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Abstract With regular practice, resistance exercise can

lead to gains in skeletal muscle mass by means of hyper-

trophy. The process of skeletal muscle fiber hypertrophy

comes about as a result of the confluence of positive

muscle protein balance and satellite cell addition to muscle

fibers. Positive muscle protein balance is achieved when

the rate of new muscle protein synthesis (MPS) exceeds

that of muscle protein breakdown (MPB). While resistance

exercise and postprandial hyperaminoacidemia both stim-

ulate MPS, it is through the synergistic effects of these two

stimuli that a net gain in muscle proteins occurs and muscle

fiber hypertrophy takes place. Current evidence favors the

post-exercise period as a time when rapid hyperaminoaci-

demia promotes a marked rise in the rate of MPS. Dietary

proteins with a full complement of essential amino acids

and high leucine contents that are rapidly digested are more

likely to be efficacious in this regard. Various other com-

pounds have been added to complete proteins, including

carbohydrate, arginine and glutamine, in an attempt to

augment the effectiveness of the protein in stimulating

MPS (or suppressing MPB), but none has proved particu-

larly effective. Evidence points to a higher protein intake in

combination with resistance exercise as being efficacious

in allowing preservation, and on occasion increases, in

skeletal muscle mass with dietary energy restriction aimed

at the promotion of weight loss. The goal of this review is

to examine practices of protein ingestion in combination

with resistance exercise that have some evidence for effi-

cacy and to highlight future areas for investigation.

1 Introduction

The process of skeletal muscle protein turnover is constant

and ongoing. Protein turnover within muscle is the sum of

the processes of both muscle protein synthesis (MPS) and

muscle protein breakdown (MPB). Beyond childhood

growth, chronic imbalances between the processes of MPS

and MPB lead to a net gain in protein pool size (hyper-

trophy: MPS [ MPB) or a net loss (atrophy:

MPB [ MPS). Often, athletes seek to maximize a hyper-

trophic response to exercise with the general acceptance

that this may translate into performance gains. Hypertro-

phy, or the offsetting of atrophy, may also be a goal for

athletes in recovery from injury, and so understanding the

mechanisms that regulate muscle mass are important. The

goal of this review is to provide a brief overview of the

factors that regulate hypertrophy and how they can be

affected by nutritional factors with a focus on protein.

2 Regulation of Muscle Protein Turnover

Resistance exercise provides a loading stimulus to skeletal

muscle that results in increases in skeletal MPS and, if

performed in the fasted state, an increase in MPB [1, 2].

The increase in fasted-stated MPS with resistance exercise

is long-lasting and persists for at least 48 h [1], and maybe

longer with a higher volume of focused contractions [3].

Provision of amino acids intravenously [4, 5], as isolated

proteins [6–8], or in foods such as beef [9] and milk [10]

that promote hyperaminoacidemia and hyperinsulinemia

are all effective in stimulating MPS. In addition, post-

exercise hyperaminoacidemia suppresses the rise in MPB

[4] that occurs following resistance exercise in the fasted

state [1, 2]. Post-exercise hyperinsulinemia is not overtly
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stimulatory for MPS [11], but will also simultaneously

suppress MPB [11]. It thus appears that rather than being

strictly anabolic, the hyperinsulinemia that accompanies

post-exercise protein consumption is not stimulatory but

probably merely permissive for MPS [12] and suppressive

for MPB [13, 14]. Therefore, when protein is ingested after

resistance exercise it is the amino acids themselves that are

driving the rise in post-exercise MPS [4, 15]. It is also now

quite clear that it is really only the essential amino acids

(EAA) that drive the process of MPS [16, 17]. However,

perhaps more important is that the key EAA is leucine, as it

alone appears to be the metabolic trigger for MPS [18, 19].

A complete mechanistic explanation of muscle protein

turnover and its regulation is beyond the scope of this

review; however, several reviews have covered this topic in

detail and provide an excellent background [20, 21]. With

feeding, we now know that meal-to-meal fluctuations in

MPS dictate the fed-state gains, and fasted-state losses, in

muscle protein [22–24]. Resistance exercise amplifies the

inherent feeding response, which is actually quite transient

[25], both immediately after exercise [25, 26] and at 24 h

post-exercise [27]. An important study in this area was

performed by Tipton et al. [28], who showed that 24-h net

protein balance reflected the acute changes in muscle

protein turnover induced by both aminoacidemia and

resistance exercise. However, Fig. 1 highlights the fact that

the MPS response to aminoacidemia post-exercise wanes

with time and the acute period post-exercise appears to be

an optimal time to ingest protein-promoting hyperamino-

acidemia and a robust stimulation of MPS [29]. As men-

tioned, the nascent stimulation of MPS from resistance

exercise alone lasts at least 24 h [1]. We have thus recently

proposed that an enhanced amino acid sensitivity of protein

synthesis in this window of ‘anabolic potential’ probably

persists for just as long (Fig. 1). However, the mechanisms

for enhanced sensitivity to amino acid feeding at each

timepoint may be different, with the intriguing hypothesis

that at later times (i.e. 24 h and beyond) following

resistance exercise amino acid transport may be enhanced

[30, 31].

3 Dose–Response of Dietary Protein and MPS

To date only three true dose–response studies in which

MPS has been measured have been published [15, 32, 33].

In those studies, the main message was that MPS is a

saturable process in young people at protein ingestion

doses of approximately 20–25 g (*8.5–10 g of EAA)

regardless of whether the subjects exercised [15] or not

[32]. Moore et al. [15] also noted that, in parallel with the

rise in MPS, the albumin protein synthetic rate showed a

strikingly similar saturable dose–response curve, demon-

strating that at least one other body protein had similar

synthetic kinetics. In an attempt to standardize this protein

dose to body mass (BM), and using the subjects’ mass from

the study by Moore et al. [15], the dose of protein that was

maximally effective (20 g) post-exercise equated to

approximately 0.25 g protein/kg BM. While egg was the

protein source used in that study [15], the rationale being

that it is the internationally recognized standard protein,

similar data would be expected with other high-quality

proteins. However, the dose of protein that is maximally

stimulatory in older adults is closer to 40 g following

resistance exercise and 20 g at rest [33]. Beyond the levels

at which MPS is maximally stimulated, it has been noted

that the oxidation of an indicator amino acid, leucine, rises

quite sharply [15, 33], indicating that amino acids are not

being used for protein synthesis and instead are oxidized,

probably leading to urea production. While oxidative

amino acid loss has been used as an indication of protein

excess, it may well be that oxidative losses would still

occur despite the fact that protein synthesis is not maxi-

mally stimulated as a result of lower Km (Michaelis–

Menten kinetics—the substrate concentration at which the

reaction rate is half of maximal) values of enzymes

involved in amino acid degradation compared with, for

example, the Km for the activation of mammalian target of

rapamycin [34, 35]. The traditional interpretation of amino

acid oxidation as being ‘wasteful’ may not be a true sen-

timent where optimal stimulation of MPS is concerned.

4 Protein Quality and Muscle Protein Turnover

Protein quality has traditionally been defined by the protein

digestibility-corrected amino acid score (PDCAAS). This

Fig. 1 Resistance exercise stimulates a prolonged elevation of MPS

that can remain elevated for at least 48 h (dotted line) [1]. Protein

ingestion at any point during this enhanced period of ‘anabolic

potential’ will have an additive effect to these already elevated

exercise mediated rates (solid lines) [26, 27]. Reproduced from

Churchward-Venné et al. [29], with permission. MPS muscle protein

synthesis
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estimate of quality is derived from measures of the limiting

EAA content in the protein compared with that of a ref-

erence protein (egg protein) multiplied by the digestibility

of the protein [36]. However, issues with the PDCAAS

method of scoring proteins have been raised and relate to

the validity of the preschool-age child amino acid

requirement values, the use of fecal versus ileal digest-

ibility and the truncation of values at 1.0 (i.e. the EAA

content of proteins greater than that of egg protein are not

important for tissue growth or maintenance) [36, 37]. The

restriction of a PDCAAS value at 1.0 obscures the fact that

the content of particular amino acids, such as leucine, are

higher in the milk-derived proteins casein and whey com-

pared with that of soy by 33 % and 76 %, respectively

[38]. This difference in leucine content probably has some

functional significance because leucine has been shown to

be an important regulatory activator of skeletal MPS [18,

19, 39, 40]. It has recently been reported that even small

doses of protein, that were only 25 % of the maximally

effective protein dose for stimulating MPS [15], could be

made to be maximally effective with the addition of leu-

cine [41]. Therefore, despite an equivalent PDCAAS score

it is perhaps not surprising that whey was found to be

superior to soy protein in stimulating MPS in both a rested

and contracted muscle [6]. Interestingly, the same result

was found in older men [42].

While isolated proteins are an interesting model, most

athletes consume whole foods. It was previously shown

that skimmed milk was superior to a nutrient-matched soy

beverage [10], which was also attributed to the high leucine

content of milk proteins in the 4:1 ratio of casein:whey in

bovine milk. Of note, whey was also found to be superior

to casein in stimulating MPS in both rested and contracted

muscles [6]. This is an interesting observation given that

the leucine content of whey is only 20 % higher than that

of casein. However, casein is digested much more slowly

than whey and has even been termed a ‘slow’ protein by

comparison to whey, which is an acid-soluble and rapidly-

digested protein [43]. Similar to the finding of the author’s

group [6], Pennings et al. [7] recently reported that whey

was superior to both casein and casein hydrolysate in

stimulating muscle protein accretion. Therefore, even

hydrolysis (i.e. pre-digestion) of casein to speed up its

digestion did not result in a greater stimulation of MPS [7].

When protein was fed in small pulses, resulting in pro-

tracted hyperaminoacidemia with low amplitude, compared

with a large bolus, with rapid and transient aminoacidemia

with larger amplitude, a smaller rise in MPS occurred [44].

Much of the evidence reviewed above has led to the

proposal of the leucine ‘trigger’ hypothesis [22] that

revolves around the concept that leucine is the key amino

acid that triggers a rise in MPS [18, 45]. As such, proteins

that are richer in leucine would be more effective than

proteins with lower leucine content [46]. In addition, the

rapidity of digestion, and thus the peak leucinemia, would

be an important consideration as it would dictate the supply

of leucine to trigger MPS. This concept is shown in Fig. 2b

and highlights the fact that exercise generally increases the

sensitivity to leucine and thus lowers the leucine threshold,

whereas aging [46] and inactivity [47] increase the

threshold, and the muscle takes on a state of ‘anabolic

resistance’ of MPS to hyperleucinemia and hyperamino-

acidemia in general. Current evidence would thus lead to a

guideline stating that to achieve peak rates of MPS, a high

leucine-containing protein that is rapidly digested, leading

Fig. 2 a The ‘leucine trigger’ concept, with data adapted from Tang

et al. [6], as shown for isolated whey protein, soy protein, and casein

proteins as a difference between rested and exercise values for MPS.

b The speed of digestion of these proteins would be digested in the

following order: whey C soy � casein; and the following leucine

content: whey [ casein [ soy resulting in leucinemia and hypothet-

ical intracellular leucine concentrations. Therefore, a greater and

more rapid rise in blood and, probably, intramuscular leucine

concentration triggers a greater rise in MPS. Values are mean ± SE.

MPS muscle protein synthesis, FSR fractional synthetic rate, IC

intracellular, [Leucine] concentration of leucine, * significantly

different (p \ 0.05) vs. casein (one-way analysis of variance), �

significantly different (p \ 0.05) than soy (one-way analysis of

variance)
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to rapid leucinemia and hyperaminoacidemia, should be

consumed post-exercise.

5 High(er) Protein in Weight Loss

A number of studies have compared higher than normally

consumed (i.e. *15–17 % of total dietary energy intake

from protein) protein intakes in their effects on weight loss.

While there is little doubt that the energy deficit per se will

determine weight loss, the focus with weight loss and higher

protein diets should be more on what is referred to as the

‘quality’ of the weight loss [48]. The operational definition

of weight loss quality is loss of a high ratio of fat to lean

tissue, with an emphasis on the loss of visceral fat [49].

Therefore, while general conclusions regarding weight loss

in long-term free-living individuals have suggested that

weight loss is no different with higher protein intakes [50,

51], short-term trials have shown important differences in

the weight lost as fat with muscle ‘spared’ [48]. What is

evident is that with respect to weight loss with exercise,

higher protein and higher dairy protein in particular provide

a protective effect for muscle, even allowing its accrual in

certain circumstances [49, 52]. An important observation

from an exercise performance standpoint is that in a group

of overweight women who consumed a higher protein diet

(1.3 g/kg BM/day) during diet and exercise-induced weight

loss, they experienced greater gains in strength [49, 53].

However, protein is not able to ablate the loss of skeletal

muscle mass completely, especially if the energy deficit is

substantial and rapid weight loss occurs, even in exercising

athletes [52, 54]. However, when weight loss is more

moderate then higher protein intake (1.6 g/kg BM/day)

cannot only preserve lean mass but allow performance gains

[52]. Unfortunately, without continued supervision, the

same athletes who lost fat and gained muscle in the 8-week

study period returned to their pre-intervention body com-

position after 12 months [55].

6 Adjunctive Nutritional Strategies to Augment Muscle

Protein Synthesis

While it is clear that aminoacidemia following protein

ingestion drives the rise in MPS, other nutrients have been

added to protein in an attempt to augment its impact on

MPS. Carbohydrates have been a primary focus in this

area, with the rationale that their energy may serve to

reverse an exercise-induced suppression of protein syn-

thesis, either by activation of adenosine monophosphate

kinase [56] or through a calcium–calmodulin-dependent

mechanism [57]. Alternatively, insulin as a result of car-

bohydrate ingestion could either promote protein synthesis,

suppress proteolysis, or both [58]. However, to date several

studies combining protein and carbohydrate have shown no

augmentation of protein synthesis when protein is provided

in adequate amounts [13, 14, 59]. However, these data do

not preclude the hypothesis that carbohydrate is not stim-

ulatory with lower-than-optimal protein doses. In addition,

the restoration of muscle glycogen by means of carbohy-

drate ingestion is also obviously important for athletes and

should not be neglected.

Only a few amino acids have been tested in their capacity

to augment MPS, but none has proved beneficial in young

men. Glutamine (0.3 g/kg BM) was given to young men

following 90 min of cycling at 65 % of peak oxygen uptake

in addition to carbohydrate and balanced EAA, and there was

no difference in post-exercise MPS compared with the pla-

cebo trial [60]. The lack of an effect of glutamine on MPS

following endurance exercise is at odds with data showing

that even endurance exercise is anabolic for mitochondrial

and myofibrillar protein synthesis [61]. Congruent with the

absence of any benefit of glutamine on MPS after endurance

exercise are data from young men performing resistance

training who received glutamine throughout 6 weeks of

training (0.9 g/kg lean tissue/day) [62]. Glutamine supple-

mentation has been shown to be useful in certain clinical

populations, in whom there is a relative lack of intracellular

glutamine [63]. However, it is perhaps not overly surprising

that glutamine is ineffective in populations who have ade-

quate levels of the amino acid, because it is hard for even a

high dose of glutamine to increase intramuscular glutamine

[60], and conclusions of recent reviews have been that glu-

tamine appears to be far from useful for athletes [64].

As a precursor for nitric oxide biosynthesis, the amino

acid arginine has received some attention for its potential

role to promote blood flow and enhance nutrient or hor-

monal delivery to muscles allowing enhanced anabolism

[65–67]. The one study in which MPS has been measured

in humans following exercise with arginine supplementa-

tion showed no effect of a bolus dose (10 g) of arginine on

nitrate or nitrite concentration, femoral artery flow, or MPS

[65]. An interesting observation was that growth hormone

concentrations were enhanced by arginine supplementation

[65] but, similar to other studies [68, 69], the transiently

increased growth hormone concentration did not enhance

MPS. Other attempts to enhance blood flow after resistance

exercise by means of arginine or other nitric oxide-

enhancing compounds have proved unsuccessful, at least in

healthy young men [66, 67].

7 Conclusion

Changes in MPS are variable throughout the day on a meal-

to-meal basis, and are augmented immediately and for a
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prolonged time period after resistive exercise. Endurance

exercise also stimulates MPS, but the responses are different

to those with resistance exercise, and there is far less clarity

on the length of time that they persist. Dietary protein

appears to be most effective when consumed after exercise,

to take advantage of the ‘receptive state’ of the muscle, for

mounting a robust MPS response. This would appear to be a

guideline that athletes engaging in resistance and endurance

training should follow to allow the synthesis of new proteins

specific to their activity, and also to promote adaptive

remodeling and repair of any cellular damage. The dose of

protein that appears most effective following resistance

exercise, and possibly endurance exercise, is approximately

0.25–0.30 g protein/kg BM/meal, at least when consuming

isolated proteins. Leucine is a key amino acid in stimulating

MPS and its content in, for example, whey protein is prob-

ably a primary reason why whey protein is so effective at

stimulating MPS as opposed to isolated soy and casein

proteins. Therefore, proteins containing a high content of

leucine that are digested rapidly are most effectively direc-

ted toward MPS; however, ingestion of foods such as milk

promote a robust stimulation of MPS and highlight the fact

that ‘blends’ of fast and slow proteins are still effective in

stimulating MPS. When protein is sufficient, dietary car-

bohydrate and the ensuing insulinemia does not augment the

response of MPS, but carbohydrate is still a practical mac-

ronutrient to consume to promote glycogen resynthesis.

Neither arginine nor glutamine have been demonstrated to

be effective at promoting resistance exercise-induced

anabolism in humans and their inclusion in supplements has,

on the basis of current evidence, no grounds.
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