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Abstract Recent reviews have attempted to refute the

efficacy of applying Selye’s general adaptation syndrome

(GAS) as a conceptual framework for the training process.

Furthermore, the criticisms involved are regularly used as

the basis for arguments against the periodization of train-

ing. However, these perspectives fail to consider the

entirety of Selye’s work, the evolution of his model, and

the broad applications he proposed. While it is reasonable

to critically evaluate any paradigm, critics of the GAS have

yet to dismantle the link between stress and adaptation.

Disturbance to the state of an organism is the driving force

for biological adaptation, which is the central thesis of the

GAS model and the primary basis for its application to the

athlete’s training process. Despite its imprecisions, the

GAS has proven to be an instructive framework for

understanding the mechanistic process of providing a

training stimulus to induce specific adaptations that result

in functional enhancements. Pioneers of modern peri-

odization have used the GAS as a framework for the

management of stress and fatigue to direct adaptation

during sports training. Updates to the periodization concept

have retained its founding constructs while explicitly

calling for scientifically based, evidence-driven practice

suited to the individual. Thus, the purpose of this review is

to provide greater clarity on how the GAS serves as an

appropriate mechanistic model to conceptualize the peri-

odization of training.

Key Points

The general adaptation syndrome (GAS) provides a

mechanistic model to understand the relationship

between stress, adaptation, and fatigue.

Coaches and practitioners can use the GAS as a

conceptual framework for the periodization of

training to direct adaptation in accordance with the

competitive schedule.

The integration of ongoing monitoring reaffirms the

foundation of periodization on the GAS to model

individual responses to training, thereby enabling

coaches to validate and optimize the training

process.

1 Introduction

The concept of periodization has received substantial

attention in recent years, with much of this focus centering

on presenting periodization as being irrelevant to the

modern athlete [1–3]. However, the term ‘periodization’ is
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not owned by sport and instead lies within the greater realm

of scholarly activity as a term used to describe specific

periods of time, such as in the arts, history, and architecture

[4]. Similarly, within competitive sport planning, peri-

odization conceptually allows coaches to fragment a con-

tinuum of time into definable and manageable components

for enhanced organization and pattern recognition within

the training process. Periodization of training has expanded

beyond its Ancient Greek origins [5] to encompass

appropriate time periods, implementation of specific

training stimuli, and recovery tactics largely aimed at the

modern competitive sport structure. Although, mechanis-

tically, periodization as a long-term concept describes a

developmental system, it is firmly founded on an adaptive

process. This adaptive process has been largely based on

fundamental biological constructs such as Hans Selye’s

general adaptation syndrome (GAS) [6].

Recently, a review by Buckner et al. [1] attempted to

refute the efficacy of applying the GAS as a conceptual

framework to the training process; however, their review

joined others by failing to consider the entirety of Selye’s

work and his evolution of the GAS concept. Thus, the

purpose of this review is to provide greater clarity on how

the GAS serves as an appropriate mechanistic model to

conceptualize the periodization of training. It is the

authors’ aim in this brief review to present evidence and

rationale supporting and linking these two conceptual

paradigms.

2 Periodization

2.1 A Brief History of Planned Training

While the pillars of training periodization originated in

Ancient Greece and Rome [5, 7, 8], the concept of struc-

tured planning in sport became a modern concern in the

early twentieth century as a result of increased cultural

popularity and importance of sport and the subsequent

increased frequency of athletic competition. These factors

drove the resultant need for long-term preparation. For

instance, Kotov [9], later supported by Grantyn [10],

introduced the concept of a phasically-divided annual plan

comprised of general, preparatory, and specific stages that

permitted the revisitation of training aspects and planned

variation. This revelation diverted coaches from the pre-

viously accepted opinion that athletes should limit training

to 8–10 weeks prior to competition to prevent exhaustion

or physical harm. Pihkala [11] further developed Kotov’s

model, advocating that competitive preparation should

include extensive to intensive workloads, planned rest, and

balanced training that is staged to prevent overtraining and

injury.

Diverging from previous adopters of periodization,

Matveyev [12] advocated that training decisions should

move beyond the calendar year. In short, he established the

need to prioritize planning based on attaining the optimal

sporting form, specifically, creating a level of competitive

readiness characterized by a complex of physiological,

medical-control, and psychological indices. Matveyev

noted that sporting form is a ‘‘harmonious unity of all the

components of the athlete’s optimal readiness: physical,

psychic, technical, and tactical [12].’’

In many ways, Matveyev’s work served as a catalyst for

other pioneers to seek a scientific basis for training theory

and methodology. The scientific staging for periodization

was based on the thought that an athlete needs to receive an

optimal exercise or training stimulus balanced with

appropriate unloading to elicit favorable long-term training

effects. In turn, the programming variations, including

oscillations in volume and intensity, would serve to pro-

mote adaptation, leading to the realization of

enhanced fitness characteristics. The phasic and cyclical

nature of periodized training seemed to dually call for

forecasting an athlete’s individualized tolerance of exer-

cise-derived stress in conjunction with fatigue-managing

recovery tactics that prevent what is now considered

overtraining or stress-induced injury [13].

To date, most definitions of periodization have retained

the founding constructs related to enhancing sporting form,

while also advancing planning strategies based on estab-

lished physiological processes and adaptation windows. On

that basis, practitioners have attempted to establish pro-

gramming methodologies that are in accordance with the

founding principles of periodization.

2.2 Periodization Versus Programming

As noted in Sect. 1, periodization is a term that describes

the macromanagement of the training process with respect

to time. In other words, time is allocated toward various

fitness phases that are strategically aligned in a unilateral

fashion toward competition. Conceptually then, periodiza-

tion is a blueprint that permits the coach to forecast and

assign periods of time toward the acquisition and realiza-

tion of specific fitness characteristics (e.g. endurance,

strength-endurance, strength, power, speed).

In contrast, programming can be considered the micro-

management of those delineated stages of training (Fig. 1).

Some components of programming include density of

training load, volume of training, intensity of training,

exercise selection and order, sets and repetitions, among

others. When appropriately organized, decisions regarding

programming variables differentiate the time continuum

into identifiable patterns based on intended objectives.

Excessive accumulative fatigue inhibits physiological
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adaptation to training stimuli, produces non-beneficial

psychological effects, and increases injury, illness, and

overtraining potential [14–24]. Thus, a primary aim of

programming is to structure the appropriate variation of

training factors to modulate fatigue and optimize long-term

adaptation.

While the constructs of modern periodization and pro-

gramming were taking hold, Hans Selye was working to

develop the GAS as a conceptual model, applicable to all

biological systems, to explain the relationship between

stress and adaptation. He envisaged broad applications of

the GAS and called on other innovative thinkers to develop

and apply it within their respective fields [25]. Selye went

so far as to promote the purposeful undertaking of stress to

direct the adaptive process stating, ‘‘The fruits of work

must be cumulative and must provide a capital gain to meet

future needs [26] (p. 12)’’. Indeed, pioneers of modern

periodization recognized the applicability of the GAS and

used it as a framework for the management of stress and

fatigue to direct adaptation during sports training.

3 The General Adaptation Syndrome (GAS)

3.1 An Emergent Model of Adaptation to Stress

Selye first proposed the GAS to describe his observations

of a systemic three-phase response—consisting of the

alarm reaction, stage of resistance, and stage of exhaus-

tion—to ‘diverse nocuous agents’ [27]. He integrated

established concepts regarding the stress response, includ-

ing Claude Bernard’s ‘milieu intérieur’ and Walter B.

Cannon’s ‘homeostasis’, to provide a unifying model of

stress and adaptation [25]. Selye’s early experiments

detailed the predictable sequence of the GAS (Fig. 2) and

the symptomatology of its phases. His subsequent work

progressed to describe additional courses of the stress

response (e.g. derailments/diseases of adaptation, forego-

ing the alarm reaction/stage of resistance) [28, 29]. Later,

Selye developed his model to account for specific, local

effects resulting from the GAS [25, 30]. He also suggested

that the GAS has beneficial applications intended to induce

adaptation and avoid exhaustion, including those related to

exercise [31].

Although Selye’s earliest depictions of the GAS [29] (p.

123) included curves for both specific and ‘crossed’ (i.e.

general) resistance, the GAS is commonly depicted as a

Fig. 1 The distinction and relationship between periodization and programming [157]

The General Adaptation Syndrome: A Foundation for Periodization
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single curve representing either the general or a specific

physiological state of an organism. However, it is likely

overly simplistic to consider either aspect entirely in iso-

lation since non-specific responses to stressors precede any

specific adaptation [29, 32–36]. Viru [34, 35] explicated

several non-specific physiological and biochemical

responses (e.g. sympathoadrenal response, glucagon

secretion) to accommodate training stress acutely, their

functional relevance, and the molecular bases leading from

these responses to specific protein synthesis and adaptation.

The qualitative pattern of the functional response to

training stress acutely and over the long-term exhibits high

concordance with the GAS curve. The stimulus-fatigue-

recovery-adaptation model based on the work of Yakovlev

[37] is exemplary in this regard and provides additional

clarity on the functional responses linking the training

stimulus to adaptation. Additionally, Banister’s fitness-fa-

tigue model is a related extension of this concept, in which

the potential change in performance is plotted as the

interaction between fitness and fatigue after-effects of

training, and mirrors the GAS curve [38, 39]. This point is

borne out further by the conception of short-, medium-,

long-term, and cumulative training effects. Practically

speaking, these training effects constitute an athlete’s

performance potential, or level of adaptation, for an exer-

cise, training session, phase, stage, or competition.

The practice of potentiation provides further examples

to conceptualize the qualitative scalability of the GAS

curve suggested by Selye [29] and Garhammer [40] across

short- and long-term applications in which ‘conditioning’

activities are performed to facilitate the enhancement of

functional outcomes (performance or adaptation) beyond

that which would be attained by performing the target

activity alone. Research has demonstrated the possibility of

potentiation acutely through proper warm-up preceding

exercise and post-activation potentiation strategies, pro-

vided that the qualitative and impulse (magnitude 9 du-

ration) characteristics of the conditioning activity are

appropriate [41–50]. Conversely, conditioning activities

lacking appropriate specificity or sufficient impulse may

result in no change in performance, while too large of an

impulse may cause a performance decrement analogous to

‘exhaustion’ [48, 49, 51, 52]. Additionally, the period

between the conditioning and target activities must be

sufficient to allow for the dissipation of fatigue and the

expression of potentiating effects [48, 49, 51–54] illustra-

tive of Selye’s statements on the role of rest in the GAS

[30]. Likewise, too much time between a conditioning and

target activity may result in the ‘detraining’ or ‘involution’

of any potentiating effects [48, 49, 51, 53]. Evidence is also

suggestive of both the efficacy of phase potentiation as a

long-term programming construct of potentiation [55–59]

and the potentially negative effects of improper phase

sequencing and content [59–62]. Thus, the GAS concept

provides a conceptual framework for understanding the

causal link between stress and adaptation within the con-

text of sports training, as well as the resultant practical

effects of training stimuli.

3.2 A Conceptual Framework for Sports Training

Selye noted that the GAS, and thus adaptation, only occurs

if ‘‘an organism is exposed to a stimulus to the quality or

intensity of which it is not adapted [63] (p. 758).’’

Fig. 2 Patterned response of the GAS begins with an initial decline,

followed by an increase, in the organism’s level of adaptation;

prolonged application of a stressor or a dose too high in magnitude

results in exhaustion. The training load and response can be viewed in

relation to the GAS; overtraining results from improper load and

fatigue management [29, 93]. GAS general adaptation syndrome

A. J. Cunanan et al.
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Moreover, he demonstrated the specificity of adaptation to

a causative agent [33, 63], which holds true for muscu-

loskeletal, neuromuscular, and metabolic adaptations in

relation to exercise (e.g. intracellular signal activation

leading to hypertrophic adaptation [34, 64, 65]). Thus, the

training stimulus must be of both an appropriate type and

magnitude to elicit desired adaptations. This point also

implies a necessary intensification and more precise and

exacting manipulation of training variables as an athlete

progresses to higher levels of adapted motor potential.

Selye promoted the concept that an organism possesses a

finite capacity to accommodate stress by documenting the

cumulative effect of individual and multiple stressors

[27, 33, 63]. He reiterated the chronology of the stress

response and highlighted the periodicity of the decrement

and recovery of one’s faculties following bouts of stress

and rest, respectively [30], thus implying the need for

planned variation and rest in training. Furthermore, Selye

characterized the GAS as the sum of multiple, concurrent

reactions [29] and described the influence of genetics and a

myriad of ‘conditioning’ factors, such as nutrition, psy-

chological state, and other stressors, on the course and

specific effects of the GAS [29, 33, 63, 66–68]. Therefore,

the cumulative training effect may be conceptualized as the

integration of multiple reactions and adaptations, subject to

the influence of conditioning factors.

These ideas are realized in the ‘creation’ of increased

maximum strength and power, which involves a complex

interaction of multiple mechanisms. For example, resis-

tance training (acute and chronic stimuli) mechanistically

imparts tension, tissue damage, and metabolic responses.

The resultant alterations to the intracellular environment

lead to the activation of many different biochemical cas-

cades. These reactive adjustments include, but are not

limited to, the mechanistic target of rapamycin (mTOR)

pathway, AMP-activated protein kinase (AMPK) activa-

tion, changes in inflammatory responses encompassing

leukocyte invasion of tissue [69–74], increased interleukin

concentrations [65, 75, 76], and alterations in cortical

activation [77–81]. These responses collectively dictate

increased connective tissue size, increased muscle cross-

sectional area, architectural changes, and neural input and

output alterations, with the cumulative adaptations ulti-

mately leading to enhanced maximum strength and related

characteristics such as rate of force development and power

[55, 56, 80, 82–86]. During the training process, all of these

effects are modulated by appropriate manipulations of

training variables, nutrition, sleep, and other factors

[87, 88]. Poor load and fatigue management and insuffi-

cient recovery strategies may lead to suboptimal or mal-

adaptation, immunosuppression, injury, or overtraining

[17–24, 64, 89, 90]. These points underscore the need for

the consideration and management of the frequency,

magnitude, and duration of all stressors to ensure optimal

loading to promote adaptation (Fig. 3). Furthermore, stress

tolerance, finite adaptive ability, conditioning factors, and

cumulative training effects concomitantly dictate the need

for periodization.

Periodization of training is a long-term approach [91]

that can span several years [92]. While the precise time

courses and regulation of specific adaptations to exercise

are not fully clear, it is apparent that variable time courses

exist [65]. Therefore, one must consider the course of

training adaptations on multiple timescales. The consider-

ation of time allows for systematic planning that integrates

short-, medium-, and long-term training effects into

cumulative training effects [93]. The GAS model is

applicable across the multiple functional units of time

contained in a periodized plan whereby cumulative effects

subsume preceding responses. Thus, training periodization

represents a fractal process [94] owing to the cyclic nature

of the GAS. This perspective reinforces Verkhoshansky’s

suggestion that periodization allows for continuity between

successive stages of training by exploiting the cyclic nature

of the stress response and considering changes in the

Fig. 3 a Optimal loading results in continual improvements over

time; b loading that is too frequent or too high in magnitude does not

allow adequate recovery, and therefore maladaptation/overtraining

occurs; c infrequent or insufficient loading results in stagnation or

decline in an athlete’s level of adaptation [92, 93, 151]

The General Adaptation Syndrome: A Foundation for Periodization
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athlete’s state over time [92]. Exercise and sport scientists

continue to explicate the influence of exercise variables—

namely exercise mode, contraction type, contraction

velocity, volume, and intensity—on training adaptations.

Considerable research also explores the effects of so-called

conditioning factors (e.g. genetics, age, sex, nutrition,

training history) on training adaptations [95–108]. Such

work provides the scientific basis for programming inten-

ded to develop the physical characteristics ascribed to each

fitness phase of the periodized training plan. Training

adaptations occur in response to a series of workouts

constituting loads that stimulate the translation of the

specific proteins underlying the desired adaptation(s).

Planned variation and rest are required to modulate fatigue

to optimize adaptation and reduce the risk of illness, injury,

or overtraining, which are functionally equivalent to the

stage of exhaustion [55, 56, 109–124]. The logical staging

of fitness phases promotes a time-dependent integration of

discrete physical characteristics (i.e. adaptations) into a

cumulative training effect, thus maximizing training goals

in a timelier fashion.

4 Criticism of the GAS Model and Periodization

Matveyev was one of the earliest critics of the use of

Selye’s model in the periodization of training. He based

this rejection on an interpretation that the GAS was

inherently pathological [125], despite Selye’s characteri-

zation of the GAS as ‘‘a useful, normal physiological

reaction to stress’’ [30]. Matveyev acknowledged the

importance of the stress response and the time courses of

adaptation, but believed that such processes played a lim-

ited role in the planning of training [125]. Matveyev

favored a pedagogical lens and viewed training as a

developmental process rather than an adaptive one. It

should be noted that the political environment strongly

shaped the development of scientific discourse in the

Soviet Union [126], and may have magnified any philo-

sophical differences that led to Matveyev’s partial rejection

of the GAS model.

In a recent review, Buckner et al. [1] challenged the

applicability of the GAS to sport and exercise, restricting

their examination to the earliest perspective of Selye’s

work. This restricted perspective inexplicably omits sub-

stantive developments of the GAS concept that evolved

from Selye’s original experiments, and leads the authors to

argue against isolated components of the GAS removed

from scientific and practical context. For example, Buckner

et al. [1] advance a model of the GAS founded on the use

of ‘toxic’ doses of stressing agents to suggest that the GAS

model has no correspondence to typical resistance training

protocols. It is unclear whether the authors use the term

toxic to mean lethal or injurious as indicated in Selye’s

work. Regardless, their argument is somewhat unfounded

considering that Selye based his early findings on the use of

both uniform and incremental sublethal doses

[27, 32, 33, 63]. Buckner et al. [1] also seem to suggest that

the GAS model does not suppose periods of rest for

resistance training programs. This suggestion neglects

Selye’s remarks on the value of rest in the recovery from

stress, and his proposition that such periodicity may have

therapeutic value.

In another review from this group, Mattocks et al. [2]

imprecisely characterized exercise as an acute stress that

poorly corresponds to the chronic nature of Selye’s model.

This suggestion is especially curious considering that

exercise was one of the original stressors Selye employed

in his discovery of the GAS [27]. Moreover, even the

earliest practitioners who applied the GAS to sports train-

ing understood the summative nature of systematic training

(i.e. planned series of workouts) [127, 128]. Mattocks et al.

[2] also questioned the role of periodization to increase

muscle hypertrophy and strength; however, their issues

appear to stem from a conflation of the concepts of peri-

odization and programming. As discussed in Sect. 2.2,

these are two distinct, although related, concepts. Peri-

odization relates to the division of the training plan into

discrete repeatable phases aimed at developing and

maturing specific fitness characteristics (e.g. strength-en-

durance, strength, power), whereas programming relates to

the selection of exercise variables to provide a training

stimulus that elicits the desired adaptations (e.g. muscle

hypertrophy, metabolic and neural alterations) [87, 88].

Several studies particularly illustrate the distinction

between periodization (i.e. planning) and programming

[60–62, 129]. Furthermore, these and additional studies

demonstrate that the order of periodized phases influences

physical and performance outcomes [60–62, 129–132].

Two major practical implications of these studies are that

(1) phases should be logically and strategically sequenced,

and (2) programming decisions must be congruent with the

objectives of each phase and the overall plan. It is also

worth noting that meta-analyses have confirmed the effi-

cacy of periodized training for strength and power devel-

opment compared with more traditional protocols

[133, 134]. Despite their criticisms, both Mattocks et al. [2]

and Buckner et al. [1] acknowledge that training peri-

odization may be useful for sports training and that the

principles of the GAS provide a plausible framework for

training periodization.

In a separate essay, Kiely [3] claimed that the GAS does

not account for the potential psychogenesis of the stress

response and the influential role of factors such as psy-

chological or emotional state during the stress response.

Selye [135] admitted that during his original conception of
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the stress concept in 1936 he ‘‘gave little thought to its

psychological or sociological implications for [he] saw

stress as a purely physiological and medical phenomenon’’.

However, Selye came to consider these additional factors

and their relationship to stress response over the course of

his work [25, 26, 30, 31, 67, 136–138]. Furthermore, Selye

grew to recognize that stress research would continue in

biology and medicine ‘‘alongside the study of psychology

and sociology’’ [135]. Nevertheless, the fact remains that

disturbance to the state of an organism is the driving force

for biological adaptation, which is the central thesis of the

GAS model and the primary basis for its application to the

athlete’s training process.

5 The GAS and Periodization in the Twenty-First
Century

The GAS model provides a mechanistic framework for

contextualizing adaptation within a periodized training

model. Practitioners thus attempt to construct a plan to

direct adaptation in accordance with the competitive

schedule. Kiely [139] highlighted that such planning

assumes the predictability of adaptation and the ability to

forecast appropriate training. Kiely [139] cautioned that the

‘mechanistic logic’ underpinning traditional periodization

leads to prescriptive planning that fails to accommodate the

apparent variability of individual responses. He suggested

that training should be an emergent process that is

responsive to the ongoing changes of a complex system

identified through assessment and monitoring [139].

However, the implication that the practice of periodization

involves strict adherence to immutable planning is inac-

curate on several levels. Namely, it confuses, at least par-

tially, periodization paradigms with programming.

Although, once planned, fitness phases and other respective

timelines are largely static, it is the programming that

‘drives’ these phases. Indeed, the programming can be

quite static, such as has been used in some research para-

digms, or it can be quite dynamic. As an example, many

studies use repetition maximum (RM) zones as part of their

programming. RM zones inevitably require one or more

sets to proceed to failure, thus always producing a relative

maximum effort, regardless of the set and repetition

scheme. Other authors and researchers use a more fluid

process by prescribing loads based on percentages contin-

gent on the subject/athlete’s readiness [16, 140], and have

also prescribed true heavy and light days [87, 88, 93].

Fluid programming also takes into consideration the

athlete’s relative state of preparedness for a given session

by prescribing training ranges (based on percentages).

Thus, if there is some indication that an athlete is below

par, potentially through subjective feedback [141–143] or

measuring physical or physiological parameters [144–146],

adjustments can be made in the loading for that (or sub-

sequent) training session(s). In addition, true heavy and

light days and recovery or unload weeks are often built into

the programming, which may allow not only fatigue

recovery but also additional adaptation when coupled with

planned overreaching or intensification paradigms

[17, 57, 58, 86–88, 90, 147–149]. Furthermore, if the

periodization and programming are carefully integrated

into an annual plan, the plan always includes a monitoring

process.

Although many theorists and practitioners have advo-

cated, and implemented, various methods of scientific

monitoring to inform the training process

[86, 93, 141, 142, 144–146, 150–153], DeWeese et al.

[154] noted that formal definitions of periodization

embodied regimented plans that excluded ongoing moni-

toring. Advancements in science and technology have

created a wellspring of information that enables coaches to

make dynamic, evidence-based decisions to optimize

training. Therefore, DeWeese et al. [154] proposed a

revised definition of periodization that incorporates ongo-

ing monitoring to permit an individualized and responsive

training process. In this way, the concept of periodization

has been updated to better reflect the reality of sport per-

formance training in the twenty-first century. In practice,

the inclusion of a monitoring process reaffirms the foun-

dation of periodization on the GAS to model individual

responses to training, thereby enabling coaches to validate

and optimize the training process.

6 Conclusions

GAS is widely considered as the basis for modern peri-

odization [6, 155]. Advances in the scientific understanding

of stress and adaptation, as well as technology, have led

some authors to question the validity of both the GAS and

periodization. Within this context, many have recognized

the need to update the definition of periodization to reflect

such advancements [86, 150, 154]. Thus, this modernized

definition of periodization emphasizes the importance of

scientifically driven practice and evidence-based decision

making that considers the individual. Selye repeatedly

addressed controversy [136] and misconceptions [31]

regarding the GAS. Given Selye’s continual work to clarify

the GAS and its related concepts, it is not surprising that

occasional clarification is necessary to address similar

issues in the specific application of the GAS to sport per-

formance training.

While it is reasonable to critically evaluate any para-

digm, critics of the GAS have not dismantled the link

between stress and adaptation, which is the crux of the
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GAS model and the primary basis for its application to

sports training. Additionally, they fail to offer alternative

models to explain the process of adaptation. The authors of

the current review recognize that the GAS does not account

for all reactions or processes related to stress. However, no

model is complete or fully accurate. Nevertheless,

notable reviews have related the GAS directly to the bio-

logical and physiological responses and adaptations to

exercise [34, 35], and many theorists have detailed the

conceptual application of the GAS to training

[40, 127, 128, 156]. Many other models regarding the

training process are complementary to, rather than

incompatible with, the GAS [38]. For example, the fitness–

fatigue paradigm does not consider the mechanisms of

adaptation. Rather, it depicts an athlete’s state of pre-

paredness and ability to express his or her current level of

adapted motor potential as a function of the levels of fitness

and fatigue resulting from training.

Despite its imprecisions, the GAS has proven to be an

instructive framework for understanding the mechanistic

process of providing a training stimulus to induce specific

adaptations that result in functional enhancements. This

framework can guide coaches in the planning of the

training process and the selection of programming tactics

that aid in the execution of the plan. However, additional

research is necessary to further elucidate the precise

application of the GAS model to sports training, as well as

to refine the practices of periodization and programming.

Furthermore, it is incumbent upon the coach to maintain

current scientific knowledge to ensure sound practice, and

to adjust the programming based on individual responses to

optimize the training process.
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Concentrated load on a reverse periodization, propel higher

positives effects on track test performance, than traditional

sequence. Imp J Interdiscip Res. 2017;3(2).

130. Arroyo-Toledo J, Clemente VJ, Gonzalez-Rave JM, Ramos

Campo DJ, Sortwell A. Comparison between traditional and

reverse periodization: swimming performance and specific

strength values. Int J Swim Kinet. 2013;2(1):87–96.
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