Thai Lexical Semantic Annotation by UW

Virach Sornlertlamvanich, Tanapong Potipiti
and Thatsanee Charoenporn

Information Research and Development Division
National Electronics and Computer Technology Center
(NECTEC), THAILAND
Overview

• Universal Networking Language (UNL) project
 – UNL specification
 – Universal Word (UW) and the problems in concept alignment

• UW annotation for Thai
 – Corpus-based word extraction
 – Word-sense classification
 – UW annotation

• Conclusion
UNL project

- Initiated by the United Nations University in 1996
- Collaboration of research institution from 16 countries
- International semantic annotation standard for multilingual communication
- Interlingua-based data archive
UNL and existing MT

- **Existing interlingual MT**

 Errors in analysis are propagated into the generation process.

- **UNL**

 No errors in analysis is propagated into the generation process.
UNL specification

- Interlingua in hypergraph representation
 - Node: UW (interlingual acceptation)
 - Link: UNL semantic relation such as agt, obj, pur ...

The UNL graph representing ‘The bachelor books a room for 2 persons’
UWs and concept alignment (1)

- Concept alignment
 - The fundamental of interlingual approach
 - Define and alignment concepts among languages
 - Concept unification and decomposition
 - How to link a word sense in each language to the interlingual concepts consistently
UWs and concept alignment (2): approaches in concept alignment

- **EDR**
 - Approach: Word description as employed in dictionaries
 - Problem: Ambiguities and incomputability

- **Wordnet**
 - Approach: Synonym set and simple semantic relations to other words
 - Problem: Ambiguities

- **UW**
 - Approach: Headwords and semantic restrictions
 - Advantage: Computability and no ambiguity
UWs and concept alignment (3): approaches in concept alignment

<table>
<thead>
<tr>
<th>EDR</th>
<th>Wordnet 1.5</th>
<th>UW</th>
</tr>
</thead>
</table>
| -having or displaying a need for rest
-having lost of interest
lack of imagination | -A1: tired (vs. rested)
-A2: bromidic, commonplace, hackneyed, …
-V1: tire, pall, grow weary, fatigue
-V2: tire, wear upon, fag out
-V3: run down, exhaust, sap, …
-V4: bore, tire, … | -tired
tired(*icl>*physical)
tired(*icl>*mental) |

Representation of concept tired in different schemes
UW specification(1)

- UW format:
 <headword>(<list of restrictions>)
e.g. book(icl>do, obj>room)

- Headword:
 An English word roughly describes the UW sense.

- Restrictions:
 - Inclusion (icl) to indicate the class of the sense
 e.g. car(icl>movable thing)

UW specification (2)

• Restrictions (continued)
 – UNL semantic relations

 e.g. \textit{eat}(agt > volitional thing, obj > food)

 The agent of this UW is restricted to be \textit{volitional thing}.
 The object of this UW is restricted to be \textit{food}.
UW annotation for Thai: an overview

Large corpora

Corpus-based word extraction

Lexicon list + examples

Word sense classification according to the word usages in the corpora

Annotating Thai words with UWs
Corpus-based word extraction (1)

- Corpus-based word extraction (Virach et. al. (COLING2000))
 - Machine learning employing statistical features of strings
 - Manual checking
Corpus-based word extraction(2): Mutual Information

\[Lm(\text{xyz}) = \frac{p(\text{xyz})}{p(x) p(yz)} \]

\[Rm(\text{xyz}) = \frac{p(\text{xyz})}{p(xy) p(z)} \]

where

- \(x \) is the leftmost character of string \(\text{xyz} \)
- \(y \) is the middle substring of \(\text{xyz} \)
- \(z \) is the rightmost character of string \(\text{xyz} \)
- \(p(\) \) is the probability function.

High mutual information implies that \(\text{xyz} \) co-occurs more than expected by chance. If \(\text{xyz} \) is a word, its \(Lm \) and \(Rm \) must be high.

...Efunction... and ...Efunction...
Corpus-based word extraction(3):

Entropy

\[
Le(y) = - \sum_{x \in A} p(xy \mid y) \cdot \log_2 p(xy \mid y)
\]

\[
Re(y) = - \sum_{z \in A} p(yz \mid y) \cdot \log_2 p(yz \mid y)
\]

where

- \(x\) is the leftmost character of string \(xyz\)
- \(y\) is the middle substring of \(xyz\)
- \(z\) is the rightmost character of string \(xyz\)
- \(p(\cdot)\) is the probability function.

Entropy shows the variety of characters before and after a word. If \(y\) is a word, its left and right entropy must be high.

Example: ...?function... , ...?unction...
Corpus-based word extraction(3):
Other Features

- **Frequency**
 Words tend to be used more often than non-word string sequences.

- **Length**
 Short strings are likely to happen by chance.
 The long and short strings should be treated differently.

- **Functional Words**
 Functional words are used mostly in phrases. They are useful to disambiguate words and phrases.

Result of subjective test:
- Word precision: 85%
- Word recall: 56%
Word-sense classification

- Word and their contexts in the corpora
- Manual word-sense disambiguation according to the contexts.
- Unsupervised word sense disambiguation (Yarowsky 1995)

<table>
<thead>
<tr>
<th>เกาะ (sense1: to attach)</th>
</tr>
</thead>
<tbody>
<tr>
<td>... มันเกาะตัวเองกับธงไม้ ... (It clings itself on a tree)</td>
</tr>
<tr>
<td>... ผู้โดยสารไม่จำเป็นต้องขึงเกาะห่วงอีกต่อไปแล้ว ... (Passengers don't have to hold peddles anymore.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>เกาะ (sense2: an island)</th>
</tr>
</thead>
<tbody>
<tr>
<td>... บ้านผมอยู่ที่เกาะสมุย ... (I live at the Samui island.)</td>
</tr>
<tr>
<td>... ญี่ปุ่นประกอบด้วยเกาะใหญ่ 4 เกาะ ... (There are four big islands in Japan.)</td>
</tr>
</tbody>
</table>
Annotating Thai words with UW: headword and dictionary

• Headword search through the Thai-English dictionary

1) From the Thai-English dictionary:
เกาะ = island, isle, hold, attach, …

2) The UWs that occupy the headwords above are listed:
 - island (icl>concrete thing)
 - attach (agt>volitional thing, icl>do, obj>thing)
 - hold (gol>organization, icl>do)
 - island (icl>place)

3) The best UWs annotation corresponding to the contexts in the corpora are:
 -เกาะ (sense1) is annotated with UW attach (agt>volitional thing, icl>do, obj>thing).
 -เกาะ (sense2) is annotated with UW island (icl>place).
Annotating Thai words with UW: restriction similarity (1)

- Restriction similarity
 - The annotator can find an appropriate UW by forming a set of restrictions, in case that there is no appropriate UW due to the headword search.

<table>
<thead>
<tr>
<th>เกาะ (sense1: to attach)</th>
</tr>
</thead>
<tbody>
<tr>
<td>... มันเกาะตัวเองกับกิ่งไม้ ... (It clings itself on a tree)</td>
</tr>
<tr>
<td>... ผู้โดยสารไม่จำเป็นต้องขึ้นเกาะห่วงอีกต่อไปแล้ว ... (Passengers don't have to hold peddles anymore.)</td>
</tr>
</tbody>
</table>

From the example above, a lexicographer may restrict the finding concept with (*icl>*do, *agt>*volitional thing, *obj>*concrete thing).
Annotating Thai words with UW: restriction similarity (2)

- UWs that have similar restrictions with the created set of restrictions will be listed as candidates.

- Similarity of restrictions will be ranked according to the similarity score.
Annotating Thai Words with UW: restriction similarity score (1)

• *Similarity score* is computed as follows:
The score is calculated according to the following scheme.

 • The initial score is set to be 0.
 • The score is unchanged for an exact matched restriction pair.
 • For a pair of restrictions under the same UNL relation but attaching to different classes, the score is decreased by the distance between those 2 classes.
 • For any unmatched restrictions, the score is decreased by 10 points per each.
Annotating Thai words with UW: restriction similarity Score (2)

Example: restriction similarity score of

\((agt>volitional\ thing, icl>thing) \)

and

\((agt>volitional\ thing, icl>concrete\ thing, fld>science) \)

<table>
<thead>
<tr>
<th>Score</th>
<th>Restrictions applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(agt>volitional\ thing, agt>volitional\ thing)</td>
</tr>
<tr>
<td>- 2</td>
<td>(icl>thing, icl>concrete\ thing)</td>
</tr>
<tr>
<td>- 10</td>
<td>(fld>science)</td>
</tr>
<tr>
<td>Total</td>
<td>- 12</td>
</tr>
</tbody>
</table>
Conclusion and further research

• The process of UW annotation for Thai is presented.
• The computability of UW has been applied.

• Further Research
 – Automatic UW class suggestion applying vector similarity rather than linear similarity score between words in UW classes and the considered Thai word.