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We simulate the cross-flow migration of rigid particles such as platelets in a red

blood cell (RBC) suspension using the Stokes flow boundary integral equation

method. Two types of flow environments are investigated: a suspension undergoing

a bulk shear motion and a suspension flowing in a microchannel or duct. In a

cellular suspension undergoing bulk shear deformation, the cross-flow migration of

particles is diffusional. The velocity fluctuations in the suspension, which are the

root cause of particle migration, are analyzed in detail, including their magnitude,

the autocorrelation of Lagrangian tracer points and particles, and the associated

integral time scales. The orientation and morphology of red blood cells vary with

the shear rate, and these in turn cause the dimensionless particle diffusivity to vary

non-monotonically with the flow capillary number. By simulating RBCs and

platelets flowing in a microchannel of 34 lm height, we demonstrate that the

velocity fluctuations in the core cellular flow region cause the platelets to migrate

diffusively in the wall normal direction. A mean lateral velocity of particles, which

is most significant near the edge of the cell-free layer, further expels them toward

the wall, leading to their excess concentration in the cell-free layer. The calculated

shear-induced particle diffusivity in the cell-laden region is in qualitative

agreement with the experimental measurements of micron-sized beads in a

cylindrical tube of a comparable diameter. In a smaller duct of 10� 15 lm cross

section, the volume exclusion becomes the dominant mechanism for particle

margination, which occurs at a much shorter time scale than the migration in the

bigger channel. VC 2012 American Institute of Physics. [doi:10.1063/1.3677935]

I. INTRODUCTION

We investigate the cross-flow migration of rigid particles such as platelets in a suspension of

deformable red blood cells (RBCs) under shear flow in the microcirculation. The main interest is

the mechanism of platelet margination in small vessels, which results in their excess concentration

in the cell-free layer near the vessel wall.1,2 The near-wall excess of platelets is important for the

rapid formation of a platelet plug at an injured vessel site,3,4 and is hence believed to play a major

role in regulating bleeding times.4,5 Quantification of the particle migration in blood flow is also a

prerequisite for modeling the transport and adsorption of drug-delivering particles in vivo.6,7

From a fluid mechanics point of view, three mechanisms are essential for the margination of

platelets in a blood vessel.

• The migration of red cells away from the vessel wall. When an RBC is tank-treading in a wall-

bound shear flow, the residual stress due to the stretch of the membrane creates a stresslet,

whose interaction with the wall generates a lift velocity that pushes the cell away from the

wall.8 As cells drift away from the wall, a cell-free layer is formed known as the Fahraeus–-

Lindquist effect.9

• The lack of such a lift for platelets. The platelets are much more rigid than RBCs, and thus undergo

rigid-body flipping motions in the shear flow near the wall.10 The time-averaged wall normal

stresslet component is zero, and so there is no mean drift velocity in the wall normal direction.
• A cross-flow migration of platelets due to their hydrodynamic interactions with RBCs. We con-

sider a binary collision between a small rigid sphere and an RBC in a simple shear flow shown
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in Figure 1(b). Unlike the collision between two rigid spheres, the system here does not possess

any fore-aft symmetry. This can be easily seen by the non-zero inclination angle of the RBC

and its shape variation during the collision. Hence, pure hydrodynamic interaction between the

two (i.e., in the absence of any contact force) can introduce a lateral migration of the rigid

sphere (cf. Figure 1(c)). In an RBC/platelet suspension, the lateral migration of platelets from

these collisions can be phenomenologically modeled as a shear-induced diffusion,11,12 which is

responsible for the spreading of platelets in the cell-laden region.

In a channel flow, because of the inhomogeneity in the wall normal direction, there is an addi-

tional non-zero mean lateral particle velocity. This velocity points toward the wall, and is most

significant near the edge of the cell-free layer, where a platelet on average experiences more fre-

quent collisions with RBCs from the centerline side. This mean velocity, as observed in a two-

dimensional simulation13 as well as in the present study, appears to be the major driving force for

the accumulation of platelets in the cell-free layer.

In vitro experiments of perfusing RBC/platelet mixture through glass tubes and microchan-

nels show that the presence of red blood cells is essential for the near-wall concentration of plate-

lets. The shear-induced diffusivity enhances the platelet lateral migration speed by more than ten

times when compared to their thermal diffusivity.1,14,15 The effective wall normal diffusivity can

be inferred from the platelet–wall adhesion rate based on a boundary-layer type of mass transport

model,16 and is found to approximately follow a power law with the wall shear rate.17 These indi-

rect measurements in general have large uncertainties so that the calculated platelet diffusivity can

differ by a factor of ten under similar flow conditions.16,17 Saadatmand et al. directly measure the

trajectories of small spherical beads (1 lm diameter) amidst an RBC suspension in a cylindrical

tube of 50 lm diameter.18 The observed linear temporal growth of the mean square displacement

of the particles in the radial direction provides direct evidence that the migration is diffusional.

To simulate the margination of platelets, Almomani et al. model RBCs and platelets as rigid

particles of two different sizes,19 and they observe cross-flow migration of platelets in a micro-

channel after they are initially released near the centerline. The suspension rheology and the

hydrodynamic interactions between RBCs and platelets are, however, not representative of the

FIG. 1. (a) The perturbation velocity generated by a tank-treading RBC in a simple shear flow. (b) A spherical particle

moves around an RBC in a shear flow. (c) The trajectories of the center of sphere. Each curve stands for a different random

initial phase of the RBC’s tank treading.
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physiological system because the model does not account for the deformability of RBCs.20 Crowl

and Fogelson recently use the lattice Boltzmann method to simulate the channel flow of deforma-

ble RBCs and platelets in two dimensions.13 They find that the lateral migration of platelets can

be modeled as a convection-diffusion process: it is diffusional in the core cellular flow region with

an almost constant diffusivity; near the edge of the cell-free layer, there is a significant mean drift

velocity that points to the wall and thus expels the platelets into the cell-free layer. The evolution

of the platelet density distribution as modeled by a stochastic differential equation is in good

agreement with their direct simulation.

A similar problem is the margination of leukocytes in blood vessels and their subsequent roll-

ing on the endothelium. Two-dimensional simulations of RBC/leukocyte in channel flows demon-

strate that the RBCs push the larger and less deformable leukocytes and promote their margination

to the wall.21,22 Munn and Dupin simulate the similar problem of the segregation of cells with dif-

ferent membrane stiffness, and show that the cells with stiffer membranes migrate toward the pe-

ripheral of the cell-laden region because the stiffer cells have smaller wall lift velocities.23

In the present study, we resolve the multi-body hydrodynamic interactions in an RBC and pla-

telet suspension by using a Stokes flow boundary integral equation method, where the RBC mem-

brane’s elasticity and bending stiffness are modeled by the finite element method. A focus here is

to quantify the shear-induced diffusivity of platelets, which is determined by the magnitude of

their velocity fluctuations and the velocity autocorrelations from a Lagrangian point of view.

Compared to an RBC that typically has a diameter of 8 lm, the platelet has a much smaller discoid

shape with a diameter of 2–5 lm and a thickness of only 0.5–1.0 lm. The platelet number density

is also about 1/10 of RBCs under normal physiological conditions.24 The velocity field is hence

dominated by the RBCs, and is minimally impacted by the presence of platelets. To a first approx-

imation regarding their self-diffusivity, the platelets can be considered as Lagrangian tracer points

that are passively convected. The hypothesis is tested in two flow environments that are represen-

tative of microcirculations at different length scales: (1) a suspension undergoing bulk shear

motion and (2) a suspension flowing in a microchannel or duct driven by a pressure gradient.

Our three-dimensional channel flow simulation shows that the lateral migration of platelets is

characterized by their diffusion in the cell-laden region and their mean lateral migration toward

the wall. Despite the qualitative similarity to the findings by Crowl and Fogelson,13 the effective

diffusivity and the mean lateral velocity obtained here are smaller by about one order of magni-

tude at a similar wall shear rate. In a two-dimensional system, all binary collisions between RBCs

and platelets are in-plane; in three dimensions, the collisions often occur with particle centroids

not in the same vorticity plane, leading to smaller cross-stream particle displacements than those

found for in-plane collisions. Additionally, three-dimensional simulations are necessary for mod-

eling the shear deformation of the RBC membrane, while in two dimensions, the membrane can

have bending and extensional deformation but does not admit any shear deformation. As seen later

in this paper, due to the membrane shear elasticity that is only present in three dimensions, there

are significant RBC morphological changes with shear rate, which in turn cause the platelet diffu-

sivity to have a nonlinear dependence on the shear rate.

In Sec. II, we discuss the numerical method. The simulation results are analyzed in Secs.

III–V. Section VI concludes our findings.

II. NUMERICAL METHOD

Even though the blood as a whole is non-Newtonian and in particular shows significant shear-

thinning at shear rates lower than 100 s�1,20 the fluid phase of the blood (mainly the hemoglobin

solution inside the RBC membrane and the plasma outside) is Newtonian to a good approxima-

tion. Because of the small Reynolds number in the microcirculation, we use the Stokes flow

boundary integral equation method to solve the fluid velocity, where the hydrodynamic interac-

tions between RBCs, rigid particles, and walls are represented by the convolution of Green’s func-

tions with sources distributed at the material interfaces.25 Besides its superior accuracy, the

boundary integral method is particularly convenient for the complex suspension because it obvi-

ates the difficult task of meshing the extracellular space that is three-dimensional, has a very com-

plex geometry, and is continuously deforming.
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Figure 2 shows a suspension of RBCs and platelets flowing between two flat plates with nor-

mals in the 6z directions, where the velocity is periodic in the x and y directions. In our formulation,

the flow rate is determined by specifying a background velocity hui in the x direction that is equal to

the volume-averaged velocity in the computational domain (i.e., the rectangular box between the

two plates). For the purpose of driving the flow, this is equivalent to specifying a mean pressure gra-

dient h@p/@xi. The ratio between hui and h@p/@xi depends on the instantaneous suspension configu-

ration, but in practice the fluctuation in h@p/@xi in a fully developed flow remains below 1% for

constant hui. The shell of the RBC capsule is a spectrin network that is coupled to an external lipid

bilayer.26 Following the continuum approximation, we model the RBC membrane as a two-

dimensional hyperelastic membrane that also resists bending deformation. We assume that the plate-

lets are not activated and have neglected their complex surface features.24 Since platelets are much

stiffer than RBCs, they are modeled as rigid discoids that are free of external forces and torques.

To form the boundary integral equations, we first define the single-layer and double-layer in-

tegral operators for Stokes flow,

ðNwÞjðx0Þ ¼
ð

D

wiðxÞGijðx; x0ÞdAðxÞ; (1)

ðKwÞjðx0Þ ¼
ð

D

wiðxÞTijkðx; x0ÞnkðxÞdAðxÞ; (2)

where the Green’s functions G and T are the fundamental solutions for Stokeslet and stresslet

under the periodic velocity boundary conditions.27 The G(x, x0) is periodic in both x and x0, and

indeed only depends on (x� x0). The function T on the other hand has a decomposition,

Tijkðx; x0Þ ¼ �
8pxj

X
dik þ �Tijkðx; x0Þ; (3)

where �Tijkðx; x0Þ is periodic. Both G and �T have zero mean in X so that

ð
X

Gðx; x0Þdx ¼ 0 and

ð
X

�Tðx; x0Þdx ¼ 0: (4)

With these constraints, the function values of G and T are uniquely determined.

Let the cell surfaces be denoted by C, the platelet surfaces by P, and the walls by W, the fol-

lowing boundary integral equation can be established,

ACC ACP ACW

APC APP APW

AWC AWP AWW

0
@

1
A uC

wP

fW

0
@

1
A ¼ bC

bP

bW

0
@

1
A; (5)

from which we solve for the RBC surface velocity uC, the wall friction force fW, and a double-

layer density wP on the surface of the platelet. The submatrices on the left-hand side are

FIG. 2. Left: red blood cells and platelets in a microchannel of 34 lm in height. Right: the surface mesh used in

simulation.
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ACC ¼
1þ k

2
I� 1� k

8p
KCC ACP ¼

1

8p
KCP ACW ¼

1

8pl
NCW

APC ¼ �
1� k

8p
KPC APP ¼

1

2
Iþ 1

8p
KPP þ

X6

b¼1

ðq00b; �Þq00b APW ¼
1

8pl
NPW

AWC ¼ �
1� k

8p
KWC AWP ¼

1

8p
KWP AWW ¼

1

8pl
NWW ;

and the right-hand side elements are

bC ¼ �
1

8pl
NCC½½ f ��C þ hui

bP ¼ �
1

8pl
NPC½½f ��C þ hui

bW ¼ �
1

8pl
NWC½½f ��C þ hui:

The ratio k¼ linside/loutside is between the viscosity of the hemoglobin solution inside the RBC

membrane and the plasma viscosity. Each submatrix represents the hydrodynamic interaction

between two sub-systems. For example,

ðNCWfWÞjðx0Þ ¼
ð

W

fWi ðxÞGijðx; x0ÞdAðxÞ for x0 2 C

is the velocity (multiplied by 8pl) on the RBC surface induced by a wall friction force distribution

fW. The rigid body motion of the platelets is solved by a completed double-layer formulation, and

the surface velocity of any platelet is related to the double-layer density wP by a projection,

u ¼
X6

b¼1

q00bðq00b;wÞ;

where q00b ð1 � b � 6Þ are the six orthonormal rigid body motions defined for each platelet, and

(�,�) is the standard L2 inner product on the surface.25

With each surface being discretized into a mesh of linear triangles, all relevant physical quan-

tities are approximated by piecewise linear interpolation using their mesh nodal values. The

boundary integral equation (5) is discretized by a collocation method so that the residuals at all

nodal points are zero upon solution, and the resulting linear equation system is solved by a gener-

alized minimal residual (GMRES) solver. To avoid forming the dense left-hand side matrix, each

matrix-vector multiplication during the solution procedure is recast as calculating the boundary

integrals at collocation points. The computational cost is thus dominated by the evaluation of

boundary integrals, which is accelerated by using the method of smooth particle mesh Ewald sum

with O(N log N) cost.28,29

The elasticity of the RBC membrane is modeled by a classic two-dimensional strain energy

functional.30 The two strain invariants I1,2 for the in-plane deformation of the unstressed mem-

brane are

I1 ¼ k2
1 þ k2

2 � 2 and I2 ¼ k2
1k

2
2 � 1; (6)

where k1,2 are the principal strains. The strain energy has the empirical form,

WS ¼
ES

2

1

2
I2
1 þ I1 � I2

� �
þ ED

8
I2
2; (7)

where ES is the membrane’s shear modulus and ED is the dilatational modulus. The in-plane

Cauchy stress is then,

T ¼ 2

J

@W

@I1

FTFþ @W

@I2

J2I

� �
; (8)
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where J¼ k1k2 is the local dilatation and F is the deformation gradient tensor. For the linear

boundary element used here, F and T are constant on each element, and one way to calculate the

residual surface force [[f]] is to differentiate T on the surface using discrete tensor calculus.31

Alternatively and as is done here, the nodal values of [[f]] can be directly calculated from a virtual

work principle,

dWS ¼
ð

C

½½f �� � dx dAðxÞ ) ½½f ��a �
1

Aa

@WS

@xa
; (9)

where [[f]]a is the force density at the ath mesh node, and Aa is the surface area associated with a
and is equal to 1/3 of the total area of the triangles surrounding a.

A simple bending energy formulation is used to model the membrane’s bending stiffness,

WB ¼
X

e

2
ffiffiffi
3
p

EB½1� cosðbe � b0Þ�; (10)

where EB is the bending modulus, e is the edge between two neighboring surface mesh elements,

and be is the dihedral angle formed at the edge.32,33 The b0 is the average bending angle for a tri-

angular mesh over a sphere, and is estimated as b0 ¼ ½16p=ð3
ffiffiffi
3
p

NeleÞ�1=2
, where Nele is the num-

ber of mesh elements. The discrete values of the bending force at all mesh points are calculated by

directly differentiating WB with the coordinate of mesh points. Compared to its shear elasticity,

the RBC membrane’s bending resistance is weak, and its main effect lies in the suppression of sur-

face buckling.

The volume of the red cell is V*¼ 94 lm3, which gives an equivalent radius a*¼ (3V*/4p)1/3

¼ 2.82 lm. The shape of the unstressed biconcave discocyte is described by an analytical formula-

tion.31 The discoid-shaped platelet has a diameter of 2.8 lm and a thickness of 0.7 lm. We have

additionally simulated the dispersion of small spheres of diameter 2.26 lm. The surface meshes of

RBCs and particles used in the simulations are shown in Figure 2.

All quantities are nondimensionalized by RBC radius a*¼ 2.82 lm, the plasma viscosity

l*¼ 1.2 mPa s, and a characteristic shear rate _c� of the flow. The RBC deformation is primarily

determined by the capillary number Ca ¼ l� _c�a�=E�S, which measures the viscous force acting on

the membrane relative to its shear elasticity. For a typical value of the membrane’s shear modulus

ES¼ 6.8 lN/m,34 a unit capillary number corresponds to a shear rate of approximately 2000 s�1,

which is comparable to the wall shear rate in arterioles and venules with diameters of around

30 lm.35 The membrane’s dilatational modulus E�D ¼ 102l� _c�a� is a penalty parameter; with this

value of E�D, the area change of any RBC surface mesh element is less than 1% on average. The

membrane’s bending modulus is E�B ¼ 2� 10�19J. Since E�B=ðE�Sa�2Þ ¼ 3:3� 10�3, the bending

resistance is much less important than the shear elasticity.

To reduce the computational cost, the simulations are carried out with matched viscosity

(k¼ 1), even though physiologically the viscosity of the hemoglobin solution inside the membrane

is about 5 times that of the blood plasma.36 The motion of an isolated RBC can undergo a tank-

treading to tumbling transition with such an increase in k. In concentrated suspensions, the small

intracellular space makes the rigid-body-like rotations highly unfavorable as they introduce exces-

sive viscous dissipation. Our test simulations show that the tank-treading motion persists at k¼ 5

and Ca 	 1 for an RBC suspension of 20% hematocrit. Therefore, we believe using k¼ 5 will not

introduce qualitative changes to our present results and conclusions. A recent numerical study of

RBCs flowing in small cylindrical tubes also shows insignificant changes in the flow characteris-

tics including the cell-free layer thickness and the apparent viscosity between k¼ 1 and k¼ 5.37

III. PARTICLE DISPERSION IN AN RBC SUSPENSION UNDER SIMPLE SHEAR

In a large vessel away from both the wall boundary and the centerline, the local flow environ-

ment can be considered homogeneous and can be modeled as a cellular suspension undergoing

bulk shear motion with periodic velocity boundary conditions. The characteristic shear rate _c� is

naturally the mean local velocity gradient, and the nondimensional background velocity of the

bulk shear flow is u1¼ (u,v,w)¼ (z, 0, 0). The model system is solved by the boundary integral
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equation (5) with a slight modification, where we replace hui with u
1 in the right-hand side and

remove all the sub-blocks associated with the walls in the equation.

The system hematocrit (Ht) for the whole human body is between 40% and 50%, but the local

hematocrit decreases significantly in small vessels and is about 16% to 20% in vessels of 30 lm

diameter.35,38 The simulation is performed at Ht¼ 0.1 and 0.2—the same hematocrits for the

channel flow simulation as discussed in Sec. IV. The suspension in the periodic computational do-

main contains 54 RBCs, and an additional 20 rigid particles (spheres or platelets) when binary

mixtures are simulated. Although the platelet number density is much higher than the physiologi-

cally relevant value, the hydrodynamic interactions between platelets are insignificant as com-

pared to the platelet/RBC interactions because the platelets are dispersed among the much larger

RBCs and are rarely in close contact with each other. The computational domain has a depth of

W¼ 12 in the vorticity direction. Additional simulations are performed at depths of W¼ 9 and 24,

and the difference in the velocity correlation curves between simulations with different W is com-

parable to the difference between independent simulations at the same W (cf. Figure 6).

The flow capillary number ranges between 0.1 and 2 in the simulations. Because of the inho-

mogeneity of its biconcave stress-free shape (dimple versus edge), an RBC cannot maintain a

strictly constant shape in shear flow. Figure 3 shows significant shape variations of the cells at

Ca¼ 0.1 and 0.2. At higher Ca (for example, Ca¼ 0.8 in Figure 3), the membrane’s shear elastic-

ity is dominated by the fluid viscous force, and the cell is stretched into a prolate ellipsoidal shape

and undergoes a tank-treading motion,39 which is characterized by the much reduced shape varia-

tion during its motion cycle.

The cell inclination angle w is defined to be between its longest axis and the flow direction,

where the cell axis is identified as the eigenvector associated with the smallest eigenvalue of the

cell surface’s moment of inertia tensor.40 Figure 4 shows that the Ca-dependence of hwi in the sus-

pension closely follows that of an isolated cell. In Figure 3, the uniformity of w in the suspension

becomes visually clear at Ca¼ 0.4, which is consistent with the significant reduction in the varia-

tion of w when Ca 	 0:5 in Figure 4. The fact that a cell has constant volume and surface area

FIG. 3. RBC suspensions under bulk shear.

FIG. 4. The inclination angles w of cells (isolated and in suspension). The error bars are the variations of w.
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determines that it cannot be stretched infinitely regardless of the Ca number. If the tank-treading

shape is approximated by an ellipsoid, the ratio between the ellipsoid’s longest and shortest axes

has a finite upper limit that is determined by the reduced volume. Hence, the shape of the cell

becomes insensitive to Ca at high shear, as shown by the weak dependence of hwi at large Ca in

Figure 4. The variation of w decays monotonically with increasing Ca for an isolated cell. In a sus-

pension, however, this variation almost remains constant because the cell–cell interactions create

fluctuations that are roughly proportional to the shear rate. The comparison between Ht¼ 0.1 and

0.2 further shows that the variation in w increases at higher hematocrit due to stronger cell–cell

interactions.

An instantaneous disturbance velocity field in the suspension is shown in Figure 5. Although

this velocity field appears to be more chaotic than the velocity field created by an isolated cell (cf.

Figure 1), both share the same key feature of contracting toward the elongated ends of cells. The

root mean square (RMS) z velocity fluctuations ð
ffiffiffiffiffiffiffiffiffi
hw2i

p
Þ of Lagrangian tracer points, platelets,

and spheres are also shown in Figure 5. The
ffiffiffiffiffiffiffiffiffi
hw2i

p
of tracer points decreases when Ca increases

from 0.1 to 0.2, and then becomes insensitive to the change in Ca in the tank-treading regime

ðCa 	 0:5Þ. For spheres, the variation of
ffiffiffiffiffiffiffiffiffi
hw2i

p
with Ca follows closely with that of the tracer

points. The
ffiffiffiffiffiffiffiffiffi
hw2i

p
of platelets follows the same trend, but is about 15% higher than that of the

tracers, which is attributed to the larger dimensions of their oblate shapes.

The cross-stream migration of Lagrangian tracer points and particles is quantified by the nor-

malized velocity autocorrelation,

CzðtÞ ¼
hwð0ÞwðtÞi
hw2i

and the mean square displacement,

hDz2iðtÞ ¼ h½zðtÞ � zð0Þ�2i;

which are shown in Figure 6 for tracers at Ht¼ 0.2 and Ca¼ 1.2. One noticeable feature is the

negative correlation at t� 2, indicating a reversal of the z velocity. Observing the trajectory of a

sphere passing around a tank-treading RBC in Figure 1, we note that the z coordinate of the

sphere’s centroid varies non-monotonically during the collision process, which would result in a

similar negative velocity autocorrelation. The multiple peaks in the Cz curve indicate a sequence

of encounters of a tracer point with RBCs. The hDz2i curve in Figure 6(b) shows that linear tempo-

ral growth is established at t> 30 despite the apparent oscillation in the slope of the curve, and so

the lateral migration of tracer points is phenomenologically diffusional at this time scale. The

hDz2i can be calculated alternatively using the Green–Kubo formula,

hDz2iðtÞ ¼ 2hw2i
ðt

0

ðt� sÞCzðsÞds; (11)

and the result is in good agreement with the direct calculation as shown in Figure 6(b).

FIG. 5. Left: the disturbance velocity in the RBC suspension of Ht¼ 0.2 at Ca¼ 0.8. Right: the RMS z velocities of tracer

points, small spheres, and platelets in the suspension.
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Figure 7(a) compares the velocity autocorrelations of tracer points at Ht¼ 0.2 for three differ-

ent capillary numbers. All three curves show a quantitatively similar initial decay of Cz at small t.
The collision time scale, which is estimated by the occurrence of the first negative minimum of

the autocorrelation, remains approximately the same at different Ca. However, the decorrelation

of Cz occurs more slowly at higher Ca as there is greater similarity in the local flow environment

between two consecutive collision events due to the more uniform alignment of the RBCs. This is

evident from the plot of
Ð t

0
CzðsÞds in Figure 7(b), where the oscillations in the curve increases

with Ca and persists at t> 100 at Ca¼ 0.4 and 2.

The integral time scale of tracer points is calculated as s ¼
Ð1

0
CzðtÞ dt. Figure 8 shows that s

of tracer points is non-monotonic with Ca. The minimum s appears to occur near Ca¼ 0.5 at the

onset of the tank-treading regime. The integral time scale then increases with increasing Ca, but

becomes less sensitive to further increase in Ca when Ca> 1. The integral time scale also

decreases with increasing hematocrit in the same tank-treading regime. Therefore, the more fre-

quent cell–cell interactions at higher hematocrit on one hand enhance the RMS fluctuating veloc-

ity
ffiffiffiffiffiffiffiffiffi
hw2i

p
(cf. Figure 14), but on the other hand make the decorrelation occur more rapidly. These

are two competing factors affecting the effective diffusivity, which is determined by,

Dz ¼ lim
t!1

1

2

d

dt
h½zðtÞ � zð0Þ�2i ¼ hw2is: (12)

Figure 9(a) shows that the velocity autocorrelations of tracer points, spheres, and platelets share

the similar initial decay of the correlation as well as the collision time scale—that is, the time of

FIG. 6. (a) The z velocity autocorrelation of tracers. (b) The mean square displacement of tracers in a suspension of

Ht¼ 0.2 and Ca¼ 1.2. The solid and dashed lines are the statistics obtained from two independent simulations.

FIG. 7. (a) The velocity autocorrelation. (b) The integral time of tracer points in a suspension of Ht¼ 0.2 and at different

capillary numbers.
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the first negative minimum of Cz(t). Spheres and platelets decorrelate faster than tracer points,

with the oscillation of Cz(t) already diminishing at t> 20, while there is still appreciable Cz for

tracers at t> 100. This results in a more rapid establishment of the linear temporal growth of

hDz2i at t> 20 as shown in Figure 9(b).

The dimensionless effective shear-induced diffusivity, Dz ¼ D�z=ð _c�a�2Þ, is calculated from

the slope of the hDz2i(t) curves via (12). The diffusivities of tracers, spheres, and platelets are plot-

ted in Figure 10. For rigid particles, the simulation is carried out between t¼ 0 to 1000. The hDz2i
curves for every time interval of 200 are calculated and then averaged, and the error bars in the

figure are the standard deviation of Dz.

The variation of Dz with Ca follows a similar trend as that of s in the tank-treading regime

because of the relatively small variation of hw2i. The diffusivity is thus non-monotonic with the

capillary number, and the minimum occurs at Ca� 0.5 similar to s. The size effect is significant

for the rigid spherical particles, whose Dz can be higher than that of tracers by more than 50%;

better understanding of this phenomenon warrants future investigation. Except for spheres at

Ht¼ 0.2, the diffusivity curves plateau at Ca> 1, which is consistent with the saturation of the

cell deformation. The dimensional D�z ¼ _c�a�2Dz thus scales linearly with the shear rate at high

Ca. We also note an augmented Dz when Ht increases from 0.1 to 0.2, for which the growth in

hw2i is the dominant effect.

FIG. 8. The integral time scale of tracer points in the bulk shear flow.

FIG. 9. (a) The z velocity autocorrelation. (b) The mean square displacement of tracers, spheres, and platelets in a bulk

shear flow at Ht¼ 0.2 and Ca¼ 1.2.
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Experimentally, the diffusivity of platelets in blood has been determined by measuring their

adhesion rate to the subendothelial wall of a perfusion chamber. The diffusivity is obtained by fit-

ting the adhesion rate with the theoretical predictions based on a transport model of the

boundary-layer type.16,17 The diffusivities obtained this way are usually with large uncertainties.

Turitto and Baumgartner report D*¼ 2.0� 10�7 cm2/s at _cw ¼ 208 s�1, and D*¼ 3.4� 10�7 cm2/s

at _cw ¼ 832 s�1 for an unknown hematocrit. These translate to the nondimensional D¼ 1.2

� 10�2 at Ca¼ 0.1, and D¼ 5.1� 10�3 at Ca¼ 0.4. Aarts et al. however obtain much lower pla-

telet diffusivities from similar perfusion chamber experiments and the same data fitting proce-

dure.17 Using their empirical power law of D� / _c�0:5460:03
w at 0:1 � Ca � 0:6 and Ht¼ 0.2, the

nondimensional diffusivity is D¼ 1.2� 10�3 at Ca¼ 0.1 and is 6.2� 10�4 at Ca¼ 0.4. The plate-

let diffusivity Dz� 2.5� 10�3 at Ca¼ 0.4 in our simulation lies between the two experimental

estimates.

IV. PARTICLE MIGRATION IN A MICROCHANNEL

The simulation of RBCs and platelets flowing in a microchannel is visualized in Figure 2. The

34 lm channel height is characteristic of those found in venules and arterioles. Nondimensionalized

by the RBC radius, the channel has a streamwise length L¼ 16 and a height H¼ 12; the spanwise

depth is W¼ 9 that is more than 3 times the RBC diameter and is adequate for fully three-

dimensional flow development as discussed in Sec III. Periodic velocity boundary conditions are

applied in the x and y directions, while the fluid velocity at the wall boundary is constrained to be

zero by explicitly solving the wall friction force in Eq. (5). The characteristic shear rate is defined as

_c� ¼ 6hui�=H�, which corresponds to the wall shear rate of a parabolic Poiseuille flow with the

same mean velocity hui*. The mean channel hematocrit hHti is chosen to be 0.1 and 0.2: Ht¼ 0.2 is

a physiologically relevant value due to the reduction of the local hematocrit in small vessels, while

the even lower Ht¼ 0.1 is to emulate the conditions of blood loss or anemia, for which it has been

observed that the decrease in local hematocrit is correlated with longer bleeding time.5,41

Since the channel height is only about four times that of the RBC diameter, the flow is obvi-

ously highly inhomogeneous in the wall normal direction. At Ca¼O(1) and with an initial random

disposition of undeformed cells, more than 50 flow through times (i.e., L/hui) are typically neces-

sary to establish a stationary hematocrit profile in space. This corresponds to a relaxation time

scale of about 400, which is of the same order as the relaxation time scale (H/a)3a/hui¼ 864 for

the channel flow of rigid spheres.42

The instantaneous configurations (after the distribution is stationary) of the cellular suspen-

sion at Ca¼ 0.25, 0.5, and 2 are shown in Figure 11. The cell-free layer is clearly visible in all the

FIG. 10. The self-diffusivity of tracers, spheres, and platelets in the RBC suspension under bulk shear.
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cases, and its thickness is reduced when hematocrit increases from 0.1 to 0.2. In the near-wall

region where the local shear rate is the highest, the cells start to tank-tread with a more uniform in-

clination angle distribution at Ca 	 0:5, similar to what is found in a bulk shear flow. The effect

of velocity curvature becomes significant at the centerline, where the cells form slipper-like shapes

similar to those in a capillary tube.43

To calculate the hematocrit profile in the channel, we divide the channel into 24 intervals of

equal size in the z direction and use the cell volume enclosed within each interval to calculate the

mean local hematocrit. The time-averaged profiles are shown in Figure 12, where the maximal Ht

occurs at the centerline, and its peak value increases slightly with Ca but stops increasing at

Ca> 1.

The hematocrit profiles in Figure 12 also indicate the insensitivity of the cell-free layer thick-

ness to Ca, which is consistent with observations from in vivo experiments.44–46 Alternatively, we

can define locally a cell-free layer thickness for any point on the channel wall—that is, the maxi-

mal vertical distance into the flow before the surface of a red blood cell is reached.47 Figure 13

shows the normalized probability density distribution of the cell-free layer thickness defined this

way. At the highest Ca¼ 2, the cell-laden region is slightly more compressed toward the center-

line, but the variation between curves at different Ca is small. At Ht¼ 0.1, the high probability at

z¼H/2 means that for a large portion of the channel wall, there are no RBCs between them and

the centerline. This apparent porosity of the RBC suspension is consistent with the observation of

Fedosov et al.47 Simulation of RBCs flowing in a cylindrical tube of 12 lm diameter has also con-

firmed that the thickness of the layer is independent of flow rate when the wall shear rate is above

100 s�1.37 Kameneva et al. report a power-law growth of the thickness with flow rate where the

FIG. 11. RBC suspensions flowing in a microchannel.

FIG. 12. The hematocrit profiles of the channel flow in the wall normal direction.
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measurement is done in a microchannel of 100� 100 lm cross section; however the shear rates

are much higher than those in our simulation (between 103 s�1 and 5� 104 s�1 by our estimation),

and the Reynolds number is non-negligible (up to 20).48

If we consider the first layer of cells beyond the wall, they experience an upward lift velocity

due to the hydrodynamic interaction with the wall and a downward repulsion due to collisions

with cells that are closer to the centerline. The equilibrium position in z is obviously determined

by the balance between these two competing effects. If the cell is well separated from the wall, the

lift velocity follows the scaling law of ulift / Szz=h2, where Szz is the wall-normal component of

the particle stresslet and h is the centroid height away from the wall.8 Because the membrane is

incompressible, the particle stresslet is almost linearly proportional to the shear rate,49 especially

at high Ca. The specific scaling of ulift / Szz=h2 does not apply at close contact, i.e., when h is

comparable to a and lubrication dominates. Nevertheless, numerical simulations suggest that ulift

still scales linearly with shear rate in this regime due to the membrane’s incompressibility.50 On

the other hand, the effective repulsive velocity, which is from cell–cell collisions, is proportional

to the collision frequency and thus scales linearly with shear rate. Because the two competing

effects have the same linear scaling with the shear rate, the equilibrium height of the first layer of

RBCs, and in turn the cell-free layer thickness, must be insensitive to shear rate or Ca.

With respect to the reference shear rate _c� ¼ 6hu�i=H�, the wall shear rate _cw for Ht¼ 0.2

decreases from 1.22 at Ca¼ 0.25 to 1.13 at Ca¼ 2. The shear thinning is weaker at Ht¼ 0.1,

where _cw changes from 1.07 to 1.04 for the same change in Ca. The mean axial velocities, when

normalized by _cwa as shown in Figure 14, collapse to the same Poiseuille flow profile in the cell-

FIG. 13. (Color online) The histogram of the cell-free layer thickness. The dashed vertical line denotes the diameter of the

platelet.

FIG. 14. (Color online) The mean axial velocity (solid line) and the root mean square of wall normal velocity fluctuation

(dashed lines), with both normalized by the wall shear velocity _cwa. The profiles of platelets follow closely those of the

tracer points shown here (Ref. 51).
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free layer. The velocity profiles become blunt in the cell-laden region, and the deviation from the

parabolic profile is more significant with decreasing Ca and increasing Ht, as both cause the effec-

tive viscosity to increase. We have shown previously that the profiles of the x velocity and
ffiffiffiffiffiffiffiffiffi
hw2i

p
of platelets closely follow those of the tracer points.51

Figure 14 shows that
ffiffiffiffiffiffiffiffiffi
hw2i

p
vanishes at the wall because of the no-slip boundary condition

and increases monotonically away from the wall in the cell-free layer. The maximum of
ffiffiffiffiffiffiffiffiffi
hw2i

p
occurs right beyond the first layer of cells away from the wall; it then reduces as the centerline is

approached but remains nonzero at the centerline despite the zero local mean shear rate. A nearly

zero
ffiffiffiffiffiffiffiffiffi
hw2i

p
at the centerline would have resulted if the cells were of parachute shapes with their

axes of symmetry coincident with the centerline.52 Under such configurations, the cells undergo

pure rigid-body translation without membrane tank treading. However, it is clear from Figure 11

that the cells instead have asymmetric slipper-like shapes,43 especially at high Ca numbers. There-

fore, the membrane’s tank treading motion persists and induces nonzero disturbance velocity in

the surrounding fluid. The observation is similar to the non-vanishing suspension temperature

(which is proportional to the mean square of the disturbance velocity) at the centerline for channel

flow laden with rigid spheres.42 The
ffiffiffiffiffiffiffiffiffi
hw2i

p
increases with the system hematocrit, similar to that

in a bulk shear flow.

The channel is uniformly divided into 12 intervals in the z direction for calculating the veloc-

ity autocorrelation of Lagrangian tracer points. For time interval [t, tþDt], the autocorrelation

w(t)w(tþDt) of any tracer point is assigned to the z interval within which the tracer lies at time t.
Figure 15 shows the normalized autocorrelation curves for Ht¼ 0.1 at z¼ 2 in the cell-free layer

and z¼ 6 at the channel center. Because of its higher local shear rate, the characteristic decay time

of Cz(t) at z¼ 2 is much smaller than at z¼ 6. At z¼ 6, the initial decorrelation occurs at similar

rates for all Ca, but the negative minima of the correlation deepens as Ca increases, which will

have a negative impact on the integral time scale and thus the effective diffusivity. Because of the

very weak shear thinning effect at Ht¼ 0.1, there is no need to rescale the time for different Ca.

At Ht¼ 0.2, the curves overlap well only when t is scaled by a local shear rate.51

In Figure 16, we compare the velocity autocorrelations in a channel flow with that in a bulk

shear flow, both at Ht¼ 0.2. The channel flow has Ca¼ 2, and the autocorrelation curve is for the

z¼ 3 plane that is within the cell-laden region but is still reasonably far away from the centerline.

The capillary number based on the local mean shear rate is 0.79, so is close to the Ca¼ 0.8 in the

bulk shear flow. The two curves share similar features despite the clear quantitative difference—

there is still a significant velocity curvature effect here because the local shear rate has O(1)

change over the vertical distance of one RBC diameter.

From the characteristics of their velocity autocorrelation (cf. Figure 15), it is clear that the in-

tegral time scale s of tracer points must decrease with increasing Ca in the core flow region, which

is the opposite of the Ca-dependence of s in the bulk shear flow. Nevertheless, at Ca 	 1, s
becomes largely independent of Ca in both flow environments. Figure 17 demonstrates the

FIG. 15. The velocity autocorrelation of tracers at z¼ 2 and z¼ 6 for channel flow at system Ht¼ 0.1.
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reduction of the integral time scale with increasing Ca in the cell-laden region, where the most sig-

nificant decay of s occurs at Ca< 1. The integral time scale is reduced at higher hematocrit, fol-

lowing the same trend as that in the bulk shear flow.

Because the variation of hw2i with Ca is small, the particle diffusivity in the cell-laden region

follows the same trend as the integral time scale s. Figure 18 shows that Dz decreases with increas-

ing Ca but levels off when Ca> 1. When the linear growth of hDz2i with t is established in the

cell-laden region, the spread width of the particles has become comparable to the width of this

region. Because of this, we have calculated Dz by averaging the hDz2i curves over the entire cell-

laden region, which also results in better statistics.

Saadatmand et al. measure the dispersion of microbeads of 1 lm diameter in an RBC suspen-

sion flowing through a cylindrical tube of 50 lm diameter.18 The size of the cross section is similar

to that in our simulation, but the Ca in the experiment is less than 0.1. In agreement with the pres-

ent numerical results, the radial migration of the beads near the channel wall is found to be much

slower than that in the core flow region. The diffusivity of the beads, as determined from their

mean square displacement in the radial direction, is reported to be proportional to the shear rate,

and thus the nondimensional Dz¼ 3.6� 10�3 is independent of Ca. This value is close to

Dz¼ 2.5� 10�3 for the tracer points at the lowest Ca¼ 0.25 in our simulation, although our simu-

lations suggest a sublinear scaling of D�z with shear rate at this small Ca.

In their two-dimensional lattice Boltzmann simulation of platelets/RBCs in a channel of

50 lm height, Crowl and Fogelson find that the Dz of platelet is almost uniform in the core flow

FIG. 16. The velocity autocorrelations of tracers in a bulk shear flow of Ca¼ 0.8 and in a channel flow of Ca¼ 2. For the

latter, the capillary number based on the local mean shear rate is 0.79.

FIG. 17. The profile of the integral time scale s of tracer points in the channel flow.
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region.13 At Ht¼ 0.2 and _c�w ¼ 1100 s�1, they obtain D�z � 2� 10�6 cm2 s�1. This translates to a

dimensionless Dz� 2.3� 10�2, which is an order of magnitude higher than the values from our

three-dimensional simulations. In three dimensions, the RBC and platelet in a collision can have

different centroid coordinates in the vorticity direction. The collision will then result in a smaller

platelet displacement than that from a perfectly in-plane collision, which is always the case in two

dimensions. We suspect that the difference in the particle diffusivity can be attributed to this

effect.

The shear-induced diffusivity causes the spreading of particles in the cell-laden region. How-

ever, pure diffusion alone, even with a spatially varying diffusivity, can only result in a uniform

particle distribution instead of the observed density peaks in the cell-free layer. Crowl and Fogel-

son find a net drift velocity of platelets that drives platelets toward the wall.13 A similar mean lat-

eral velocity is also evident in the current three-dimensional simulations, and Figure 19 shows

profiles of the platelet mean wall normal velocity hwi. Compared with its fluctuation
ffiffiffiffiffiffiffiffiffi
hw2i

p
, the

hwi is smaller by one order of magnitude. The maximum hwi occurs near the edge of the cell-free

layer: a platelet in this region experiences more collisions with RBCs from the centerline side than

with those from the wall side, and the mean lateral velocity emerges as a result of the asymmetry

of the collisions.13 The profiles of hwi here is qualitatively similar to those observed in two dimen-

sions, but like the diffusivity, the magnitude is smaller by about 10 times.

FIG. 18. The self-diffusivity of tracer points and platelets in the cell-laden region of the channel.

FIG. 19. (Color online) The mean wall normal velocity of platelets in the channel flow.
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Passive Lagrangian tracer points do not exhibit any mean lateral drift at a stationary state,

even though their self-diffusivity is close to that of the platelets. Because these tracer points follow

the extracellular plasma velocity, any drift in the wall normal direction—if it does exist—must be

balanced by a net drift of RBCs in the opposite direction as dictated by mass conservation, which

is not possible after the flow has reached a stationary state. The qualitative difference in hwi
between tracer points and platelets means that hwi must strongly depend on the size and the shape

of the particle. Opposite to the Ca-dependence of the diffusivity, hwi appears to increase with Ca

in Figure 19, but the trend is not strictly monotonic (note the peak of hwi at Ca¼ 0.5 exceeds that

at Ca¼ 1.0 near z¼ 10). More investigation is necessary to make a clear conclusion.

The lateral migration of platelets in the channel flow can thus be phenomenologically mod-

eled as a convection and diffusion process. When platelets are initially released near the center-

line, they spread out laterally due to the dominant shear-induced diffusion in the cell-laden region;

and they are further driven toward the wall by the mean lateral velocity. Figure 20 shows snap-

shots of platelet number density distributions. The platelet margination is clearly visible and

appears irreversible, as the very small velocity fluctuations near the wall and the mean lateral ve-

locity make it difficult for the platelets to re-enter the cell-laden region. The comparison between

the density profiles at t¼ 200 and t¼ 3600 shows that more than half of the platelets have

migrated to the cell-free layer at t¼ 3600 (Figure 20). The asymmetry in the platelet density pro-

file is caused by the bias in the initial platelet distribution that is difficult to control precisely.

Comparing the density profiles at Ht¼ 0.1 in Figure 21 with those at Ht¼ 0.2 in Figure 20, we

FIG. 20. The evolution of the platelet distribution in the channel. Ht¼ 0.2 and Ca¼ 0.5.

FIG. 21. The evolution of the platelet distribution in the channel. Ht¼ 0.1 and Ca¼ 0.5.
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find that at lower mean hematocrit, the profiles in the cell-free layer are wider and have lower

peak values obviously because of thickening of the cell-free layer. In the case of vessel injury, a

platelet in the cell-free layer will then have to travel longer on average in the wall normal direction

to reach the vessel wall at a lower hematocrit. The smaller hw2i in the cell-free layer at Ht¼ 0.1

also means slower migration if the platelet reaches the endothelium through diffusion. These are

likely causes of the positive correlation between lowered hematocrit and longer bleeding time.5

For a platelet that is initially at a random position of the cell-laden region, we estimate its con-

vection distance to be hui(H/4)2/Dz before it migrates into the Fahraeus–Lindquist layer via diffu-

sion. At Ht¼ 0.2 and Ca¼ 1, this gives a convection distance of about 30 mm, which is 60 times

larger than the average vessel branch (about 500 lm) at this diameter.53 Therefore, the flow at the

branching of blood vessels may play an important if not dominant role in determining the platelet

concentration profile in the microvascular network.

V. SEPARATION OF RED CELLS AND RIGID SPHERICAL BEADS IN A 10 3 15 lM DUCT

In vessels of sizes comparable to the RBC diameter, the RBCs deform into slipper-like or

umbrella-like shapes under high shear rate and migrate toward the centerline. On the other hand,

rigid spheres in a Poiseuille flow alone do not migrate laterally due to its fore-aft symmetry.

Figure 22 shows our simulation of RBCs and spherical beads (3 lm in diameter) flowing in a rec-

tangular channel of 10� 15 lm cross section—the same configuration as the experiments reported

by Hou et al.54 The wall shear rate is about 1000 s�1, and the mean hematocrit is 0.1. The

deformed RBCs form a single-profile train at the duct center where the axial velocity is maximal,

and they push the nearby beads toward the corners of the duct. The bead margination is thus pre-

dominantly due to volume exclusion and occurs almost instantaneously within a time scale of

O(10), as compared to O(103) for the platelets in the larger channel that is discussed in Sec IV.

The segregation between deformable cells and stiffened cells in a channel flow is reported

previously, in which the stiffer cells migrate from their initial positions near the centerline to the

peripheral of the cell-laden region.23 The side length of the channel cross section in that study is

more than 4 times the cell diameter and much bigger than the one discussed here, and thus the

migration of the cells in that study is dominated by the slower diffusion which occurs at a time

scale of O(103).

The channel/duct flow systems discussed here are analogous to the endothelial wall-adhesion

of sickled or malaria-infected RBCs.55,56 Despite their distinct pathology, these cells have more

irregular shapes and stiffened membranes than normal RBCs,57 which lead to their severely

reduced deformability. The simulation suggests that these rigid cells will be expelled toward the

vessel walls due to volume exclusion or by shear-induced diffusion/convection depending on the

vessel size. Furthermore, because of the much enhanced speed of margination in smaller vessels, a

rigidified RBC will migrate to the endothelium with a streamwise traveling distance of only 10

FIG. 22. Left: RBCs and beads of 3 lm-diameter in a rectangular channel of 10� 15 lm cross section. Right: the beads

number density profile in the channel cross section from our simulation.
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cell diameters after exiting a capillary. This statement is consistent with observations that the en-

dothelial wall adhesion occurs predominantly in postcapillary vessels.58,59

VI. CONCLUSION

We have simulated the cross-flow migration of rigid particles in a red blood cell suspension

in two distinct flow environments: (1) a suspension undergoing bulk shear motion and (2) a sus-

pension flowing in a microchannel. The particle migration in these systems is characterized by

their shear-induced diffusion and/or a mean lateral velocity both due to the hydrodynamic interac-

tions between particles and RBCs.

In a bulk shear flow, the characteristics of the particle’s velocity fluctuation are closely related

to the alignment of RBCs in the suspension, and the autocorrelation decays more slowly at high

capillary number. We observe a non-monotonic behavior of the dimensionless diffusivity with the

increase of Ca because of the competition between the decaying hw2i and the growing integral

time scale s.

In a microchannel flow, the velocity fluctuations created by RBCs cause the platelets to

spread diffusively in the cell-laden region. The nondimensional shear-induced diffusivity of plate-

lets decreases monotonically with increasing flow Ca because the integral time scale decreases

significantly with increasing Ca. A mean lateral velocity further expels the platelets toward the

wall, causing their accumulation in the cell-free layer.

For both flow environments, the effect of Ca on the suspension velocity fluctuations is most

significant near Ca� 0.5, which is roughly the onset of a tank-treading motion of RBCs. At higher

Ca, the cell deformation saturates and so do other flow-related quantities such as the particle diffu-

sivity. The interactions between RBCs dominate the velocity fluctuations, hence the platelets and

Lagrangian tracer points have similar diffusivities. On the other hand, the particle mean lateral ve-

locity in the channel flow must depend on the particle size and shape, which warrants further

investigation.

For RBCs and rigid spheres flowing in a duct of capillary size, the RBCs form a single-profile

train close to the duct centerline, and they push the spheres outward to the corners of the duct. The

segregation is dominated by volume exclusion, and occurs O(100) times faster than the diffusional

migration in the larger channel. The implication to the RBC–endothelium adhesion as observed in

malaria or sickle cell disease is discussed.
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