On the Behavioral Component of the Third-Person Effect

Ye Sun
University of Texas at Austin
Lijiang Shen
University of Georgia, Athens
Zhongdang Pan
University of Wisconsin–Madison

This article examines the behavioral hypothesis of the third-person effect. It argues that self-other disparities in perceived message effects lead to specific rectifying behaviors due to, presumably, a recognition of the problematic situation defined by perceived effects. Such behaviors would be aimed at restricting messages with negative influence, correcting messages with ambiguous influence, and amplifying messages with positive influence. The hypothesis was tested with models specified through “the diamond method.” These models allow for estimating effects of perceptual disparity while controlling for overall perceived message effects. Results from Web-based survey data showed that the third-person perception (i.e., greater effect on others than on self) was a robust and significant predictor across all three messages. But the directions of such effects differed across messages with desirable or undesirable presumed influence. Theoretical and methodological implications for future research on the behavioral hypothesis of third-person effect are discussed.

Keywords: behavioral consequences; first-person perception; rectification behavior; third-person effect; third-person perception

The third-person effect (TPE) hypothesis (Davison, 1983) sketches out an intriguing phenomenon: People tend to believe others to be more influenced by media messages than themselves and may act upon such perceptual disparity. These two parts have been referred to as the perceptual component (also known as “the third-person perception” [TPP]) and the behavioral component. TPE is appealing for its depiction of how individuals’ lay epistemology of media effects may guide their actions and its theoretical potentials to advance our understanding of human actions and interactions in the media environment.

The extant research literature on TPE, however, has not provided the same levels of support for its two components. While it has been shown that the self-other perceptual disparity is robust across a wide range of message types, effect domains, and populations (see Perloff, 2002), evidence regarding its behavioral implications is meager and mixed. Surveying the extant studies on the behavioral component of
TPE reveals a confusing picture. Studies that examine different behaviors (e.g., Gunther, 1995; Hitchon, Chang, & Harris, 1997; Tewksbury, Moy, & Weis, 2004) do not yield consistent findings on the relationship between TPP and behaviors. For studies that examine the same type of behaviors, findings vary with message contexts (cf. Rojas, Shah, & Faber, 1996; Salwen & Driscoll, 1997) or wordings of the measures (cf. Hoffner & Buchanan, 2002; Tsfati, Ribak, & Cohen, 2005). The extant studies also differ in how the TPP-behavior linkage is specified in their statistical models. Some use the self-other perceptual gap as the predictor, while others use perceived effects on self and on others as separate predictors. Such diverse operationalizations reflect the absence of a consensual explication of the TPP-behavior linkage (see Perloff, 2002).

In this article, we first explicate the behavioral consequences of TPP by presenting a conceptual grid. On this basis, we identify “rectifying” behaviors as a particular category of such behavioral consequences, which we will focus on in this study. Second, we discuss different statistical specifications of the behavioral hypothesis and the corresponding theoretical interpretations. Data from a Web-based survey are analyzed to examine different manifestations of the behavioral hypothesis in three message contexts.

Behavioral Consequences of the Self-Other Perceptual Disparity

Explicating Behavioral Consequences

We start with a simple conceptual grid to organize our discussion on possible behavioral consequences of the self-other perceptual gap. Simply put, various actions can be differentiated with three basic elements: the agent (who acts to the perceived message effects), the course (in what way), and the target (toward whom or what). For agent, most TPE studies examine how members of the general public may respond to perceived message effects. Political elites and advocacy groups, however, may also take actions based upon their presumptions of influences on some ostensible audience. A good example is a case described in Davison’s (1983) original piece: The White officers in World War II decided to withdraw their African American units after the Japanese disseminated propaganda leaflets urging the soldiers not to fight the war for the White.

The second element is the course of action. Perceiving certain message effects on others, agents may act in response to anticipated consequences of such presumed effects. This idea is well captured in “the influence of presumed influence” (Gunther & Storey, 2003). Such behavioral responses could include refraining from voicing opinions that are inconsistent with the perceived opinion trend (Mutz, 1989) or moving out of a town seen as “tarnished” by the negative media coverage.
(Tsfati & Cohen, 2003). In such cases, the perceived media effects on others feed into individuals’ appraisals of their social environment, to which they adjust their behaviors accordingly. We can label such responses “accommodating” behaviors.

Individuals may also engage in rectifying behaviors. That is, in anticipation of an inadequacy of others in dealing with media effects, in either resisting harmful influence or benefiting from positive influence, individuals may be inclined to redress the situation. For example, presuming certain harmful influence, they may advocate removing or restricting its source (e.g., supporting media censorship) or provide shields to those regarded as being vulnerable to such influence (e.g., Hoffner & Buchanan, 2002; Nathanson, Eveland, Park, & Paul, 2002; Tsfati et al., 2005); when perceiving beneficial influence, however, they may further promote such messages so that the “less receptive” others could be influenced to the proper level.

The third element concerns the target of these actions. One’s behavioral responses may be directed at either some social collectives or specific individuals (including themselves). For example, supporting censorship (e.g., Gunther, 1995) or other forms of restriction (de Vreese & Semetko, 2002) aims to intervene in the production and distribution of media messages and is oriented toward some social aggregates at large. In contrast, parental mediation to modulate the effect of TV violence (Hoffner & Buchanan, 2002) and awarding money to a victim of media defamation (Gunther, 1991) are examples of behaviors aimed at specific individuals.

These elements criss-cross to form different behavioral possibilities. For example, each type of agent may take either accommodating or rectifying behaviors toward specific individuals or larger social collectives. Together, these elements form a conceptual grid that can be useful for developing a clearer articulation of different behavioral responses to TPP in varying contexts. The present study focuses on the behaviors that members of the public adopt to rectify problematic conditions presumed to result from others’ improper responses to certain media messages.

Rectifying Problematic Communication Situations

Such rectifying behaviors can be logically expected from the self-other perceptual gap. The perceived self-other disparity in response to media messages functions to define a problematic situation. Seeing others as being more susceptible to negative messages (Shah, Faber, & Youn, 1999), for example, leads individuals to perceive potential harms to certain aspects of their social fabric, such as social relations and fundamental values. Such “threat appraisals” give rise to individuals’ motivations to engage in actions aimed at preventing or mitigating such “danger” (Rogers, 1975; Shah et al., 1999). Consistent with this theoretical formulation, the self-other perceptual gap has been shown to be a positive predictor of support for media censorship, which is targeted at media content with undesirable social influences (e.g., Gunther, 1995; Gunther & Ang, 1996; Lee & Tamborini, 2005; McLeod, Eveland, & Nathanson, 1997; Rojas et al., 1996; Wu & Koo, 2001).
One may take up different rectifying measures, depending on the nature of a problematic situation. When the “harm-prone” others are within one’s immediate social circle, people may take direct educational or protective measures to shield these others. Examples of such rectifying behaviors include parents monitoring their children’s peer relationship (Tsfati et al., 2005) and acting to mediate the impact of television content (Hoffner & Buchanan, 2002). When the referent other or the scope of a problematic condition is beyond the reach of such direct measures, effective rectification will call for regulating the content and/or distribution of media messages.

A problem definition is not necessarily confined to harmful message contexts. Due to their innate “ naïve realism” (Pronin, Gilovich, & Ross, 2004), individuals tend to regard their own reactions to the environment as objective and appropriate and believe the media effect on themselves to be “the optimal impact” (Hoorens & Ruiter, 1996). Differential effects of media content—harmful or beneficial—on others, then, may entail a negative or less-than-optimal condition, in need of social intervention. Extant literature shows that the self-other perceptual gap persists with regard to messages for which the valence of presumed influence is ambiguous, such as TV news, poll stories, and so on (e.g., Rucinski & Salmon, 1990), and reverses to what is called the first-person effect (FPP) for messages with desirable presumed influences, such as public service announcements (PSAs; e.g., Gunther & Thorson, 1992). The perceived self-other disparity in these contexts may still signal deficiencies to be mended. For example, individuals who believe others are indifferent to PSAs against drunk driving may perceive potential problems and act to further promote such messages.

Our conception of rectification behaviors in response to the self-other perceptual gap is also logically congruent with the cognitive reasoning underlying TPP. Several theoretical explanations of the self-other perceptual gap suggest that the “exposure-is-effect” heuristic is often used in evaluating the media effect on others. Individuals tend to regard others as less aware of situational factors (such as the persuasive intent of a message), according to the fundamental attribution error explanation (Gunther, 1991), and more likely to be the sitting duck of the magic bullet of media messages (see McLeod et al., 1997; Perloff, 1993; Price & Tewksbury, 1996), according to the exposure thesis. Taking for granted such a direct correspondence between the presumed exposure of others to a media message and its impact on them, individuals are more likely to partake in actions aimed at regulating the distribution and/or production of the media message under consideration. With regard to messages with desirable social influence, the combination of the attribution and exposure theses suggests that others will be seen as less likely influenced due to their insensitivity and/or lack of exposure. Such presumed lag in receiving positive influences on the part of the others may also be regarded as a problematic situation. As a result, individuals will be more likely to promote such messages.

How to achieve rectification, therefore, is context-specific: As different messages are interpreted to implicate different problems, different behavioral responses are
called for. In this study, we employ messages with varying social desirability to reveal different manifestations of the same rectifying logic. Specifically, we examine three message contexts: sexually explicit materials on the Internet (hereafter, Internet pornography), reality TV shows, and PSAs. Three types of rectifying behaviors are specified in accordance with presumed severity and valence of potential message influences: Restrictive behaviors are more plausible for messages with baneful social influences (such as blocking pornographic Internet sites); corrective or educational behaviors for media messages with somewhat mixed social implications (such as adding more educational elements in reality TV shows); and promotional behaviors for messages deemed socially beneficial (such as advocating for airing more PSAs at primetime).

There is one caveat to place here: Our arguments do not suggest that these are the only types of rectifying behaviors resulting directly from the self-other perceptual disparity, nor that only one type of rectifying behavior is relevant to a message context. Rather, these rectification behaviors follow from a conceptual explication that strives for a proper balance between a higher level of theoretical abstraction (rectification across different message contexts) and a greater degree of theoretical specificity faithful to the experiential plausibility (different types of rectification in accordance with different message contexts).

To test the behavioral hypothesis of TPE across these message contexts, we will need to first test the following baseline hypotheses:

Hypothesis 1 (H1): Social desirability of perceived effects varies across the three types of messages such that Internet pornography is perceived as being clearly undesirable, PSAs as being clearly desirable, and reality TV shows as being between the two.¹

Hypothesis 2 (H2): Whereas Internet pornography and reality TV shows are seen to have greater effects on others than on self (TPP), PSAs are perceived to have greater effects on self than on others (FPP).

With evidence for these two hypotheses, we can proceed to test the following set of behavioral hypotheses:

Hypothesis 3 (H3): The perceptual gap concerning the messages predicts rectification behaviors such that

- **Hypothesis 3a (H3a):** TPP positively predicts the likelihood of undertaking restrictive actions against Internet pornography.
- **Hypothesis 3b (H3b):** To the extent that reality TV shows are seen as having socially undesirable influences, TPP positively predicts the likelihood of engaging in corrective actions regarding reality show programming.
- **Hypothesis 3c (H3c):** FPP positively predicts the likelihood of undertaking promotional actions regarding PSAs to amplify the effects of such messages.
Modeling the Effects of Perceptual Disparity on Behaviors

Though some studies use perceived effect on self and on others as separate predictors of behavioral consequences, a direct test of the behavioral hypothesis of TPE should examine the linkage between the self-other gap and the behavioral consequences. As we discussed in the above section, theoretically, the perceived self-other differential in message effect defines a problem situation and compels action. This effect (TPE) is theoretically distinct from that arising from the overall influence of the message. The latter may be termed “powerful-media effect.” Therefore, the net effect of the perceptual gap on behaviors is estimated with the perceived overall message effect controlled for. A model that is conceptually pertinent takes the following basic form:

\[y = \beta_1(x_s + x_o) + \beta_2(x_o - x_s) + \epsilon \]

where \(y \) = the behavior of interest, \(x_s \) = perceived effect on self, and \(x_o \) = perceived effect on others.

The specification of this model follows “the diamond method” developed in sociology for studying effects of inconsistency between dimensions of social status (Hope, 1975). It has been used in a few TPE studies (McLeod et al., 1997; Neuwirth & Frederick, 2002; Shah et al., 1999). In this model, the additive index of the perceived effects on self and others is said to allow for estimating the second-person effect (Neuwirth & Frederick, 2002), or the effect of the overall perceived message effects, and the difference index is interpreted as tapping the effect of perceptual disparity.

One potential problem with Equation 1 is that using the raw self-other difference score as a predictor only allows for the linear effect of self-other difference in perceived effects. Conceptually, this specification places TPP and FPP on the same continuous scale, glossing over their potentially different statistical effects and theoretical qualities. We therefore explore different specifications of the effect of perceptual disparity. We utilize the diamond method (Hope, 1975) to specify and evaluate alternative models. To lay out the arguments explicitly, we reproduce Hope’s exercise with the perceived effects on self and on others. For the sake of simplicity and clarity in this illustration, we assume that the same scale is used to the same full extent by participants when estimating effects on different targets. We also trichotomize each perceived-effect scale into low, medium, and high to produce a \(3 \times 3 \) table (see Figure 1, left panel). Following Hope, we rotate the table \(135^\circ \) clockwise to obtain a diamond-shaped table (see Figure 1, right panel). Assisted by this table, we may visualize the coding of the overall perceived effects of a message and the amount of disparity between the perceived effects on self and others. The two resulting variables are the predictors in Equation 1.
As shown in Figure 1, the diamond method is also a means for more pinpointed coding of self-other disparity in perceived effects into (a) TPP, (b) FPP, and (c) absolute perceptual disparity. Each of them has a unique interpretation and cannot be equated with the simple self-other disparity in Equation 1. Not being simply added to Equation 1 due to the identification constraint (Hope, 1975), these variables can nonetheless be employed in alternative regression models:

\[y = \beta_1(x_s + x_o) + \beta_2|x_o - x_s| + \epsilon \]

(2)

and

\[y = \beta_1(x_s + x_o) + \beta_2z_1 + \beta_3z_2 + \epsilon \]

(3)

where, \(z_1 = x_o - x_s \), for \(x_o > x_s \), and \(z_1 = 0 \), for \(x_s \leq x_o \); \(z_2 = x_s - x_o \), for \(x_s > x_o \), and \(z_2 = 0 \), for \(x_s \leq x_o \).

Across all three equations, \(\beta_1 \) shows the effect of the overall level of perceived message effects, controlling for self-other disparity. \(\beta_2 \) (also \(\beta_3 \) in Equation 3) shows the effect(s) of a particular type of perceptual disparity on the behavioral variable above and beyond that of overall perceived effect. Each model tests a unique hypothesis regarding the impact of self-other disparity on behavioral responses. In Equation 1, \(\beta_2 \) shows the linear effect of self-other disparity on the dependent variable \(y \). In Equation 2, \(\beta_2 \) is an estimate of the effect of absolute perceptual disparity on \(y \). However, Equation 1 fails to differentiate the effects of FPP and TPP; Equation 2 so

Figure 1

An Illustration of the Diamond Method for Coding Perceived Effects

<table>
<thead>
<tr>
<th></th>
<th>(x_m = 1)</th>
<th>(x_m = 2)</th>
<th>(x_m = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_f = 1)</td>
</tr>
<tr>
<td>(x_f = 2)</td>
</tr>
</tbody>
</table>

1. \(x_m = \) An (arguably) interval scale of the magnitude of perceived message effect, with the other cells being coded into the average of the original codes of each pair (e.g., 1.5 for low-medium and medium-low and 2.5 for medium-high and high-medium, respectively); 2. \(x_f = \) An ordinal scale of the third-person perception, with the other cells coded into 0; 3. \(x_f = \) An ordinal scale of the first-person perception, with the other cells coded into 0; 4. Recode \(x_f' = [x_f \times (-1)] \) when \(x_f = 0 \); \(x_f' = x_f \) when \(x_f > 0 \). \(x_f' = \) An (arguably) interval scale of other-self perceptual disparity (a reversed coding would be equivalent in terms of variance captured); 5. \((x_f + x_f') = \) An ordinal scale of perceptual gap (absolute value of perceptual disparity) without the confound of perceived message effect.
far has no theoretical grounding in the TPE formulation. Only Equation 3 specifies the TPE behavioral hypothesis with pinpointed variables: β_2 specifies the effect of TPP, whereas β_3 specifies the effect of the FPP.

With these statistical specifications explicitly laid out, it is then possible to identify the one that is most consistent with one’s theoretical hypothesis and compare it with alternative ones on the linkage between perceptual disparity and behavior. We will explore this through the following research question:

Research Question 1: Will one of the models yield more robust estimates of the perceptual disparity-behavior relationship across the three messages? Or alternatively, will different models capture such a relationship in different message contexts?

Method

Data Collection

Data were collected via a Web-based survey of undergraduate students in introductory communication and journalism courses in a major Midwest university in the fall semester of 2004. Students in those classes were provided with the URL of the survey. They could access it at any location with Internet connection by entering their student ID number as a password. Participants completed the survey in exchange for a small amount of extra credit. Duplicate surveys were identified and deleted.

Within the two-week study period, 583 surveys were completed. Excluding cases with missing values on key variables yielded a valid sample of 575. This sample consisted of 71% females and 29% males, and 5.6% freshmen, 38.3% sophomores, 37.6% juniors, and 18.6% seniors. Because men and women may respond to the three messages differently and increasing amount of experiences in the intellectual environment of a university might affect participants’ responses to not only media messages but also survey questions, we included gender and year in school as control variables in all of the analyses.

The survey included questions regarding the survey completion setting (such as the location where the survey was completed, the type of Internet connection, and whether they were interrupted while completing the survey), whether they had participated in similar studies before, and whether they had heard anything about the third-person effect. Preliminary analyses showed no significant effect of any of these variables on any of the perceived-effect or behavior measures. Therefore, they were not included in the subsequent analyses.

To ensure that the same messages were being considered by all participants, other than Internet pornography, we referred to specific messages described in the survey. For reality TV shows, we asked about two shows that were popular at the time of the survey, *The Benefactor* and *The Apprentice*. For each show, participants first read a brief synopsis taken from the network’s Web site for the show and then answered
questions relevant to it. The same approach was used for the two PSAs, one titled “In America,” which encourages donations to charity, and the other “Steps,” which advocates connecting with people in one’s community. For each PSA, participants were asked to read a short passage that includes a brief description of its visuals and the verbatim transcript of its voiceover and then answer related questions. The approach has the advantage of having the participants evaluate concrete messages, thus making the data on perceived effects and behaviors more readily interpretable. The disadvantage, however, is that it decreases generalizability of our findings to PSAs as a broad message category. We found no need, nor a practical way, to offer descriptions that could “concretize” pornography. We used the label “sexually explicit materials on the Internet” in our survey questions.

Measures

Perceived message effects. For each type of media content, a specific set of perceived-effect measures was asked of participants themselves and of two different others, “an average person in your own age group” and “an average person in your parents’ age group.” The singularity was used to avoid the potential confound of heterogeneity, generality, category size, or other factors in descriptors of different others (e.g., Duck & Mullin, 1995; Eveland, Nathanson, Detenber, & McLeod, 1999; Tewksbury, 2002). Because individuals could have very different interpretations of what third-person descriptors encompass, the labels “your own” and “your parents’” were used to make the descriptors more concrete. Within each message type, the order of the three evaluated targets was randomized to remove potential question-order effects. To focus on testing the behavioral hypothesis, in this article, only the other referred to as “an average person in your own age group” (“peer” hereafter) was used. This choice has the benefit of focusing on the key theoretical concerns in this article. The questions regarding each message were developed to capture the potential effects across distinct areas. For all these questions, the same 7-point scale was used, with 1 being not at all and 7 being a great deal.

For reality TV shows, the participants were asked how The Benefactor and The Apprentice would impact “perceptions of the business world,” “goals in life,” “work ethics,” and “definition of success” for themselves and their peer, respectively. The perceived effects measure for Internet pornography consisted of three items asking about the impact of such materials on one’s “moral values concerning sex,” “ways of dealing with sexual relationships,” and “acceptance of sexually explicit talk and images.” The perceived effects measures for PSAs consisted of four questions asking about how such PSAs would impact their “altruistic values,” “behavioral intention to help others,” “perception of charity organizations,” and “intention to donate to charity organizations.”

For each message type, the perceived-effect items regarding each referent were subject to a confirmatory factor analysis to assess their unidimensionality. Based on
the evidence that such a measurement model fits the data well (the general criteria are comparative fit index [CFI] > 0.96, goodness-of-fit index [GFI] > 0.96, and root mean square error of approximation [RMSEA] < 0.06), these items were averaged into a perceived-effect index specific to each message type and each referent. The scale reliability (ρ) for each was estimated, taking as inputs the parameter estimates from the corresponding confirmatory factor analysis. Across the three messages, ρ ranges from .86 to .89 for perceived effects on self, and from .90 to .93 for perceived effects on peers. This procedure of estimating scale reliability was developed by the psychologist Tenko Raykov (1997). It addresses certain known undesirable statistical properties of the more conventionally used statistic, Cronbach’s alpha (see Cronbach & Shavelson, 2004). Therefore, throughout this study, the same procedure was used to assess all the multi-item additive scales.

Behavioral likelihood. Based on the explication of rectifying behaviors, for each type of media content, a set of seven or eight questions was asked to tap participants’ likelihood (1 = very unlikely, 7 = very likely) to engage in certain actions with regard to the message when given an opportunity. For each message context, an index of behavioral likelihood was constructed by taking the average of the items (ρ ranges from .82 to .89).

Social desirability of message influence. Social desirability was measured by four 7-point semantic differential scales anchored by socially undesirable, beneficial to society, harmful to cultural values, and favorable to societal norms, versus their counterparts. After reverse coding of the negatively worded items, an index of social desirability was formed by taking the average score of the four measures for each message type (ρ ranges from .74 to .77).

Media power belief. Participants were asked to indicate on a 7-point scale (1 = strongly disagree, 7 = strongly agree) their level of agreement with 10 statements about the media impact on society. The 10 items were combined into a single index by taking the average (ρ = .86).

Message exposure. We asked the participants to estimate the amount of exposure to each type of media content for both themselves and their average peer. For each of the reality shows, participants were asked to indicate how frequently they themselves/an average person in their age group watched each of the two shows asked about in the survey (1 = never, 7 = quite often). Because more than 44% of the participants claimed to have watched neither of the two shows, to obtain a proxy measure of the overall reality show exposure, the two items were added into a cumulative index. It was then transformed via square root to reduce skewness. Another dichotomous variable (0 = no, 1 = yes) was created to represent those who did not watch either of the two shows.
We asked two questions about exposure to Internet pornography. To dilute the intrusiveness of such questions and increase participants’ truthful reporting, we included a preamble acknowledging that encountering such materials could be accidental given its prevalence on the Internet. Then, we asked (a) how frequently (1 = never, 7 = quite often) the participants themselves (and their peer) encountered such materials on the Internet and (b) if they accidentally encountered such materials, how likely (1 = very unlikely, 7 = quite likely) they would “take a look at them.” The two measures were correlated for each target (r = .51, p < .001, for self; r = .47, p < .001, for peer). The logic of this measurement strategy dictates that the second item was conditioned upon the first one. Therefore, for each target, the two items were multiplied to form an exposure index. Square-root transformation was employed to reduce skewness of each resulting index.

Exposure to PSAs was measured in a similar way. Because the label PSA may sound less familiar to participants, the preamble briefly introduced what kind of messages counted as PSAs. After that, we asked the participants to rate (a) how often (1 = never, 7 = quite often) they (and their peer) have encountered a PSA in the past 12 months and (b) how likely (1 = very unlikely, 7 = quite likely) they (and their peer) would pay attention to it if encountering one on TV. For each target, the two items were correlated (r = .39, p < .001, for self; r = .40, p < .001, for peer) and were multiplied to form an index of PSA exposure. Each resulting index was transformed via square root.

Results

Preliminary Analyses

To test H1, a univariate repeated measures general linear model (GLM) procedure was conducted with social desirability as the dependent variable and message as the within-subjects factor, controlling for the participant’s sex and year in school. The means and standard deviations are presented in the first column of Table 1. The omnibus F was significant for the effects of message on perceived desirability: Wilks’s Λ = .19, F(2, 571) = 1,233.80, p < .001, η² = .65. The means provide evidence for H1: The perceived social desirability varied in ascending order from Internet pornography, through reality TV shows, to PSAs. All pairwise comparisons were significant (p < .001). Although our participants did see the effects of reality shows to be significantly less undesirable than Internet pornography, the marginal mean was significantly below the midpoint of the scale, M = 3.73, t(574) = -6.42, p < .001. Consequently, we have the empirical ground to expect a significant TPP concerning reality shows.

For H2, paired-sample t tests showed that self-other differences in perceived effects were significant across the three messages, such that an average peer was judged to be significantly more influenced than self by Internet pornography, t(574) = 21.71,
Next, a univariate repeated-measures GLM involving the message type as the within-subjects factor was conducted to examine the effect of estimates on self, peer, and the perceptual gap, respectively. The omnibus \(F \)-values for the tests of the marginal means were all significant. All pairwise comparisons within each analysis were significant at \(p < .001 \), with only one exception. That is, the difference between the perceptual gaps for the reality show (\(M = 1.18 \)) and Internet pornography (\(M = 1.08 \)) was nonsignificant. The marginal means for the two messages showed that the participants estimated greater effects of reality TV shows on both referents than Internet pornography (\(\Delta = .73 \) for self, and \(\Delta = .82 \) for peer). Notwithstanding this nonsignificant difference, the overall pattern from this set of analyses provided an empirical basis for our choice of measuring the three rectifying behaviors for these messages.

Further preliminary analyses were carried out to examine whether the effects of self-other perceptual disparity on behaviors are unidirectionally linear within each message. Evidence from such analyses will help us determine whether Equation 1 describes the data accurately. For simplicity, we created three categories of perceptual disparity for each message: others influenced more than self, others and self influenced at the same level, and self influenced more than others. For each message, the mean likelihood of behavioral responses was obtained for each of the three categories. The results are shown in Figure 2.

A vast majority of participants reported their peers as being influenced more than themselves by messages with presumed undesirable social influence (\(n = 485 \), or 84.3\%, for reality TV shows; \(n = 419 \), or 72.9\%, for Internet pornography). The opposite, though with less lopsidedness, was true for PSAs, with \(n = 319 \), or 55.5\%, reporting self as being influenced more than others. There were far fewer cases in the “self being influenced more” category for reality TV shows (\(n = 53 \), or 9.2\%) and

\[
p < .001, d = .77, \text{ and by TV reality shows, } t(574) = 24.24, p < .001, d = .89, \text{ but significantly less influenced than self by PSAs, } t(574) = –6.29, p < .001, d = –.09.\]

Table 1

Means and Standard Deviations of Social Desirability and Perceived Effects

<table>
<thead>
<tr>
<th>Media Message</th>
<th>Social Desirability</th>
<th>Self</th>
<th>Peer</th>
<th>Gap</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet sex materials</td>
<td>2.12 (1.09)</td>
<td>2.08 (1.31)</td>
<td>3.17 (1.50)</td>
<td>1.08 (1.20)</td>
<td>21.71***</td>
</tr>
<tr>
<td>Reality TV shows</td>
<td>3.73 (0.99)</td>
<td>2.81 (1.38)</td>
<td>3.99 (1.34)</td>
<td>1.18 (1.17)</td>
<td>24.24***</td>
</tr>
<tr>
<td>Public service announcements</td>
<td>5.68 (1.00)</td>
<td>3.66 (1.29)</td>
<td>3.45 (1.18)</td>
<td>–.21 (0.80)</td>
<td>–6.29***</td>
</tr>
</tbody>
</table>

\(F(2, 571) = 1,233.80*** \)

304.47***

77.84***

361.05***

Note: The means and standard deviations (in parentheses) are estimated marginals after controlling for sex and year in school. The \(F \)-values are based on the linearly independent pairwise comparisons among the estimated marginal means. \(N = 575.\)
*** \(p < .001.\)
Internet pornography (n = 28, or 4.9%), making the data less optimal for comparing the behavioral effects of the two types of perceptual disparities, FPP and TPP.

The mean comparisons clearly demonstrated that the relationship between perceptual disparity and behavioral likelihood was not linear for messages with undesirable influences. For both reality TV shows and Internet pornography, the linear contrast for group mean differences was nonsignificant. The quadratic contrast was near the conventional level of significance for reality TV shows (F[1, 572] = 3.39, p = .066) and was significant for Internet pornography (F[1, 572] = 5.03, p = .025). Only for PSAs, the effect of perceptual disparity on behavioral likelihood appeared to be linear. The linear contrast was significant (F[1, 572] = 21.51, p < .001) and the quadratic contrast was nonsignificant (F[1, 572] = .69, n.s.). These results provide an empirical basis for us to evaluate the fitness of the three possible models to the data.

Note: PSA = public service announcement.
Behavioral Consequences of Perceptual Disparity

With the empirical foundation and caveats shown in the preliminary analyses, we can now interpret the findings from regression analyses predicting behavioral likelihood. For the three behavioral outcomes, parallel models were estimated. In each of the models, gender and year in school were entered in the first block. The four variables regarded as among the elements of the “media effect schemas” were entered in the second block. Past research has shown that elements of the media effect schemas are among the mental calculi for individuals to render effect estimates (e.g., McLeod, Detenber, & Eveland, 2001; Price, Huang, & Tewksbury, 1997). These elements, including one’s beliefs in media power and each target’s frequency of exposure, may be plausibly related to the likelihood of individuals taking actions regarding a media message. Moreover, perceived desirability of message influence may also by itself be a basis for individuals to act. These factors were included as controls in order to assess the net effect of the self-other perceptual gap. Models based on the three equations differed in the last block that contained different combinations of the perceptual variables. Our interpretation will focus on the coefficients associated with these variables. Table 2 shows the results from the models of the three types of messages. For each message type, the table shows the incremental R^2 associated with each block of predictors and the standardized regression coefficients from the final equation. For alpha $= .05$, and $N = 575$, the statistical power to detect an effect size of .20 exceeds .99.

Across all three messages, the overall levels of perceived effects and perceptual disparity both accounted for significant portions of variance in behavioral outcomes above and beyond the control variables. Levels of perceived effects positively predicted the likelihood of taking restrictive actions against Internet pornography ($\beta = .15, p < .001$), that of corrective behaviors concerning reality TV shows ($\beta = .18, p < .001$), and that of promotional behaviors with regard to PSAs ($\beta = .36, p < .001$). Perceptual disparity also had a significant effect from the Equation 1 estimates. The effect was positive on restrictive and corrective behaviors concerning the two messages with negative influences, but only the effect on Internet pornography was significant ($\beta = .16, p < .001$). Perceptual disparity had a negative effect on promotional behavior concerning PSAs ($\beta = -.10, p < .05$).

Given the patterns shown in Figure 2, however, such estimates, assuming a linear relationship between the self-other perceptual gap and behaviors, do not allow for precise theoretical interpretations. To arrive at estimates that are theoretically more meaningful, the results need to be compared with those from the models based on Equations 2 and 3. Because the estimates of other parameters or incremental R^2 would not be impacted by different disparity measures, only the parameter estimates associated with the disparity measures from these models were shown in Table 2.

First, the variable with absolute values of perceptual disparity was used to replace the raw self-other disparity variable in each model. Only one significant effect emerged, that is, the effect of absolute perceptual disparity on the likelihood of engaging in
restrictive behavior against Internet pornography ($\beta = .19, p < .001$). Empirically, therefore, such treatment of self-other disparity did not yield robust findings across the three messages. Whether it bears substantive theoretical meaning germane to the TPE logic is a question requiring further empirical evidence.

Second, when the TPP and FPP variables were employed as predictors, the results showed that across the three messages, the perception of greater effects on an average peer than on self (i.e., TPP) significantly predicted behavioral outcomes. TPP positively predicted the likelihood of restrictive behavior against Internet pornography ($\beta = .17, p < .001$) and the likelihood of corrective behavior regarding reality TV shows ($\beta = .11, p < .05$). FPP did not predict behavioral likelihood in either model. The results lent clear support for H3a and H3b. Concerning PSAs, TPP negatively predicted the likelihood of engaging in promotional behavior ($\beta = -.13, p < .01$). Contrary to H3c, no significant effect of FPP on behavior concerning PSAs was found. The nonsignificant FPP effect suggests that seeing others as benefiting less than self from the positive messages is not a strong enough motivator for people to make efforts to promote such messages. But seeing others as being influenced more by such messages than self may alleviate rectifying needs, thus tapering individuals’ motivation to engage in promotional behaviors.

Table 2
Predicting Behavioral Consequences of Perceived Message Effects

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Reality TV Shows</th>
<th>Internet Pornography</th>
<th>PSAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control variables (ΔR^2)</td>
<td>.02*</td>
<td>.07***</td>
<td>.03***</td>
</tr>
<tr>
<td>Media-effect calculi (ΔR^2)</td>
<td>.07***</td>
<td>.03**</td>
<td>.11***</td>
</tr>
<tr>
<td>Media power belief</td>
<td>.13**</td>
<td>.07</td>
<td>-.00</td>
</tr>
<tr>
<td>Message influence desirability</td>
<td>-.13**</td>
<td>-.03</td>
<td>.12**</td>
</tr>
<tr>
<td>Levels of exposure by self</td>
<td>.07</td>
<td>-.18**</td>
<td>.32***</td>
</tr>
<tr>
<td>Whether watched</td>
<td>-.06</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(self, 1 = watched, 0 = did not watch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levels of exposure by peer</td>
<td>.18***</td>
<td>.11*</td>
<td>-.04</td>
</tr>
<tr>
<td>Perceived effect variables (ΔR^2)</td>
<td>.03***</td>
<td>.05***</td>
<td>.14***</td>
</tr>
<tr>
<td>Total perceived effects</td>
<td>.18***</td>
<td>.15***</td>
<td>.36***</td>
</tr>
<tr>
<td>Perceived effect disparity</td>
<td>.09</td>
<td>.16***</td>
<td>-.10*</td>
</tr>
</tbody>
</table>

Explicating perceptual disparitya

<table>
<thead>
<tr>
<th></th>
<th>Reality TV Shows</th>
<th>Internet Pornography</th>
<th>PSAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute self-other gap</td>
<td>.08</td>
<td>.19***</td>
<td>.01</td>
</tr>
<tr>
<td>Third-person gap</td>
<td>.11*</td>
<td>.17***</td>
<td>-.13**</td>
</tr>
<tr>
<td>First-person gap</td>
<td>.03</td>
<td>.06</td>
<td>-.05</td>
</tr>
</tbody>
</table>

Note: The cell entries are the standardized regression coefficients from the final equation. PSA = public service announcement.

a. The absolute gap was entered in place of the self-other disparity in the “absolute gap” model (Equation 2); the third-person and first-person gaps were entered in place of the self-other disparity in the “gap type” model (Equation 3).

* $p < .05$. ** $p < .01$. *** $p < .001$.

restrictive behavior against Internet pornography ($\beta = .19, p < .001$). Empirically, therefore, such treatment of self-other disparity did not yield robust findings across the three messages. Whether it bears substantive theoretical meaning germane to the TPE logic is a question requiring further empirical evidence.

Second, when the TPP and FPP variables were employed as predictors, the results showed that across the three messages, the perception of greater effects on an average peer than on self (i.e., TPP) significantly predicted behavioral outcomes. TPP positively predicted the likelihood of restrictive behavior against Internet pornography ($\beta = .17, p < .001$) and the likelihood of corrective behavior regarding reality TV shows ($\beta = .11, p < .05$). FPP did not predict behavioral likelihood in either model. The results lent clear support for H3a and H3b. Concerning PSAs, TPP negatively predicted the likelihood of engaging in promotional behavior ($\beta = -.13, p < .01$). Contrary to H3c, no significant effect of FPP on behavior concerning PSAs was found. The nonsignificant FPP effect suggests that seeing others as benefiting less than self from the positive messages is not a strong enough motivator for people to make efforts to promote such messages. But seeing others as being influenced more by such messages than self may alleviate rectifying needs, thus tapering individuals’ motivation to engage in promotional behaviors.

Table 2
Predicting Behavioral Consequences of Perceived Message Effects

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Reality TV Shows</th>
<th>Internet Pornography</th>
<th>PSAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control variables (ΔR^2)</td>
<td>.02*</td>
<td>.07***</td>
<td>.03***</td>
</tr>
<tr>
<td>Media-effect calculi (ΔR^2)</td>
<td>.07***</td>
<td>.03**</td>
<td>.11***</td>
</tr>
<tr>
<td>Media power belief</td>
<td>.13**</td>
<td>.07</td>
<td>-.00</td>
</tr>
<tr>
<td>Message influence desirability</td>
<td>-.13**</td>
<td>-.03</td>
<td>.12**</td>
</tr>
<tr>
<td>Levels of exposure by self</td>
<td>.07</td>
<td>-.18**</td>
<td>.32***</td>
</tr>
<tr>
<td>Whether watched</td>
<td>-.06</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(self, 1 = watched, 0 = did not watch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levels of exposure by peer</td>
<td>.18***</td>
<td>.11*</td>
<td>-.04</td>
</tr>
<tr>
<td>Perceived effect variables (ΔR^2)</td>
<td>.03***</td>
<td>.05***</td>
<td>.14***</td>
</tr>
<tr>
<td>Total perceived effects</td>
<td>.18***</td>
<td>.15***</td>
<td>.36***</td>
</tr>
<tr>
<td>Perceived effect disparity</td>
<td>.09</td>
<td>.16***</td>
<td>-.10*</td>
</tr>
</tbody>
</table>

Explicating perceptual disparitya

<table>
<thead>
<tr>
<th></th>
<th>Reality TV Shows</th>
<th>Internet Pornography</th>
<th>PSAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute self-other gap</td>
<td>.08</td>
<td>.19***</td>
<td>.01</td>
</tr>
<tr>
<td>Third-person gap</td>
<td>.11*</td>
<td>.17***</td>
<td>-.13**</td>
</tr>
<tr>
<td>First-person gap</td>
<td>.03</td>
<td>.06</td>
<td>-.05</td>
</tr>
</tbody>
</table>

Note: The cell entries are the standardized regression coefficients from the final equation. PSA = public service announcement.

a. The absolute gap was entered in place of the self-other disparity in the “absolute gap” model (Equation 2); the third-person and first-person gaps were entered in place of the self-other disparity in the “gap type” model (Equation 3).

* $p < .05$. ** $p < .01$. *** $p < .001$.

restrictive behavior against Internet pornography ($\beta = .19, p < .001$). Empirically, therefore, such treatment of self-other disparity did not yield robust findings across the three messages. Whether it bears substantive theoretical meaning germane to the TPE logic is a question requiring further empirical evidence.

Second, when the TPP and FPP variables were employed as predictors, the results showed that across the three messages, the perception of greater effects on an average peer than on self (i.e., TPP) significantly predicted behavioral outcomes. TPP positively predicted the likelihood of restrictive behavior against Internet pornography ($\beta = .17, p < .001$) and the likelihood of corrective behavior regarding reality TV shows ($\beta = .11, p < .05$). FPP did not predict behavioral likelihood in either model. The results lent clear support for H3a and H3b. Concerning PSAs, TPP negatively predicted the likelihood of engaging in promotional behavior ($\beta = -.13, p < .01$). Contrary to H3c, no significant effect of FPP on behavior concerning PSAs was found. The nonsignificant FPP effect suggests that seeing others as benefiting less than self from the positive messages is not a strong enough motivator for people to make efforts to promote such messages. But seeing others as being influenced more by such messages than self may alleviate rectifying needs, thus tapering individuals’ motivation to engage in promotional behaviors.
Together, these results provided a clear answer to our research question. That is, Equation 3 yielded findings that reflect the behavioral effect of individuals’ perceptual disparity more precisely and the results are more robust than those from the other two models. The relationship between perceptual disparity and behavior is likely through the third-person rather than the first-person perception across different message contexts.

The other coefficients shown in Table 2, although not theoretically specified in this article, provided further empirical aids for us to interpret the effects of perceptual disparity. The media-effects calculi were among the empirical predictors of behavioral outcomes of perceptual disparities. They contributed a significant portion of variance in each of the models, ranging from 2.6% to 10.7% across three messages.

Perceived desirability of message effects could be a basis for action. Attaching greater negative implications to reality TV shows was related to a greater likelihood of engaging in corrective behaviors, whereas perceiving the PSAs as more desirable led to a greater likelihood of taking actions to amplify PSA messages. Beliefs in media power positively predicted the likelihood of taking corrective actions with regard to reality TV shows but had no significant effect for the other two messages, possibly due to the mismatch between the media power measures that focused on the traditional mass media and the messages examined in our study. That is, the Internet was not explicitly included among the mass media and PSAs were less prevalent and normally not a part of lay persons’ conception of the media. Self-exposure to Internet pornography negatively predicted the likelihood of taking restrictive behaviors. This finding is consistent with those from earlier studies (Gunther, 1995; Lo & Wei, 2002; Shah et al., 1999). With regard to PSAs, the greater amount of self-reported exposure was related to a greater likelihood of taking action. For reality TV shows, it was not self-exposure but presumed peers’ exposure that positively predicted the likelihood of enacting corrective behaviors.

Conclusion and Discussion

This study examined the behavioral hypothesis of TPE with two interrelated goals: (a) to conceptually explicate behavioral consequences of TPP across message contexts and (b) to empirically demonstrate how individuals’ perceptual disparity and behaviors may be related by comparing different models of this relationship.

We proposed a simple conceptual grid, comprising the elements of agent, course, and target, as a tool to think about behavioral consequences of TPP. Although far from being a full explication, we hope this grid may open up a conceptual space to explicate the behavioral hypothesis of TPE. One immediate conceptual benefit from utilizing it is the recognition of the distinction between accommodating and rectifying behaviors as responses to different situations. While the former is more fruitfully conceived as conforming responses to presumed consequences of message effects,
the latter follows more directly from individuals using self-other disparity in perceived message effects to define a problematic situation to be rectified.

Focusing on rectifying behaviors, we differentiated three types of such behaviors—restrictive, corrective, and promotional—as possible consequences of TPP concerning messages with varying valence of social desirability. The three message contexts in our study indeed differed from each other significantly in social desirability of presumed influences (H1). Self-other perceptual disparities occurred in all three message contexts: TPP for messages with undesirable and ambiguous influences and FPP with regard to the messages with desirable social influences (H2). To see whether such perceptual disparity in each message context leads to rectifying behaviors, we estimated a series of regression models involving different self-other disparity variables specified through the diamond method. The evidence supported H3a and H3b: TPP predicted a higher likelihood of taking restrictive and corrective behaviors, above and beyond the effect of other factors, including the estimate of the overall effect of the given message. Contrary to the prediction in H3c, FPP did not predict the likelihood of engaging in promotional behavior but TPP predicted a lower likelihood of such behavior. We cannot be certain whether our findings regarding PSAs are peculiar to the undergraduate student sample, considering that the two PSAs address issues (charity and community connection) somewhat distant from their everyday life. For those who perceived such messages to have greater influence on others (TPP), they would see less need to further amplify the effect of such messages. For those who perceived less influence on others (FPP), such discrepancy might not yet constitute a serious enough problem for them to act, because these issues do not bear direct relevance to their life. FPP, possibly, may emerge as a positive predictor of promotional behaviors concerning messages closer to individuals’ everyday concerns. Specific to the college students, for example, such concerns may include binge drinking, safer sex, campus safety, and so on.

By extending the application of the diamond method in the extant literature, our study also demonstrated how to follow the guide of a careful theoretical explication in constructing different variables on perceptual disparity and the corresponding interpretation of their relationships with behavioral measures. We laid out explicitly the coding of perceptual disparity variables and their incorporation in regression models to underscore the need for a more precise match between a statistical specification and a verbally expressed theoretical hypothesis (Hope, 1975). Our analyses show that a model with pinpointed coding of TPP and FPP (Equation 3) not only is more theoretically consistent with the logic of the TPE but also generates more robust empirical results.

A few limitations of our study are worthy of note. First, one downside of having message context-specific behaviors is that the comparability across these behaviors cannot be fully ensured, despite our effort to keep the items equal in believability, appropriateness, and efficacy when designing the measures. Future studies could potentially quantify such variations through direct measurement. With such variations
controlled for, direct comparisons and contrasts could be made across message types. One would expect, for example, that due to the negativity bias, TPP would be a stronger predictor for undesirable messages than for ambiguous messages, a thesis that could not be tested with the design of our study. A direct comparative test could be done in future studies with conceptually and empirically comparable measures across messages. Further, it is also desirable to measure different but equally realistic rectifying behaviors concerning the same message type so that evidence can be obtained on how TPP may predict their respective likelihoods differently. Such evidence will provide an empirical basis for identifying context-specific behavioral consequences of TPP.

Second, our results were from a convenience sample of college students and consisted predominantly of females. A most recent meta-analysis (Sun, Pan, & Shen, in press) shows, however, that neither sampling procedure nor the study population is a significant moderator of TPP. One gender-related issue we did not account for in our study is that perceived effects were not estimated on male versus female others separately. The perceptual gap concerning the effects of Internet pornography is known to vary between male and female referent others (Lo & Wei, 2002; Reid, Byrne, Brundidge, Shoham, & Marlow, 2007). Though we recognize that it would be desirable to have such specifications, we do not think that this omission would impact our overall findings or interpretations in any significant way because our analytical focus of the study lies in the relationship between the perceptual gap and behaviors, rather than the size of the gap itself. Our data showed no significant interaction effect between gender and TPP on rectifying behaviors.

Third, our effort remains within the theoretical confines of the TPE model. It addresses only one component of the public’s perceptions of and public discourse on the media. Other elements that may influence individuals’ behaviors aimed at the media (or other communicative sources of influence) include belief in media excess, hostile media bias, political and economic control over the media, and so on (e.g., Gunther & Schmitt, 2004; Vallone, Ross, & Lepper, 1985). What roles, if any, such meta-communication perceptions about media may play in shaping individuals’ behavior is a theoretically and practically important area of systematic research. While exploring such a big topic is beyond the scope of this study, it is useful to point out this limitation of our study and to note this broader area that needs concerted research efforts.

Our study suggests several lines of consideration for future research. First, built upon our arguments, future research could develop a typology of behavioral consequences to TPP. On this basis, researchers can assess the relationship between each type of behaviors and each conceptually distinct kind of perceptual disparity. Having such a typology will also help us to identify theoretically meaningful contextual factors that may moderate the TPP-behavior linkage.

Second, developing a clearer conceptual explication of different types of behaviors will also contribute to the specification of more theory-driven models of behaviors.
To develop such models, we will need to invest heavily in theorizing human behaviors. The social cognitive theory (Bandura, 2001) and the theory of reasoned action and its variant (e.g., Ajzen, 1991; Madden, Ellen, & Ajzen, 1992) could provide a theoretical guide (see Perloff, 1999, for a similar point). Our arguments, however, also point to a necessary caution in such theoretical efforts: We need to recognize the theoretical distinctness of the behaviors that are directed at and about a source of communicative influences. Theoretically developing meaningful models predicting such behaviors needs a combination of a deductive reasoning that incorporates the logic of the theories on human behavior in general and an inductive reasoning process that extracts factors influencing the behaviors redressing presumed communicative influences in specific contexts.

Third, how self-other perceptual disparity leads to behavioral consequences needs to be further explicated. The factors mediating this process should be explored empirically. Some scholars have started making efforts toward this direction (e.g., Jensen & Hurley, 2005; McLeod et al., 2001; Shah et al., 1999), but much more is required given the current paucity of theoretical knowledge (Perloff, 2002). Motivations for behavioral engagement, such as self-protection, paternalism, or altruistic concerns, should be directly measured. Theoretical warrants are yet to be fully developed in terms of motivations and perceived efficacy (Bandura, 1997). Further, our evidence suggests that the concept of media effect schemas (e.g., McLeod et al., 2001; Price et al., 1997) holds potentials for us to link individuals’ cognitive calculi in assessing media effects and their behaviors. There are other potential moderators of the relationship between the perceptual gap and behavioral consequences. For example, the public’s perceptions of the social influence of a certain type of message, and/or their perceptions of how well the fellow societal members could respond to such messages, are in part shaped by the cultural orientation of a society (Lee & Tamborini, 2005). These are lines of theoretical reasoning that should be taken up in developing a more theoretically coherent account of the behavior hypothesis in TPE.

Notes

1. Social desirability of the presumed influence of a media message is rarely measured directly in third-person effect studies. Given our proposed differentiation of various rectifying behaviors associated with different types of messages, direct measures of social desirability of each message are necessary.
2. Whitt (1983) also reviewed the application of the diamond model via dummy coding of each disparity cell and argued that it allowed for the greatest degree of flexibility in testing both monotonic and nonmonotonic status inconsistency hypotheses.
3. Examples of restrictive behaviors concerning Internet pornography include “signing a petition for regulating pornographic sites” and “emailing Internet service providers to block pornographic sites.” Examples of corrective behaviors concerning TV reality shows include “sharing critical reviews of such TV reality shows with others” and “working with advocacy groups to add educational ingredients in such reality shows.” Examples of promotional behaviors concerning public service announcements (PSAs) are “urging local TV stations or cable service providers to air such PSAs” and “volunteering in non-profit
organizations that produce such PSAs.” A complete list of the behavior measures is available from the lead author upon request.

4. The exact wording is, “There are all kinds of sexually explicit materials on the Internet. People may be exposed to such materials on the Internet more or less accidentally. Now think about yourself (an average person in your age group). . . .”

5. The exact wording is, “Public Service Announcements (PSAs) are TV messages paid by government agencies, non-profit organizations, or advocacy groups to urge people to take up certain actions. Examples of such PSAs include anti-smoking messages, anti-AIDS messages, anti-discrimination messages, and messages encouraging contribution to charities and so on.”

References

Ye Sun (PhD, University of Wisconsin–Madison) is an assistant professor in the Department of Advertising at the University of Texas at Austin. Her research focuses on public health campaigns and media effects on individuals. She has published co-authored papers in *Communication Research* and *International Journal of Public Opinion Research*.

Lijiang Shen (PhD, University of Wisconsin–Madison) is an assistant professor in the Department of Speech Communication at the University of Georgia, Athens. His primary area of research considers the impact of message features and audience characteristics in persuasive health communication, message processing, and the process of persuasion. His research has been published in *Communication Monographs, Communication Research, Human Communication Research, Journal of Personality Assessment, Journal of Genetic Counseling*, and the *Handbook of Research on Electronic Surveys and Measurements*.

Zhongdang Pan (PhD, University of Wisconsin–Madison) is a professor in the Department of Communication Arts at the University of Wisconsin–Madison. His research on news media in political communication and on China’s media reforms has been published in various edited volumes and journals such as *Communication Research, Political Communication, Journalism*, and *Journalism and Mass Communication Quarterly*.