critical metaphysics.

Since Kant never develops the concept of epistemic intelligibilia as such in the First Critique, we can simplify matters by collapsing it into the transcendental object. The twofold structure of things in themselves would then include the transcendental object and noumena. This twofold structure is observable, for example, when Kant says that the

intelligible character [i.e., noumenon] could of course, never be known immediately... but it would have to be thought in conformity with the empirical character, just as in general we must ground appearances in thought through a transcendental object. (A540/B568, my italics).

This twofold structure goes far beyond Kant's concept of things in themselves; it permeates Kant's philosophy and captures the exposition of his epistemology in the Transcendental Analytic as well as his Critical metaphysics (especially regarding the conceivability of transcendental freedom) in the Transcendental Dialectic. Although Kant often refers to things in themselves within the context of any one of these aspects, his general position includes both.

Although the concept of things in themselves in a general sense, therefore, refers to things outside the conditions of sensibility, in a more specific sense it involves a twofold structure as the ground of appearances, namely the mere transcendental ground (the transcendental object) of ordinary objects, as well as the noumenal ground, which includes objects of the understanding existing outside nature that can serve as the absolute spontaneous cause of appearances (both kinds of appearances can, in fact, be included in the wider concept of a “transcendental ground” [A539/B567]).

2.4.5 Two kinds of appearances

This twofold structure in the concept of things in themselves that characterizes my interpretation can be further illuminated through Kant's conception of the object. The Kantian conception of the object involves the unity of the synthesis of all appearances in accordance with the concept of an object in which they are necessarily connected (A108). Although Kant sometimes uses the concept of an appearance to refer to an object as given in intuition (A109), he also uses this concept to refer to the various representations of such an object which are synthesized together under the concept of an object (A108).

In the second sense, appearances can have two origins: they can be the mere appearances of the everyday objects of cognition or they can be appearances caused by noumena. Insofar as they are caused by noumena, they are the effects originating with the intelligible character (noumenal ground or substratum) of an object of sense, i.e., of a noumenon, which “begins its effects in the sensible world [as appearances] from itself, without its action beginning in itself [i.e., outside nature and therefore space/time]” (A538/B566; see also A541/B569). Once they “appear”, however, they are appearances similar to the appearances of everyday objects.

Such appearances (i.e., according to the second case), which would be part of the empirical character of an object (i.e., taken together with other appearances as belonging to the
same empirical object), would be caused by noumena situated outside nature and therefore outside space and time. We therefore find that two kinds of appearances can be ascribed to objects, namely those which are directly perceived appearances of the everyday objects of the senses, and those which are caused by noumena, which are not objects that appear but merely objects of the understanding, of which only the effects (of this spontaneous causality) appear.

In this interpretation, I accept that objects have various layers of appearance that are discovered in the progress of science which could include appearances of both kinds. As such it is possible that their different origin would be reflected in their properties, which would presumably in some manner be distinguishable from each other. All properties of objects are predicates, that is, conceptualized appearances, of objects (B149 and A250; see also Guyer 1987:125 and 163). The properties would therefore merely reflect the kinds of appearances.

As such, the properties associated with those appearances that are the effects of noumena which exist outside nature (space/time) would reflect this ontologically distinct noumenal ground. Since their objects (behind the appearances) are very different from the normal objects of the senses, this difference would be reflected in these properties (Kant never mentions this but it follows from my analysis). If this is so, this difference can be discovered in the progress of experiment which would present at least indirect evidence for the existence of the noumenal realm. Since this discussion takes us beyond Kant's own conceptualization, I do not pursue it further here.

2.4.6 The noumenal realm as substratum of nature

The conception of the noumenal realm that I present above may be taken to be the substratum of nature in the same manner that Kant conceptualizes it in the Third Critique. Kant says: “I distinguish the substratum (the thing itself) from that which merely depends on it” (A400). Although Kant does not develop this idea any further in the First Critique, he does so in the Second Critique and, especially, in the Third Critique. Since Kant views the noumenal realm already in the First Critique as having a possible existence outside nature, but at the same time as having effects within the sphere of nature, it seems quite possible that he viewed that realm already in the First Critique as the substratum of nature.

As I discuss above (section 2.4.2), Kant’s conception of noumena entails that we allow for the existence of two ontologically different types of objects, namely those of the senses (which belong to nature) and those that we can merely think to exist (which belong to a realm outside nature, namely noumena; A250; A253). As belonging to the noumenal realm, noumena are not merely ordinary things considered as they are in themselves outside the conditions of sensibility; they also involve another mode of existence which includes an ontologically different type of entities which can never become objects of the senses; they would be objects for another form of intuition than our own. Although we cannot confirm (know) that such entities exist, we can problematically allow for their existence since there is nothing contradictory in thinking them.

At this point it is important to remember that Kant's conception of noumena is modeled on Leibniz’s monads, the fundamental building blocks of the world—going beyond the physical monads or elementary parts of matter of Kant's earlier days, to conceptualize noumena as non-material entities (Cicovacki 2010:85 and Friedman 2010:243). In a very enlightening passage in the *Metaphysical Foundations of Natural Science*, written during the height of his Critical period (1786), Kant gives a charitable interpretation of Leibniz which is in agreement with his own view:

> [Monadology] is rather an intrinsically correct Platonic concept of the world devised by Leibniz, insofar as it is considered, not at all as the object of the senses, but as a thing in itself, and is merely an object of the understanding, which, however, does indeed underlie the
appearance of the senses. Now the composite of things in themselves must certainly consist of the simple, for the parts must here be given prior to all composition. But the composite in the appearance does not consist of the simple, because in the appearance, which can never be given otherwise than as composed (extended), the parts can only be given through division, and thus not prior to the composite, but only in it.

Therefore, Leibniz’s idea, so far as I comprehend it, was not to explicate space through the order of simple beings next to one another, but was rather to set this order alongside space as corresponding to it, but as belonging to a mere intelligible world (unknown to us). Thus he asserts nothing but what has been shown elsewhere [i.e., in Kant’s own writings]: namely, that space, together with the matter of which it is the form, does not contain the world of things in themselves, but only their appearance, and is itself only the form of our outer sensible intuition (MAN 4:507-508).

He repeats this interpretation in On a Discovery (1790) where he identifies Leibniz’s monads with his noumena; this differs from his interpretation of Leibniz in the Amphiboly section of the First Critique (Langton 1998:198). In any case, from the quotation directly above, it is clear that Kant, during his Critical period, regarded the noumenal realm as an ontologically distinct mode of existence, which forms the substratum of nature as a whole. As such, this substratum is viewed in a certain sense as the fundamental level of existence. It’s basic (albeit non-extensive) building blocks, namely non-material simples, may on their turn belong to composites in the noumenal realm itself. Although this view about the noumenal realm is never explicitly spelled out in any detail in the First Critique, everything that Kant says in that Critique is in accordance with such a view.

It is possible that Kant had these “simple beings” in mind when he wrote the following (see also section 2.4.2.): “[t]here may even be beings of the understanding to which our sensible faculty of intuition has no relation at all” (B309; see also B306). In his own copy of the first edition of the First Critique he actually made a note at the beginning of the chapter on phenomena and noumena in general, where he wrote: ‘noumena: beings that themselves have understanding” (Kant 1998:339), which was part of the general concept of Leibniz’s monads. This does not mean that this was Kant’s own view (or considered opinion) regarding noumena (although Kant does, in fact, think that the soul, or thinking I, is intrinsically similar to noumena; see A360), but confirms that his idea of noumena was derived from monads and that Kant’s “beings of the understanding” (B306/B309) have a distant relation to monads as existing outside ordinary space/time.

According to the quotation from the Metaphysical Foundations given above, Kant believed that Leibniz was right to not ascribe space to the realm of simple beings, but ‘rather to set this order alongside space as corresponding to it’. This implies that, although that realm is not in space, it would have some structure “corresponding” to space. Kant seems to have the same idea in the First Critique when he allows that we ascribe “ideal space” to things in themselves through reason:

Our expositions accordingly teach the reality (i.e., objective validity) of space... but at the same time the ideality of space in regard to things when they are considered in themselves through reason. (A28/B44, my italics)

Thereafter Kant also mentions the “transcendental ideality” of space which refers to the mind-dependency of space as a condition for the possibility of all experience. This passage shows that Kant allows us to ascribe some ideal space-structure which we can construct through reason to “things in themselves”. The difference between space and ideal space would be that the first is an ability for and condition of experience whereas the second is merely some
conceptual space (or: space-time or space/time) structure or manifold which we can think through reason. We can think of ideal space as the space-structure/manifold which reflects the form of objects/entities as they are in themselves (even without trying to construct ideal space in practice) in the same way that empirical space reflects the real form of appearances (A431/B459; see also Appendix 1) to which Kant also refers in the above quotation: “space, together with the matter of which it is the form”.

Ideal space can obviously refer to any spatial concept that we can construct through reason. In accordance with the two-fold structure of things in themselves, we can apply such mathematical (geometrical) structures both to the everyday objects (as they “really” are) outside our cognition of them, as well as to the noumenal world outside nature and outside space/time (Kant, however, never makes this explicit). Ideal space can refer to some geometrical form (i.e., conception) that is applied to ordinary space (B147; see also A29, A57/B81, and Appendix 1) or some abstract mathematical form that has reference to our conception of noumena. Since noumena cannot be presented in ordinary space/time, we would not be able to imagine (visualize) such mathematical space/time (or: space-time) forms (this takes us beyond the mathematics of Kant's time but is consistent with his position). (I do not include Kant's ideas about ideal space in the *Opus postumum* in the discussion because that falls outside his Critical period).

At this point, I am in a position to make a proposal as to the origin of Kant's twofold structure of the concept of things in themselves, which includes both the transcendental object and noumena. The concept of the transcendental object is a direct result of Kant's Copernican turn. When we view the same objects from two perspectives, as they are given in appearances and as they are outside that, the concept of things as they are in themselves is necessarily introduced. But this concept applies to everyday objects of the senses.

The concept of noumena, on the other hand, is introduced into the concept of things in themselves along a different track: to allow for the conceivable possibility of freedom. Here Kant uses the age-old distinction between phenomena and intelligibilia (or phenomenal and intelligible realms) going back to Plato but reworked by Leibniz into the appearances of the senses and monads. Since the phenomenal and intelligible realms stand apart from each other, the last is a suitable candidate for Kant's realm of freedom. As is the case with the transcendental object, this conception of noumena as belonging to a realm of freedom is original to Kant's philosophy.

Although Kant focuses on the limits of cognition in the First *Critique* and makes the important point that we can never gain access to the noumenal realm because of the restrictions to our kind of sensibility, I have argued (I hope convincingly) that he allows us to think its existence, as well as the existence of entities particular to it, although only problematically. As such this realm is a condition for the conceivable possibility of freedom; without it, we cannot conceive how such freedom would be realistically possible in the context of Kantian Critical metaphysics.

We can even say that the noumenal realm is a condition for the possibility of transcendental freedom according to which noumena would ground an absolute spontaneous causality to produce outcomes in nature (such a realm outside the mechanism of nature is necessary for this to be possible). Kant's arguments regarding the conceivable possibility of freedom lead to this conceptualization of the noumenal realm.

2.5 An Alternative Interpretation of Kant’s Philosophy

We can now reconsider the well-known interpretations of Kant’s philosophy in the light of the discussion above. I do not discuss them in detail; I merely focus on these views insofar as noumena (and the related concepts) are concerned. In my opinion, the main problem in Kantian interpretation is his broad conception of things in themselves, which can refer to or include the
transcendental object, epistemic intelligibilia as well as noumena (see section 2.4.3 above). The different views take different conceptions of things in themselves as their point of departure.

1. The (traditional) two-object (two-world) view accepts that things in themselves refer to ordinary objects as they 'really' exist outside our sensible (mental) reach. As such these are taken as the transcendental ground of appearances (i.e., transcendental object). When things in themselves are then taken as noumena (according to Kant's statement that noumena are things in themselves; see B310), the transcendental object is effectively equated with the concept of noumena.

In this view, Kant's statements that noumena are outside space and time are taken seriously (Guyer 1987:333), which is taken to mean that noumena are ontologically distinct from appearances. From this, it follows that the transcendental object (equated with noumena) gains an ontological status. The result is that Kant is taken to say that the everyday objects of cognition, viewed outside the confines of the mind, are in fact ontologically distinct objects (outside space and time) from the appearances of objects in the mind which are presented within the sensible forms of space and time (Guyer 1987:335). In this way two types of objects are ascribed to two different worlds, namely that of our mind and that outside our mind in the 'real' world. (This can be done in a variety of ways, but I do not discuss these further since it has no bearing on my main argument; for a discussion, see Allais 2004:657.)

In the context of our discussion, the most important problem with this view is that the transcendental object is effectively equated with noumena whereas the first belongs to nature (where mechanism rules) and the second to a realm outside nature (where transcendental freedom rules). These are, however, mutually exclusive for Kant. Although the transcendental object is outside space and time insofar as our perception is concerned, it cannot incorporate absolute spontaneity since it belongs to nature which is (by definition) mechanistically connected. Kant explicitly says that these concepts should not be equated (A253; see also section 2.4.2). Furthermore, an ontological value is ascribed to the transcendental object, which in fact has no value at all (it is merely an empty concept).

The result is the very unintuitive claim that the everyday objects and events of our senses, considered outside our mind, are really outside space and time. Although such objects exist independently of our space/time intuitions of them, the real magnitudes and relations between those objects (i.e., the real order in the world) are in fact reflected in empirical space (see Appendix 1 and A431/B459). It is therefore not sensible to say that ordinary objects are outside space/time and to ascribe freedom to them (they belong to nature).

2. The epistemic two-aspect (one-world) view also takes things in themselves as the transcendental ground of appearances, now considered as outside the conditions of sensibility. When things in themselves are then taken as noumena, the concept of the transcendental object is again equated with the concept of noumena (see, for example, Allison 2004:59). This view considers noumena to be merely outside the conditions of space and time. As such this view reduces the difference between ordinary objects considered as appearances and as things in themselves, to a mere epistemic difference (“two ways of considering things”; see Allison 2004:16). In this manner, all “metaphysical claims” are removed and a mere methodological approach is followed.

For my purposes here, the most important problem underlying this view is again that the transcendental object is equated with noumena. Now a mere epistemic value is ascribed to the transcendental object, which as mentioned before, should have no value at all (it is merely an empty concept), and with it, to the concept of noumena which is now also considered as a mere empty concept. This ascription of value is grounded on the false assumption that a positive conception of noumena is also a conception of noumena in the positive sense (see section 2.4.1 and Allison 2004:63). In doing so, Kant's elaborate positive conception of noumena which serves an important goal, namely to make the conception of transcendental
freedom conceivable in the context of his Critical metaphysics, is undone. As such, this view has given the wrong impression that epistemic and ontological approaches to Kant stand in opposition to each other—whereas my approach (as well as that of others) shows how they can be fruitfully reconciled.

Although this view appreciates the importance of Kant’s first two moves, it effectively misses the essence of his third move which is to establish the conceivability of freedom. When Kant’s noumenal world is collapsed into the mere transcendental ground of phenomena, it becomes difficult to see how freedom can “be saved” as something that can conceivably be assumed. Without noumena, conceptualized as objects situated outside nature and therefore outside space/time (not merely the conditions of space and time) and the mechanical laws of nature, Kant’s conception of transcendental freedom loses its conceivability. The result is that Kant’s concept of freedom is reduced to a mere logical possibility (which is then considered to be the only viable alternative to the unacceptable assertion of the reality of freedom; see Allison 2012:112).

3. The last view that I consider is the noumenal properties two-aspect (one world) view which appreciates the fact that things in themselves have a broad meaning which could include both epistemic and ontological aspects (where ontological is taken to mean not only outside the conditions of sensibility but really “outside space/time”). This view takes things in themselves as including something more than the mere transcendental ground of appearances; it can also include distinct noumenal “properties”. In this regard, Ameriks (1992:334) writes that Kant held that “there are objects which in themselves have genuine ultimate properties that do not conform to those [sensible] conditions”. In doing so, this view takes the best from the epistemic two-aspect view and adds what they take as an ontological aspect to it.

Kant is, however, making a stronger claim than merely that some intrinsic properties of objects can be beyond sensible reach (or that the labels “phenomena” and “noumena” refer merely to different classes of properties; see Langton 1998:13). Although the idea of complementing the phenomenal properties of things with distinct ‘intrinsic’ properties (or: complementing relational properties with intrinsic properties; see Langton 1998) captures something of Kant's ontological thrust, it does not serve the purpose that Kant has in mind with his conception of noumena, namely to make freedom conceivable. Although we can complement phenomenal properties, which are conceptualized appearances of objects, with unknowable properties which would be mere intelligible representations, as long as such representations are ascribed to the objects of nature, freedom cannot be saved and this view would not capture Kant's reason for introducing noumena in the First Critique.

All sensible or intelligible properties must obviously be ascribed to some object, which can either be an object for the senses, i.e. belong to the mode of existence that we associate with nature or noumena, which belong to another mode of existence that we associate with the realm of freedom (these are mutually exclusive for Kant). Since this view only recognizes noumenal properties, but not noumena as entities of a different kind, the “intrinsic” properties can only be that of the objects of the senses. One can understand this to mean that such properties belong within the framework of an object's causal powers, although as “something genuinely unknown” (Allais 2004:678). As such they would belong to things considered as they are in themselves as epistemic intelligibilia.

Although such intrinsic properties can in some sense be outside space and time (they are not perceivable in space/time), they nonetheless belong to nature. The mode of existence to which the objects of nature belong, however, does not allow for the conceivability or even the possibility of freedom (the solution to the third antinomy requires that such existence must be outside nature and its laws of mechanism; see section 2.4.1.). As long as we stay with the transcendental object or epistemic intelligibilia we cannot accommodate the Kantian conception of freedom.
But is it not possible to think that objects of the senses could in themselves have “intrinsic properties” which stand outside the causal structure of nature? This is what Langton (1998) proposes. She relates these properties to monads in accordance with Kant’s charitable interpretation of Leibniz and says they “cannot be given, as they are in themselves, to creatures whose sensibility is passive” (Langton 1998:202; see also section 2.4.6). Although we can certainly view such properties as “intrinsic” properties of objects of the senses in the sense that they belong to the substratum of such objects, they can only be real if they at the same time belong to something which exists in that substratum (see above; they must belong to some object or entity). How can there be “intrinsic” properties if nothing exists in that realm outside nature and how can something exist if it would not be some type of entity like monads or noumena? And when we allow for such entities we have a two-object view.

I suggest that the only solution to the problem of freedom in Kantian philosophy lies in the acceptance of his two-object view in some manner. I think any reader of Kant has to accept that his Critical philosophy does indeed include references to two kinds of objects and even two “worlds” as I discussed in some detail above (B306; B312). To the contemporary mind this may be difficult to accept if one thinks of noumena as ‘objects’ in the classical sense – but being beyond our sense perception they can obviously not be more than abstract objects (for us). Since we cannot know anything about them, we may choose to be absolutely agnostic about them. This is the approach of Hanna (2006). In his Two Concept or Two Property Theory, he accepts that Kant thinks in terms of two objects/worlds (2006:422) but reworks that into a two properties view. In this respect, Hanna’s view is similar to mine, but he works within a post-Critical framework. He uses an extended concept of “nature” (called “manifest nature”, i.e., not the concept of systemic nature that I use throughout this essay) that accommodates the possibility of non-mechanistic properties. In contrast with Hanna’s radical agnosticism about noumena, I show how the Kantian conception of them within the context of his Critical metaphysics allows for freedom to be saved in a conceivable manner which enables me to present that as a hypothesis with application to quantum physics (see chapter 4).

4. My view is a coherent interpretation of Kant’s philosophy which does away with some of the major inconsistencies ascribed to him. Although my own view can be regarded as considering things from a twofold standpoint (as Kant says, Bxix n.), namely as things given as appearances in experience and as things in themselves of which we can only have ideas of pure reason, it is also a two-object view (as Kant also emphasizes) in that noumena, properly understood, would be ontologically distinct entities in such a noumenal realm that serves as substratum for objects of the senses. Although Kant describes this two-object perspective in terms of two “worlds” or realms, noumena are not objects of the senses and as such there is no contradiction in them belonging to one world in which two modes of existence co-exist (Noumena are “outside” systemic nature but not outside the totality of reality belonging to our world. In the third Critique Kant tries to bridge the gap between these two “worlds” and reconcile them in one world.)

I show that there need not be any conflict between the two-aspect and two-object perspectives. These are reconciled in one view when the broad conceptualization of things in themselves, as including the transcendental object, epistemic intelligibilia as well as noumena (properly conceptualized), is taken into account. This obviously does not include any discussion of the practical standpoint, which Kant develops to some extent in the First Critique as well as in the Second Critique.

In my view all three of Kant’s paradigmatic moves are taken seriously insofar as the concepts of things in themselves, the transcendental object and noumena are concerned. Although these concepts overlap, they belong to distinctly different aspects of Kant’s philosophy and as such, they should not be confused. It is only when we understand how these moves impact on the two lines of Kant’s thought, namely the transcendental and empirical, that
we are in a position to do right to his thinking. Only then can the conceivability of freedom be sufficiently established.

Freedom becomes conceivable in Kant's Critical metaphysics when we do not merely allow that objects can have properties outside space and time. For Kant being outside space means that we cannot visualize such appearances in any space-form. Being outside time can be taken as “timeless”, meaning that they do not change with time (adhering to our conception of time), or as a-temporal, meaning that they are not in our time. A mere negative statement about objects or properties (i.e., that they are outside space/time) is consistent with the logical possibility of freedom but does not say how freedom could conceivably exist. For that, we need some positive statement (as Kant does), namely that freedom is conceivable if a certain kind of entities, i.e., *noumena*, *exist outside nature* (i.e., outside mechanism, which belongs to the concept of nature) and *therefore* also outside of space and time.

A distinct noumenal ontology would necessarily be accompanied by a corresponding (ideal) space/time conception which can be thought through reason (A28/B44; see also section 2.4.6.). Although Kant never discusses ideal space in any detail in the First Critique, a possible answer as to how we should conceive of it suggests itself in the framework of his Critical philosophy, namely that ideal space should be regarded in exactly the same manner as empirical space, i.e. as the structural form of objects or entities (see Appendix 1). Since we need not restrict the Kantian concept of ideal space in this regard, we can also apply it to noumena even though they exist outside our space and time. Insofar as noumena are concerned, one may merely say that ideal space would reflect the “form” of the entities belonging to the noumenal realm.

One can then say that the *noumenal realm is outside space/time because the structure of its entities is such that it cannot be brought into space/time (only its effects can); it adheres to another (abstract) space-time form which is inaccessible to our sensibility. Although we cannot say that freedom rather than causality would necessarily belong to such a realm outside nature, it is surely conceivable that such a realm could operate in accordance with this principle. An important outcome of this interpretation is that the traditional problem of the “timeless self” is resolved, i.e., the self is not merely outside space/time, it belongs to a different space-time manifold (as such we can easily conceptualize it).

Regarding Kant’s noumenal realm, I can summarize Kant’s idea of it as follows. Kant conceptualizes that realm in a positive sense as filling the void outside nature in such a manner that it underlies (or grounds) nature. He thinks that the freedom that we ascribe to ourselves as rational and moral agents can only realistically be assumed to be actual (even if we cannot prove it) if there is a supersensible realm in which transcendental freedom, which underlies practical freedom and makes it possible, has its ground. The reason for assuming such a realm, outside ordinary space and time, is that freedom cannot be ascribed to the world of objects in space and time, where causality rules according to the second analogy (or by extension to nature, where mechanism rules). At the same time, such an absolute spontaneous causality would have effects in the phenomenal world when actions are taken in this world. Regarding the interaction between these realms of nature and freedom, Kant returns to that in the Third Critique.

The Kantian view involves a positive but Critical metaphysics of the noumenal realm which is ultimately based on (and argued from) human freedom of choice. Although it shows that transcendental freedom, which for Kant underlies practical freedom, is conceivable, it does not prove even the real possibility of such freedom (A558/B586). To show this, one has to show that the conditions for the possibility of transcendental freedom are satisfied. These—as well as the reality of such freedom—would require some kind of empirical confirmation. Kant, however, excluded that possibility for the simple reason that noumena are only accessible to an intuition other than our own.
In the reconsideration of Kant's noumenal realm, I have taken the path that has until now been implicitly or explicitly rejected in all interpretations, namely that we can understand Kant's noumenal realm, as presented in the *Critique of Pure Reason*, as an ontologically distinct realm, different from nature. It is not only in Kant’s moral philosophy or his theory of taste or teleology that the noumenal realm is taken as the substratum of nature; it is also the best way to understand the First *Critique*. As such, in my alternative interpretation both Kant's views, namely that his philosophy allows us to take two viewpoints on things, but also considering them in the context of two worlds (and therefore as “two objects”), are reconciled.

Kant rejects any possibility of knowledge regarding the noumenal realm, and with it all efforts to establish a “proud ontology”, but at the same time he has a positive inclination towards metaphysics as long as it is used in a legitimate manner. As such he moves to establish a legitimate but nuanced space between the dogmatic acceptance or rejection of metaphysics – in accordance with the regulative or hypothetical use of reason, where things such as noumena are problematically assumed. One can say that his positive conception of the noumenal realm constitutes exactly such a Critical metaphysics. Kant cannot see any problem in establishing such a metaphysics on reasonable grounds, as long as it is problematically assumed. Although some think that such metaphysics should not involve ontological distinctions (see Bitbol 2008:60), I showed that Kant’s conception of the noumenal realm does, in fact, involves a difference in the kind of existence (A420/B448).

Although the conceptual structures which are developed in the sciences can serve as regulative ideas guiding research in the progress of experience (and experiment), the noumenal realm as such cannot in Kant’s view ever be empirically tested accordingly. Only practical reason can provide the grounds for the metaphysics of the noumenal realm. In the Third *Critique*, however, Kant introduces new tools through which new avenues are opened.

Among these is another kind of judgment, namely reflective judgment, which is necessary to explore the question of how the gap between the realms of nature and freedom may be bridged in his Critical (reflective) metaphysics (Guyer 2000: xivi and EEKU 20:247). I engage with this and other related issues in the next chapter.

3. The Noumenal Realm in Kant’s Philosophy of Science

In this chapter, I present a new reading of Kant’s philosophy of science in the Critique of the Power of Judgment. I show that Kant's conception of the noumenal realm, now called the supersensible realm, is essential to the concepts that he develops in this part of his philosophy of science. As such this realm should not be ignored; it actually gives a certain advantage to Kant's conceptual framework in the context of the current scientific debate. I argue that Kant argues that at least some products of nature may conceivably be produced non-mechanistically if a supersensible realm, as well as a different kind of effective causality, exist. Such a causality would involve a potentiality that non-extended wholes-and-parts (in the supersensible realm) have to produce material parts and aggregated wholes in nature. As such this causality builds upon the transcendental idea of freedom introduced in the First Critique.

3.1 Introduction

The noumenal realm plays an important role in Kant's philosophy. Kant introduces it as a central aspect of his Critical philosophy in the *Critique of Pure Reason* and makes extensive use of it in his moral philosophy in the *Critique of Practical Reason* and elsewhere. It also features prominently in his philosophy of science as presented in the *Critique of the Power of Judgment*. This last aspect is not very well known, and due to the close association of the noumenal realm with Kant's moral philosophy, interpreters often tie it exclusively with that aspect of his philosophy. Scientifically minded contemporary interpreters who engage on a
more substantial level with the Third Critique, typically try to minimize the role of the noumenal realm in this regard, mostly due to those associations.

Kant’s philosophy of science is, for the most part, appreciated for its important contribution in laying the philosophical foundations of Newtonian science. Kant’s epistemology, as presented in the First Critique, explained how actual mathematical physics, and especially Newton’s mathematical physics, is possible in the first place (Friedman 2001:10). Kant used the conceptual framework developed in the First Critique as the basis for the formulation of his philosophy of science in the Metaphysical Foundations of Natural Science. In more recent times, modified versions of Kantian scientific epistemology have been developed in which his a priori constitutive principles have been reworked into dynamic and relativized principles consistent with contemporary scientific theory (see Friedman 2001:31, 47; Ryckman 2010; and Bitbol 2007:240-241, 2008:62). It is generally accepted that the noumenal realm has no place in this part of Kant’s philosophy of science.

This, however, is not the full extent of Kant’s philosophy of science. In the Third Critique, and more especially in the Introductions (both the published and unpublished versions) as well as the second part, the Critique of the Teleological Power of Judgment, Kant is concerned with more general questions in science (again building on the foundations laid in the First Critique, especially the Transcendental Dialectic). In this regard, interpreters accentuate concept formulation and hypothesis development in empirical research (McLaughlin 1990:128) as well as the problem concerning underdetermination in scientific theories (Allison 2012:210). The Third Critique has also been understood as having special application to the life sciences (although Kant’s main concern there is with biology), and it holds out the possibility that both the physical and life sciences can be comprehended in a common meta-framework (Friedman 2001:126).

The Third Critique is primarily concerned with purposiveness (teleology) in science. In this regard, Kant is not arguing for the traditional teleologies (and thus for Aristotelian science; Guyer 2010:433). Kant instead argues that, at a basic level, purposiveness has a necessary place in science. Scientists have no choice but to accept the general purposiveness of nature as a heuristic principle (KdU 5:411), namely that nature (and its products) is treated as if it is designed even though only mechanistic explanations would eventually be available (KdU 5:413). All general laws of nature, which purport to describe the whole of nature as an ordered system (in contrast to mere empirical laws which describe particular phenomena), are grounded in this principle of purposiveness. As such this principle guides science as a research programme.

One of the most important questions with which I am concerned in this chapter is: How does the noumenal realm fit into Kant’s teleological approach? Scientifically inclined authors, in general, do not think that it is important for Kant’s main argument. They view the concept of purposiveness that I described above (and the other related concepts) as the full extent of Kant’s contribution in the Third Critique. For them, purposiveness is merely a scientific guideline which does not imply that any product of nature could, in fact, be produced in accordance with a teleological principle (see Butts 1990 and Ginsborg 2010, etc.). Since the noumenal realm is not important to this aspect of Kant’s theory, they can effectively discard it. Since they think that the noumenal realm is a remnant of outdated modes of thinking, they try to remove it from this part of Kant’s philosophy of science (or at least minimize its role; see O’Shea 2010:525 and Butts 1990:13).

There is, however, another viable way to interpret Kant’s teleology that does not reject the supersensible realm out of hand. In this case, the general transcendental principle of purposiveness is understood not merely as allowing for the conceptualization of nature as ordered; it also allows that two opposing principles, namely mechanism and teleology, could both be involved in producing the products of nature. In this case, these principles are taken as
deterministic and non-deterministic causes. In the framework of the antinomy introduced in this part of the Third Critique, Kant shows that both can logically be true even though this can never be empirically confirmed. Allison (1012:205), who is known for a methodological approach that strips Kant’s work of all metaphysics, accommodates both these principles as logical possibilities. As such the supersensible realm does not play a significant role in his analysis.

In my interpretation, I take a stronger position. I argue that Kant formulates a metaphysical position in which non-deterministic causality could be accommodated. This incorporates two important aspects, namely, first, the idea of a supersensible realm which serves as the substratum of nature and which is ontologically distinct from nature, as well as, second, a concept of teleology which takes the concept of transcendental freedom that Kant develops in the First Critique as basis. As such, my interpretation is a weak ontological reading of the Third Critique, not in the sense of a dogmatic (realist) assertion, but in arguing that Kant’s conceptualization captures his thinking as to what the world may hypothetically be like if some products of nature are produced non-mechanistically.

Insofar as this Kantian conception of teleology is concerned, I believe that this concept does not merely call upon Kant’s concept of practical freedom insofar as that serves as analogy in his conceptualization of the teleological principle as a “final” causality—that is, that Kant views this kind of causality in analogy to human achievement of goals. In my view, Kant’s remarks concerning freedom in the Third Critique should not be regarded exclusively in such practical terms as is often thought to be the case (see McLaughlin 1990 and Guyer 2010). Rather, in my view, Kant takes the transcendental idea of freedom, or absolute spontaneous causality, as the point of departure in his conceptualization of final causes.

In the Third Critique, Kant calls the spontaneous causality of the First Critique a “causality of freedom” and the “concept of a causality through freedom” (KdU 5:195-6). The difference with the First Critique is that whereas Kant previously applied this concept to noumena, he now applies it to non-extended wholes-and-parts in their role in producing the products of nature (this terminology does not imply specificity but reflects Kant’s regulative concept in this regard). To my knowledge no other interpreter mentions this use of the concept of freedom in the context of the Third Critique, which is, in my opinion, important to Kant's overall argument concerning final causes: the spontaneous potentiality that non-extended wholes-and-parts have in Kant’s conception of “final causes” is grounded in the absolute spontaneous causality that is first introduced in the First Critique.

In my view, Kant is not merely arguing for the logical possibility of final causes in opposition to mechanism in methodological terms (Allison 2012); he is arguing that such a cause can conceivably exist in the supersensible ground of nature. Kant thinks that the manner in which he conceptualizes final causality in the framework of his overall Critical metaphysics makes it conceivable that such a causality could, in fact, exist as an effective cause alongside mechanism in producing the products of nature. This is why the supersensible realm plays such a significant role in the scientific part of the Third Critique: it is only in an ontologically distinct realm outside nature (which is ruled by mechanism that is incompatible with absolute spontaneity) that such a “spontaneity of a cause” (KdU 5:411) can be conceived of.

Kant thinks that it is conceivable that at least some products of nature are produced non-mechanistically even though this can never be proven (empirically confirmed). As such there are two conditions that would make this possible in Kant's Critical metaphysics, namely

1. that the supersensible realm which is governed by the principle of transcendental freedom exists outside of nature, and
(2) that a different kind of causality (i.e., final causality) exists, which involves a spontaneous potentiality that non-extended wholes-and-parts have to produce outcomes in nature (see KdU 5:367).

In the Third Critique, these concepts of the supersensible realm and final causality go hand in hand in Kant’s metaphysical conception of the world.

In the final analysis, the main thrust of Kant’s philosophy of science in the Third Critique is that both determinism and absolute spontaneity are allowed a role in the production of the products of nature. Kant argues in this regard

for extending natural science in accordance with another principle, namely that of final causes, yet without harm to the mechanism of nature. (KdU 5:379)

Kant effectively uses the concepts that he developed in the Dialectic part of the First Critique (in the discussions following the third antinomy) and apply it to the study of the products of nature in the Third Critique. I interpret these concepts consistent with my ontological reading of the First Critique in chapter 2.

After a general introduction to the concepts that stand at the basis of Kant's philosophy of science in the Third Critique, I present the arguments for my own interpretation. I show how closely the Third Critique aligns with the first one, but also the significant moves beyond that. If Kant is successful in his approach it may be possible to apply his concepts to that area of science where both determinism and non-determinism (spontaneity) have to be accounted for, namely quantum physics.

3.2 The Purposiveness of Nature as Transcendental Principle

As is the case in the other Critiques, Kant engages with a particular problem in the Third Critique. Whereas the problem of the First Critique was: How is mathematical science (and mathematics) possible for humans with our discursive form of understanding?, the problem discussed in the Third Critique is: How do we proceed with research into nature and its multiplicity of forms given the rationally constrained nature of our (human) understanding? According to Kant, our discursive understanding has certain fundamental limitations in its cognitive reach which force us to consider strategies in dealing with it. The Kantian answer situates and tries to solve this problem, within the framework of his transcendental philosophy. Kant refers to the rationally constrained nature of our understanding as a “contingency in the constitution of our understanding” (KdU 5:406). This contingency is found in the relation between the particular and the universal. Allison puts it well:

The basic problem, which is central to the Third Critique as a whole, is that the universal principles underdetermine the particulars falling under them. (Allison 2012:210)

In both introductions, Kant discusses this contingency in the relation between particular empirical laws and general (universal) laws that we ascribe to nature as a whole (EEKU 20:203). Although all particular experiences which are interconnected in accordance with the principles of the understanding, could be further interconnected in accordance with empirical laws in which nature is taken as an “aggregate”, there would always be a contingency according to which this field of objective cognition falls short of the universal laws (lawfulness) which reason ascribes to nature when taken as a totality, as a unified “system” (EEKU 20:209). This problem was already discussed in the First Critique, where Kant mentions that the unity of reason presupposes an idea, namely that of the systematic “whole” for the aggregate of particular cognitions. Since this whole cannot be given in sensibility, such a universal can only
be problematically assumed as an idea (or general law) for the purposes of systematization. Kant calls this a “regulative principle” (A646-647/B674-675 and B708).

In the framework of the Third Critique Kant allows that this contingency between the particular and universal could even be more substantial than that assumed in the First Critique. We must also allow for the possibility that our understanding would not necessarily grasp the universal (Allison 2012:171). This possibility arises in the case where we assume that nature could have a supersensible ground. When such a supersensible ground is assumed, the universal could even be “beyond the sphere of the insights into nature that are possible for us” (see EEKU 20:218 and KdU 5:170). In that case, some laws, as empirical, “may indeed be contingent in accordance with the insight of our understanding” (KdU 5:180 and 183-184). The assumed unity of empirical laws (i.e., the universal) would not be fathomable by us (although it is thinkable); it would be beyond our cognition and only available to another (non-human) understanding.

When the problem is stated in this way, it is immediately clear that this is actually a problem for the faculty of the power of judgment which subsumes particulars under universals. In the First Critique, the function of the power of judgment is to determine whether given particulars fall under the rules (concepts/universals) given by the understanding. But how do we judge particulars when the universals are not given (as discussed above)? Kant's answer is to distinguish two kinds of judgment, namely “determining” judgment (the kind specified in the First Critique) and “reflective” judgment.

Reflective judgment is the ability to subsume a given particular under a rule that is not given, i.e., the rule under which the particulars may be subsumed must be sought for. In this case an a priori principle is required for the power of judgment according to which such universals can be found (in the case of determining judgment such a rule for the given rules would be on pain of an infinite regress), which necessitates a critique of its own for this faculty of the mind (i.e., the Third Critique; see Allison 2010:240).

Kant identifies the transcendental principle which guides the reflective power of judgment (both in aesthetic and teleological judgment) as the purposiveness of nature which he describes as “the lawfulness of the contingency as such” (EEKU 20:217). This principle basically says that we have to take nature heuristically as if it is designed for the purposes of the scientific study of nature (i.e., for us), even though we recognize that the objectivity of such a cognizable order is contingent (KdU 5:185).

In contrast with determining judgment, there is no objectivity nor can any be claimed for this kind of judgment (due to the contingency in the relation between the particulars and the universals). There is an explicit acknowledgment of the subjective, reflective (self-referential) character of this principle of judgment which does not prescribe rules to nature but merely to itself. Kant calls this the “heautonomy” of the power of judgment (EEKU 20:225 and KdU 5:185).

The reason why we must take purposiveness as a (subjective) universal and necessary (i.e., transcendental) principle guiding empirical research, is that without it no “thorough interconnection of empirical cognition into a whole of [i.e., unified] experience” is possible (KdU 5:184). Kant says further:

[W]ithout presupposing this [principle], we would have no order of nature in accordance with empirical laws, hence no guideline for an experience of this in all its multiplicity and for research into it. (KdU 5:185)

Transcendental principles always ground the possibility of a unified experience a priori.

Allison writes that in the deduction in the published introduction Kant establishes
the subjective necessity of presupposing the purposiveness of nature in the process of empirical inquiry. In other words, the claim is not that nature is purposive, i.e., that we have some sort of a priori guarantee that it is ordered in a manner commensurate with our cognitive capacities; nor even is it that we must believe it to be purposive in this sense (which is basically Hume's position). The claim is rather that we are rationally constrained to approach nature as if it were so ordered. (Allison 2010:186)

And Butts describes this approach as follows:

> Determinate judgments are either true or false of objects of possible experience. Reflective judgments, based as they are on subjective maxims, are neither true nor false, not even probable or improbable; they are rather rational estimates of the way nature operates. (Butts 1990:4)

The purposiveness of nature which Kant introduces in the Third Critique as a regulative principle for the reflective power of judgment is much broader than the purposiveness (systematicity) of nature that he introduces in the First Critique as a regulative principle for the hypothetical use of reason (Allison 2010:171). Whereas the concept of systematicity merely involves the mechanism of nature (the totality of all causal laws) which allows the understanding to think it as a whole (as the condition for determining the place of all the parts in the whole; see A646/B674), the concept of purposiveness goes further and also includes the concept of freedom in its range (it accommodates the supersensible substratum of nature) resulting in the whole (lawfulness) being potentially beyond the grasp of our understanding. Such purposiveness, as the a priori principle of the power of judgment, also functions as a mediating concept between the concepts of nature and freedom because in Kant's system the faculty of judgment stands between the understanding (the systematic unity of concepts of the understanding produces the concept of nature) and reason (which produces the idea of freedom) (see Allison 2012:217 and Guyer 2000:xxii-xxiii). Kant writes in this regard:

> Now this transcendental concept [of purposiveness] is neither a concept of nature nor of the concept of freedom, since it attributes nothing at all to the object (of nature), but rather only represents the unique way in which we must proceed in reflection on the objects of nature with the aim of a thorough interconnected experience. (KdU 5:184)

As such the principle of purposiveness does not merely assume that nature is ordered (i.e., take it as if it is designed); it is also a principle “for the possibility [of the products] of nature” (KdU 5:186). Since it accommodates the supersensible substratum of nature, it allows that the ground for the possibility of the products of nature may be contained in it.

3.3 The Internal Purposiveness of Nature
Kant’s transcendental principle of purposiveness does not only have reference to nature as a whole but also to the individual products of nature. Kant calls this the “technique” of nature, i.e., that nature is “purposive in its products” (EEKU 20:249). In this way, Kant emphasizes the idea that the products of nature are judged as if they are produced by the technical skills of some artist in accordance with some design (plan). Such reflective judgments, which are neither theoretical nor practical, “do not determine anything about the constitution of the object nor the way in which to produce it” (EEKU 20:201).

According to Kant, there are two ways in which the products of nature can be so considered, which occupy the two parts of the Third Critique. When the form of things are judged as purposive (in intuition prior to any concept of the faculties of cognition) for our feelings of pleasure (and displeasure) it is called the “formal” technique of nature. In this case, a judgment of taste (called an aesthetic judgment) is made on mere subjective grounds and
considers the relationship between the object and the human subject. When things are judged as purposive in accordance with concepts (of objects and their possibility) it is called the “real” technique of nature. In this case, a logical (i.e., cognitive although still reflective) judgment (called a teleological judgment) is made on objective grounds, through the understanding and reason, which considers the relationship which is supposed to subsist in the object of cognition (KdU 5:193).

In teleological judgments, nature and the products of nature are considered as a system (or systems) of purposive relations (McLaughlin 1990:51). As such this kind of judgment considers the “objective” and “material” (i.e., not merely mathematical) purposiveness of things and their possibility in terms of relations of cause and effect. Kant writes:

Experience leads our power of judgment to the concept of an end in nature only if there is a relation of cause and effect to be judged which we can understand as lawful only insofar as we find ourselves capable of subsuming the idea of the effect under the causality of its cause as the underlying condition of the possibility of the former. (KdU 5:367)

Two such judgments are possible, namely when relative (extrinsic) or internal (intrinsic) purposiveness is considered. In the case of relative purposiveness, which explores the existence of one thing for the sake of another (or the existence of one part for another within the framework of a product of nature), things are explained according to mechanical laws (McLaughlin 1990:43). In the case of intrinsic purposiveness, a thing’s internal possibility for the production of its outer form is considered (in analogy to production by the causality of a concept).

3.3.1 The teleological principle

In this way, Kant introduces two regulative principles according to which natural products could be considered in reflective judgment in accordance with its own rule (i.e., the transcendental principle of purposiveness), namely mechanism and teleology. When causal relations of such products in general are considered in mechanistic terms the first principle is used. When we cannot explain something in those terms we can consider it in accordance with the teleological principle. In fact, the same product could be considered in accordance with both these principles (When the parts are considered as an aggregate whole, Kant also uses the term mechanism, although then it would be a constitutive concept; see EEKU 20:218).

The relation between this teleological principle and the transcendental principle is complex (Allison 1990:214). Some authors regard the teleological principle (just as a transcendental principle) merely in methodological terms as a heuristic device guiding scientific research. They argue that, although the products of nature can be considered as if they are produced in accordance with the teleological principle, they are nevertheless still produced according to some form of mechanism. In this way, the supersensible realm (and with it all reference to freedom as absolute spontaneity) is removed from Kant’s philosophy of science. Ginsborg (2010:465), for example, views these two principles as ‘two different, although related, senses of mechanical explanation’. Butts writes:

The conclusion is that a deep teleological principle operates as an a priori presupposition of any scientific inquiry. Teleology subordinates mechanism, while at the same time vindicating its employment. (Butts 1990:5)

In my view, this is not Kant’s position. I believe and will now argue (in the following sections) that with the teleological principle, which concerns intrinsic purposiveness, Kant introduces the possibility that there could be aspects of some products of nature which are not produced in accordance with mechanistic causality (as belonging to the mechanism of nature).
at all. He allows for the possibility of another kind of causality, namely that of final causes, which builds upon the causality according to freedom which was first introduced in the First Critique. In this regard, Kant grounds the condition for the possibility of the products of nature in the supersensible realm.

Although this kind of causality is not empirically accessible according to Kant, it is nonetheless non-contradictory, (logically) possible and the broader framework in which he embedded it suggests that he is, in fact, arguing for the conceivability of the existence of such a kind of causality. In this regard my view is stronger than the methodological approach taken by Allison (2012:205) who accepts the logical possibility of another kind of causality; I argue for a weak ontological reading of the Third Critique within the framework of Kant’s Critical philosophy, according to which such spontaneous causality can be conceived of as something that could hypothetically really exist in an ontologically distinct supersensible realm (where the mechanism of nature does not apply).

3.3.2 The possibility of things in themselves

When the products of nature are considered as systems (and not merely as aggregates), we can consider both the relative purposiveness of its material parts (governed by the principle of mechanism), as well as its intrinsic purposiveness which involves the possibility which the products have in themselves to produce such product systems (governed by the principle of teleology). At this stage of the discussion I tentatively propose that Kant's distinction between the two kinds of purposiveness reflects (or builds on) the two ways of considering objects discussed in the First Critique, namely regarding their external relations as well as their intrinsic nature, i.e., as they are in themselves (Langton 1998:19). The difference is that now we are not merely considering everyday objects, but rather the (production of the) products of nature and their internal parts in this manner.

This reading is supported by the manner in which Kant seems to understand intrinsic purposiveness, namely that it is the intrinsic ability that a product of nature has in itself, i.e., as a thing in itself, to produce its form. We find that the concept of intrinsic purposiveness (and the teleological principle belonging to it) is consistently related to the possibility that products of nature have in themselves to produce their forms, in contradistinction with the mere representation of the forms of such products (and the relation of the parts to each other). In this regard Kant, for instance, says in his discussion of teleological judgment in the unpublished introduction that its concept of purposiveness (which seems to include both kinds of purposiveness) is designated “not merely for the manner of representation, but for the possibility of the things themselves” (EEKU 20:234, my italics).

There is also other textual support that intrinsic purposiveness involves the possibility which the products have in themselves to produce such product systems. In the published introduction Kant mentions that for objects given in experience, (intrinsic) purposiveness involves “a correspondence of its form with the possibility of the thing itself, in accordance with a concept of it which precedes and contains the ground of its form” (KdU 5:193, my italics). Here he accentuates the relation between the form of a product of nature and the possibility that it contains in itself. In the rest of the Third Critique, Kant sometimes refers to products of nature judged “in itself and its internal [i.e., intrinsic] possibility” (KdU 5:373-4) which again seems to suggest that the intrinsic purposiveness refers to this intrinsic possibility that the products of nature have when considered in themselves.

What does Kant mean by “the possibility of the things themselves”? At the most basic level, this would refer to the idea developed in the First Critique that things in themselves (as noumena) could have a certain causal relation with phenomena (as the absolute spontaneous cause thereof). This does not refer to things in themselves as the mere transcendental ground of objects, i.e., when we merely consider the real ground of everyday objects that are given as
phenomena in perception (A253; see also 2.4.2). It rather refers to things in themselves (things themselves) considered only as noumena, i.e., objects of our understanding which could exist outside nature although for another kind of intuition (than ours), to which the transcendental idea of freedom, also called “absolute spontaneity”, could be ascribed without contradiction (since mechanism belongs only to nature; see the third antinomy). I present this way of understanding the concept of noumena in the First Critique in chapter 2.

In my opinion, the ground for this kind of (spontaneous) causality lies in the noumenal realm, although its effects are produced in the phenomenal realm. According to Kant, there are only two kinds of causality, namely deterministic causality (in accordance with the second analogy; called mechanism when nature as a systemic whole is considered) and absolute spontaneous causality in accordance with the transcendental idea of freedom (A532/B560). The ability that things have in themselves to eventually produce their phenomenal form would involve both these causal concepts, but especially that of absolute spontaneous causality according to which the ground for the phenomenal effects is situated in the thing as it is in itself, which Kant equates with the supersensible (KdU 5:175). According to him, the idea of the supersensible “underlies the possibility of all those objects of experience” (KdU 5:175).

3.3.3 The concept of a causality through freedom

Although freedom is at first introduced as a moral concept in the Third Critique (KdU 5:172), and some interpreters understand it throughout the Critique in that way (McLaughlin 1990:118 and Guyer 2010:433), Kant does eventually distinguish between freedom as moral concept of practical reason and as a formal concept of pure reason (i.e., transcendental freedom; KdU 5:196 n.) in the last section of the published introduction after his discussion of teleological judgment (these two kinds of freedom are, however, closely interwoven in his discussion).

This distinction goes back to the First Critique where Kant said that practical freedom is grounded on the transcendental idea of freedom (A534/B562). He now calls the spontaneous causality that is grounded in the transcendental idea of freedom “causality of freedom” and the “concept of a causality through freedom” (KdU 5:195-6). He argues that this kind of causality can be included in a teleological principle under the reflective power of judgment.

Kant writes that the idea that the supersensible can have consequences (effects) in the realm of nature is already (before its use in the practical concept of freedom) included in the concept of a causality through freedom:

But although the determining grounds of causality in accordance with the concept of freedom (and the practical rules that it contains) are not found in nature, and the sensible cannot determine the supersensible in the subject, nevertheless the converse is possible (not in regard to the cognition of nature, of course, but in regard to the consequences of the former on the latter) and is already contained in the concept of a causality through freedom, whose effect in accordance with its formal laws is to take place in the world, although the word cause, when used of the supersensible, signifies only the ground for determining the causality of natural things to an effect that is in accord with their own natural laws but yet at the same time is also in unison with the formal principle of the laws of reason, the possibility of which cannot of course be understood, although the objection that there is an alleged contradiction in it can be adequately refuted. (KdU 5:196, my italics, boldfacing in the original).

This reference to freedom in the introduction suggests that the possibility (and conceivability) of a causality through freedom (as an idea of reason) is important for Kant’s overall argument regarding the teleological principle since it allows for the possibility that such causality could really exists and that all products of nature are therefore not necessarily produced in accordance with deterministic causality (mechanism). Although Kant admits that
the existence of the supersensible and its accompanying kind of causality through freedom cannot be proved, the concept thereof is non-contradictory and it can be incorporated in a principle of reflective judgment:

The power of judgment, through its a priori principle of judging nature in accordance with possible particular laws for it, provides for its supersensible substratum (in us as well as outside us) determinability [i.e., that it can determine outcomes as phenomena] through the intellectual faculty [i.e., we can think it]. (KdU 5:196)

In think that at this point we have reason to think that the teleological principle is not merely a methodological device which guides us in our search for mechanistic causes (although it surely does); it also allows for the possibility that another kind of causality than the deterministic sort, namely that of absolute spontaneity, could, in fact, contribute to the form of the products of nature. In this regard the possible relation between things in systemic nature and the supersensible realm, which could contain the ground for the possibility of the forms of nature which would be realized (at least in part) through spontaneous causality, should be considered.

When Kant introduces the teleological principle in the preface to the first edition of the Third Critique, he already emphasizes that this involves the relation between the things of nature (regarding their form) and the supersensible realm (which contains the possibility for the expression of its form). He writes:

[I]n the case of the logical judgment of nature, where experience imposes on things a conformity to law that the understanding's general concept of the sensible is not sufficient to understand or explain, where the power of judgment can derive from itself a principle [i.e., the teleological principle] for the relation of the thing in nature to the uncognizable supersensible but can only use it with respect to itself for the cognition of nature (KdU 5:170, my italics).

3.3.4 Two cohering principles

Although absolute spontaneous causality is of great importance to Kant's argument, he does not think that it could alone (i.e., without mechanistic causality) account for the forms of the products of nature. In this regard, he mentions that the coherence of the effects of these two kinds of causality in one product of nature does not contain a contradiction. He discusses this “alleged contradiction” in more detail in an accompanying note (KdU 5:196) where he says that it refers to two kinds of appearances cohering in the same subject, namely that of nature as appearance as well as the effects of the causality of freedom as appearances in the sensible world. In this regard, his reference is to the First Critique where he already argued that both kinds of causality could without contradiction be accommodated in the framework of the empirical character (both of causes and causal agents; see Allison 1990:24 and section 2.4). The fact that there is no contradiction in this regard is important for Kant's later argument that both mechanism and teleology (and therefore both relative and intrinsic purposiveness) could cohere in nature and its products.

After Kant dissolved the antinomy of teleological judgment in the Dialectic part of the Third Critique (this is the seventh antinomy in total in his three Critiques) he shows how these two principles can cohere through the supersensible. In that instance he again refers to both mechanism and “the spontaneity of a cause”, which would be “another kind of causality”, and “without which no ground of those forms [i.e., of the products of nature] would be given” (KdU 5:411). Of special importance is the name that he uses for this other kind of causality, which without any doubt refers to the causality of absolute spontaneity.
I have now argued that the two kinds of causality which Kant originally introduced after the dissolution of the third antinomy in the First Critique, is again used in the Third Critique as the basic building blocks for his principles of mechanism and teleology. As such, there can also be no doubt that the idea of the supersensible is central to Kant’s concept of teleology and that this principle allows for a real alternative to mechanism according to which the products of nature are produced.

Moreover, these products contain in themselves, i.e., in their supersensible ground, the possibility for the realization of its material forms. When we remove the supersensible realm from this part of Kant’s philosophy of science, we lose all prospect that another kind of causality could hypothetically really exist (at least in the context of his Critical metaphysics) – even though such existence would be beyond our sensible reach. This allows us to say that the supersensible realm and its ability to produce outcomes in nature are conditions for the possibility that at least some products of nature are produced non-mechanistically (see KdU 5:367).

At this point one may return to Kant’s conception of “nature”, which I have so far consistently taken as the idea of systemic nature governed by mechanism. When Kant speaks of organisms as products of nature (see below), it seems that he extends this conception of nature to one of teleological nature—although this is never made explicit. This concept of nature allows that mechanism as well as teleology (as an absolute spontaneous kind of causality) may be at work in nature. This second kind of causality (belonging to the supersensible realm) allows for the possibility that certain phenomena (as the effects thereof) may simply “appear” in an indeterminate way within the observable world. These outcomes then become part of the mechanistic interactions within nature. As such, they constitute an indeterminate aspect of nature beyond the “mere” mechanism of nature to which Kant refers (KdU 5:360).

What is, however, important is that the origin of this indeterminism within systemic nature lies with the spontaneous causality which belongs to the supersensible substrate of nature and without which nothing but mechanism would be possible. This means that the indeterminism within nature does not belong to nature as it is by itself (without the supersensible realm). As such, the teleological conception of nature does not eliminate the necessity of the supersensible realm existing “outside” systemic nature within Kant’s metaphysical system. The teleological conception of nature therefore does not negate the differentiation between systemic nature and the supersensible substrate—in fact, it confirms it. I will therefore continue to refer to systemic nature when talking about “nature” even though I acknowledge the place of the teleological concept of nature in the production (and functioning) of organisms.

3.4 The Concept of Natural Purpose

In the Analytic part of the Critique of the Teleological Power of Judgment Kant introduces a concept in accordance with intrinsic purposiveness (and the teleological principle), which is suitable for application to biological structures, namely that of natural purpose. This is not a constitutive concept through which we can achieve objective cognition; it is merely a regulative concept for reflective judgment (in accordance with the transcendental principle of purposiveness). This is also not an empirical concept, taken from experience. It is, rather, an analytically acquired concept with application to organisms insofar as they are conceived by us as natural purposes (McLaughlin 1990:46; see also KdU 5:376).

The concept of natural purpose does not only involve the internal possibility that things have in themselves to produce their external form; it also says how that could conceivably be realized. In this regard, Kant introduces the relation between the “whole” and the “parts” as well as the particular causal relation which governs them. There are two conceivable ways in
which this could be possible (according to Kant), namely through the “mechanism of nature”, when the material whole is explained by the causal relation between the component parts (the parts determine the whole), and through a “natural purpose”, when the idea of the whole serves as ground and condition for the parts and their internal arrangement (the whole determines the parts) (Allison 2012:203 and McLaughlin 1990:129). Correspondingly, Kant writes in the unpublished First Introduction:

[T]he whole should be the cause of the possibility of the causality of the parts, rather [than in the case of physical-mechanical causes] the latter must be given first in order for the possibility of the whole to be comprehended from it. (EEKU 20:236)

The main difference between the transcendental ideas of mechanism and freedom introduced in the third antinomy and the corresponding ideas of mechanism and natural purpose in the Third Critique, is that the two last mentioned ideas do not merely involve two different kinds of causal relation (deterministic and non-deterministic), it also describes those in the framework of a whole-part relation (which can be ascribed to the products of nature). In this extended sense the “mechanism of nature” cannot be equated with the mechanism introduced in the First Critique (Allison 2012:204), just as the concept of natural purpose cannot be equated with the concept of absolute spontaneous causality which Kant again introduces in the introduction to the Third Critique, although it includes those concepts (see below).

In the Third Critique the idea of the “whole”, which contains the ground and possibility for the production of the products of nature (of the material whole with its parts), effectively supplants the concept of noumena that Kant used in the First Critique, that is, “objects of the understanding” existing outside nature which are introduced merely problematically, i.e., non-contradictory, and would only be accessible for another kind of intuition. As I argued in my interpretation of the First Critique, when noumena are conceptualized in this way, they could contain the ground and possibility for absolute spontaneous causality which could produce effects in nature. One can say that the whole-part relation introduces a more complex concept of noumena.

3.4.1 Final causes

According to Kant the concept of natural purpose means that we take things as the “cause and effect of itself”, i.e., in the production of material wholes. The Kantian concept involves the production of things in accordance with its own internal possibility (although Kant mentions the reproduction of things when he provisionally presented the concept (KdU 5:371), he does not engage with that in any detail). Kant distinguishes three aspects that determine the concept, which have some distant relation to the three properties of reproduction that he observed in organisms, namely, the powers of growth, reproduction, and self-repair (see Guyer 2010:433 and McLaughlin 1990:49).

A body would be a natural purpose “in itself and in accordance with its internal possibility” when the following apply (KdU 5:373):

1) The parts of a natural purpose, as far as their presence and their form (properties) are concerned, are only possible through their relation to the whole. The whole (which for us can only be an idea) serves as the ground for all the parts in their relation to each other and the material whole.

2) The parts reciprocally produce each other as far as their form and their combination are concerned (see also 5:408). They produce the material whole out of their own causality.
Each part is conceived as if it exists only through all the others, as existing for the sake of each other and on account of the whole.

A product of nature which adheres to these rules would be an “organized and self-organized being” (KdU 5:373).

In the framework of this conception of a natural purpose, Kant introduces a new concept of causality, namely of 'final causes', according to which such beings are both the cause and effect of themselves (the parts are mutually the cause and effect of each other in the production of the material whole). In this case, the causal relation is not that of a series of causes and effects, with each cause having an effect (called “effective” causes). Such a series would be “descending”, i.e., it moves from the condition to the conditioned, which Kant contrasts in the First Critique with an “ascending” series which moves from the conditioned to the condition (McLaughlin 1990:86).

With final causes, however, as a concept of reason (as such it is an 'ideal' cause; we can think it, but cannot understand it), when considered as a series, a mutual dependency between ascending and descending series occurs such that each cause is also an effect.

"The thing which is on the one hand designated as an effect nevertheless derives, in ascent, the name of a cause of the same thing of which it is the effect. (5:373)

This goes far beyond the mere use of the two kinds of series which generate the antinomies in the First Critique; it combines these in a new kind of causality which is unique to the Third Critique. As such this causality also goes beyond the reciprocal causality in the context of “community” that we find in accordance with the third analogy.

Kant is clear that this is not a causality that we find in the context of nature. Although this kind of causality (final causes) can be logically conceptualized without contradiction (KdU 5:371), and can be used as such in our conceptualization of a natural purpose, it cannot be part of nature, which Kant understands in terms of deterministic causality (mechanism). When we allow that the unity of the forms of nature is produced in accordance with a rule (as an ordered outcome), and not merely “contingently” in accordance with mechanism, then such an a priori principle would be outside the concept of nature:

"Without the help of a special kind of causality, namely that of ends (nexus finalis), this [order in nature] is all in the highest degree contingent, i.e. that nature, considered as mere mechanism, could have formed in a thousand different ways without hitting precisely upon the unity in accordance with such a rule, and that it is therefore only outside the concept of nature, not within it, that one could have even the least ground a priori for hoping to find such a principle. (KdU 5:360, my italics; see also KdU 5:371).

Within nature, everything is regulated by the concept of mechanism (deterministic causality), which means that it is only outside systemic nature, in the supersensible substratum of nature, that we can have the possibility of another kind of causality, namely in accordance with final causes (that have ordered outcomes in nature). Kant makes it clear that this kind of causality could be possible only in the context of the supersensible realm:

"We have related such an effect [in the products of nature] in the whole to a supersensible determining ground beyond the blind mechanism of nature. (KdU 5:377)

3.4.2 The productive capacity of a natural purpose

In my opinion, Kant’s concept of final causes provides a process according to which the intrinsic possibility of natural products could be realized in nature—in a manner not
possible through the mechanism of nature. We can, however, only realistically conceive of a final cause if its ground, from which it begins its work, lies in the supersensible realm outside nature. As such, the concept of final causes involves a “productive capacity” (KdU 5:370, 379) which the products of nature have in themselves to produce their material forms. Kant writes:

[W]e have discovered in nature a capacity for bringing forth products that can only be conceived of by us in accordance with the concept of final causes... [The idea of which], as far as its ground is concerned, leads us beyond the sensible world. (KdU 5:381, my italics)

Kant calls it a “productive cause” (KdU 5:421).

This “productive” capacity or potentiality that natural products have in themselves to produce their material forms is clearly based on the more basic concept of absolute spontaneity. This is clear from the fact that Kant refers to this as “the spontaneity of a cause” (KdU 5:411), a name which is obviously borrowed from absolute spontaneity. In both cases, the ground for this kind of causality lies in the supersensible realm, while its effects are produced in the phenomenal world. In the first case it is grounded in noumena; in the second it is grounded in “wholes” (which is just another way to think of noumena), on which the possibility of the parts, as far as both their constitution and their combination are concerned, depends (KdU 5:408). Whereas absolute spontaneity is a cause grounded in noumena in the noumenal realm which produces its effects in nature, productive capacity (potentiality) through final causes is a similar kind of cause grounded in the whole (of which we can merely form an idea) in the supersensible substratum of nature from which its material form in nature is produced.

Kant relates absolute spontaneity and productive capacity (potentiality) in different ways to a series of events. Absolute spontaneity as a cause of phenomena is viewed as beginning “a series of occurrences entirely from itself” (A534/B562). Productive capacity also involves such a series which begin from itself (i.e., from a whole), but it is not merely producing effects; it involves a whole and its parts which are realized through the mutual dependency between ascending and descending series according to which each cause is also an effect, producing material wholes in nature. We can say that the idea of absolute spontaneity of the First Critique is expanded with the idea of productive capacity (potentiality) through final causes (or: a productive cause) in the Third Critique which makes it more suitable for application to the products of nature.

In both Critiques, Kant mentions that these are the only two kinds of causalities possible. These are clearly the same kinds of causality that Kant introduced in the First Critique (Butts 1990:5) although the concepts of both mechanism and spontaneous causality have been expanded to include the whole-parts relation to make them suitable for application to the products of nature. In including these concepts within the broader framework of Kant's philosophy, especially when noumena or the whole-parts relation is considered, the second kind of causality is not only non-contradictory, it is also conceivable that it could in fact exist.

In the final analysis, Kant also contrasts these kinds of causality in terms of “forces”, namely the “moving force” in accordance with mechanism which is explained in terms of the fundamental “forces of matter” (the forces of attraction and repulsion discussed in Metaphysical Foundations of Natural Science; see Ginsborg 2010:458 and Langton 1998) and the “formative force” in accordance with teleology which we can think of in terms of final causes. Kant writes:

An organized being is thus not a mere machine, for that has only a motive power, while the organized being possesses in itself a formative power, and indeed one that it communicates to the matter, which does not have it (it organizes the latter): thus it has a self-propagating formative power, which cannot be explained through the capacity of movement alone. (KdU 5:374, my italics)
In Kant’s conception, matter is the lowest level of nature, as an aggregate of numerous substances external to one another, with its forces governed by mechanical laws (KdU 5:420-421). According to Kant a natural purpose, on the other hand, has a formative power (force) which is not a force of nature (i.e., of attraction or repulsion), but which is “self-propagating” (i.e., in accordance with absolute spontaneity) and can be “communicated” to matter and in that way organizes matter.

The seat of this formative power is in self-organizing beings as they are in themselves outside nature, in the supersensible substratum of nature. The whole-part relation that Kant has in mind, which grounds the formative process of a natural purpose, is therefore not referring to extended parts and wholes, but to non-extended wholes-and-parts (they are not in nature and therefore also not extended in our space/time). Kant, however, never spells out how these non-extended wholes-and-parts are related to the material parts and wholes produced in nature.

My analysis is in agreement with Kant’s sympathetic reading of Leibniz in accordance with his own view, according to which non-material monads are viewed in similar terms to noumena (This follows because Kant’s conception of noumena is modeled on Leibniz’s monads; see Cicovacki 2010:85 and Friedman 2010:243). In this regard, Kant mentions that composites of things in themselves could be composed of simples which seem to be the same idea that he develops in more detail in the Third Critique, namely of non-extended wholes-and-parts. As quoted before, he writes in Metaphysical Foundations of Natural Science:

[Monadology] is rather an intrinsically correct Platonic concept of the world devised by Leibniz, insofar as it is considered, not at all as the object of the senses, but as a thing in itself, and is merely an object of the understanding, which, however, does indeed underlie the appearance of the senses. Now the composite of things in themselves must certainly consist of the simple, for the parts must here be given prior to all composition. But the composite in the appearance does not consist of the simple, because in the appearance, which can never be given otherwise than as composed (extended), the parts can only be given through division, and thus not prior to the composite, but only in it (MAN:507, my italics).

When we read the Third Critique in this light, it follows that the wholes which Kant introduces in this Critique are the above-mentioned “composite of things in themselves” consisting of parts, which would be simples, that is, elementary non-extended entities. These would exist in the supersensible realm outside nature. When Kant says that another kind of causality applies to these wholes-and-parts, namely of final causes, according to which the parts are the cause and effect of each other, this implies that they are interconnected (coupled) in a manner that we do not find with extended (material) parts (which is why I talk about “wholes-and-parts”).

It also means that their effects (realization of themselves?) in the phenomenal realm would be governed by that rule, i.e., that each outcome would be produced in a manner such that it is the cause and effect of the other outcomes. The outcomes would be spontaneously produced from the co-operation of the elementary non-extended parts (without any preceding deterministic causal structure). On the whole, all the parts together would have the self-propagating potentiality in themselves to produce the product in co-operation with the material parts and mechanical forces of nature.

At this point I can say the following: Kant assumes a two-level world-system— involving the supersensible substratum of nature as well as nature (albeit not as physically apart from each other but as together belonging to one world). We can distinguish between the wholes-and-parts that things have in themselves, i.e., as non-extended entities, and the related material parts and aggregated wholes in nature. The first kind (of wholes-and-parts) involves an absolute spontaneous causality and on the whole, a formative power (a potentiality) that we
do not find in nature, where all interaction happens in accordance with mechanical laws. As such the first kind has a determining impact on the material form of the products of nature.

According to Kant both kinds of causality could possibly belong to the products of nature:

It might always be possible that in, e.g., an animal body, many parts could be conceived as consequences of merely mechanical laws (such as skin, hair, and bones). Yet, the cause that provides the appropriate material, modifies it, forms it, and deposits it in its appropriate place must always be judged teleologically, so that everything in it must be considered as organized, and everything is also, in a certain relation to the thing itself, an organ in turn. (KdU 5:377)

The aggregated parts can account for mechanical changes (according to deterministic laws); the non-extended wholes-and-parts “provide” and “deposit” material (matter) in its appropriate place in the framework of the material whole.

3.4.3 The restricted nature of our understanding

With the introduction of the concept of natural purpose, Kant faced a problem, namely how to think of this kind of causality within the framework of the science of his day. On the one hand, it is not like any kind of causality that he knew (they obviously knew only deterministic causality). On the other hand, it shows some distant analogy with causality through ends.

In the published Introduction, Kant mentions that we can think of the possibility of the products of nature in analogy to human action, namely that some phenomenal outcomes (actions) have their ground in the supersensible realm (through which practical freedom becomes possible). He writes:

[T]he latter [the supersensible] should have an influence on the former [the sensible], namely the concept of freedom should make the end that is imposed by its laws real in the sensible world; and nature must consequently also be able to be conceived in such a way that the lawfulness of its form is at least in agreement with the possibility of ends that are to be realized in it in accordance with the laws of freedom. (KdU 5:176)

Natural purposiveness, however, is “entirely distinct from practical purposiveness (of human art as well as morals)” and does not involve any intentionality (KdU 5:181; see also EEKU 20:237). We can, nonetheless, think of “natural purpose” in analogy with human purpose (which is also where the name originates), where an idea, representation or concept of the result can be viewed as the ‘cause’ of it (McLaughlin 1990:38), or as Kant defines it,

[t]he concept of an object insofar as it at the same time contains the ground of the reality of this object is called an end. (KdU 5:181)

In various passages, Kant emphasizes that the concept of a “natural end” is merely conceived in analogy with human agency, especially in artistic production, without trying to explain it in this manner (5:181, 360-361 etc.).

Although Kant formulated his concept of natural purpose in analogy with human purpose, he acknowledged that this is not really satisfactory:

Strictly speaking, the organization of nature is therefore not analogous with any causality we know... inner natural perfection, as is possessed by those things are possible only as natural ends and hence organized beings, is not thinkable and explicable in accordance with any analogy to any physical, i.e., natural capacity that is known to us; indeed, since we ourselves
belong to nature in the widest sense, it is not thinkable and explicable even through an exact analogy with human art (*KdU* 5:375).

The main problem with the concept of a natural purpose is that the whole which underlies the production of the material parts and form of natural products (viewed as natural purposes), is ascribed to the supersensible realm. The representation of such a whole which precedes the possibility of the parts could be nothing more than an idea for us (*EEKU* 20:236 and *KdU* 5:381). According to Kant, our understanding is constrained due to the contingency of its constitution (see section 3.2) and can therefore not grasp this kind of non-extended whole, which is prior to and conditioning its parts and their internal arrangement; it cannot *represent* the whole as the ground for the possibility of the parts. Our discursive, “image-dependent”, understanding, tries to form a representation of such a whole, which is not possible; we can only grasp *material* wholes as aggregates of its parts (*KdU* 5:408 and Allison 2012:211).

Kant highlights this problem by introducing another kind of (non-human) understanding, which he calls an “intuitive intellect,” and which is not constrained in this manner (doing so does not contain any contradiction). This understanding is not restricted to the use of general concepts, called “analytic universals” (with their contingent relation with particulars). It can grasp the “synthetic universal”, i.e., the (non-extended) whole could as such be given as an intelligible representation to its intuition (there is no contingency between this universal and particulars). As Allison says, “a supersensible ground would be accessible only to an intuitive intellect” (Allison 2012:213).

Kant thinks that such an intellect, and the kind of intuition associated with it, also shows how the supersensible realm itself could be possible:

[S]ince it is still at least possible to consider the material world as a mere appearance, and to conceive of something as a thing in itself (which is not an appearance) as substratum, and to correlate with this a corresponding intellectual intuition (even if it is not ours), there would then be a supersensible ground for nature, although it is unknowable to us, to which we ourselves belong. (5:409)

When such a supersensible substratum is assumed, the design which is expressed in the products of nature could be present in that realm (Guyer 2010:435). In this regard, Kant also allows that such an intellect, now taken as God, could have intentionally produced such designs in the supersensible substratum of nature which find their materialization in the products of nature (*KdU* 5:425-6).

3.5 The Importance of the Supersensible Realm

I have now argued that the supersensible realm is of crucial importance in Kant's philosophy of science as presented in the Third *Critique*. We cannot eliminate this from Kant’s philosophy of science without seriously damaging his arguments for the concept of natural purpose, which he applies to organisms through reflective judgment. Without the supersensible realm, there cannot be any kind of non-deterministic causality and therefore nothing but deterministic causality.

As such the supersensible realm and the ability of non-extended wholes-and-parts in that realm to produce outcomes in nature are the conditions for the possibility that at least some products of nature are produced non-mechanistically. Such a realm is necessary for any concept which involves absolute spontaneous causality (the transcendental idea of freedom) in any manner, namely natural purpose which involves the self-propagating formative power or potentiality (productive capacity) that things in themselves have as non-extended composite wholes to produce their material forms.
In fact, it is through the supersensible realm that organisms become possible and that lifeless nature is transformed to include life forms! Although the spontaneity associated with final causes belongs to the supersensible realm, the effects thereof include indeterminate appearances within the mechanistic world of nature. As such, these two kinds of causality have to cohere together.

3.5.1 Unifying the principles

The introduction of such a new kind of non-deterministic causality at the same time introduces the problem of its coherence with mechanism. According to Kant this kind of causality, as well as its co-existence with mechanism, is only possible through the presupposition of the existence of a supersensible realm. Kant formulates this problem as an antinomy (a conflict of laws) in which the two kinds of causality, namely mechanism and final causes, are presented as equally necessary, but conflicting, alternative maxims (Allison 1012:205). Although all generation of material things must be judged as possible through mechanistic laws, some products of nature (organisms according to Kant) cannot be judged as such and require an entirely different law of causality, namely that of final causes (KdU 5:386).

As principles for the reflective power of judgment, these principles are not assertions but rather guidelines (they cannot be more than this due to the contingency in the constitution of our understanding). When they are dogmatically asserted (which happens when the principle of reflecting judgment is confused with the determining power of judgment; see KdU 5:389) an antinomy ensues. When they are, however, recognized as mere regulative principles of the reflective power of judgment, the conflict disappears because both can be possible although we can gain no insight into the way this happens (KdU 5:415). As mentioned before, within Kant’s regulative metaphysics, final causality, mechanism as well as nature and the noumenal realm are all regulative ideas of reason.

I argued above that Kant does not merely argue for the logical possibility, but also for the conceivability of both these principles (that they can hypothetically really exist). This is why he now proceeds to argue that it is conceivable that both principles could cohere in nature, which would only be possible if they can be united in one principle. This is where the supersensible realm is of central importance in Kant’s argument—just as was the case when he argued for the conceivability of the transcendental idea of freedom in the First Critique.

The unifiability of the two ways of representing the possibility of nature “may well lie in the supersensible principle of nature (outside as well as inside us)” (KdU 5:429). In the same manner that the effects of both mechanism and transcendental freedom (or: the causality though freedom) can cohere in the same subject (as was shown in the First Critique and which Kant mentions in the published introduction of the Third Critique; see KdU 5:196), the outcomes of mechanism and teleology can cohere.

Central to Kant’s argument that these heterogeneous principles and their corresponding kinds of representation can cohere in the same product of nature, is the idea that the outcomes of mechanism merely involve nature, whereas the outcomes of teleology have their ground in the supersensible realm. Kant writes:

"[I]t is just as necessary to conceive of a kind of causality for it [i.e., the products of nature] that is not, unlike the mechanism of natural causes, found in nature, since to the receptivity various and different forms than those of which matter is capable in accordance with that mechanism there must still be added the spontaneity of a cause (which thus cannot be matter) without which no ground of those forms could be given. (KdU 5:411, my italics)"

We can, therefore, think without contradiction, according to Kant, that both kinds of causality could produce their outcomes in nature when the ground of the “spontaneity of a cause” is
taken to be outside nature (to be possible at all). According to Kant, it is entirely undetermined how much each of these kinds of causality contributes to the products of nature (KdU 5:415).

In the final instance (and this is my essential claim) Kant explicitly states that causality according to final causes could describe a real non-deterministic causality and that its unification with mechanism is objectively possible (I take this not merely in a methodological sense but in an ontological sense within the framework of Kant’s Critical metaphysics). He views this as the outcome of his arguments in the Critique of the Teleological Power of Judgment,

For at least the possibility that both [mechanism and teleology] may be objectively unifiable in one principle (since they concern appearances that presuppose a supersensible ground) is secured. (KdU 5:413)

As such Kant asserts in concluding his arguments, not only that we can conceptualize the “possibility” of the products of nature in accordance with two opposing principles, namely mechanism and teleology (final causality), but also that both of these can really exist although this can never be empirically confirmed. Kant’s conception of final causality shows how this could be possible within the conceptual framework of his Critical metaphysics when applied to the study of nature. The only reason why Kant thinks that this cannot be empirically explored is that we as humans do not have the kind of intuition that would be necessary to confirm it (KdU 5:416).

According to Kant the two principles of mechanism and teleology (final causes), insofar as these have reference to really existing causes, could be combined in a single research program only if we allow for the existence of an ontologically distinct supersensible realm (this is not a dogmatic assertion but merely in accordance with the overall systematic consistency of this hypothetical metaphysics—at least in my interpretation of it). At this point in the discussion the reason for the ontological difference is clear: whereas phenomena in nature are presentable in space and time and are governed by the principle of mechanism, the non-extended wholes-and-parts in the supersensible realm can never be so presented and are governed by another rule, namely of final causes which can – due to the supposed nature of this realm – never be empirically confirmed. The kind of existence of the entities that belong to these different realms is also very different. Kant presents this whole conceptual structure as a Critical (reflective) metaphysics in this part of his philosophy of science. Although no dogmatic metaphysics is intended, it is nonetheless a metaphysics. As argued in the previous chapter, Kant himself was not against the legitimate use of metaphysics.

When we want to relate the Kantian concepts to contemporary physics, his general metaphysical conception would serve as a theoretical framework (hypothesis) in which both determinism and spontaneous causality (and the two kinds of outcomes associated with them) can be reconciled in a single research program. As such one would have to say in what sense this spontaneous causality find its application in a scientific context as well as how the supersensible realm, which serves as the ground for such causality, could be accounted for.

3.5.2 The implications of Kant’s third Critique

Kant thought that his concept of final causes is applicable both to the study of the products of nature as well as nature itself (KdU 5:381, 388, 409 etc.). According to him, we can think that the “maternal womb of the earth” had an original purposiveness without which the “possibility of the purposive form of the animal and vegetable kingdoms cannot be conceived at all” (KdU 5:420). He proposed a theory of evolution according to which one species could have evolved through adaptation into another. The alterations which species could undergo and then successfully pass on, can be judged as “purposive potentialities” which
were originally present in the fundamental constitution of the species (KdU 5:419-20 and Butts 1990:7).

As such we can think that the design for all life on earth is present in the supersensible realm and unfolds through time in the progressive emergence of more complex “products of nature”. The various “wholes” (“designs” of animals and plants) underlying these life forms, from the most simple to the most complex, i.e., the human noumenon (the noumenal self), evolved in this manner (KdU 5:435). In this last case, the transcendental idea of freedom makes practical freedom possible. At this point, the noumenal realm which forms the substratum of nature both outside and inside us (5:429) becomes part of Kant's moral philosophy.

Since Darwin’s theory of evolution, which proposes a purely mechanistic process of evolution, all teleological explanation has fallen out of favor in the scientific community. But Kant’s approach is only teleological in name, not in substance. And can we assert that the products of nature are only possible in accordance with mechanism? Would that not be a dogmatic assertion of the kind that Kant warned against in the framework of his seventh antinomy? In Kant’s Critical philosophy this door must remain open – and he gave us the concepts that he thought could establish at least the conceivability of an alternative kind of causality (a non-deterministic causality) than mechanism through which we can think that nature has the inbuilt potentiality to produce her products.

Kant had correctly foreseen, in spite of the modernist impulse in the opposite direction, that not everything in our world can be explained merely in deterministic terms. With the arrival of quantum physics, the supremacy of determinism has indeed been fundamentally challenged. In this regard, it is especially the reduction of the wave packet (mathematically expressed via the “projection postulate”) that is taken as spontaneous, for example, in Niels Bohr’s Copenhagen interpretation. Some authors have even proposed that the reduction of the wave packet be viewed in causal terms (see Cartwright 1983:182; 1989:249; Bartels 1999:S170; and Pringe 2007). As such, it makes the ordered (statistical) outcomes that are observed in quantum physics possible.

We may ask: Is it possible that Kant’s philosophy of science as presented in the Third Critique can be reinterpreted and reformulated in such a manner that it has relevance to these issues? When we take the Kantian conception of “nature” as referring to the “classical world” (where the space-time theories of relativity apply), his supersensible substratum of nature as referring to the pre-measurement “quantum world” and understand the reduction of the wave packet in some way in terms of the spontaneous causality (potentiality) that Kant argued for, such a reinterpreted Kantian philosophy of science may be relevant and could even contribute to debates in contemporary physics.

In such an interpretation, it may make sense to furthermore consider superpositions of states, which are closely tied to the reduction of the wave packet, in terms of Kantian non-extended wholes-and-parts. In multi-particle systems, such superpositions do in fact combine elementary particles into more comprehensive non-extended “wholes”. Establishing a sophisticated interpretation, however, would require an in-depth and systematic study to determine whether the quantum realm adheres to the basic characteristics/conditions that Kant ascribes to that realm.

The discovery that our world is not governed solely by deterministic causality has not only led to a breakdown in the classical worldview; some philosophers of science even take this as a significant challenge to the unified picture of an ordered world (see Van Fraassen 2008:278-80; and Cartwright 1999:32). Correspondingly, Friedman notes the difficulties in unifying or synthesizing the conceptual framework of quantum mechanics with those of our best contemporary space-time theories, including both the special and the general theories of relativity. (Friedman 2001:121)
He bemoans the fact that the quantum revolution has not invoked ‘ongoing traditions of meta-scientific reflection’ like those on absolute versus relative motion and the foundations of geometry (Kant’s philosophy was important in these reflections) that played a major role in Einstein’s thinking when he formulated his theories.

Perhaps Kant’s approach in the Third Critique can help us out in providing a unified conceptual framework in which determinism and non-determinism (spontaneity) can be reconciled in quantum physics—in a similar manner that the other branch of his philosophy of science stimulated scientific reflection and theorization until the formulation of Einstein’s theories. As I discussed above, in Kant’s philosophy of science in the Third Critique, he provides clues as to how two conflicting principles, namely mechanism and final causality, or determinism and absolute spontaneity, could cohere in the same research program. If we explore the interpretation mentioned above in which the reduction of the wave packet is taken as the kind of effective causality that Kant conceptualized as final causes, there is at least the possibility that not only the classical and quantum pictures of the world, but also determinism and non-determinism, can be reconciled in one conceptual framework in (a reinterpreted) Kantian philosophy.

When we return to biology, we can now ask whether Kant’s ideas have any relevance for today. If we allow for the application of his ideas in the framework of quantum physics as mentioned above, this may indeed be the case. Not only is quantum decoherence used to study the interaction between quantum and classical systems; quantum physics plays a central role in the new field of quantum biology. According to decoherence models in quantum physics, quantum information is shared with the surroundings. Michel Bitbol writes:

[There is a] growing consensus, derived from decoherence, that a material body at our scale should itself be construed as an emergent appearance out of some sort of dispositional background. (Bitbol 2007:263)

This implies that spontaneous causality (if we regard reduction in such terms) underlies these emerging processes in biology very much in the manner that Kant proposed. In fact, the contributors to Life on the Edge: The Coming of Age of Quantum Biology (2014) suggest that quantum processes may play a role in genetic mutations—thereby implying that a mechanistic approach to evolution may not be sufficient.

There are even biologists who are beginning think in terms of the kind of “purposive potentials” (KdU 5:419-20) that Kant had in mind (that is, if we interpret these potentialities in terms of quantum physics in the way proposed above) which allow for “plans/designs” evolving from basic to more complex phenotypes in the context of organic life. William B. Miller Jr. (2016) says that ‘[t]here is room within contemporary evolutionary biology for both creativity [the ‘settling of ambiguities’] and determinism” by which he means things very similar to my interpretation of the Kantian ideas of teleology and mechanism. He suggests that the Pervasive Information Field (PIF)—taken as a kind of “bauplan” in accordance with a suggestion made by Newman and Müller (2005) to the effect that the master eukaryotic cellular domain has a range of latent potentials belonging to a quantum superimposition of possibilities which may, through “creative” means, resolve itself into biological explicates through a self-organizational process. (Although this essay—which I discovered shortly before publication—shows a remarkable correspondence with my interpretation of Kant’s view in the Third Critique, a more detailed discussion of it falls outside the scope of my essay). These developments in evolutionary biology mean that Kant’s work may indeed be very relevant to contemporary discussions in quantum biology.
3.6 Conclusion

In this chapter, I focused on Kant's philosophy of science as presented in the Third Critique. In my view, we should not try to cast Kant’s teleological approach merely in methodological terms. I argued that Kant had more in mind. Kant's teleology allows for the possibility that another kind of causality than the deterministic sort may be at work in nature, namely that of final ends. He held the opinion that we have no choice but to regard at least some products of nature in such terms.

I showed that Kant did not merely argue for the logical possibility of such a non-deterministic kind of causality; he also argued for its conceivability as a real effective causality operative in nature in the context of a Critical (reflective) metaphysics. In his view, both teleology (final causes) and mechanism may be objectively “unifiable in one principle” (KdU 5:413). That principle is the supersensible. As such final causes can only be conceived of as really existing (as a conceptualized potentiality) if the existence of the supersensible realm is assumed. And this is the key question: Can we, today, consider this to be a realistic proposal? In my view, it may be possible to consider the quantum realm as confirmation of Kant’s supersensible realm (i.e. as satisfying the conditions for the real possibility thereof). I have not presented any detailed arguments in this regard; nevertheless, it would certainly be of great consequence for both our understanding of Kantian philosophy as well as the natural sciences (both physics and biology) and the life sciences if this estimation holds.

Although we can interpret Kant’s position merely as a Critical (reflective) metaphysics, it seems possible that his conceptualization could also be taken as a theoretical framework (or hypothesis) through which determinism and spontaneity could be reconciled in a single research program. In that case, one would have to show how the Kantian concepts find application in contemporary physics. We can explore this possibility further in the next chapter.

4. A New Kantian Interpretation of Quantum Physics

In this chapter, I present a new interpretation of quantum physics in accordance with my ontological reading of Kant’s philosophy of science in the Critique of the Power of Judgement. According to this interpretation, the pre-measurement quantum and classical “worlds” are regarded as two distinct modes of existence, which respectively ground two heterogeneous kinds of effective causality, namely deterministic causality and spontaneous causality, which is taken as manifest in the reduction of the wave packet. In the Third Critique, this latter kind of causality is conceptualized as a spontaneous potentiality that allows non-extended wholes-and-parts (now taken as superpositions of states) to produce material parts and aggregated wholes (now taken as observable outcomes) in nature. I relate this spontaneous potentiality to the Bohm potential. A solution to the well-known measurement problem is developed and some features in quantum mechanics, for example non-separability and non-locality, are discussed in this context.

4.1 Introduction

A century after the paradigm shift introduced by quantum physics, physicists and philosophers of science are still struggling to come to terms with the implications of the theory. An important challenge is to understand and explain how determinism and non-determinism can be reconciled in one description of the world.

In the quantum picture of the world, both our conception of objects in space-time as well as deterministic causality as governing all reality are challenged. In general, the breakdown in the picture of space-time as a Lorentzian manifold is typically associated with regions where quantum effects become dominant (Earman 1986:188). The Aspect experiment also confirmed the violation of the Bell inequality which assumes determinism, as Redhead has shown (Redhead 1987:89). Redhead has also shown that the Bell inequality can be
reformulated in such a manner that this violation even negates what might be called “stochastic” determinism, that is, that the probabilities for possible values to occur are also not determined—at least in the framework of the Lorentzian space-time manifold (Redhead 1987:83, 102-103).

It is sometimes thought that Kant’s philosophy of science played an important role in establishing the supremacy of the deterministic picture of the world. Indeed, there is no doubt that Kant’s epistemology, as presented in the first Critique played an important role in establishing the philosophical foundations of mathematical physics (especially Newton's mathematical physics; see Friedman 2001:10). According to Kant, experience (and experimental knowledge) is only possible within the framework of space and time, with all matter in space/time governed by deterministic causality in accordance with his second analogy.

Van Fraassen (2008) also notes that this Kantian grounding of science in time became a criterion of completeness, i.e., that any complete description of reality would be deterministic. He writes:

As Kant saw it, the very coherence of experience requires that it takes a form of experiencing ourselves as living in a spatio-temporally definite causal order. The context in which physics was changing around 1900 thus included a strong conviction, inherited from classical physics and modern philosophy, that all phenomena in nature derive from an underlying deterministic physics. Determinism has become a criterion of completeness: any apparent gap in determinism so far is filled with statistical laws, but the statistical probabilities can only be a measure of ignorance. (Van Fraassen 2008:279)

But although one could acknowledge that physicists and philosophers of science interpreted the Kantian epistemology in support of a deterministic picture of the world, this, however, is not the Kantian position. In fact, in the second part of the First Critique, Kant already used the third antinomy (conflict of laws) to argue that his epistemology does not present us with a complete picture of the world! He argues that we can logically as well as conceivably (within the framework of his Critical metaphysics – see my arguments in chapter 2) allow for another mode of existence outside nature.

In my interpretation of Kant’s Critical or “reflective” metaphysics (as presented and argued in the previous chapter), he hypothetically divided the world into nature and a supersensible realm “outside” nature. He conceptualized “nature” as that mode of existence governed in totality by deterministic causality which is incompatible with absolute spontaneity (for nature as a systemic whole this is called “mechanism”)—one can take it as the “classical world” where the space-time theories of relativity apply (see Appendix 3). In the context of this discussion, I take “deterministic/mechanistic causality” as applying only within the framework of proper (Lorentzian) space-time.

Kant also allows for another mode of existence which, in contrast, would be governed by a different principle, namely that of absolute spontaneity (or: the transcendental principle of freedom). Kant calls this other mode of existence the “noumenal” or supersensible realm because we cannot, according to him, gain any experiential (or experimental) access to it; we are merely able to think about it with our understanding (the term “nous” in Greek is the etymological root of the term “noumenon”).

Although the conception of the noumenal realm has traditionally been equated with Kant’s moral philosophy exclusively, this, again, is not the Kantian position. In the First Critique, Kant already introduces this other mode of existence to allow for another kind of effective causality, namely absolute spontaneous causality, which, although it may produce effects in nature (which is why it is called a “causality”), begins “a series of occurrences entirely from itself” (A534/B562, boldfacing in the original) without any previous causal links
in any structure of causal relations. Although Kant uses this concept of causality to argue for practical freedom, it is in itself not exclusively a practical (or moral) concept.

The noumenal (or supersensible) realm, as well as spontaneous causality, play an important role in the philosophy of science that Kant developed in the Third Critique, which complements that presented in the Metaphysical Foundations of Natural Science. This work provides a conceptual framework to study those appearances in nature which do not seem to conform to the deterministic (mechanistic) picture of the world. In Kant’s view, non-deterministic causality (which he frames as absolute spontaneity) can be accommodated when it is assumed that it does not have its origin in nature but in the supersensible substratum of nature. I argue in this chapter that we can identify the pre-measurement “quantum world” with this realm.

What would any Kantian interpretation of quantum physics consist of? As Healey says,

An interpretation of quantum mechanics is an account of what the world is like if that theory is true. To be convincing, the interpretation should explain how the observations we take to support quantum mechanics in fact do so, given that the world is the way that interpretation says it is. (Healey 2009:272)

In this chapter I argue that the Kantian metaphysical position that he presents in his philosophy of science in the Third Critique—which involves his conceptions of nature, the supersensible realm, and spontaneous causality—can be formulated as a working hypothesis that prescribes the characteristics that the quantum realm would have if we can think that the world is like this. As such I apply my weak ontological reading of the Kantian position to quantum physics—not as a dogmatic realist assertion but rather as a way of conceiving the world. My primary concern is not epistemological, however, insofar as achieving “objective” knowledge is concerned: Bitbol (2007), Pringe (2007), and others focus on that. What I am especially interested in, is the problem of explaining non-determinism in quantum physics, which I argue should be understood as spontaneity (as in Bohr’s quantum postulate in his Copenhagen interpretation; see Bohr 1934:53). As such, I focus on the question of (absolute) spontaneity in quantum physics.

My approach takes me beyond methodological approaches that focus on the mere postulation of such spontaneity. I am not only concerned with the question: How can determinism and spontaneity be reconciled in one conceptual understanding of the world? but also with the questions: How is such spontaneity possible? What would the world be like for such spontaneity to really exist? In Kantian terms, this would involve the conditions for the possibility of absolute spontaneous causality and how we can realistically conceive of it. The application of Kant’s conceptual framework to quantum physics requires that these concepts be reworked such that it may be applied to quantum mechanics where space and time are decoupled.

As a first step, I show that superpositions of states should be regarded as another mode of existence, i.e., that the “quantum mode of existence” belongs to a different ontology and is not merely some feature of (systemic) nature. Superpositions of states conform to the Kantian conditions for a supersensible ontology: their amplitudes are irreducibly complex and as such supersensible, they are not in proper space-time (instead an abstract mathematical space-form (in quantum mechanics) or “primitive” space-time manifold (in quantum field theory) is introduced) and are “outside” nature (in their non-extended wholes-and-parts relation).

As a different mode of existence, this realm may be governed by a different principle than deterministic causality. Following Kant, I ascribe absolute spontaneity (which according to Kant’s conceptualization in the Third Critique underlies a potentiality to actualize) to this realm. In my view, this spontaneous potentiality is manifest in the framework of the reduction
of the wave packet that is associated with superpositions of states which take them to their individual components and the accompanying measurable outcomes. I view reduction in accordance with this principle as spontaneous (“absolutely spontaneous” in the case of quantum fields) and discontinuous. In my view, this spontaneous potentiality becomes conceivable (instead of a mere postulate based on an empirical assumption as is the case with the quantum postulate) once the quantum realm is taken as a different mode of existence. If this interpretation provides a viable way of explaining observations in quantum physics, the world may be understood in this manner.

In my view, the Kantian conception of the supersensible realm is to be identified with the quantum realm in the context of quantum fields. In quantum mechanics, the situation is more complex. The reason for this is that the general description that we find in quantum fields is now constrained in a certain manner; in the Schrödinger description, the quantum mode of existence is constrained in time (see the discussion below). In quantum mechanics, space and time are decoupled (when taken in special relativity terms) and time is coupled with another kind of mathematical space (Hilbert space) which I take as in some manner representing the “quantum space” that corresponds with the quantum mode of existence. Although the quantum mode of existence is constrained within a temporal ordering in quantum mechanics, it is nonetheless present.

Although Kant did not foresee the possibility that time can be coupled with another mode of existence (i.e., to which can be ascribed some ideal “space” that agrees with its structural form—see section 2.4.6), this possibility is easily accommodated in his Critical philosophy. This makes his conceptual framework applicable to quantum mechanics. I show that in this manner both the classical and quantum descriptions in quantum mechanics can be accommodated within the Kantian framework of nature and the supersensible realm (outside of nature) respectively. As such this interpretation accounts for quantum observations as well as providing an understanding of how they are possible.

My interpretation explains many of the interesting features of quantum mechanics, like non-separability and non-locality. I discuss the extent that these features involve moving beyond proper space-time. These features are also closely connected with the Aspect experiment and the question of non-determinism in quantum physics. I discuss the manner in which the various interpretations of quantum physics account for (or try to overcome) non-determinism. In this regard, I also engage with Bohm’s view since he postulates a quantum potential similar to the spontaneous potentiality that Kant conceptualized in the Third Critique.

In the final analysis, I argue that, although the classical picture of the world can be successfully described within the context of Lorentzian space-time and deterministic causality (i.e. in terms of Einstein’s theories of relativity), the quantum picture requires the conception of quantum entities as non-extended wholes-and-parts (superimposed states) that are connected outside proper space-time where another kind of causality (grounded in absolute spontaneity) governs the potentiality that these have to be realized in space-time.

In the same way that Kant’s epistemology laid the philosophical foundation for classical mathematical science, his philosophy of science in the Third Critique could now be viewed as laying the foundation for a viable interpretation of quantum physics that does not merely bring the classical and quantum pictures into one conceptual perspective, but which can also reconcile the two heterogeneous laws governing the two different modes of existence, namely of determinism and absolute spontaneity, in a conceivable manner in a united conceptual framework. In my view, these two descriptions involve two different modes of existence governed by these two heterogeneous laws—both of which should also be reconciled (if not united) in any viable interpretation.
4.2 Reworking the Kantian Approach

There are various interpretations of Kant’s epistemology. I follow the two-aspect view according to which objects may be viewed from two standpoints, namely as they appear to our senses and as we can think them as they are in themselves. I showed that this is not in conflict with my ontological reading of Kant’s metaphysics since no cognitive claims are made regarding freedom or the noumenal realm (they are merely ideas of reason that belong to the realm of things in themselves). I also showed in chapter 2 that Kantian things in themselves may hypothetically include noumena, taken as objects existing outside nature (perceivable only to another kind of intuition than the sensible one; this is the essence of my interpretation). Although the possible existence of such noumena in an ontologically distinct noumenal realm is first introduced in the First Critique, it is only in the Third Critique that it becomes part of Kant’s philosophy of science (see chapters 2 and 3).

The goal that Kant set out in constructing his epistemology was to establish “objective” cognition through which the necessary and universally valid principles for mathematics and the natural sciences could be established (A93/B125). In his view, our discursive intellect necessitates that the appearances that are given in perception be brought under the principles of the understanding for us to make truth judgments.

Although his epistemology is only applicable to our mode of existence, it is not restricted by the crudeness of our human sensibility. Kant allowed that our conceptual formulations can in the progress of experience (and experiment) be applied to “possible” perceptions “in accordance with the laws of the empirical progression”, i.e., “in the footsteps of cause and effect” (A493/B521; A495/B523). Kant has no problem with the idea that we can “observe” very small objects; he even mentions the existence of the magnetic field force (“magnetic matter”) in this regard (A226/B273). As long as a detailed causal structure can be established, scientists can apply some conceptual structure to appearances given in experiment.

In this regard, it is presupposed that both our measuring instruments and the appearances that we measure belong to the same mode of existence (both of which can be given in perception), which Kant conceptualized as “nature”. As such they share the same space-time structure that belongs to this mode of existence and stand (in accordance with the Kant’s third analogy) in a “community” of relations with each other that are governed (in accordance with Kant’s second analogy) by deterministic causality (just as we stand in such a relation to the objects of experience).

In the second part of the First Critique, Kant used the third antinomy to argue that another mode of existence (than nature) is not merely logically possible, but can be conceptually conceived of within his Critical metaphysics (see section 2.4). This is the “noumenal” or “supersensible” realm. Objects in this mode of existence cannot stand in any “community” with the objects of nature; it is outside nature (taken as the totality of mechanistic causal relations). Since human sensibility cannot reach outside nature and we do not (according to Kant) have an intuition which allows any experience of such a mode of existence (KdU 5:416), it is called a “supersensible” realm. This is the first characteristic of the noumenal realm that is confirmed in the quantum mode of existence (see below).

The supersensible mode of existence is also outside proper space and time. According to Kant, we have two forms of sensibility in which intuitions are given, namely space and time. These provide us with the ability to perceive objects in space and time (A27/B43) and such perception (empirical intuitions) would constitute empirical space (A57/B81, A377, A431/B459; see also Appendix 1). Although the supersensible realm is not in space and time, in the context of Kant’s Critical metaphysics we can accept that its ontologically different structure would be reflected in something similar to and corresponding to our space-time but which is not accessible to our forms of sensibility (see section 2.4.6). We can, therefore, in the same manner that we construct a priori geometrical space-time forms which apply to our mode
of existence, also construct abstract mathematical space-time forms (taken from a contemporary perspective; that we cannot visualize, otherwise it would be in our mode of existence) which would correspond to the supersensible mode of existence.

When we find that the pre-measurement quantum mode is not in proper space-time, but that we can nonetheless ascribe some abstract mathematical space-time manifold to it (see below, in quantum field theory), I take this as the second characteristic of the noumenal realm confirmed in the quantum realm. Since this space-time manifold reflects a different ontological structure (in the Kantian conception according to which structural relations reflect ontology) that stands in no community with our mode of existence (see section 2.4.6 and Appendix 1), I take this as implying that the quantum realm conforms to an ontologically different mode of existence. As such we can, without contradiction, allow that it is governed by a different rule than deterministic causality which becomes conceivable in the framework of such a supersensible realm. Absolute spontaneity may be such a rule. Whereas nature is governed by mechanistic causality, the quantum realm may be governed by spontaneity.

Which objects belong to the supersensible mode of existence? I previously (in chapter 2) showed that Kant distinguishes between the objects that we may encounter in experience and those that we can merely think of as existing outside of nature. In the First Critique, Kant calls this last kind “objects of understanding” or noumena. In the Third Critique, he develops a more sophisticated view based on arguments that such entities can produce not merely outcomes, but ordered arrangements of outcomes, within the framework of nature. As such he cast that mode of existence in terms of “wholes-and-parts” (my terminology).

In contradistinction with material wholes which are explained by the causal relation between the component parts (the parts determine the whole), Kant conceptualizes the idea of non-extended wholes-and-parts (existing in the supersensible realm outside space and time) according to which such wholes (and their parts) serve as ground and condition for the material parts and their internal arrangement (the whole determines the parts, see section 2.4; see also Allison 2012:203). In this case, the non-extended wholes-and-parts are connected outside nature in such a manner that the parts are mutually the cause and effect of each other in the production of the parts that form the material whole. I argue below that the quantum mode of existence can also be characterized in these terms when superpositions of states are regarded as non-extended wholes-and-parts which produce a particular arrangement of outcomes where the states (parts) mutually produce ‘each other’ (even non-locally) in multi-particle systems.

Kant casts these wholes-and-parts in the framework of a concept of causality, according to which such non-extended wholes-and-parts, which exist outside nature in the supersensible substratum of nature, would produce its effects within the framework of nature. He calls this regulative concept “final causality” in analogy to the accomplishment of human ends. This kind of causality is viewed as a kind of capacity (potentiality) to produce certain outcomes in nature. In this regard, this ideal causality (which we can merely think of) is grounded on the concept of spontaneous causality which can both logically (without contradiction) and conceivably be ascribed to the noumenal realm (as Kant already showed in the First Critique). The concept of final causality is therefore also called a “spontaneity of a cause” in the Third Critique (5:411). This is not merely a logical possibility or empirical assumption; it is conceptualized as something that may conceivably really exist in the context of the supersensible realm. In my interpretation of quantum physics, the reduction of the wave packet is understood in accordance with this kind of causality.

In this manner two kinds of appearance are possible in the framework of nature, originating from the objects of nature and noumena respectively, and produced in accordance with these two heterogeneous principles (deterministic and absolute spontaneous causality). The first is merely those appearances that belong to the causal structures of nature (which stand under the principles of the understanding); the second is grounded in the supersensible realm.
but produced in nature. These correspond to the two kinds of appearances that we observe in experiment, namely those in accordance with deterministic causality (even when regarded in stochastic terms) and those which result from the reduction of the wave packet. When we regard the reduction of the wave packet as an event in accordance with spontaneous causality, then these appearances reflect the Kantian distinction.

We can distinguish five essential characteristics of the supersensible/noumenal realm in contradistinction with nature:

1. it is supersensible,
2. it is outside space-time, with its own conceptualized 'ideal' space (or: space-time) structure which corresponds with proper space-time,
3. noumenal entities are conceptualized as non-extended wholes-and-parts existing outside systemic nature,
4. two heterogeneous principles govern the two modes of existence, namely a spontaneous potentiality to produce outcomes in nature and mechanism (in nature), and
5. two kinds of appearances can be discerned accordingly.

The first three characteristics distinguish it as another mode of existence, i.e., as belonging to another ontology, the fourth involves the basic principle associated with that mode of existence. I will now show that these characteristics (which may also be regarded as the conditions for its real possibility) are confirmed in the quantum realm when we take superpositions of states as the supersensible mode of existence.

There is, however, an important way in which I rework the Kantian program. Kant never envisioned the possibility that time could be combined, not with space, but with that “ideal” space which reflects the structural form of the supersensible mode of existence. There is no reason why time cannot also be logically and conceivably combined with the supersensible mode of existence—which would then be partially constrained in time. I argue that this is what we find in quantum mechanics where the superposition of states is described in Hilbert space, with the quantum system constrained in time. In such formulations the concepts of time and causality are used; this causality is not the same as the Second Analogy of Experience, which applies when objects are presentable in space/time intuitions (see Appendix 3 and Kauark-Leite 2010:248).

The result of this reworking of the Kantian system is that we can gain partial access to the supersensible realm – something that Kant did not think possible (see below). One can even argue that this change makes another kind of intuition possible that Kant did not foresee, which would enable us to have some kind of experience of the supersensible realm (a non-sensible noumenal intuition which would be a quantum intuition; see Appendix 2).

4.3 The Quantum Realm is Supersensible

The one feature that uniquely characterizes all quantum systems is “superposition of states”. This is something that we do not find in classical systems. What is a superposition of states? Albert writes:

Electrons seem to have modes of being, or modes of moving, available to them which is quite unlike what we know how to think about. The name of that new mode (which is just a name for something we don't understand) is superposition. (Albert 1992:11)

In quantum physics, the various possible states of physical systems (i.e., physical objects or collections of objects), which are mathematically expressed as “state vectors” (or wave functions), are entangled in such a manner that they cannot be individually distinguished
without some loss in information. This entanglement of states is called “superposition of states” and the possibility of superimposing two states to form another is reflected in quantum mechanics by the possibility of adding or subtracting two such vectors (Albert 1992:30).

All physical systems have both intrinsic properties like mass and charge (which determine the kind of object) as well as variable or state-dependent properties (like position, momentum, spin, velocity, energy), which are called “observables” in quantum physics. They are represented by operators on the state space (the state space includes all the possible states of the system). Such representations would describe the physical system in terms of some property, for example, the position or momentum representation. Various representations of the same physical situation are possible which is invariant among transformations between such representations (Healey 2009:xvi).

There is a fundamental difference between quantum and classical properties, which is also reflected in their mathematical formalization (Cartwright 1999:217). Even though the quantum properties of the system are called “observables” and they (in the relevant cases) assign a discrete spectrum of possible eigenvalues to the superimposed states in reference to probable outcomes, neither the superpositions of states nor their properties are in fact observable in experiment. As Van Fraassen says, quantum properties are merely a “theoretically described” reality that can never be given in experiment (Van Fraassen 2008:299). Quantum systems as such have no eigenvalues; they have only amplitudes. To realize some eigenvalue, another condition is required, namely classical realization (Auyang 1995:79) when the reduction of the wave packet produces a reduced state associated with an eigenvalue (taken on the individual level).

The reason why quantum properties cannot be given in experiment is that the amplitudes associated with them are complex quantities while our instruments can only measure real numbers. Whereas some complex quantities can be decomposed into real and imaginary parts, which could be separately represented by real numbers, this is not the case with these quantum values. They are “irreducibly complex”, that is, they cannot be decomposed into real and imaginary parts (they have no real parts) (Auyang 1995:73).

Auyang (1995), who discusses this aspect of quantum physics in some detail, regards such irreducibility complex values as outside the possibility of human perception. In this regard she formulates a criterion which serves to decide what falls within the bounds of our form of perception, namely that we must be able to map object structures into a real number system or its direct products (which is possible, for example, when a complex number is decomposable into real and imaginary parts). Her argument in this regard is that perception involves the ability to visualize which is not possible with regard to irreducibly complex numbers (see section 3.4.3).

This irreducible complexity of the quantum states (superposition of states) and their amplitudes, as well as the amplitudes of the quantum properties, implies that they are beyond our ability of representation in perception. They can therefore never be empirically given in experiment (which is always representable in perception). Auyang writes in this regard:

In stipulating that quantities admissible as measured results [i.e., eigenvalues] must be real numbers, quantum theories make explicit a general limit to human empirical capabilities. The general form of our sensible capacity is representability by real numbers... Eigenvalues are numerical and fall within the bounds of our form of perception, whereas quantum amplitudes do not. (Auyang 1995:72, 81)

The reduction of the wave packet takes the system from such irreducibly complex amplitudes to eigenstates which are associated with measurable real eigenvalues.
Although the superpositions of states and their accompanying quantum properties cannot be empirically given in experiment, these properties (with their unobservable characteristics) can, in fact, be physically manipulated with observable effects. As such, one can say, as Auyang does, that they have empirical ramifications if they are “kickable” (Auyang 1995:75). This means that the quantum state (and its properties) is “a genuine feature of reality” (Cartwright 1999:232). But since no direct measurement of quantum quantities is possible, this mode of existence is clearly not the classical one. We can, therefore, think that superpositions of states embody another mode of existence than the classical one, a mode which is beyond the reach of our human sensibility and is as such supersensible.

The unmeasurable (“supersensible”) aspect of entities in the pre-measurement quantum mode represents a change in ontology that is widely recognized. This is especially problematic in the case of entities which constitute quantum fields where field theorists have no clear idea as to what new ontology should replace the classical one (Bartels 1999). Healey writes in this connection:

[Whereas there is a problem with] quantum particle theories insofar as they leave it quite unclear what properties the particles have and when they have them, the problem becomes much worse in quantum field theory. For a quantum field theory removes even the basic particle ontology, while leaving it quite unclear what is to replace it. (Healey 2009:221)

4.4 The Quantum Realm is Not in Space-Time

Another important feature of quantum physics is that the space-time manifold associated with quantum states is distinctly different from the space-time that we know. In quantum physics, abstract mathematical space-time (or: space) replaces proper space-time. Before discussing this in the framework of Auyang’s interpretation of quantum field theory, which in my opinion closely agrees with the Kantian position, I first focus on the restricted case where the pre-measurement quantum mode is constrained in time, namely quantum mechanics.

In contrast with the classical picture where particles can be described in terms of both time and space, in quantum mechanics, the entities (in superpositions of states) could be described in time but not in space. They are described as mathematical objects (represented by state vectors or wave functions) in a mathematical space, called a Hilbert space (which is also the state space). The problem is to understand this space which is clearly not the kind of space associated with classical particles. Earman expresses this frustration vividly when he says that the path of the physical system is located in a Hilbert space, “which resides in Plato’s heaven or wherever it is that Hilbert spaces reside” (Earman 1986:203).

4.4.1 Hilbert space

The main problem is that in quantum physics the Hilbert spaces are complex vector spaces (Cartwright 1999:217). Although there have been efforts to describe quantum mechanics in a real Hilbert space (as was done independently by Mackey and Stueckelberg), these formulations merely make the complex nature of Hilbert space implicit, it does not remove it (Auyang 1995:74). The reason why the complex nature of Hilbert spaces is important, is that it reflects something about the nature of the quantum entities associated with that space-form if we interpret state spaces as reflecting the kind of the entities to which it belongs (as Auyang 1995:65 argues). As such we can take the Hilbert space as reflecting the ontology of the quantum state which has irreducibly complex amplitudes (in line with the Kantian view that space reflects ontology) and can regard it as in some manner reflecting the “quantum space” associated with quantum entities.

In this reading, the complex nature of Hilbert spaces is merely a mathematical expression of the fact that quantum states with their complex amplitudes cannot be represented
in our space. When entities cannot be represented in space they are not visualizable since this involves our ability to spatialize. In the Kantian approach, the representability of objects in space is closely associated with human perception which involves the ability to visualize objects in space (time is visualized as a line). For Kant, this presents the limits of both human sensibility and understanding (see section 3.4.3). One may argue that we also have some kind of intuitive access to entities which are outside proper space (see Appendix 2) but that goes beyond Kant’s Critical conception of perception.

When entities cannot be visualized (i.e., their object structure cannot be mapped into a real number system—Auyang 1995:72), and therefore cannot be presented in space, they belong to a different mode of existence than that which is accessible in sensibility (at least as far as space is concerned). They are supersensible (see the previous section) and outside space and as such they are difficult to understand.

Although the quantum state as it is in itself cannot be presented in space, some appearance thereof in terms of observable properties is nonetheless possible. Mathematically this is described by the representations of the quantum state (through linear operators on the Hilbert space) insofar as these involve a prescription of the eigenstates associated with the property as well as their eigenvalues and the probability of these appearing in observation. When we conceive of the quantum state merely in terms of its possible outcomes, we can say that it occupies some “probability” space; this, however, does not describe the quantum mode of existence but merely its appearance (in the classical mode of existence) in experiment. In this manner, the position representation would describe the space-time points (regions) where the particle(s) could be found in measurement. In reference to this actualization in space-time, Bitbol says:

[In quantum physics] the objectified structures are state vectors or wave functions in a Hilbert space, and the situated appearances are experimental events occurring in ordinary space-time. (Bitbol 2007:258)

What is strange about quantum mechanics, is that although the quantum state is not in space, it is nonetheless evolving in time. In the move from classical to quantum mechanics, the new description entails the combining of time with mathematical space (i.e., Hilbert space) instead of the coordinates of ordinary space as before. In this regard, space and time are not merely independent (as in Newtonian physics); they are decoupled when viewed in terms of special relativity and time is then coupled with that space associated with quantum states. The only relation between time and ordinary space that is retained, is the position representation which tells us what possible position values the system may have upon measurement (time is a parameter while position is an observable).

The time framework in the quantum mechanical description is taken from the Hamiltonian formulation which is incorporated in the Schrödinger equation. One can view the Schrödinger equation as extending the classical time framework into quantum physics. As such the most important contribution of the time framework is that it allows the quantum system to evolve continuously in time which in turn allows for the deterministic propagation of causes in this framework. The time parameter, therefore, allows the introduction of classical characteristics to the quantum system: the time evolution of the superposition of states is governed by deterministic laws which subject the state vector to given forces and constraints in a manner similar to classical equations of motion (Albert 1992:34).

We can read the time parameter as placing a (classical) constraint on the quantum mode (which is then in some manner constrained to be in time but not in space). The dynamic evolution of the quantum system, which is made possible through the time framework, constrains the superposition of states to evolve in a certain manner in time. In the quantum
fields description (see below), the quantum system is not constrained in this manner. In placing this constraint (through the introduction of the time framework) on the quantum system, classical characteristics are effectively included with the quantum mode in one description. The classical characteristics are manifest in the deterministic evolution in time of the superposition of states which belong to the quantum mode of existence.

This strange combination of classical characteristics with the quantum mode of existence in one system is reflected in the way in which quantum particles differ from their classical counterparts. They are not situated in space-time like classical particles; they do, however, retain some definite classical characteristics (deterministic evolution) due to their continuous time evolution which disappears in the quantum fields description. When compared with the quantum fields description, on the other hand, where quantum entities have no classical particle characteristics at all, we can view the ascription of such semi-classical characteristics to those entities in the quantum mechanical description as a constraint on their ontology, i.e., they are constrained to evolve in a certain manner in time in the Schrödinger description. Quantum mechanics describes an in-between world where the classical and quantum modes of existence meet.

4.4.2 Space-time in quantum field theory

When we move from quantum mechanics to quantum field theory, the space-time manifold that belongs to special relativity is reintroduced (now both time and space are parameters). But what does it mean? As in all these matters, this depends on our interpretation of it. In this regard, I found Auyang’s (1995) formulation and interpretation of quantum field theory (which is grounded on a Kantian approach) of special relevance to the present discussion.

Auyang first distinguishes free matter fields as idealized components of interaction fields, i.e. interaction is neglected (she later reintroduces it; see Auyang 1995:129, 158). She then takes the idealized free local fields as representing the basic quantum entities in such fields (which are analyzable into local fields and their interactions; see Auyang 1995:129, 158). As such these local fields correspond to the state vectors in the quantum mechanical description; the coupling between them corresponds with the introduction of superpositions (Teller 1995:104) which was previously described in terms of adding and subtracting vectors (in the vector formulation). The entities in the quantum fields are conceptualized as existing (with identities) before any definite descriptions of their qualities (properties) through (so-called “creation” and “annihilation”) operators on their state space are introduced (similar to such descriptions of quantum states in quantum mechanics; Auyang 1995:170-2).

The entities that Auyang is concerned with are the “basic entities or individuals of the physical world” which are “extensionless in all four dimensions” (that is, they have no space or time parts) even though they could be indexed in the framework of a “primitive” space-time manifold M (Auyang 1995:123, 129). These include elementary entities like electrons, but not field quanta (she is only concerned with matter fields). She calls these entities “events” to express the fact that their indexing in M involves both space and time (as such they have the potentiality to be realized in space-time). These “events” should not be confused with what is normally understood by events in space-time. Indeed, if Auyang’s Kantian approach is not taken into consideration, it is difficult to understand her view (see Bartels 1999 and Healey 2009:202).

In the same manner that the association of quantum states in quantum mechanics with a mathematical space (Hilbert space) reflect their quantum ontology, the entities in quantum fields are associated with a primitive space-time manifold that reflects their ontology (in the quantum mode of existence) before any definite qualities are expressed in ordinary space-time (Auyang 1995:183). According to Auyang, the primitive space-time manifold M is not
something existing apart from the quantum entities; it reflects the structure of the real world of quantum entities (events). She writes:

Space-time is a structural property of the fields [i.e., field entities], not the other way round. This agrees with the common sense notion that the basic ontology is a thing, not a spatial region. (Auyang 1995:150)

The spatio-temporal structure M, in its coordinate-free [i.e., representation free] form, contains no explicit relations. It lacks notions such as contiguity, orientation, distance, extension, and all metric notions. (Auyang 1995:134)

It is four dimensional and sets of four indexes are required to coordinate it. Insofar as time is concerned, M is too primitive to confer special meaning on the time dimension... M is not in time; it is all time. More correctly, it is the condition for the possibility of introducing the time parameter and the notion of being 'in time'... [it] is independent of temporal concepts. It contains the time dimension as one aspect and makes possible the introduction of the time parameter, but is itself beyond time and change. (Auyang 1995:170, my italics)

Only once events are actualized in some manner, are they represented mathematically as timelike or spacelike curves which are generated by mapping some part of a real number system onto the manifold M (Auyang 1995:171). This introduces constraints on the quantum mode; the quantum mechanical description involves such constrained conditions.

There are two aspects of Auyang’s notion of “events” in M that are of importance to the present discussion, namely that these entities are conceptualized as existing beyond our representation of them and that (as such) their mode of existence is not in proper space-time; they are, however, “free to choose their own convention in expressing definite qualities” (Auyang 1995:183). This corresponds with the manner in which quantum states in quantum mechanics are conceptualized as existing in a Hilbert space beyond any representation of them (which characterizes their properties).

I take this description of quantum fields, instead of the quantum mechanical one, as the more suitable description of my conception of a “quantum mode of existence” since no classical constraints are placed on it. For me, the quantum mechanical description represents a constrained subsystem of that conception, for example, when such a state is represented in the Schrödinger formulation as evolving in time. As such the quantum mode of existence (in the fields description) does not merely stand in contrast with the classical mode of existence; it can also be sensibly compared with Kant's supersensible realm which is outside space and time.

Auyang’s formulation explicitly builds upon the Kantian conceptual framework in which appearances (representations) of objects are distinct from the objects as they are in themselves (Auyang 1995:99-100). In the framework of my alternative Kantian interpretation, we can distinguish in this regard between the transcendental object and noumena (see section 2.4.2). When we consider the everyday objects of experience, Kant says that we have a direct awareness of their reality. As the ground of those appearances which stand under the principles of understanding, it is conceptualized in the Kantian system as the “transcendental object”, which does not refer to any particular object; it is the completely undetermined thought of the object of sensible intuition in general which is the same for all appearances (see A251 and A253).

In the case of noumena, on the other hand, there is a gap between the appearances in nature associated with these objects and the objects themselves which exist outside of
space/time (and nature) in a supersensible realm and are the spontaneous cause behind the associated appearances. Although Auyang does not distinguish between the transcendental object and noumena (or even mentions these), it is immediately clear that Kant’s conception of noumena corresponds closely with her conception of extensionless objects (“events”) in quantum fields. Just as is the case with noumena in the supersensible realm, the quantum mode of existence is also supersensible and outside space-time (replacing space/time) in the case of quantum field theory, whereas the appearances caused by these quantum entities are in space-time.

4.5 The Quantum Realm is “Outside Nature”

The existence of the quantum mode outside space-time has serious implications for the manner in which we conceive of the entities in that mode of existence. We can now consider the entities that belong to the quantum mode in more detail and ask how they differ from those existing in the classical mode? From a Kantian perspective, things can only consist of matter if they can be presented in some manner in space/time (matter constitutes that which exists in the framework of the divisibility of space). This means that entities that belong to the quantum mode of existence (when they are in that mode of existence), do not consist of matter. They are not aggregated wholes which can be divided into smaller parts to which properties can be individually ascribed.

4.5.1 Wholes-and-parts

We can distinguish between aggregated wholes that exist in space-time and non-aggregated wholes (wholes-and-parts) existing in the quantum realm in the same way that Kant does in the Third Critique. As such the superimposed states are taken as the parts that together form entangled superpositions of states or wholes. As in Kant’s conception, these parts and wholes are non-extended (i.e., they do not occupy proper space-time). This means that these wholes-and-parts cannot as such be individualized as extended entities in space-time; it is not possible to map real numbers onto the individual superimposed states. We can, nonetheless, conceptualize quantum entities in terms of parts and wholes, i.e., as wholes-and-parts.

In calling the non-aggregated wholes “wholes-and-parts”, I try to capture something about the interwoven nature of such entities. In quantum physics the superposition of states, which I take as the basic feature of the quantum mode of existence, makes the superimposed states possible (insofar as they exist in that mode as physical states) as states that cannot be individually distinguished empirically – neither as states of a single particle nor that of multi-particle systems. Even in the case where the system is comprised of fundamental entities like electrons, for example when the electron cloud of the helium atom is considered, it cannot be decomposed into well-defined states with measurable properties (Albert 1992:49). The states in such multi-particle systems are said to be “nonseparable” (in contrast with the “mixtures” produced after the reduction of the wave packet).

As long as the parts (states) are not individualized (in experiment), variable properties cannot be assigned to them individually (i.e., locally in a spatial region). This is confirmed by the EPR experiments which tested for hidden variables, i.e., variables (properties) which are supposed to be hidden because they cannot be directly measured or controlled. According to Einstein, Podolsky and Rosen in their (1935), the individual quantum states should already possess values associated with these variables before they are measured in experiment. Using the proof developed by Bell, the EPR experiments, especially that done by Aspect, confirmed that such variables do not exist.

In quantum physics, we can conceptually distinguish the different states that belong to the entity or entities simultaneously, both in single and multi-particle systems. Although these states cannot be realized in space-time and their existence demonstrated empirically, they can
hypothetically exist (albeit not materially) in the quantum mode of existence. We can, therefore, think that they exist as real, albeit non-individualizable, parts in the whole. This, however, is not the classical mode of existence in which properties can individually be ascribed to these parts. From our human perspective, they can only be regarded in terms of their possible realization.

When we take the superimposed states as the parts that constitute the whole, we broaden the Kantian conception where parts refer to fundamental entities. Kant took Leibniz’s monads as the point of departure for his concept of noumena (see Cicovacki 2010:85 and Friedman 2010:243); he regards them in the Third Critique as non-extended fundamental parts which together comprise supersensible wholes. In his reinterpretation of Leibniz’s view in *Metaphysical Foundations of Natural Science* these parts of are even called simples:

> [T]he composite of things in themselves must certainly consist of the simple, for the parts must here be given prior to all composition. But the composite in the appearance does not consist of the simple, because in the appearance, which can never be given otherwise than as composed (extended), the parts can only be given through division, and thus not prior to the composite, but only in it. (MAN 4:507-508, italics in the original)

At bottom, in multi-particle systems, it is, in fact, these fundamental entities that are coupled (through their states) into wholes-and-parts as Kant proposed.

The main feature of such wholes-and-parts is that they are beyond our sensible reach and as such Kant concluded that, although we can think them, we are nonetheless not able to understand them (see section 2.4.3). In this regard, his view prefigured (motivated?) that of Bohr who recognized the limitations of the use of our classical concepts which would not be definable in quantum context. Bohr, for example, emphasized the unknowability of quantum properties before the reduction of the wave packet which he grounded in its undefinability (Redhead 1987:50).

4.5.2 Non-locality

The wholes-and-parts that we (conceptually) associate with superpositions of states of multi-particle systems are not only non-extended and non-separable; they are also not linked (coupled) within the space-time framework even in the quantum mechanical description. This becomes clear when we consider the mathematical (vector) formulation of such wholes-and-parts, namely as a product of state vectors in Hilbert space. As such the relation between the wholes-and-parts is independent of the distance between the different entities involved; it is also independent of time. Proper space and time do not enter in any manner in this description of the relation between the state vectors which means that the physics described by this formulation (i.e., non-separability) is independent of space-time; it operates outside proper space-time.

The relations between the wholes-and-parts are not governed by proper space-time. The relations between the parts are not structured in proper space (insofar as they are in complex Hilbert space); the relation between the parts are not dependent on time either (the time framework does not govern the relation between the parts, only the dynamic evolution of the system as a whole is in time). This means that the relations between wholes-and-parts are not merely outside proper space (see section 4.4.1); these relations exist in fact outside space-time (its time-independent nature is implicit in the theory) even though the superposition of states, on the whole, is constrained in a certain manner in time. We can view the dynamics described by the Schrödinger equation as placing a certain constraint on the whole-and-parts description given by the product of state vectors.
Although the quantum mode is constrained in time insofar as its dynamic evolution is concerned, the quantum mode itself insofar as the internal relations of its wholes-and-parts are concerned are not presentable in space-time. Wholes-and-parts are internally related and linked outside space-time within the quantum mode of existence. Their relation is not that between aggregated wholes in space-time, but between non-extended, non-separable parts outside space-time to which measurable properties cannot be individually (i.e., locally in some spatial region) ascribed (that would be to allow for “hidden variables”). In that sense, they are beyond space-time similar to what is specified for entities in quantum fields which exist outside proper space-time before their realization in space-time (see Auyang’s [1995] formulation of quantum field theory in section 4.4.2).

The rules governing spatio-temporal relations between objects only apply insofar as objects are in fact related to each other in space and time. In Kant's epistemology, the principles of the understanding (which govern objective cognition) only apply to appearances in space and time. Even Kant’s second analogy which governs temporal relations between appearances given in perception, presupposes spatial relations since both the material and formal (spatial relations) aspects of perception are synthesized together into unified perceptions which are brought in judgment under the rules of the principles of the understanding.

When spatial and temporal relations between objects or parts of objects are, however, suspended, these principles (rules) are also suspended. Insofar as wholes-and-parts in quantum physics exist outside of space-time, those classical rules guided by deterministic causality, do not apply to them. They are not deterministically connected insofar as that principle is restricted to Lorentzian space-time in the framework of special relativity. One can say that the lawful regularity that we assign to theoretical terms that denote the properties of objects consisting of matter (in space), is not applicable to quantum systems (Earman 1996:94). This obviously does not mean that theoretical formulations, such as the product of state vectors, cannot be used to describe physics beyond space-time although in that case we are restricted in our understanding of the reality described.

In quantum systems the wholes-and-parts are non-extended and their interrelatedness very different from classical parts and wholes (via non-separability). This difference is not only reflected in the relations between wholes-and-parts being outside proper space-time, it is also reflected in the fact that there is no community between these different kinds of wholes existing in these different modes of existence. This is manifest in the fact that we cannot access that realm experimentally (even if we could bring the infinity of deterministic relations in nature into account) since there are no real wholes or parts (with real amplitudes) that can commute with our mode of existence. This means that the pre-measurement quantum mode (in quantum mechanics one would say, the internal relations governing wholes-and-parts) is outside nature—the causal relation which governs our mode of existence (nature) do not extend to the quantum realm.

Wholes-and-parts are not causally connected! This is also the Kantian position in the Third Critique, namely that the wholes-and-parts that belong to the supersensible realm are outside nature, and therefore not regulated by deterministic causality. As such deterministic causality (called 'mechanism' when applied to nature as a systemic whole) does not apply to the internal relation between wholes-and-parts. Whereas (deterministic) causality regulates the relation between aggregated wholes consisting of parts in space/time, Kant conceptualized another kind of relation between these wholes-and-parts, in which the parts are together the cause and the effect of their realization in the framework of material wholes.

This interpretation is supported by the EPR experiments. In this case, two particles produced by some source, which do not have well-defined spins, travel in opposite paths along the two arms of the apparatus. When the spin of the one particle is measured, the other is immediately determined, i.e. even though there is no time for the two outcomes to communicate
their results. The interaction between the entities is therefore not something that happens locally in space or time. This allows us to say, as Albert does, that “the assumption that the physical workings of the world are invariably local must (astonishingly) be false” (Albert 1992:69).

Since the Bell proof involves the hidden assumption of deterministic causality as Redhead has demonstrated, the experiments also proved false the idea that everything in the world is deterministically connected (Redhead 1987:90). Redhead also formulated a version of the Bell inequality that is not dependent on local hidden variables and showed that the violation thereof negates even “stochastic” determinism, by which I mean that even stochastic causal links between the entities are dismissed (Redhead 1987:83, 103).

Non-separability (as described by the product of state vectors) is not merely characterized as operating outside proper space-time; it immediately implies that determinism (as defined above) is also not applicable in such contexts. The non-locality demonstrated by the Aspect experiment involves giving up on determinism. All interpretations of quantum mechanics can agree that non-separability, as described by the product of state vectors, is independent of space-time and that deterministic causality does not apply to the extent that this concept is taken to apply only within Lorentzian space-time (there is still the possibility that we may think of determinism in other terms, for example, in the Bohm interpretation; see below).

When we regard the arrangement of the EPR experiments in the context of my Kantian interpretation, we can say on the one hand that the dynamic evolution of the superposition of states in the time framework is in accordance with deterministic causality (because it is continuous in time). The internal whole-and-parts relations between the states of the two entities in the two arms of the apparatus, on the other hand, insofar as they are situated outside space (they cannot be presented as continuously connected in space; we can only ascribe some mathematical space to them) and are independent of time (i.e., the interaction happens across a temporal gap; see Cartwright 1989:249), are not governed by such causality. These are contradictory descriptions pertaining to the same physical system (!) which I explain as a classical constraint being placed on the quantum mode of existence (the wholes-and-parts) which introduces the possibility of reduced (classical) states (i.e., in the classical mode of existence) co-existing with the quantum mode (see below).

Since the whole-and-parts connection is not in space it is independent of spatial relations and distance; since its internal relation is independent of time it is also not constrained to be continuous in time. As such the relations between the wholes-and-parts are not governed by deterministic causality which I take (with Redhead) as being restricted to the space-time framework. As such, the wholes-and-parts also do not stand in any community with the objects of our mode of existence (for this it has to be part of the causal network of nature). This allows us to say, without contradiction, that they belong to another mode of existence where deterministic causality does not apply. As such their internal relation operates non-causally and non-locally just as is indeed found in the EPR experiments.

We can understand the results of the EPR experiments as not merely confirming quantum non-locality, but more specifically that such wholes-and-parts exist (there is obviously a real connectedness between the states of the quantum entities) and that these wholes-and-parts are not locally in space-time. The states of the two entities exist as wholes-and-parts that cannot be individualized (localized) in space; they are connected non-locally (i.e., outside space-time). As such they exist outside nature where deterministic rules do not apply. In Kantian terms, we can say that the superimposed mode of existence is not in nature and is therefore not guided by deterministic causality in any relations between the whole-and-parts.

In quantum mechanics, where time and Hilbert space are coupled in one system, we can ascribe deterministic causality to the system’s evolution in time (the time framework
incorporates the classical characteristics), but we cannot do so regarding the internal relations between its states (which are in the quantum mode of existence). Since classical characteristics are combined with quantum modes in quantum mechanics, two heterogeneous rules are brought together in one system. The deterministic causality that is associated with the classical mode of existence, however, does not carry over to the internal relation between the wholes-and-parts in the quantum mode of existence.

4.5.3 Quantum probabilities

The outcomes of measurement can now be understood in terms of parts and wholes. The reason for this is clear: although the quantum and classical modes of existence are described very differently in terms of parts and wholes, they are nonetheless both describable in such terms. Whereas superpositions of states can be conceptualized in terms of non-aggregated wholes-and-parts, the outcomes of measurement involve aggregated wholes defined in terms of probabilities in accordance with the Born postulate (the individual outcomes form an aggregated whole as in all probability formulations).

Since definite values cannot be assigned to pre-measurement states in superposition, the outcomes are accordingly not determined by such values; they are given probabilistically. In fact, since causality (even stochastic causal links) does not extend from the classical mode to the quantum mode (see above), there is an ontological gap between the non-aggregated wholes-and-parts in the quantum mode and the material parts and aggregated wholes that obtain in measurement in the classical mode; a gap that can only be crossed probabilistically.

We should, however, not think of the outcomes of quantum measurements merely in terms of probabilities of possibilities (possible outcomes judged probabilistically). Quantum measurements do not merely involve a possibility of outcomes judged in terms of probabilities—which can also refer to many possible transitions and (re)arrangements among the parts of an aggregated whole in space-time. Such probabilities only involve objects in space. It is merely concerned with the relation between two situations in space, namely before and after the outcome for which the probability is calculated. In contrast, in quantum measurements, there is a transition from a non-aggregated whole in the quantum mode of existence outside nature to outcomes as part of an aggregated whole in the classical mode of existence in nature. What is needed in this case is some description which captures the capacity or potentiality (not merely the possibility) to produce outcomes in accordance with certain probabilities.

The idea of viewing quantum systems in terms of potentialities goes back to Heisenberg's later writings. He invoked the Aristotelian idea of potentiality, namely that all change consists in the actualization of potentialities, to describe the relation between the quantum state and its outcomes. Margenau also thought in terms of propensities or latent quantities, i.e. that the measurement of an observable converts latent values into possessed values (Redhead 1987:48). More recently Hughes (1989) presented an event interpretation of quantum mechanics in which quantum properties are replaced by “latencies”. When a particular latency is ascribed to a quantum system, probabilities are assigned to the values of a family of observables which would be realized in events (Hughes 1989:309). Teller (1995), who also understands superimposed (i.e., quantum) properties in terms of propensities, applies such concepts to quantum fields.

Although potentiality or propensity captures something about the capacity of the quantum state to produce its outcomes, it does not necessarily capture what happens when two different modes of existence are involved in the process (the concept of potentiality can still apply to changes within the same mode of existence). When such potentialities are not viewed as existing outside nature, non-locality cannot be accounted for even when the quantum outcomes are viewed in terms of potentiality and actualization.
The reason for this is that such potentiality would then be situated in the proper space-time manifold where such non-locality is in conflict with determinism. Even in the Bohm interpretation, where non-locality is viewed in terms of action-at-a-distance, a certain potential (the “quantum potential”) that is not in proper space (it is in an abstract so-called 'configuration' space), is necessary to complete the picture (Hiley 2010). In this case, the interaction between the particles, which are thought to be in space-time, happens through “action-at-a-distance” made possible by the quantum potential.

This means that it is not enough to acknowledge the difference between the quantum and classical worlds (see Hughes 1989:316 and Teller 1995); it is also necessary to say what is going on in the actualization of quantum potentialities. Where is this potentiality to be found and how does its actualization work? What is important here is that things are actually produced within the framework of the classical mode of existence, i.e., something is brought into existence in nature (although not into existence per se). The transition from wholes-and-parts involves the realization of parts with definite properties. The quantum mode has the potentiality to produce something that has not existed previously in nature.

Kant conceptualized the capacity of non-extended wholes-and-parts in the supersensible substratum of nature to produce extended parts and aggregated wholes in nature (and space/time) in terms of a 'formative force' (Kant speaks of “self-organization” in this regard; see section 3.4.1-2) that works hand in hand with a different, ideal kind of causality (called “final causality”), which stands in contrast with Newtonian forces. In this regard, the non-extended, interlinked parts have the capacity or potentiality to together produce the arrangements of parts in the extended aggregated whole. This potentiality is grounded in absolute spontaneity: it is not merely that this potentiality is outside space-time and therefore non-determinate in the sense of not partaking in the causal structure of nature; it is that this potentiality has a certain ability to from itself produce effects in nature.

As such the quantum realm is not merely non-deterministically connected (as wholes-and-parts); it also has a spontaneous potentiality to produce outcomes in nature. Without such a spontaneous potentiality it is difficult to see why quantum objects which are outside nature, would produce outcomes in nature. This means that we move beyond a mere negative (methodological) description of the quantum realm as outside space-time and nature; we accept that this realm can be positively characterized (i.e., thought of as a “noumenal” realm) as accessible for a different kind of intuition than ours, as belonging to a different abstract space-time structure (in some manner corresponding with our space-time) and operating in accordance with a spontaneous potentiality that can produce outcomes in nature.

We must, therefore, go beyond the mere postulation of such spontaneity (as in Bohr’s position; see Bohr 1934:53) to the conceivability thereof. As such I regard the quantum mode as a different ontological mode, through which spontaneous potentiality becomes possible; as a different mode of existence, it serves as a condition for the possibility of absolute spontaneity. We can furthermore conceptualize this spontaneous potentiality in a positive manner as I do (following Kant's approach).

This view stands in contrast with that of Bohm (1952, 1957) who also allows for a similar potential (also characterized as a “force”) but whose theory is purely deterministic. In his case, the potential is closely connected with his acceptance of action-at-a-distance. Although Kant also tried to accommodate (Newtonian) action-at-a-distance in his philosophy of science presented in Metaphysical Foundations, where he discusses it in the context of his concepts of the repulsive and attractive forces in nature (MAN 4:513-9), it seems to me better to discard his view expressed there in favor of the one presented in the Third Critique, which I use here in my interpretation. In this case, the entities and their connectedness are outside space-time. In a certain sense, one can consider it as “action-at-a-distance” with respect to outcomes but it is obviously not taking place over any “distance” in space-time. This means
that it can co-exist with special relativity which is only concerned with causality within proper space-time.

The different kind of causality that Kant conceptualizes in the context of wholes-and-parts, stands outside the deterministic causal network that belongs to nature but produces effects in nature. The parts produce each other mutually in their realization in nature. As such, each part is the “cause and effect” of the other in contrast with material parts that cause an effect on each other. In Kant’s view, this kind of causality involves an inter-linkage between the parts that is very different from the classical causal series, but which nonetheless has a certain capacity to collapse into it.

Although Kant applies this general (regulative) concept to the biological products of nature, there is no reason why it cannot be applied to any structure in nature that is considered to be produced in this manner (see section 3.4). In this regard the space-time realization of elementary quantum particles (like electrons) with definite qualities adheres to the Kantian conception: both in producing certain “arrangements”, i.e., arranged in accordance with probabilities of outcomes, as well in “producing each other”, i.e., that the realization of the outcomes are non-separably (and even non-locally) linked.

We can conceptualize, at least problematically (albeit with the risk of oversimplification), the states of particles in quantum systems as virtual properties of entities that are interlinked with each other in the manner that Kant proposes (since they are not realizable in space, individual property values cannot be ascribed to these entities). As such the virtual properties of entities and their inter-linkage can be viewed as having a certain capacity to produce outcomes in nature, that is, as a certain kind of causality behind the outcomes.

We can think that this linkage (coupling) involves a certain tension of which the spontaneous relaxation would result in a collapse according to which a whole-and-parts (or even only some part of it in the case of large superpositions) is realized as individualized parts in the framework of an aggregated whole. According to the Kantian conception, this process, which belongs to the supersensible mode of existence, starts totally from itself and is therefore absolutely spontaneous (for us). We have no direct empirical access to it.

In the Kantian view the entities in the supersensible realm, as the substratum of nature, could produce very complicated ordered structures in the framework of nature. Even in this regard, the application to quantum physics holds. Auyang writes:

\[\text{According to the current standard model of elementary particle physics based on quantum field theory, the fundamental ontology of the world is a set of interacting fields. (Auyang 1995:45)}\]

If we take Kant's supersensible substratum of nature as being confirmed in the network of quantum fields that underlie nature, and through which nature came into being, the agreement seems to be complete.

At this point one may ask: How can matter (in space-time) evolve from non-matter (outside proper space-time)? As the ontological “gap” between the supersensible realm and nature does not imply that they stand physically apart from each other (these are abstract ideas) and they after all belong to one world (in which they are coherently coexisting presumably with nature embedded within its supersensible ground) it is not difficult to understand how entities in the supersensible substratum can produce outcomes in nature given that such wholes-and-parts have the non-material existential being and the potentiality to be realized as material parts and aggregated wholes. The fact that such particles ‘appear’ implies some kind of existence before that happens—otherwise they are created out of nothing! This hypothesis of coming-into-being in the material sense is also consistent with Auyang’s formulation of quantum field
theory according to which material particles are realized from the background field (beyond proper space-time).

I have now completed my arguments that the quantum state, in a superposition of states, is in another mode of existence than the classical one. I based this interpretation on various characteristics of the quantum system which together completes this picture, i.e., that its states and amplitudes are supersensible (unmeasurable), that these are not representable in space-time (another, mathematical space-time has to be associated with it) and that the superimposed parts conceptualized as wholes-and-parts are non-locally (and non-causally) linked and therefore do not stand in a community with the objects belonging to our mode of existence.

I take this to mean that the quantum mode of existence (especially in the quantum fields description) adheres to the basic characteristics (or satisfies the necessary conditions) of Kant’s supersensible realm, namely that it is supersensible, not in space-time, outside nature and has the ability to produce outcomes in nature. I, therefore, identify Kant's supersensible realm with the quantum realm. As such we can say that we have good reason to think that this realm really exists (even though this is not an epistemic claim of the ‘objective’ sort).

My analysis shows that the basic rule governing nature, namely mechanism, does not apply to this supersensible/quantum realm. We can, without contradiction, think that another law, namely spontaneity, governs that mode of existence. I have shown how such a spontaneous potentiality can also be positively conceived of in this context. I now want to discuss the transition from the supersensible/quantum realm to the sensible/classical realm in more detail.

4.6 Spontaneity

With all this argumentation as background, I am in a position to introduce one of the most important but also most controversial aspects of quantum physics, namely the “reduction (collapse) of the wave packet”. The reduction of the wave packet is said to take the system from the quantum state to reduced states. On the level of the ensemble, it takes the superposition into a mix of pure (eigen)states. Individually it takes superpositions into the components of the superposition (Cartwright 1983:168).

In Von Neumann's well-known formulation it is incorporated in the theory as a “replacement rule” according to which the equation of the quantum state (in a superposition of states) is replaced with the equation of the eigenstates with their associated eigenvalues (Earman 1986:207). It is called the projection postulate. With the reduction of the wave packet, a substantive element of indeterminism which cannot be reduced to deterministic causality enters quantum physics (see below).

4.6.1 The various views

The well-known interpretations of quantum physics can, in my opinion, be grouped together in three general views regarding the projection postulate. The first view rejects it, the second view combines it with measurement and the third view regards it as independent of measurement. Those adhering to the first view do not think that the projection postulate is a necessary feature of quantum mechanics and they drop it altogether from their formulations. In their understanding of quantum physics, there is no reason for thinking that the projection postulate has reference to any physical process. In this view, the gap between the quantum and the classical realms disappear (Hughes 1989:311).

The interpretations that belong to this view are Bohm’s theory, that uses a guiding equation to define the positions of the particles (or configurations of fields) described by the wave function, Everett’s “relative state” formulation according to which subsystems “branch off” from the state vector of the universe, and Van Fraassen's modal formulation according to which the quantum state delimits what is possible whereas measured properties say what is actual (for discussions of these views, see Healey 2009:274, Hughes 1989:311, and Earman

These views stand in opposition to my own because I argue that we have good reasons to think that the quantum realm is ontologically different from the classical realm (see section 4.4.5). If this is indeed the case, the reduction of the wave packet would be a physical event which involves a move from one mode of existence to another.

From my perspective, the main problem with these views is that, although they achieve a unified position in bringing the quantum and classical descriptions together, they cannot achieve a truly unified picture of the world if non-determinism is not explained. In Van Fraassen’s approach, non-determinism is merely accepted, not explained. Although the other views may overcome the problem of spontaneity associated with the reduction of the wave packet (in not taking it as a physical event), they run into problems when trying to overcome another aspect of the same problem, namely the non-determinism inherent in the structure of the two-particle collapse as demonstrated in the EPR experiments. This means that the outcomes—even if they all occur in different worlds—cannot be deterministically decided (which will be in which world?).

In the case of Bohm’s theory, where determinism is said to be preserved (although not through deterministic causality but through the quantum potential), it may be difficult to give a realistic description of quantum fields insofar as both the complete deterministic picture as well as the Bohmian view of quantum particles in space-time are concerned given the spontaneous/indeterminate nature of field excitations and the difference in ontology (see Hiley 1999 and Healey 2009:209-211, 221).

One should ask whether such solutions, which may reflect metaphysical (to keep determinism), pragmatic (for simplicity) or other factors, are not forcing some view onto our world which may, in fact, encompass (at least) two ontologically distinct realms governed by different rules (determinism and spontaneity) that come together in quantum mechanics.

The second view was that held by Von Neumann and Wigner. According to Von Neumann’s formulation in *Mathematical Foundations of Quantum Mechanics* (Von Neumann 1932) the superimposed states of the quantum object couples with the classical indicator states of the measuring apparatus to form a larger superposition of states in an accumulative process that would eventually include even the observer’s consciousness (subjective perception). As such, it is the consciousness of the observer that in the final instance causes the collapse of the wave function and produces a final state in which a measured eigenvalue is realized.

In this approach, the consciousness of the observer serves as cause for collapse. It seems quite a metaphysical leap to include consciousness in this manner. I argue below that collapse is also triggered without measurement, in which case consciousness would play no role. I agree with Cartwright (below) that reduction could happen independently of measurement. In my view, a measurement is registered when the reduced state produced by the reduction of the wave packet—which I regard as belonging to the classical mode (see Cartwright 1999:229)—interacts with classical instruments. The consciousness of the observer has no influence on the measurement.

The third view was held by Niels Bohr and is defended by Cartwright (1983), Hughes (1989) and others. In this view, the reduction of the wave packet is not understood in terms of measurement. Rather, the reduction of the wave packet is viewed as a physical event that can be distinguished from measurement. Although this view has something in common with that of Ghirardi-Rimini-Weber who also hold that collapse is a spontaneous physical event, it upholds the classical formulation whereas they introduce small amounts of non-linearity to the wave equations.

Among the proponents of this view is Hughes who mentions that, in at least some views of the first kind (see above), the rejection of the projection postulate is based on considerations
that relate solely to measurement. He argues that the projection postulate and measurement are, however, conceptually separable (Hughes 1989:299). Cartwright (1983) also argues that the reduction of the wave packet is independent of measurement. She regards it as a transition from one quantum state to another. Since her view has a lot in common with my own, I discuss it in more detail directly below.

4.6.2 How to accommodate spontaneity?

Cartwright defends two features of the reduction of the wave packet, namely that it is independent of measurement and that it is a spontaneous transition from one quantum state to another. Regarding its association with measurement she writes:

[O]n my view, as in the old quantum theory [i.e., Niels Bohr’s view], reduction of the wave packet occurs in variety of situations, and independent of measurement. Von Neumann claimed that reduction of the wave packet occurs when a measurement is made. But it also occurs when a quantum system is prepared in an eigenstate, when one particle scatters from another, when a radioactive nucleus disintegrates, and in a large number of other transition processes as well. (Cartwright 1983:194)

Cartwright views atomic decay as the prime example where the reduction of the wave packet occurs without any intervention. The “spontaneous emission” of some particle is the “classic indeterminate process”. By this, she means that it is absolutely spontaneous without any cause in the causal chains of nature. Which atom will decay, or when, is completely indeterminate. Suddenly, without any external influence, the reduction of the wave packet initiates a transition from one state to another:

In some circumstances a quantum system will make a transition from one state to another. Indeterministically and irreversibly, without the intervention of any external observer, a system can change its state: the quantum number of the new state will be different and a quantum of some conserved quantity—energy, or momentum, or angular momentum, or possibly even strangeness—will be emitted or absorbed. (Cartwright 1983:179)

She views measurement in these terms: only when systems exchange energy, is the detector activated and some observable quantity measured.

Cartwright regards non-deterministic motions like the reduction of the wave packet just like deterministic ones as “naturally” occurring events (Cartwright 1983:202). Although she presents her view in the framework of quantum statistical mechanics, she does not think that some deterministic stochastic process underlies such motions. They are absolutely spontaneous. A question then arises: How do we accommodate such freedom as part of a law-governed world? How is it reconciled with determinism?

Since as scientists we have no choice but to ascribe lawfulness to the world (this lies at the heart of all theoretical science; see my discussion in section 3.2), how would we reconcile such spontaneity with the deterministic lawfulness of nature? Cartwright's answer is that we should give up on “theoretical laws”. She thinks that we should consider scientific (phenomenal) laws in the context of a “dappled world” (Cartwright 1999, 1983). As such she does not explain the possibility of freedom (in contradistinction with determinism) or how it is to be reconciled with determinism.

I agree with Cartwright that the reduction or collapse of the wave packet involves a transition. I, however, take this not as a transition between quantum states in general, but as a transition between quantum states and reduced states, where this process could include transitions to other quantum states. The reason for viewing this transition in more restricted terms is that “reduction” of the wave packet does not refer to all the transitions involved, but
to the transition from quantum modes to reduced modes. It is this transition which produces the emission or absorption of “some conserved quantity – energy, or momentum [etc.]”.

We can say that the quantum mode has the potentiality to spontaneously induce a transition to reduced states with measurable properties. In this regard, we can conceive of the operators in quantum mechanics as transition operators which tell us what property values can be realized when a transition of a particular kind takes place. In this regard, I agree with Cartwright when she says that the probabilities in quantum mechanics are not position probabilities or probabilities for other values of classical dynamic quantities, but transitional probabilities (Cartwright 1983:179, 191; see also section 4.3).

In the reduction of the wave packet we are primarily concerned with the transition from a superposition of states to reduced states (even though the system may still be in a superposition of states insofar as another complementary property is concerned – see below), from the quantum mode to the classical mode, although other transitions between quantum modes could also be involved. As such the reduction of the wave packet could be viewed in terms of causality, where effects are produced in the classical realm.

In this regard, Cartwright mentions that transition plays a “causal role” in quantum mechanics (Cartwright 1983:182). Elsewhere she argues that, in the EPR experiments, the mathematics allows us to say that the quantum state operates as the common cause behind both outcomes (Cartwright 1989:249). This agrees with my view that quantum wholes-and-parts are the spontaneous cause behind outcomes (see section 4.3). I conceptualize the superposition of states as non-extended wholes-and-parts that are realizable as material parts that together constitute some probability class.

When we view the wave packet as belonging to another ontology, namely the quantum mode of existence outside nature (see section 4.5), it is easy to accommodate the spontaneous character of transitions. We can just say that the wholes-and-parts in the quantum mode have the capacity or potentiality to spontaneously introduce a transition from one state to another. Insofar as the transition involves a transition to reduced states, we can view it as a kind of spontaneous causality that has measurable effects in nature which cohere with other effects produced in accordance with deterministic causality (this is how we know that such an effect has been produced). And these do not happen only when measurements are made as I discuss below.

In my reworking of the Kantian position, this might be formulated as the potential that superpositions of states existing outside proper space-time (and the quantum properties associated with them) have to spontaneously make transitions to other quantum states as well as reduced states with individualized property values of that observable in space-time. In contrast, Bohm’s quantum potential, which is also said to involve an underlying structure outside proper space-time that impacts on outcomes in space-time, is generally viewed in deterministic terms.

Since the quantum realm is outside of nature and its whole-and-parts relationship is not governed by deterministic causality, this different kind of lawfulness and the associated causality that characterizes this mode can without contradiction be ascribed to it (and even be conceived of as argued above). Since no community exists between nature and such wholes-and-parts (see section 4.2), it is difficult to see how determinism (as we normally understand it) can be operative in both realms.

We are therefore justified in ascribing a different kind of lawfulness to the quantum mode of existence, namely absolute spontaneity, which stands in opposition to the deterministic lawfulness of nature (“mechanism”). Insofar as effects in nature are produced in accordance with this lawfulness, we can conceptualize it as another kind of causality than the deterministic causality which operates in nature. This spontaneous causality grounds the potentiality that
wholes-and-parts (in accordance with Kant’s concept of “formative force”) have to produce phenomenal outcomes.

When we take the quantum realm as Kant’s supersensible realm (as I argue above), then spontaneous transitions between quantum states are merely in accordance with the law of spontaneity (the transcendental idea of freedom which is also called the “concept of a causality through freedom” in the Third Critique, 5:195-6) that Kant ascribes to that realm. Then the reduction of the wave packet is merely in accordance with the spontaneous causality which he first introduced in the First Critique and later used as the basis for the “formative force” that he introduces in the Third Critique. This kind of causality is grounded in the context of the wholes-and-parts of the quantum realm, which correspond with Kant's noumena or non-extended wholes-and-parts. This causality coheres with deterministic causality insofar as its outcomes in nature are concerned (see section 3.5.1).

4.6.3 Spontaneity and measurement

There is, however, an outstanding question: Even if we accept that the reduction of the wave packet occurs in a variety of situations, it nevertheless seems possible that it is also triggered (i.e., controlled) in measurement. If this is so, the question arises: How do we reconcile the spontaneity of the reduction of the wave packet with the seemingly conflicting observation that it can be triggered in measurement? This seems to represent two conflicting positions, namely that collapse is spontaneous and that it is non-spontaneous. To understand this, we should again consider the peculiarities of the quantum mechanical description (in contrast with quantum fields).

There are two features of quantum mechanical systems that are of importance at this point. The first is that the quantum mode of existence (i.e., superpositions of states) is constrained with the incorporation of the time framework in the context of the Schrödinger description in quantum mechanics (in a manner not found in quantum fields—see section 4.4.2). In its dynamic evolution, the superposition of states evolve in time and is governed by deterministic lawfulness which subjects the state vector to given forces and constraints in a manner similar to classical equations of motion.

This dynamic evolution constrains the other kind of dynamics (so to speak) that belongs to the product of the state vectors (the inseparability of wholes-and-parts; formulated independently from the Schrödinger description) which in my interpretation are governed by the law of spontaneity that drives a different causal process where the parts are the cause and effect in the production of each other in nature (which can also be conceptualized as a “formative force” as Kant does). What we find in quantum mechanics, is that the dynamic evolution subjects the lawfulness that belongs to the internal relations of wholes-and-parts.

This means that when deterministic causality (in the time framework) and spontaneity (in the wholes-and-parts framework) are both included in quantum systems, the first has superiority over the second. The reason is simple: we cannot have determinism when spontaneity rules. We can, however, allow spontaneity in a constrained sense together with determinism, i.e., in the sense that the system has the capacity (potentiality) under certain circumstances to operate in accordance with spontaneity (when the mentioned constraint is lifted, the lawfulness belonging to the internal relation of the wholes-and-parts comes into action).

When the quantum mode is constrained in this manner, the spontaneity ascribed to it is obviously not an absolutely spontaneous process (starting from itself) without any outside interference. It nonetheless incorporates spontaneity in the sense that the process according to which the non-extended wholes-and-parts mutually produce each other in nature has its own ability to do so (without any deterministic causality producing it). In this case, it seems better
to speak of “potentiality” rather than “spontaneity”. Although this kind of causality involves spontaneity, this is not in the sense of starting without any external intervention.

The second important feature regarding the inclusion of the time framework is that it allows the ascription of classical characteristics to quantum mechanical systems. As such quantum systems stand in a certain relation to the classical world itself which enable us to control the evolution of such systems in time in a similar manner that we control classical dynamic systems (see Appendix 4). We can, for example, place further constraints on the system that would result in it producing observable outcomes (we can force collapse through various experimental settings). Such constraints would disrupt the superposition of states (or the relevant part of them) and with that, necessarily also the deterministic evolution of them. When the classical governing principle is suspended in this manner, the constraint on the principle that governs the internal relations of the wholes-and-parts is lifted. This allows that principle, namely the other kind of causality (potentiality) which takes non-extended wholes-and-parts to extended parts, to kick in and initiate a transition to reduced states.

The Schrödinger description is, therefore, conditional and only valid as long as the system evolves deterministically in time. When this governing principle is suspended, the other principle kicks in and produces a transition to reduced states. The resulting reduced states, as classical states, stand in a causal “community” (to use the Kantian terminology) with the measurement apparatus that can register particular values of such states. As Cartwright says, the conserved quantity that is absorbed or emitted after the reduction of the wave packet—energy, or momentum, or angular momentum, or possibly even strangeness—activates the detector (Cartwright 1983:179). Although a further constraint on the system (i.e., the disruption of the superposition of states) could involve measurement, measurement is conceptually distinct from this constraint imposed on the system.

This interpretation of quantum mechanics resolves the so-called “measurement problem” (the name originated in the framework of the second view in which the projection postulate (reduction) is connected with measurement). The problem as it is traditionally understood, is that the two kinds of evolution associated with the quantum mechanical description, namely the deterministic evolution in accordance with the Schrödinger equation (that should be generally valid) and the projection postulate (that should be deducible from the dynamic description), is flatly in contradiction with each other (Albert 1992:37).

In my view, these should not be regarded as conflicting laws that should be reconciled in the classical framework (to which the Schrödinger dynamics belong). They are heterogeneous laws that can without contradiction be ascribed to two different modes of existence. We should not regard the projection postulate as deducible from the dynamics of the system that proceed in accordance with classical characteristics since it belongs to a totally different mode of existence and is merely constrained by the deterministic evolution of the system.

I argued above that, although both laws are included in the quantum mechanical description, they are conditional and mutually exclusive. The deterministic evolution is subject to the condition that the system (i.e., the superposition of states) is not being further constrained (i.e., disrupted); the reduction of the wave packet is subject to the suspension of that condition: with the disruption of the dynamical evolution, the potentiality that the wholes-and-parts have to be realized in classical context, comes into action.

When a definite property is measured on a reduced state, the system could still be in a superposition of states insofar as another complementary property is concerned in accordance with the uncertainty principle. In the vector description, the definite property state can be described as a superposition of the other property states. Albert generalizes this in the framework of two properties, called “color” and “hardness”, and says:
states of definite color [black or white] are superpositions of different hardness states and states of definite hardness [hard or soft] are superpositions of different color states. (Albert 1992:32)

This means that the inclusion of the time framework in quantum mechanics allows us not merely to ascribe classical characteristics to quantum systems; it even allows the combining of reduced (classical) and quantum modes “back-to-back” in one system.

The control that we have over the activation of the potentiality (spontaneity) rule has some interesting consequences. In Kant’s philosophy, spontaneous causality, also called the transcendental idea of freedom, which grounds spontaneous potentiality in the sense of the Third Critique, which in my application to quantum mechanics is not “absolutely” spontaneous, is necessary to ground practical freedom, i.e., the ability of free choice (A534/B562, B461-2). In this context, it seems quite significant that we have temporal control over this freedom: indeed, we can even under certain circumstances determine outcomes as in the determination of axis-direction in the EPR experiments. This is, however, obviously not yet free will and in my interpretation, a much more comprehensive quantum-classical framework describing our brains would be necessary to account for it (a detailed discussion falls outside the scope of this writing).

Although we have some control over the collapse of the wave packet in quantum mechanical descriptions where the evolution of the system takes place in time, the same is not the case when the system is outside space-time in the framework of quantum fields. In this case, the system can only be described in statistical terms—we have no control over individual interactions. In a scattering experiment, for example, the particles that interact during scattering, are in the quantum mode of existence described in the framework of a quantum field. As such the time component disappears from the equations (Teller 1995:132).

In terms of Auyang’s quantum fields interpretation, we can say that such a quantum system is outside space-time and the collapse of the superpositions of states are absolutely spontaneous—we do not have control over such realizations in space-time individually. The statistics of outcomes, however, are as in all quantum physics experiments, governed by the Born postulate which was first introduced in exactly this context of scattering (see Cartwright 1983:180). The same process happens in both quantum mechanics and quantum fields — in quantum fields we just have no control over it. In this case, we may regard the process as absolute spontaneous.

In this view, absolute spontaneity is a distinct feature of quantum physics (especially in the context of quantum fields). I have already mentioned in this regard that atomic decay is the paramount example of this absolute spontaneity, which Cartwright calls the “classic indeterminate process”. The primary question is: How is it explained? Even though we may allow it as a logical possibility (in the sense that the quantum mode is outside space-time and causality) or in the form of the quantum postulate (as a theoretical generalization based on an empirical assumption; see Pringe 2007:149), we should still answer the question as to how it is possible? In my view, absolute spontaneity is explained as the rule underlying the causality (potentiality) that belongs to the supersensible realm outside nature. It becomes possible through this other mode of existence. In the same manner that our classical mode of existence is structured in such a manner that all matter in nature is causally connected, the supersensible mode of existence is ordered in such a manner that its non-extended wholes-and-parts adhere to absolute spontaneous causality.

Since the same process (driven by the same spontaneous potentiality) happens in both quantum mechanics and quantum fields, these two descriptions are easily compatible in my interpretation—which gives my interpretation some force above, for example, that of Bohm (where such compatibility is difficult) who also thinks in terms of some potential (the quantum potential) that is not in proper space-time but tries to adhere to a complete deterministic picture.
of the world. In my interpretation determinism and the non-determinism found in the Aspect experiment (which I take as spontaneity) are reconciled in one conceptual framework that brings the classical world (nature) and the quantum world (as a supersensible realm) together (although not in a unified position such that the gap between those pictures is removed). In my view, there is a real ontological gap between the two realms and trying to remove that in our theory is to deny an important aspect of reality.

4.7 Two kinds of Appearances

I have now argued that two modes of existence come into play in quantum physics. These two modes are governed by two heterogeneous laws, namely of determinism and spontaneity. As discussed in the previous section, both these laws regulate relations between objects. Generally, the first law regulates relations between objects existing in space-time. The second law regulates quantum entities that we can conceptualize as wholes-and-parts existing outside space-time which produce effects in space-time.

These laws co-habit in quantum mechanical systems where both are present in a constrained form: as such they together regulate quantum entities that evolve in time even though these are not situated in proper space. Quantum entities can produce outcomes in space-time in accordance with the law of spontaneity. Given the very different origin of these two kinds of causality, the outcomes associated with them are distinctly different. They deliver very different appearances. The representations (appearances) resulting from such transitions from quantum to classical modes are distinctly different from those where no transition is involved (i.e., mere changes within the classical mode). The first kind “appears” in space-time whereas the second kind is always in space-time.

Since I follow a Kantian approach, the question arises whether these two kinds of appearances can both be described epistemologically in objective terms. In Kant’s First Critique he showed how all appearances in space/time can be objectively given in experience. But what about those outcomes produced by the other kind of causality, namely spontaneous causality? Kant introduces the possibility of such outcomes in the second part of the First Critique in the framework of the third antinomy.

It is, however, only in the Third Critique that Kant discusses them in more detail when he develops a scientific approach that takes the possibility of non-mechanistic (i.e., non-deterministic) causality into account according to which non-extended wholes-and-parts produce ordered outcomes in nature. In this case, Kant seems to conclude that the divide between nature and the supersensible realm prohibits us from establishing objectively that such products are indeed produced as such. We can only estimate that through “reflective” judgments, which do not result in truth determination.

In my reworking of the Kantian framework, nature is not merely contrasted with the supersensible realm; these are brought together when time is combined with some ideal space that reflects the supersensible ontology. I argue in the previous sections that this is exactly what we find in quantum mechanics. In this framework, the possibility arises that we can do more than merely ‘estimate’ that some outcomes in nature are produced by entities beyond space-time. We can, in fact, produce objective descriptions of the material entities that ‘appear’ in quantum physics.

In this regard, the approach taken by Bitbol (2007) is relevant to my Kantian interpretation. Although Bitbol works purely within a methodological approach (and does not allow for ontological distinctions as I do), my view can be reconciled with his insofar as epistemology is concerned since I adhere to the two-aspect view in which the way in which we conceptualize things in themselves is not relevant to the epistemological claims to be made regarding “objective” knowledge I make no epistemological claims with regard to things belonging to the supersensible/quantum realm that pertains to the Kantian epistemic conditions.
regarding objective knowledge. As such, Bitbol’s work may serve to elucidate the issue of the appearance of quantum entities in space-time in our discussion.

Bitbol is a contemporary neo-Kantian influenced by the work of Jean Piaget. He asks how quantum appearances can be incorporated in the framework of objective cognition (taken broadly in the Kantian sense)? Bitbol discusses the distinct differences between material entities that are extended in space-time and those that merely “appear” or manifest in space-time. These include those microscopic particles that become manifest by impacts, bubble chamber tracks and clicks on counters.

To establish these as objective phenomena, Bitbol proposes that the Kantian rules of the understanding be replaced by other theoretical structures, especially symmetries. He argues that the collective behavior of the different classes of particles, which are embedded in universally valid symmetries, are law-like. Although it is not clear that single instances of phenomena ascribed to one isolated quantum can be ordered like this, he thinks that in the context of quantized fields the individual manifestations in space-time can be combined with global law-like ordering as is manifest in global field equations. In the final instance, he argues that the quantum entities that appear in space-time may indeed be regarded as matter:

Manifestations in space-time, plus law-likeness (objectivity) applied to probabilistic predictors of classes of phenomena, is enough to characterize matter. (Bitbol 2007:255)

Pringe (2007) follows a similar approach. In contrast with Bitbol, he uses classical Kantian philosophy to argue that measurable phenomena in quantum physics observe systematic unity and objectivity. Pringe distinguishes two kinds of causality, namely quantum and classical causality. Quantum causality signifies that quantum objects, taken to be outside space, time and causality, are the ground of quantum phenomena, which is why such objects bring meta-contextual systematic unity among contextual phenomena. Such a non-sensible ground can be problematically assumed, and the interactions of quantum objects which constitute this ground are discontinuous and uncontrollable (i.e., spontaneous); they may be conceived of as a series with an absolute beginning. Classical causality, on the other hand, operates in contextual situations as an element of a series of causes and effects. As such it grounds the epistemic objectivity of quantum phenomena (Pringe 2007:156).

Although Pringe’s approach, which proceeds in Bohr’s footsteps, is methodological and mine ontological, our interpretations of the quantum world are similar in that he also takes quantum entities as noumenal “objects” belonging to the noumenal/quantum realm outside space, time and causality from which quantum phenomena are produced. The manner in which we arrive at these interpretations is, however, very different. In the first place, Pringe (who takes the Third Critique as the basis for his analysis) distinguishes between objects of possible experience and objects of ideas, where the last kind of objects can only be understood through symbols (Pringe 2007:33). In his view quantum objects are objects of the second kind—the concept of quantum objects is not constitutive, but “regulative” (Pringe 2007:156)—and as such they belong to a non-sensible ground from which quantum phenomena are produced, which he understands as Kant’s noumenal realm (Pringe 2007:157, n. 31).

By contrast, I argue in my interpretation of the First Critique that Kant already in that Critique has this two-object view (which is not that of the traditional two-object view) which distinguishes between objects of possible experience and those that are not (noumena). Kant furthermore distinguishes between two kinds of noumena, namely those that forms part of the constitution of objects of experience (as the noumenal ground for some appearances that belong to such objects) and noumena that do not (B306). In my view, Kant uses the third antinomy to argue for the possibility and conceivability of two contrasting realms that belong to different
modes of existence in the context of his Critical metaphysics, namely nature and the noumenal realm outside nature (this forms the basis of my ontological approach).

This brings me, in the second place, to the manner in which we understand “quantum causality”. Pringe incorporates quantum spontaneity through the quantum postulate as a regulative principle that stands under the general transcendental principle of the power of judgment (see section 3.2 for a discussion of this principle). He views quantum spontaneity merely in terms of the Kantian idea of a series with an absolute beginning (in the context of the third antinomy). In his view quantum causality is a spontaneous causality which operates in accordance with this idea; quantum objects in this manner cause observable quantum phenomena.

In contrast, in my view Kant introduces such a spontaneous causality, which does not only stand in contrast with deterministic (classical) causality but through which noumena can conceivably also produce phenomena in nature, already in the First Critique. Although this causality is necessary for practical freedom, it is by no means restricted to that context as Pringe (and others) assumes. I argue that Kant includes this spontaneous causality in the Third Critique in the context of the spontaneous potentiality that underlies “final causes” which may (in Kant's view) be involved in producing some products of nature (see chapter 3). In the present chapter, I argue that we may take this as a description of “quantum causality”. In my view, all these concepts are already part of Kant’s metaphysics in the First and Third Critiques—and I read quantum physics through this lens.

The methodological approaches of Bitbol (2007) and Pringe (2007) are primarily concerned with the conditions for the possibility of objective knowledge. In my weak ontological approach, I am primarily concerned with the conditions for the possibility of absolute spontaneous causality. In chapter 2 I argued that Kant argues in the First Critique that there are two necessary conditions for the possibility of absolute spontaneous causality, namely

1. an ontologically distinct noumenal realm (problematically assumed) governed by absolute spontaneity instead of determinism and
2. the ability of noumena to produce outcomes in nature,

and then I showed how these become conceivable in the Kantian metaphysical system. In chapter 3 I argued that Kant broadens this approach in the Third Critique in its application to the products of nature. In this regard he replaces these basic ideas of the First Critique with more substantial (but nonetheless “regulative”) conceptualizations in which noumena are taken as non-extended wholes-and-parts and the ability to produce outcomes in nature is delineated as a different kind of causality than mechanism, namely “final causality” according to which such wholes-and-parts have a spontaneous potentiality to produce material parts and aggregated wholes in nature. Whereas the noumenal realm barely figures in methodological approaches, it is central to my ontological approach.

In the present chapter, I have argued that Kant's Critical metaphysics—of nature, the supersensible realm, and absolute spontaneous causality—may be taken as confirmed in quantum physics. I have shown that the quantum realm adheres to all the relevant characteristics of (or conditions for) Kant's noumenal realm (sections 4.3-5), that superpositions of states agree with Kant's non-extended wholes-and-parts (section 4.5), that we may think that these have a spontaneous potentiality (as a spontaneous causality) to produce outcomes in nature (sections 4.5-6) and that two kinds of phenomena could be distinguished in line with the two kinds of causality (section 4.7). I have also shown how the special features of quantum mechanics can be accommodated in this Kantian conceptual framework (this was the greatest challenge).
At this point I can say that the necessary conditions for the possibility of absolute spontaneous causality that Kant presents in the First Critique (see above), namely that it belongs to a supersensible realm which has the ability to produce outcomes in nature, are indeed fulfilled in quantum physics. What is more, the work of Bitbol, Pringe, and others contribute to the significance of this finding in that they show that the last condition for the possibility of absolute spontaneity is satisfied far beyond that which Kant anticipated, namely that the outcomes that noumena produce in nature can be demonstrated to constitute objective knowledge. The meta-contextual systematic unity among contextual phenomena which Pringe accentuates allows us to relate them consistently with noumenal objects than would otherwise be the case. This is why we are able to obtain indirect empirical confirmation for the existence of the noumenal/quantum realm (see sections 4.3-4.5) even though Kant did not thought that possible (and can proceed beyond Kant’s view of the absolute unknowability of the noumenal realm).

The fact that the necessary (and presumably sufficient) conditions for the possibility of absolute spontaneity had been satisfied so comprehensively means that we have good reason to think that it really exists even though we cannot prove it in a direct empirical manner. This absolute spontaneity (governing the noumenal/quantum realm) as the effective cause that produce the indeterminately appearing phenomena in nature/the classical realm, also explains quantum indeterminism.

Quantum entities in the pre-measurement phase—which are also beyond direct empirical reach—can also be thought of as satisfying certain conditions regarding their existence such that we may say that we have good reason to think that they really exist even though their exact nature is unclear to us. Pringe takes the conditions of the possibility of the systematic unity of contextual experience as the conditions for the possibility of quantum objects.

Since the conditions for the possibility of spontaneous causality include an ontologically distinct supersensible realm, we cannot have such spontaneity in quantum physics if we do not take the quantum mode as such a mode of existence! This means that we can only take absolute spontaneity as a real possibility in quantum physics if we regard the quantum mode as another mode of existence than the classical mode. In fact, I argue that we have good reason to think that the quantum realm is, in fact, an ontologically distinct realm different from nature where deterministic causality is the ruling principle and that absolute spontaneity, which (as I argue) is part and parcel of quantum physics, is the governing principle of the quantum realm.

One may ask how Pringe in his methodological approach is able to describe “quantum causality” as absolute spontaneity? The reason is that he takes quantum spontaneity, in accordance with Bohr’s quantum postulate, as a regulative principle for the reflective power of judgment, that is, taking something ‘as if’ such or such, i.e, as an estimation or hypothesis (see Pringe 2007:159). Although I also take absolute spontaneity in this way, my ontological approach allows me to develop a positive conception thereof described in terms of the necessary conditions of its real possibility. Insofar as these conditions are satisfied, I can make a certain kind of epistemic claim which goes beyond it merely being an estimation or hypothesis. The judgment in this regard is not determinate—since no direct empirical confirmation is obtained – but seems to be stronger than a mere reflective (teleological) one— which cannot be empirically confirmed (see section 3.3). Rather, it is one which is consistent with the idea of “indirect” empirical confirmation, an idea that was unknown to Kant. Insofar as it concerns the confirmation/rejection of a hypothesis based on the satisfaction/violation of the necessary conditions, one may call it a “regulative” judgment. In this essay I express a positive judgment in this regard as “good reason to think”.

84
In the same manner that Bitbol (2007) and Pringe (2007) argue in their respective ways that quantum phenomena can be objectively grounded in Kantian epistemology, I argue that the spontaneity observed in quantum physics is consistent with the Kantian conception thereof, that its possibility can be explained in the context of the quantum mode of existence, that it is arguably real (for us) and that it can cohere with determinism in one metaphysical conception of our world. The fact that the conditions of its possibility are satisfied means that I am in the position to make an epistemic claim regarding spontaneity in quantum physics albeit not of the ‘objective’ sort (as Bitbol and Pringe are able to make regarding quantum appearances), namely that we have good reason to think that it really exists. Although this does not constitute objective knowledge, it is nonetheless a substantial claim (similar to the one that quantum entities exist) which is strengthened by the objectivity that can be ascribed to quantum phenomena.

4.8 Conclusion

In this chapter, I used my interpretation of the philosophy of science that Kant developed in the Third Critique to formulate an interpretation of quantum physics which is consistent with that. Although the philosophy of science that Kant developed in the Metaphysical Foundations played an important role in laying the philosophical foundations of the mathematical science that have reference to classical systems, the philosophy of science that he developed in the Third Critique did not get similar attention—especially because of his extensive reference to a supersensible realm was taken as nonsensical. In my analysis, however, the “spontaneity of a cause” that forms an essential part of this part of his philosophy of science and the accompanying necessary introduction of a supersensible realm to accommodate it, seems to capture exactly what we find in quantum physics. In my Kantian interpretation of quantum physics, these Kantian concepts are taken seriously.

On the other hand, insofar as quantum physics is concerned, I take the introduction of Hilbert space seriously as showing that such systems cannot be presented in proper space. I accentuate that Hilbert space and proper time are combined in one system in quantum mechanics—which I understand as referring to another mode of existence (the quantum mode) that is constrained in time. In my view, Kant’s concept of nature agrees with the classical picture of the world (where the theories of relativity apply), whereas Kant’s supersensible realm is to be identified with the quantum realm since it is supersensible, outside space-time (with its own abstract space-time conception) and outside nature (governed by spontaneity); this follows from the mathematical formulation of quantum mechanics and is confirmed in empirical testing as far as these features are testable.

Characteristic but problematic features of quantum mechanics, including non-separability and non-locality, that involve a breakdown in the sufficiency of both space-time descriptions and deterministic causality, are explained in my interpretation: the quantum coupling of wholes-and-parts belong to a different ontology outside space-time and nature and can therefore without contradiction manifest those features in a conceivable manner.

My interpretation also explains other persistent problems in the interpretation of quantum mechanics, for example how to understand the gap between the quantum and classical descriptions (between a superposition of states and reduced states). Much has been written about this gap. For Bohr, the difference is self-evident and differentiates where predicates can be legitimately used and where not. Bitbol writes that “we are faced with a persistent dialectic between two irreducible domains of discourse (objectified and situated)” (Bitbol 2007:258).

But why is this so? Hughes writes:

Quantum theory may require that we divide the world into two... What is the conceptual relation between the quantum world and the classical world? This is the touchstone, pyx, assay, ordeal,
the High Noon, the Big Enchilada for all interpretations of quantum theory. (Hughes 1989:312, 316)

In my view the answer is simple: the descriptions of two ontologically distinct realms come together in quantum mechanics. This is possible because they nonetheless belong to one world. When quantum states are viewed as ontologically distinct from classical ones, we can ascribe a potentiality grounded in absolute spontaneity to it without any contradiction. Instead of trying to overcome the obvious fact of the spontaneity of collapse as is manifested in, for example, atomic decay, or in the structure of such collapse in the context of the EPR experiments (or having to call upon “action-at-a-distance” or “many worlds”), I present a coherent scientific picture in which the quantum and classical pictures of the world are united in one coherent conception (although not in one position where the gap between those pictures is removed) in such a manner that both determinism and spontaneity can conceivably be accounted for within the framework of those pictures. The classical and quantum realms are integrated into the framework of one world, in which the first can be viewed as the substratum of the other. There are even contexts where they are closely interwoven—where the quantum mechanical description applies.

I argue that the absolute spontaneity that is observed in quantum physics is a real possibility if the quantum mode is a distinct mode of existence different from nature. In my interpretation, spontaneity is accounted for as the lawfulness that belongs to another ontological realm than the classical one. In ascribing two heterogeneous laws to the two different modes of existence I also account for the measurement problem. In my view, the reduction of the wave packet occurs because of another kind of causality (that is inherently spontaneous) that takes non-extended wholes-and-parts to material parts and aggregated wholes when the deterministic evolution thereof is suspended (disrupted).

This is the explanatory power that my interpretation has over its rivals: although the superposition of states and their potential for transition are outside empirical reach (because this is the way the world is), my view explains how spontaneous potentiality is possible as well as all the manifestations of non-determinism in quantum physics within one coherent conceptual framework. None of the interpretations of quantum physics that I discussed, explains how absolute spontaneous potentiality (or mere indeterminism, for that matter) (in, for example, atomic decay) is possible in our understanding of how the world is like or how it may be reconciled with determinism in a conceivable manner.

Since the measurement problem is solved, there is no reason to try and rid quantum theory of the reduction of the wave packet as a physical event that involves spontaneity (non-determinism). Views that do this, can either not account for non-determinism in quantum mechanics (i.e., they merely accept this: as, for example, in Fraassen’s modal formulation) or try to save the deterministic description of the world (as in Bohm’s theory) which face the problem of extending that picture to quantum fields. But this a problem that does not arise in my interpretation since in my view both the particles of quantum mechanics and the entities in quantum fields belong to the same quantum realm that is outside space-time (even though in the first case they are constrained in some manner) and is governed by the same principle (spontaneity).

Whereas the quantum potential is necessary for Bohm to establish a complete deterministic causal theory, in my view the corresponding Kantian potential is necessary to account for spontaneous transitions. The question is: Who is correct? Or is it just two ways of modeling and interpreting the same underlying physical potential? Basil Hiley, who worked for many years with Bohm, recently argued that the generally accepted idea in the literature that Bohm tried to “return to a deterministic, mechanical view of the world” is wrong (Hiley
In fact, the manner in which Hiley interprets and develops Bohm’s concepts, shows remarkable agreement with my Kantian approach.

According to Hiley (2002), the quantum potential may be regarded as an “internal” potential energy that belongs to particles in superpositions of states (it has no equivalent in classical mechanics and has no external source). Insofar as multi-particle systems are concerned, the quantum potential is understood in terms of a “whole” that determines the properties of the individual particles and their relationship (and not the other way round). As such it is a non-local energy (different from kinetic and (classical) potential energy) necessary for energy conservation which is involved in a ‘self-organizing’ process (which may be spontaneous) (see Hiley 1999:7; Kant also speaks of “self-organization” in this regard—see sections 3.4.1-2). Hiley even writes in the context of the Bohmian implicit order:

[T]here is a deep underlying process from which not only particles and fields emerge, but this process is the source of space-time itself. (Hiley 2010:14)

This is in some ways very similar to Auyang’s (1995) position, discussed above.

The approach presented in the present chapter does not take the quantum fields description into account (only matter fields are considered). I focus only on matter, not on field forces. Kant’s view in the Third Critique is that the supersensible realm would account for both matter and forces. It seems to me that such an enterprise would be possible within the framework of the basic conceptual framework developed here. In this regard, one can hold that the Kantian potential could also account for the spontaneous “creation” of field-entities which construe the force fields. I hope that the work presented here would provide a basis on which a more extended Kantian interpretation could be established.

5. Conclusion

In the Introduction, I mentioned that the problem of reconciling determinism and indeterminism (spontaneity) in quantum physics is now more than one hundred years old and no answer as to how such spontaneity can be conceived of as possible in our understanding of how the world is like (in contrast to its mere logical possibility) has been provided. The main questions that I engaged with are: How is such spontaneity possible and how can it be accommodated in physics as part of our overall conception of the world? My answer is a simple (and I hope an elegant) one: We can effectively delineate two modes of existence in quantum physics, the one being the substratum of the other, namely the quantum and classical modes, governed by two very different principles, namely determinism and spontaneity. Spontaneity enters physics in the form of the reduction of the wave packet which I interpret as a transition from quantum to classical modes.

This unified conceptual picture emerges in the framework of Kant’s philosophy that allows for two modes of existence, namely nature and the supersensible realm outside nature, governed by determinism and absolute spontaneity respectively, which I interpret as the classical and quantum modes of existence. I show (I hope convincingly) in the context of my interpretation of the First Critique (and reading the Third Critique consistent with this interpretation), that Kant did not merely allow for the logical possibility, but for the conceivable possibility of absolute spontaneity—both in the First Critique and in his philosophy of science in the Third Critique. As such spontaneity becomes something that could conceivably exist if his Critical metaphysics can be presented, not merely as a metaphysics, but as a scientific hypothesis that finds application in the field of quantum physics.

Kant argues in the First and Third Critiques that such spontaneity can co-exist with determinism in one conceptual framework in the context of his Critical metaphysics. I apply these concepts to the field of quantum physics with one adaptation: I allow that time be
combined not only with space but also with that mathematical space which is associated with the quantum mode of existence. This allows me to apply the Kantian concepts also to quantum mechanics where the two modes of existence come together in one description.

Kant’s approach allows us to also bring classical physics (Einstein’s theories) and quantum physics together into one conceptual framework. He laid the basis for this unified picture in the First Critique, where his first two moves formalize an epistemology that he used in the Metaphysical Foundations of Natural Science to establish the philosophical foundations of not merely Newtonian science, but of classical science in general, including Einstein’s theories, as Friedman (2001) has shown. His third move showed how determinism and transcendental freedom can cohere. He reworked these concepts in the Third Critique as part of his philosophy of science that accommodates spontaneity. The First Critique, therefore, provides the groundwork for mathematical science whereas the Third Critique allows us to bring physics, biology and even the life sciences (in the framework of his concept of “reflective” judgment) together in one unified conception or meta-research programme.

At the end of the day, I show that we can achieve much more with Kant’s conceptual framework than he thought possible. I have shown (I hope successfully) that the supersensible realm is confirmed in the quantum realm. I also show that Kant’s “final causality”, which is conceptualized as a spontaneous potentiality in the Third Critique, is realized in the spontaneous reduction of the wave packet. More generally, the ascription of spontaneity (in the context of a Kantian “potential”) to the quantum realm explains non-determination in cases like atomic decay and the EPR experiments. In my interpretation both determinism and spontaneity can be accounted for within the constraints of contemporary physics without having to call upon “action-at-a-distance” or “many worlds”. The most important outcome is that my view explains how such freedom is possible and also how it can be accommodated as part of a unified conception of the world.

Appendix 1: Kantian Space
As is the case with other aspects of Kant’s epistemology, space can be determined both a priori and a posteriori. When space is determined a priori, some geometrical form (i.e., conception) is constructed in space:

Through determination of the former [i.e., sensible intuition] we can acquire a priori cognitions of objects (in mathematics [i.e., geometry]), but only as far as their form is concerned, as appearances; whether or not there can be things that must be intuited in this form is still left unsettled. (B147; see also A29, A57/B81, where “appearances” refer to imagined geometrical objects in inner sense)

When space is determined a posteriori, objects determine the form of empirical space: “if it [i.e. space] is restricted solely to objects of the senses, then it is called empirical” (A57/B81; see also A377).

Since space (as an ability and sensible condition for experience) is “nothing other than merely the form of all appearances of outer sense” (A27/B43, my italics), empirical space is just the particular form which is exhibited in the extensive magnitudes and relations between the various parts of objects given in any particular appearance. In this case, Kant says that space is

the form of appearances themselves... Thus things, as appearances, do determine space, i.e., among all its possible predicates (magnitude and relation) they make it the case that this or that one belongs to reality. (A431/B459, my italics)

Clearly, then, Kant distinguishes between space as the “mere form of appearances” and (empirical) space as the “form of appearances themselves”, which is a posteriori determined

88
by objects: “things, as appearances, do determine space”. Real objects determine the real form of empirical space.

When some empirical space form is brought in judgment under a (geometrical) concept of space, the objective validity of space can be established:

Our expositions accordingly teach the reality (i.e., objective validity) of space in regard to everything that can come before us externally as an object... We therefore assert the empirical reality of space (with respect to all possible outer experience), though to be sure at the same time its transcendental ideality, i.e. that it is nothing as soon as we leave out the condition of the possibility of experience. (A28/B44)

Such concepts of space can include a priori synthetic geometric determinations of space (B41, A57/B81, A165/B206) which are applied (in determinate judgment) to the empirical form of space given through objects (see the mathematical principles).

Appendix 2: Another Kind of Intuition?
When we want to inquire about the possibility of another kind of intuition, we should probably focus on inner experience. Kant distinguishes (at least) two kinds of inner experience, namely a very basic kind where I have the mere awareness of my own existence (in apperception; even before being aware of my identity as the same self) and another kind where I am conscious of my own representations (as well as the representation of myself; B159) in inner sense, which is “a sensory consciousness of the contents of thought” (Allison 2004:277).

The first kind merely involves an indeterminate (non-conceptualized) sensible intuition in time (B423 n.); the second kind involves sensible intuitions both in time and space in the sense that the imagination is involved in ordering representations in inner sense at least conceptually in a line (continuous in time; see B156 and B292).

Insofar as the first kind of experience is concerned, Kant says that a mere indeterminate intuition in time is necessary to provide the material for thinking, for the act “I think” to take place. The “I exist” is contained within this “I think” (B423 n.). The problem, however, is that time does not have its own manifold (see B154-156 and B197). So, how is the matter for this intuition provided if it cannot be presented in some manifold? We can say that the inner self as noumenon produces effects in sensible intuition even when the space manifold is not involved. As such sensible intuitions are taken up in time even without any manifold involved (although it would be necessary for presentation in inner sense).

There is, however, another possibility. We can allow that time be combined with another manifold than space, say the manifold of ideal space associated with the inner self as noumenon. If we have such a noumenal awareness, we would be able to become aware of this noumenon when this manifold (given with its own kind of intuition) is combined with time. In this case, we are noumenally aware of it in time. In this manner the gap between the noumenal and phenomenal realms is bridged by combining time not with objects in space, but with the entities that exist in the noumenal mode of existence which have their own ideal space-time manifold (A57/B81). This could provide the bare feeling of existence that Kant refers to in the Prolegomena to any Future Metaphysics: “the feeling of an existence without the slightest concept” (Prol 4:334 n.). Although this short exposition does not prove the existence of such an intuition, it does show in what sense we can possibly conceive of it.
Appendix 3: General Relativity and Nature
In my account, I distinguished between these three things:

(1) The epistemic conditions for knowledge, when matter is presented empirically in space and time. This stands under Kant’s Analogies of Experience. As such matter is regulated by deterministic causality. This describes the “classical” situation where Newtonian mechanics apply.

(2) When we move beyond the epistemic conditions of knowledge, the empirical use of reason may be logically extended (in the anti-thesis position of the third antinomy) to conceptualize the sensible world as systemic ‘nature’, which is comprised of the totality of causal relations which is called “mechanism”. In this case, space-time and causality become conceptual constructs which belong to nature, outside the reach of human perception. Abstract mathematical theories like general relativity and theoretical descriptions of stochastic behavior – which can never be brought under sensible conditions – are descriptions of aspects of nature. Mauro Dorato (2002) has shown how time and causality as conditions of experience can be related to concepts thereof in the framework of space-time theories.

(3) I also distinguished an ontologically distinct supersensible realm outside nature (in accordance with my weak ontological reading of Kant’s First and Third Critiques) through which absolute spontaneous causality becomes possible (that realm serves as a condition for the possibility of such freedom). I ascribed a certain spontaneous potentiality to this realm in accordance with Kant’s concept of “final causality”. I applied these concepts to quantum physics (in chapter 4).

Although the mathematical models used in the formulation of classical physics – from Newtonian science to special and general relativity—include some features which challenge the deterministic description of the world, these do not present a significant challenge to that view (especially in the case of the theories of relativity) because it could be regarded as mere features of the mathematics (Earman 1986). It is, however, true that general relativity also describes a kind of non-local energy of gravitation which might be similar to the Bohm potential (see Hiley 1999)—which I relate to the Kantian concept of spontaneous potentiality (see section 4.8).

Appendix 4: Quantum Decoherence
Quantum decoherence may be considered in the context of my approach. I agree with the notion that quantum decoherence is not an interpretation of quantum physics but rather a physical phenomenon predicted by quantum mechanics. There are decoherence theorists who take the theory as describing the process through which classical appearances emerge from an underlying quantum “reality”. As such the usual distinction between the quantum and classical “worlds” is understood as the difference between appearance and Being, where Being is described by the Schrödinger or Dirac equation (Bitbol 2009:349).

Although this view shows some agreement with my own view insofar as “appearance and Being” may be distinguished, this position also stands in contrast with my view since I argue that we should rather regard the quantum mode of existence in the context of sets of interacting quantum fields (which may in part be “dark” for us) that underlie the classical world as the basic ontology of the world (Auyang 1995:45). As such the Schrödinger and Dirac equations describe the quantum mode as constrained in time.

In quantum decoherence three appropriately defined sub-systems, namely the quantum object, the apparatus and the environment are brought into interaction, resulting in the dilution
of phase coherences in the environment. The outcomes are, however, not proper statistical mixes but rather improper ones which include traces of entanglement. As such decoherence does not amount to true state reduction (Bitbol 2009:350). Although reduction can occur under such circumstances, it is not described by decoherence.

When considered in terms of my own view (see sections 4.5.2 and 4.6.3), decoherence engages with the semi-classical component of the quantum mechanical description (the deterministic evolution of the wave function) which is correlated with classical instruments (or: the classical world). Although this may lead to the maneuvering or dissipation of the dynamic evolution of the system, it does not directly engage the internal relations of its wholes-and-parts (superpositions of states) which are not presentable in space-time.

It is this internal relation between superpositions of states (outside space-time) which constitute the essence of another mode of existence which has the (spontaneous) potentiality to collapse. In my view we should consider quantum mechanics as a two-way street: on the one hand we can engage with quantum systems through our shared (semi)classical world; on the other hand, the quantum mode has the (spontaneous) ability to collapse.

BIBLIOGRAPHY

