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Abstract

Background Economy, velocity/power at maximal oxy-
gen uptake (VVOzmaX /WVOzmax) and endurance-specific
muscle power tests (i.e. maximal anaerobic running
velocity; VMART), are now thought to be the best perfor-
mance predictors in elite endurance athletes. In addition to
cardiovascular function, these key performance indicators
are believed to be partly dictated by the neuromuscular
system. One technique to improve neuromuscular effi-
ciency in athletes is through strength training.

Objective The aim of this systematic review was to search
the body of scientific literature for original research investi-
gating the effect of strength training on performance indica-
tors in well-trained endurance athletes—specifically
economy, VVOz max/ WV02 max and muscle power (VMART).
Methods A search was performed using the MEDLINE,
PubMed, ScienceDirect, SPORTDiscus and Web of Sci-
ence search engines. Twenty-six studies met the inclusion
criteria (athletes had to be trained endurance athletes with
>6 months endurance training, training >6 h per week OR
V02 max >90 mL/min/kg, the strength interventions had to
be >5 weeks in duration, and control groups used). All
studies were reviewed using the PEDro scale.

Results  The results showed that strength training improved
time-trial performance, economy, VV02 max/ WVOZmaX and
vMART in competitive endurance athletes.

Conclusion The present research available supports the
addition of strength training in an endurance athlete’s
programme for improved economy, VVOZmle /WVOzmax,
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muscle power and performance. However, it is evident that
further research is needed. Future investigations should
include valid strength assessments (i.e. squats, jump squats,
drop jumps) through a range of velocities (maximal-
strength < strength-speed < speed-strength < reactive-
strength), and administer appropriate strength programmes
(exercise, load and velocity prescription) over a long-term
intervention period (>6 months) for optimal transfer to
performance.

1 Introduction

Endurance sport performance relies on a complex interplay
of physiological and biomechanical factors. Cardiovascular
capacity has often been thought to be the main limiting factor
in endurance performance. Classical measures such as
maximal oxygen uptake VO, max) and lactate threshold (LT)
have been traditionally used in the laboratory to predict the
performance potential of runners, cyclists, triathletes and
cross-country skiers [1]. Consequently, physical preparation
for these sports has generally focused on developing these
two physiological qualities. However, elite endurance ath-
letes with similar VO, gy levels can have differing abilities
during a race and therefore maximum oxygen uptake cannot
fully explain true racing ability. Economy, and assessments
that include an endurance-specific muscle power compo-
nent, such as velocity/power during maximal oxygen uptake
(VVO2 max / wVOsmax) and maximal anaerobic running
velocity (VMART), are now thought to be superior perfor-
mance indicators in an elite population [2].

Economy is the amount of metabolic energy expended at
a given velocity or power output [3]. Economical move-
ment is multifactorial and is determined by training history,
anthropometrics, biomechanics and physiology [4]. During
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a race, an economical athlete will use less energy at sub-
maximal intensities, and spare vital carbohydrate stores for
significant stages in competition (i.e. sprint finish). East
Africans have dominated distance running for the past few
decades and it is believed that their success is partly due to
their superior running economy [3]. Improvements in
economy may be difficult to obtain in highly-trained
endurance athletes and therefore any novel training
modality that results in marginal improvements may be
crucial for success.

Endurance-specific muscle power is the ability of the
neuromuscular system to rapidly produce force following a
sustained period of high-intensity exercise (high glycolytic
and/or oxidative energy demand) [5]. This ability may be
the differentiating factor for elite endurance performance
as successful athletes at world level can produce high
velocities and power outputs to win a race following a
sustained period of high-intensity exercise (i.e. sprint fin-
ish). Therefore, rate of force development (RFD) is
essential not only in sprint and power sports, but also in
elite endurance competition. Endurance-specific muscle
power assessments, such as peak velocity during the
maximal anaerobic running test (VMART), have been
found to be better predictors of running performance in an
elite population because they are both highly influenced by
neuromuscular and anaerobic factors [2]. The VMART
consists of a series of incremental 20 s runs with 100 s
recoveries on a treadmill until volitional exhaustion [6].
Peak velocity/power at VOymax (VVO3max/WVOsmax), is
influenced by VO3 maxs economy and LT. However, it is
also shown to have a large ‘muscle power’ component
because it is strongly correlated to VMART (r = 0.85;
p < 0.001) [2]. McLaughlin et al. [7] found that in well-
trained runners vVOomax Was the best predictor of running
performance over 16 km. Also, Millet et al. [8] found that
peak power output during an incremental cycling test
(Wpeak) Was correlated to overall performance in elite tri-
athletes. Consequently, in addition to cardiovascular abil-
ity, limitations to elite endurance performance may be
dictated by other dynamical system factors, including
neuromuscular function.

One training technique for improving muscle force—
velocity function in athletes is through strength training [9].
It is proposed that through neuromuscular adaptations
(musculotendinous stiffness, motor unit recruitment and
synchronization, rate coding, intra- and intermuscular
coordination, and neural inhibition) strength training has the
potential to improve performance in endurance athletes
through increased economy and endurance-specific muscle
power factors (i.e. VMART) [2]. Theoretically, a strength-
trained endurance athlete will (1) be more economical as
submaximal forces developed during each stride or pedal
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revolution would decrease to a lower percentage of maximal
values, and (2) have improved endurance-specific muscle
power as they are able to produce higher maximum running
or cycling velocities through an improved ability to rapidly
absorb and create force against the ground or pedal (Fig. 1).

Elite endurance athletes are renowned for their high
volume of (low force) endurance training. Unfortunately,
unlike strength training, specific endurance training such as
‘interval’ or ‘tempo’ sessions are not effective in improv-
ing neuromuscular function in well-trained endurance
athletes (Fig. 1). Traditionally, for unknown reasons,
endurance athletes have been cautious to strength train. In
fact, research investigating the training characteristics of
runners competing in the 2008 US Olympic Marathon trials
found that they “included little strength training in their
training programmes ... and nearly half the runners did no
strength training at all” [10]. This philosophy may be due
to endurance athletes and coaches being uneducated in
strength training science and the associated potential per-
formance improvements. The aim of this systematic review
was to search the body of scientific literature for original
research investigating the effect of strength training on
performance, specifically economy and assessments that
included an endurance-specific muscle power component
(i.e. VVOymax/VOsma» and VMART), in well-trained
endurance athletes.

2 Methods

A search was performed using the MEDLINE, PubMed,
ScienceDirect, SPORTDiscus and Web of Science search
engines to identify studies that assessed the effect of strength
training on performance in competitive endurance athletes.
The following keywords were used in the search (‘strength
training” OR ‘resistance training’” OR ‘weight training” OR
‘weightlifting” OR ‘concurrent training’” OR ‘plyometrics’)
AND (‘endurance athletes’ OR ‘cyclists’ OR ‘runners’ OR
‘triathletes’ OR ‘cross-country skiers”) AND (‘performance’).
Strength training was defined as non-cycling/running/cross-
country skiing, weight-loaded activity including bodyweight,
free-weight and machine-based exercises. The subcategories
for strength training included (1) maximal-strength training
that targets maximal force development through high-load,
low-velocity movements (i.e. squats, deadlifts); (2) explosive-
strength training (strength-speed and speed-strength) that
improves RFD and maximal power output through medium-
to high-load, high-velocity movements (i.e. squat jumps,
Olympic lifts); and (iii) reactive-strength training that targets
musculotendinous  stiffness and stretch-shortening cycle
(SSC) function through low-load, high-velocity exercises (i.e.
jumps, drop jumps, hops, bounds, sprints).



The Effect of Strength Training on Performance in Endurance Athletes

Fig. 1 Hypothetical model of
the determinants for elite
endurance performance and the
potential benefits from strength
training. Red font and bold
arrows highlight the potential
benefit of strength training on
endurance performance
(adapted from Paavolainen et al.
[5], with permission). LSD long
slow distance training, intervals
repeated bouts of exercise
lasting ~1 to 8 min and
eliciting an oxygen demand
equal to ~90 to 100 % of
VOZ max>» PCr phosphocreatine,
VOZ,,m maximal O, uptake,
VMART peak velocity in
maximal anaerobic running test,
VVOQ,MX peak velocity at

VOZ max

Fig. 2 PRISMA (Preferred
Reporting Items for Systematic
Reviews) flowchart illustrating
the inclusion and exclusion
criteria used in the systematic
review. PEDro physiotherapy
evidence database

Endurance training Strength training
LSD, tempo, intervals Maximal-, explosive- and reactive-strength

Aerobic power & capacity Anaerobic power & capacity Neuromuscular capacity
- O, transport - Glycolysis and lactic acid - Morphological factors

- O, utilization - PCr store and utilization Musculotendinous stiffness
- Buffer capacity Motor unit recruitment
Intra/Intermuscular coordination
VO,max Lactate threshold | Economyl R 7750 e

\\//

I vo,. ——s Endurance |
performance

Relevant studies identified
and screened [n = 53]

Studies excluded that did not meet
> inclusionary criteria (untrained, sedentary
v & recreational subjects) [n=22]

Studies identified for more

detailed evaluation [n=31] Studies excluded that did not meet

inclusionary criteria (performed sport-
> specific strength training or < 5 week
v intervention or did not assess

Studies included in performance measures) [n=15]

systematic review were
analysed with PEDro scale
[n=126]

Running [n = 8]
Cycling [n=9]
Cross-country skiing [n= 6]
Triathlon [n = 3]

Inclusion criterion for this analysis were (1) athletes had
to be trained endurance athletes (>6 months endurance
training, training >6 h per week, VOsmax =50 mL/min/
kg); (2) the strength interventions had to be >5 weeks in
duration; and (3) control groups had to be used. All articles
were read and the outcomes of each study summarized.
Articles were excluded if the study methodology did not

meet the specific inclusion criteria. Other relevant articles
were obtained through additional bibliographical means
(Fig. 2).

The Physiotherapy Evidence Database (PEDro) scale was
used to rate the quality of the selected articles. The PEDro
scale is an 11-item scale designed for rating the methodo-
logical quality of randomized controlled trials [11]. Each
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satisfied item (except for the first item, which relates to
external validity) contributes 1 point to the total PEDro score
[11]. The items include random allocation; concealment of
allocation; comparability of groups at baseline; blinding of
subjects, researchers, and assessors; analysis by intention to
treat; and adequacy of follow-up. The PEDro scale ranges
from O to 10, where O points (the worst possible score) are
awarded to a study that fails to satisfy any of the included
items, and 10 points (the best possible score) are awarded to
a study that satisfies all the included items. Studies scoring 9
or 10 on the PEDro scale are considered to have methodo-
logically excellent internal validity, those scoring 6 to 8 are
considered good, those scoring 4 or 5 are fair, and those
scoring less than 4 are poor. All studies graded using the
PEDro scale were included.

3 Results

Twenty-six papers met the inclusion criteria. Of these
papers, eight were from running, nine from cycling, six from
cross-country skiing and three from triathlon. Tables 1, 2
and 3 compare the results. The tables are subdivided into the
four sports (running, cycling, cross-country skiing and tri-
athlon) and are structured to compare (1) subjects (sample
size, sex, standard of racing, VOz max> Weekly training vol-
ume) and research design (PEDro score, group allocation,
control of training) [Table 1]; (2) strength intervention (type
of strength training, programme overview, frequency and
duration of training (Table 2); and (3) results (Table 3).

3.1 Physiotherapy Evidence Database (PEDro) Score
Analysis

Scores on the PEDro scale for the 26 selected articles
ranged from 5 to 6 of a maximum 10 points. Only 14
studies randomly allocated their subjects into training
groups and scored 6 out of 10 on the PEDro scale [12-25].
The additional 12 studies scored 5 out of 10: four studies
did not mention randomized allocation of subjects [26—29]
and four studies allowed the subjects to select their own
groups [30-33]. Other studies allocated subjects into
training groups by VOsmax [34], VOamax and 5 km time-
trial performance [5], mean training time [35], or by ran-
domly allocating half of the subjects into groups and then
the rest by age and 5 km time-trial performance [36].

3.2 Running (Time-Trial Performance, vVOzmaX
and Economy)

In runners, improvements were found in time-trial perfor-
mance, economy, vVOsmax and VMART after a strength
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training intervention. The studies show that 8 weeks of
explosive-strength training can improve 3 km time-trial
performance [15], and reactive-strength training can sig-
nificantly improve 5 km [5] (p < 0.05) and 3 km [13]
(p < 0.05; effect size [ES] = 0.13) performance. Mikkola
et al. [27] and Berryman et al. [15] both found an increase
in VVOgmax from 8 weeks of both reactive-strength and
explosive-strength training. The two studies that assessed
VMART both found a significant (p < 0.01) improvement
following an 8-week [27] and 9-week [5] reactive-strength
programme. Five studies found significant improvements
in economy from both maximal- [12, 36] and reactive-
strength training interventions [5, 13, 15].

3.3 Cycling (Time-Trial Performance, WVO5 max
and Economy)

In cyclists, 12-16 weeks of maximal-strength training was
found to significantly improve 5 min [30] (p < 0.01) and
45 min time-trial performance [19] (p < 0.05; ES = 0.66).
Improvements were also found in 40 min [31] and 60 min
time-trial ability [35]; however, these improvements were
not found to be significantly different to their allocated
control groups. From the six cycling studies that analysed
power at VO) max (wVOzmaX), three found improvements
[28, 30, 35], but only the work by Rgnnestad et al. [28, 30]
found a significant effect when compared against the
control group (p < 0.05; ES = 0.81 [28], ES = 84 [30]).
Bastiaans et al. [35] found significant improvements in
‘delta efficiency’ (p < 0.05; ES = 0.49), and Rgnnestad
et al. [30] showed improvements in economy and ‘work
efficiency’ during the final 60 min of a 185 min cycle test
(p < 0.05).

3.4 Cross-Country Skiing (Time-Trial Performance
and Economy)

In cross-country skiers, Losnegard et al. [33] found a sig-
nificant increase in a 1.1 km ‘upper body double-poling’
time trial (p <0.05), as well as a non-significant
improvement in a 1.3 km ‘full-body roller ski’ time trial
from their strength training intervention. Mikkola et al.
[26] also found a significant improvement in 2 km ‘upper-
body double-poling’; however, there was no significant
difference in change between the control and the experi-
mental group. Rgnnestad et al. [32] found no improvement
in 7.5 km ‘full-body roller ski’ time-trial performances.
Improvements in economy were seen for both ‘whole-body
roller skiing’ [32] (p < 0.05; ES = 0.77) and ‘isolated
upper-body double-poling’ movements [21, 22, 26].
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3.5 Triathlon (vVOZmaX, WV and Economy)

In triathletes, Millet et al. [23] found a significant increase
in peak treadmill velocity at VOomax (»p < 0.01; ES = 0.55)
following a maximal-strength training intervention,
whereas Hausswirth et al. [24] found no difference in
WVOomax during a cycling protocol. Out of the three studies
that investigated running economy in triathletes, only
Millet et al. [23] found significant improvements at 25 %
(p <0.05; ES=1.15) and 75% wVO, (p < 0.05;
ES = 0.14).

4 Discussion

Despite the abundance of studies investigating concurrent
strength and endurance training, relatively few have
examined well-trained endurance athletes. This systematic
review is unique due to the focused analysis of strength
training on specific performance indicators (economy,
VVOzmaX/WVOQmaX, vMART and time trials) in well-
trained runners, cyclists, triathletes and cross-country
skiers.

4.1 Strength Diagnostics

As expected, the majority of the reviewed studies demon-
strated an improvement in muscle force—velocity charac-
teristics following a strength intervention [5, 12, 13, 15, 17,
19-22, 27, 28, 31-34, 36]. However, it is important to
highlight that there were a wide variety of exercises
administered throughout the literature to measure maximal-
, explosive- and reactive-strength adaptations. Running,
cycling, triathlon and cross-country skiing all require the
hip, knee and ankle musculature to work in unison to
produce force against the ground or pedal. A valid strength
test for these sports would measure the force capabilities of
the leg extensors in the same way—through closed-chain,
multi-joint exercises such as squats, jump squats or drop
jumps [37]. However, some studies in this review [5, 19,
24, 27] assessed strength ability through open-chain, iso-
lated exercises (i.e. knee extension, leg press). Testing
force production in an isolated manner may have reduced
the validity of the overall force capabilities of the endur-
ance athlete’s leg musculature. Another criticism is that
most studies only measured force output in one or two
velocity ranges, either through low-velocity (one repetition
maximum) or high-velocity (unloaded jumps and hops)
exercises. It is important to measure force output through a
range of velocities to determine maximal-, explosive-
(strength-speed and speed-strength) and reactive-strength
ability [38]. Assessing force capabilities with valid

@ Springer

exercises through a range of velocities would highlight
sensitive changes in strength qualities following an inter-
vention period, and allow for a more accurate relationship
between strength adaptation and endurance performance.

4.1.1 Reactive-Strength Diagnostics in Runners
and Triathletes

Runners and triathletes need to have proficient eccentric
muscular capabilities to rapidly absorb and utilize the
elastic energy produced during each ground contact. The
short ground contact phase in running is the only phase in
which a runner or triathlete can produce force and influence
running velocity. Paavolainen et al. [5] demonstrated the
importance of reactive-strength by finding a strong rela-
tionship between ground contact time and running econ-
omy (r = 0.64; p < 0.001). Reactive-strength is affected
by musculotendinous stiffness and SSC function [39].
Schmidtbleicher [40] demonstrated that the SSC can be
classified as either slow or fast. Fast SSC is characterized
by short contact times (<0.25 s) and small angular dis-
placement of the hip, knee and ankle joint; whereas slow
SSC involves longer contact times (>0.25 s) and larger
angular joint displacements. Unfortunately, the running
and triathlon studies in the current review did not take into
consideration fast or slow SSC function and only assessed
reactive-strength through ‘general’ reactive-strength mea-
surements such as countermovement jumps [13, 27], broad
jumps and hopping tests [5, 13, 14, 23]. The ‘reactive-
strength index” (RSI) is a popular assessment used by
strength and conditioning coaches to examine the rela-
tionship between force production and ground contact time
through a series of drop jumps at differing heights [41].
The RSI test may have been a more appropriate and sen-
sitive assessment to track reactive-strength adaptations and
transferability to running and triathlon performance.

4.2 Time-Trial Performance

In well-trained endurance athletes, the current literature
indicates that strength training can significantly improve
3 km [13] (p < 0.05; ES = 0.13) and 5 km [5] (p < 0.05)
time-trial performance in runners, 5 min [30] (p < 0.01)
and 45 min time-trial performance [19] (p < 0.05;
ES = 0.66) in cyclists, and 1.1 km ‘upper body double-
poling’ time-trial performance in cross-country skiers
(p < 0.05). However, it is important to note that elite
endurance racing success is not dictated by average
velocity or power output over a set distance and therefore
time-trial ability is not a ‘true’ reflection of racing per-
formance [42]. Further analysis of economy and assess-
ments that include an endurance-specific muscle power
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component (i.e. VvVO5 max / VOymax, and VMART) may add
to the potential beneficial effect of strength training on
performance in well-trained endurance athletes.

4.3 Economy

Economy is represented by energy expenditure and is
normally expressed as submaximal VO, at a given velocity
or power output. It is now established that economy is a
critical factor for success in elite endurance sport [43]. The
present research shows that there were significant
improvements in economy from both maximal- [12, 36]
and reactive-strength training interventions [5, 13, 15] in
well-trained runners. This supports Noakes’ [44] philoso-
phy that runners with poor economy may lack musculo-
tendinous stiffness and therefore strength training may
improve the ability of the leg musculature to rapidly absorb
and utilize the elastic energy produced during each ground
contact. Also in cyclists, the literature shows that strength
training significantly improved ‘delta efficiency’ [35]
(p < 0.05; ES = 0.49), economy during the final 60 min of
a 185 min cycle test [30] (p < 0.05) and ‘work efficiency’
[34]. In cross-country skiers, improvements in economy
were found in both ‘whole-body roller skiing’ [32]
(»p < 0.05; ES = 0.77) and ‘isolated upper-body double-
poling’ movements [21, 22, 26]. Out of the three studies
that investigated running economy in triathletes, only
Millet et al. [23] found significant increases at 25 %
(p <0.05; ES=1.15) and 75% vVO, (p<0.05;
ES = 0.14),

Interestingly, improvements in economy were found to
be velocity-specific in runners. Spurrs et al. [13] found a
6.7 % and 6.4 % significant increase at both 12 km/h
(ES = 0.45) and 14 km/h (ES = 0.45), but only a 4.1 %
increase at 16 km/h (p < 0.05; E = 0.3). Furthermore,
Saunders et al. [14] only found a significant improvement
at 18 km/h in elite international runners (p = 0.02;
ES = 0.35), with no change at 14 and 16 km/h. This
supports Berg’s [45] view on adaptation specificity that
marathoners may be more economical at marathon pace
than 800 and 1,500 m specialists, whereas middle distance
runners may be more efficient at higher velocities. Con-
sequently, the most valid measurement of economy may be
at specific race velocities and power outputs, rather than an
arbitrary submaximal intensity which is commonly used.
Future researchers should take this into consideration when
assigning velocities for economy assessment.

4.4 Endurance Muscle Power

Endurance-specific muscle power is the ability of the
neuromuscular system to rapidly produce force following a

sustained period of high-intensity exercise (high glycolytic
and/or oxidative energy demand) [5]. This combined neu-
romuscular and anaerobic ability may be the differentiating
factor for elite endurance performance as successful ath-
letes at world-level can produce high velocities and power
outputs to win a race following a sustained period of high-
intensity exercise [46] (i.e. sprint finish). As illustrated in
Fig. 1, VVOzmax is not only dictated by VOzmax, LT and
economy, but also by muscle power factors (neuromuscular
and anaerobic ability). Noakes [47] originally suggested
that velocity at \‘/Ozmax (VVOzmax) could be used as a
potential measure of muscle power in runners. From this
review, only Mikkola et al. [27] and Berryman et al. [15]
assessed VVOzmax. Both researchers found an increase in
vVO,max after an 8-week reactive-strength programme,
with only the latter study showing a significant effect from
both reactive-strength (p < 0.01; ES = 0.49) and explo-
sive-strength (p < 0.01; ES = 0.43) programmes. From
the six cycling studies that analysed power at VOomax
(WVOzmax), three found improvements [28, 30, 35], but
only the work by Rgnnestad et al. [28, 30] found a sig-
nificant effect when compared against the control group
(» < 0.05; ES = 0.81 [28], ES = 84 [30]). In triathletes,
Millet et al. [23] established a significant increase in peak
treadmill velocity at VOamax (p <0.01; ES = 0.55),
whereas Hausswirth et al. [24] found no difference in
WVOsmax during a cycling protocol.

Conversely, Paavolainen et al. [2] argue that the aerobic
system is still strongly involved during a VOZmax test, and
VVOomax / WVOz,mlx should not be used as a pure measure of
endurance-specific muscle power performance. The
VMART (peak velocity attained during a maximal anaer-
obic running test), which consists of a series of incremental
20 s sprints on a treadmill until exhaustion, is believed to
place more emphasis on assessing neuromuscular and
anaerobic performance. The two running studies that
assessed VMART in this review both found a significant
(» < 0.01) improvement following an 8-week [27] and
9-week [5] reactive-strength programme.

4.5 Intervention Analysis
4.5.1 Programme Duration

Aside from Rgnnestad et al.’s [28] strength intervention
lasting 25 weeks, the average intervention period in this
review was approximately 10 weeks. Much of what we
know about neurological and structural adaptations in
strength training derives from similar short-term
(8-12 week) interventions involving relatively untrained or
inexperienced subjects [48]. There are only a few studies
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investigating the long-term strength adaptations in well-
trained athletes; however, these are from strength and power
sports [49]. Future research in well-trained endurance ath-
letes should focus on long-term strength interventions
(12-18 months) and subsequent endurance performance.

4.5.2 Exercise Prescription

There were a variety of strength programmes administered
in all of the 26 investigations. The two main distinctions in
the interventions are in the prescription of exercises and
loads and velocities of exercises (see Sect. 4.5.3). ‘Transfer
of training’ is a term used to describe the effectiveness of
adaptations from a strength exercise transferring to sport-
ing performance [50]. The ability to generate force is
dependent on the limb and joint positioning of the leg
extensors [51]. Therefore, the exercises selected in a pro-
gramme can influence the magnitude of neuromuscular
adaptations, strength gains and potential improvements in
endurance performance. A large portion of the strength
exercises used in both the cycling [17, 19, 28-31] and
running literature [12, 16] were open-chain, isolated and
machine-based exercises (i.e. leg extension, seated ham-
string curl, leg press, isometric plantar flexion). Stone and
Stone [50] state that strength programmes dominated by
open-chain exercises may not provide adequate movement
pattern specificity for optimal performance improvements
in closed-chain sporting movements (i.e. running). As
previously discussed, endurance sports require the hip,
knee and ankle joint musculature to work in unison to
produce force against the ground or pedal and provide
locomotion. As a result of decreased mechanical specific-
ity, the transferability of these strength exercises to per-
formance may have been reduced. Although running can
contain a combination of both open- and closed-chain
movements, it is the closed-chain phase where force is
produced against the ground to provide locomotion. Also,
Stensdotter et al. [52] demonstrated that there can be
varying muscle activation patterns when an isolated, open-
chain quadriceps exercise is compared with a multi-joint,
closed-chain quadriceps exercise. These intra- and inter-
muscular differences in exercises may complicate the
learning and neural effects in the transfer of training pro-
cess. Traditional multi-joint strength exercises, whether
they are maximal-strength (i.e. squats, deadlifts and single-
leg equivalents), explosive-strength (i.e. jump squats,
Olympic lift variations) or reactive-strength exercises (i.e.
drop jumps, sprints), are believed to be superior for elic-
iting optimal neuromuscular adaptations and increasing the
force capabilities of the leg musculature [50]. Future
studies investigating the effect of strength training in
endurance sports should programme these functionally
superior exercises.

@ Springer

4.5.3 Load and Velocity Prescription

There are three main types of strength training: maximal-
strength, explosive-strength (strength-speed and speed-
strength) and reactive-strength training. Each can be cate-
gorized by velocity of the movement [38]. All types of
strength training were used in this review: reactive-, [5, 13—
15, 27] explosive- [15] and maximal-strength-orientated
programmes [12, 16, 17, 19, 28-31, 34, 36]. Others used a
mixed approach with no emphasis on a specific strength
quality [17, 18, 35]. A strength programme should be tai-
lored to the current strength level of the athlete and should
evolve as they increase their force capabilities. Program-
ming for a weak, or neuromuscular inefficient, athlete can
be completely different (exercise, load, velocity, volume
and frequency) to a strong athlete. Continual improvements
in strong athletes require the development of programmes
that target a specific strength quality (maximal-strength,
strength-speed, speed-strength, and reactive-strength) in
the force—velocity relationship [51]. In contrast, athletes
with low levels of strength, even though they may be a
well-trained endurance athlete, can display improvements
in neuromuscular function and force production from rel-
atively non-specific and general strength programmes [53].
This could be an explanation for why there were significant
improvements in running economy from all three types of
strength training: reactive-, [5, 13, 15] explosive- [15] and
maximal-strength interventions [12, 36]. However, future
studies that investigate longitudinal strength adaptations in
endurance athletes should consider specifically prescribed
programming for long-term gains.

Research in untrained subjects has shown that the neu-
romuscular adaptations from general strength training can
result in a shift of the force—velocity curve in which force
production is greater at any given velocity [54]. Recent
work from Cormie et al. [53] found that in weak subjects,
maximal-strength training not only improved the maximal
force capabilities of the leg extensors, but the programme
was also as effective as an explosive-strength programme
in improving maximal power output. Further research from
Dymond et al. [55] found that subjects with higher levels of
relative maximal-strength demonstrated superior reactive-
strength ability. The work of Dymond et al. [55] supports
anecdotal evidence that reactive-strength, specifically the
slow SSC (i.e. a countermovement jump), can be improved
in non-strength-trained individuals following a period of
maximal-strength training. In weak endurance athletes,
especially where long-term improvements are the goal, a
maximal-strength-emphasized programme may initially be
an efficient and effective training modality for improving
several strength qualities together. Thus, weak endurance
athletes may not necessarily need to place focus on
explosive- or reactive-strength training until a solid



The Effect of Strength Training on Performance in Endurance Athletes

foundation of relative maximal-strength and neuromuscular
efficiency is obtained. Nonetheless, reactive-strength can
still be trained in low volume and supplemented alongside
a maximal-strength orientated programme (i.e. basic
plyometric progressions, stiff-leg pogos), and emphasis
towards strength specificity can shift as the athlete enhan-
ces their neuromuscular ability.

4.5.4 The Interference Effect

As 1illustrated in Fig. 1, appropriate strength training
improves neuromuscular capacity, whereas endurance
training targets both aerobic and anaerobic energy sys-
tems. However, recent molecular physiology research is
starting to explain the intracellular signalling networks
mediating exercise-induced skeletal muscle adaptations to
both strength and endurance training stimuli. Simulta-
neously training for both strength and endurance may
result in an acute compromised adaptation when com-
pared with single-mode training [56]. Strength training
can activate the phosphatidylinositol 3-kinase (PI3-k)-
Akt-mammalian target of rapamycin (mTOR) signalling
pathway that regulates the rate of protein synthesis and,
over a prolonged period of time, muscle hypertrophy.
Whereas endurance training activates another signalling
cascade, the adenosine-monophosphate-activated protein
kinase (AMPK)-p38 mitogen-activated protein kinase
(MAPK)-peroxisome  proliferator-activated  receptor-
gamma coactivator (PGC)-1 axis pathway. However, the
activation of AMPK from the endurance training stimu-
lus may interfere with, and inhibit, the mTOR signal for
strength training-induced muscle protein synthesis [56].
In short, an endurance-specific training session (i.e. long
slow distance training, tempo, interval) may inhibit the
signalling pathway for optimal neuromuscular adaptation
from the strength training stimulus. Nonetheless, molec-
ular research in the area is in its infancy and there is
much work to be undertaken before the information can
be directly applied to the physical preparation of
endurance athletes. Still, it is important that coaches are
aware of the potential compromised adaptations when
periodizing strength sessions in an endurance athlete’s
programme.

5 Conclusion and Future Directions

The present research available suggests the inclusion of
strength training in an endurance athlete’s programme for
improved economy, muscle power and performance. It is
important that future researchers and coaches are aware
that muscular force—velocity adaptations are dependent
upon the duration of the strength programme, the current

strength-level of the athlete and the exercises administered
(including the velocity and loads of the exercises). For
long-term improvements in weak (neuromuscular ineffi-
cient) or non-strength trained endurance athletes, the
present literature demonstrates that a general maximal-
strength orientated programme may initially be the most
appropriate and efficient method for improving maximal
force, power and reactive-strength capabilities. Endurance
athletes with high-force capabilities may need to place a
greater emphasis on specific explosive- and reactive-
strength training to gain further improvements in perfor-
mance. However, it is evident that further research is
needed in this area. Future investigations should include
valid strength assessments (i.e. squats, jump squats, drop
jumps) through a range of velocities (maximal-strength <«
strength-speed < speed-strength < reactive-strength), and
administer appropriate programming (exercise, load and
velocity prescription) over a long-term intervention period
(>6 months) for optimal transfer to performance.
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