

Optoelectronics (광전자공학)

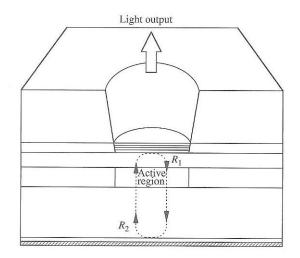
Lecture 9. Surface Emitting Lasers

Young Min Song

Associate Professor

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology


http://www.gist-foel.net

ymsong@gist.ac.kr, ymsong81@gmail.com

A207, 22655

Vertical-cavity surface-emitting laser (VCSEL)

Schematic diagram of a surface emitting laser

Front and back surface-emitting lasers

Advantages

- ✓ Ease of coupling to optical fibers(\because circular geometry)
- ✓ Direct wafer scale probing, two-dimensional laser array(∵ vertical emission from the top or bottom of substrate)
- ✓ Ultralow threshold operation, single-frequency operation(\because small cavity volume)
- ✓ Fabrication process without wafer lapping, device cleaving and dicing, facet coating, wire bonding

Brief VCSEL history

Year	Event	Material	Wavelength
1977	First suggestion	AlGaAs/GaAs	0.85 µm
1979	First demonstration	InGaAsP/InP	1.3 µm
1984	Semiconductor DBR	InGaAsP/InP	1.3 µm
1986	Semiconductor DBR	AlGaAs/GaAs	0.85 µm
1986	6mA threshold at room temperature	AlGaAs/GaAs	0.85 µm
1988	First room temperature(RT) CW	AlGaAs/GaAs	0.85 µm
1989	2mA threshold quantum well device	InGaAs/GaAs	0.98 µm
1989	Sub-mA threshold device	AlGaAs/GaAs	0.98 µm
1991	First RT operation of deep red	InGaAsP/InP	0.78 µm
1993	First RT CW long wavelength	InGaAIP/GaAs	1.3 µm
1993	First RT operation of red color	InGaAs/GaAs	0.67 µm
1995	Oxidation of AIAs and sub-200µA threshold	AlGaAs/GaAs	0.98 µm
1996	10 ⁷ hours of life time	AlGaAs/GaAs	0.85 µm
1996	> 200 mA CW output	InGaAs/GaAs	0.98 µm
1996	> 50% power conversion efficiency	InGaAs/GaAs	0.98 µm
1998	Optically pumped blue color	InGaN/GaN	0.4 µm

First suggestion

Prof. Kenichi Iga

Sketch of VCSEL conceived in 1977

This type of laser was first proposed by Prof. Kenichi Iga in 1977 at the Tokyo Institute of Technology as an alternative device design that could be packaged in a manner similar to that of a light-emitting diode (LED) and yet could be very simply and efficiently coupled to a fiber.

First demonstration S26DA 8 Light output 77 K, Pulsed 6 output (mW) Au coated Au/Sn ring electrode (-) 100 µm Ø mirror -n-(100) InP sub. Light / resonance (Sn doped : 2×10¹⁸) 90 µm Current n-InP(Te doped:~10¹⁹) flow Light 1.8µm GaInAsP 2 (Undoped, Active layer) p-InP (Zn doped: 1×10^{18}) ■ 50 µm Ø ► Active SiO_2 region Au/Zn circular mirror 0 and electrode (+)

Schematic structure of InGaAsP/InP surface emitting injection laser

Light output vs. injection current characteristic

0.8

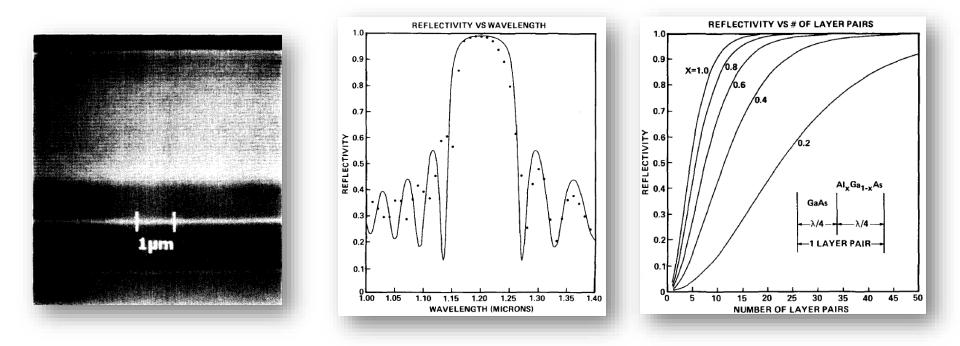
Injection current (A)

0.4

Ith

1.2

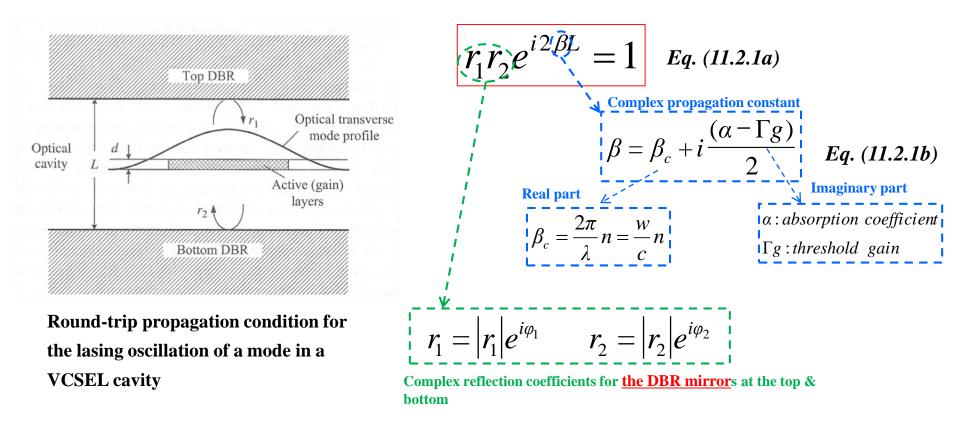
1.6


Gwangju Institute of Science and Tec

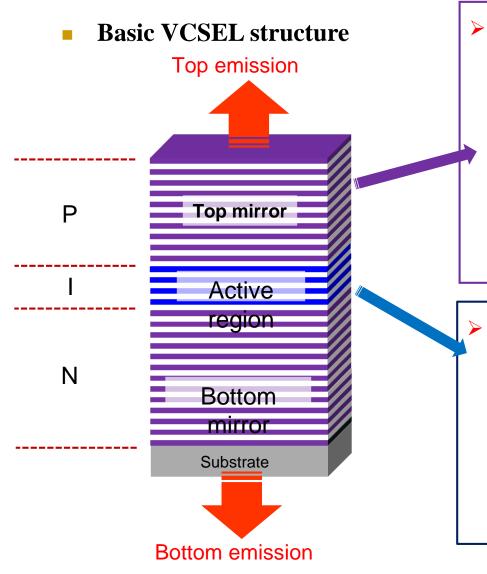
✓ n-type InP layer, undoped InGaAsP active layer, p-type InP layer were grown sequentially on a (100) n-type InP substrate using *liquid phase epitaxy(LPE*).

✓ Threshold current was 900 mA at 77 K and light output of several mW was H. Socatained. Kitahara, and Y. Suematsu, "GaInAsP/InP surface emitting injection lasers," J. J. Appl. Phys. 18, 2329-2330 (1979).

First GaAs/AlGaAs DBR mirror


✓40 layers of alternating GaAs/Al_{0.6}Ga_{0.4}As epitaxially grow on GaAs substrates using metal organic chemical vapor deposition(MOCVD).

R. L. Thornton, R. D. Burnham, and W. Streifer, "High reflectivity GaAs-AlGaAs mirrors fabricated by metalorganic chemical vapor deposition," *Appl. Phys. Lett.* 45, 1028-1030 (1984).

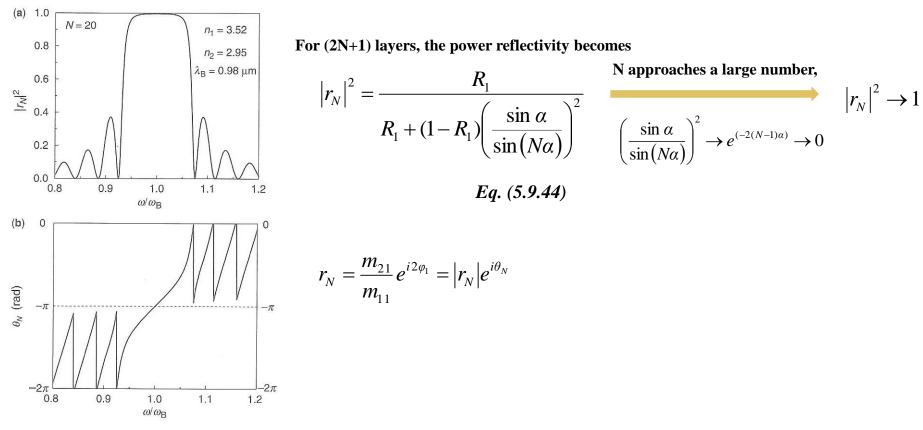


Lasing condition

<u>The lasing condition of a VCSEL</u> is round-trip resonance condition of a vertical Fabry-Perot cavity

> Mirror design issue

- ✓ High mirror reflectivity
- ✓ High reflective index contract
- \checkmark Compatible with the quantum layer
- ✓Low series resistance
- \checkmark Low optical absorption loss
- ✓ DBR (distributed Bragg reflector) & metal


wangiu Institute of Science and

• Active region design issue

- ✓ High optical gain
- ✓Low threshold current
- ✓ High coupling efficiency between gain and optical field
- \checkmark n λ /2 (optical thickness)
 - :spacer+gain layer(quantum wells)

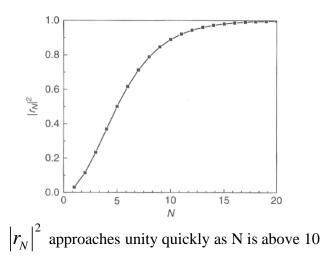
Plane wave reflection from a distributed-Bragg reflector

(a) The power reflectivity of a DBR structure is plotted as a function of wavelength near the stop band wavelength.

(b) The phase of the reflection coefficient.

• Special case right at resonance $\lambda = \lambda_B$

Reflection coefficient at resonance wavelength,


$$r_{N} = \frac{b^{N}\left(\frac{n_{t}}{n_{1}}\right) - a^{N}\left(\frac{n_{1}}{n_{0}}\right)}{b^{N}\left(\frac{n_{t}}{n_{1}}\right) + a^{N}\left(\frac{n_{1}}{n_{0}}\right)} = \frac{\left(\frac{n_{2}}{n_{1}}\right)^{2N} - \left(\frac{n_{1}^{2}}{n_{0}n_{t}}\right)}{\left(\frac{n_{2}}{n_{1}}\right)^{2N} + \left(\frac{n_{1}^{2}}{n_{0}n_{t}}\right)} \qquad r_{N} \rightarrow - \begin{bmatrix} +1 & \text{if } n_{2} > n_{1} \\ -1 & \text{if } n_{2} < n_{1} \end{bmatrix} Eq. (5.9.50)$$

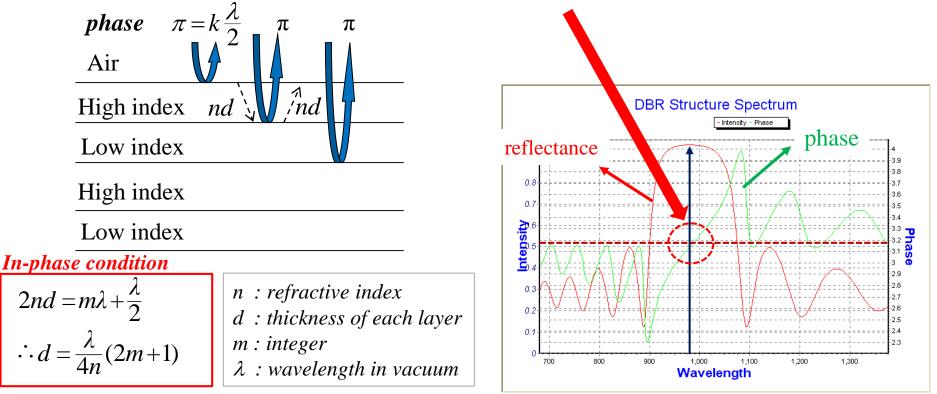
$$0 & \text{if } \left(\frac{n_{2}}{n_{1}}\right)^{2N} = \frac{n_{1}^{2}}{n_{0}n_{t}} Eq. (5.9.51)$$

Eq. (5.9.49)

Assuming $n_1(GaAs)=3.52$ and $n_2(AlAs)=2.95$ at $\lambda_B=0.98\mu m$ $n_0=n_t=n_1(GaAs)=3.52$

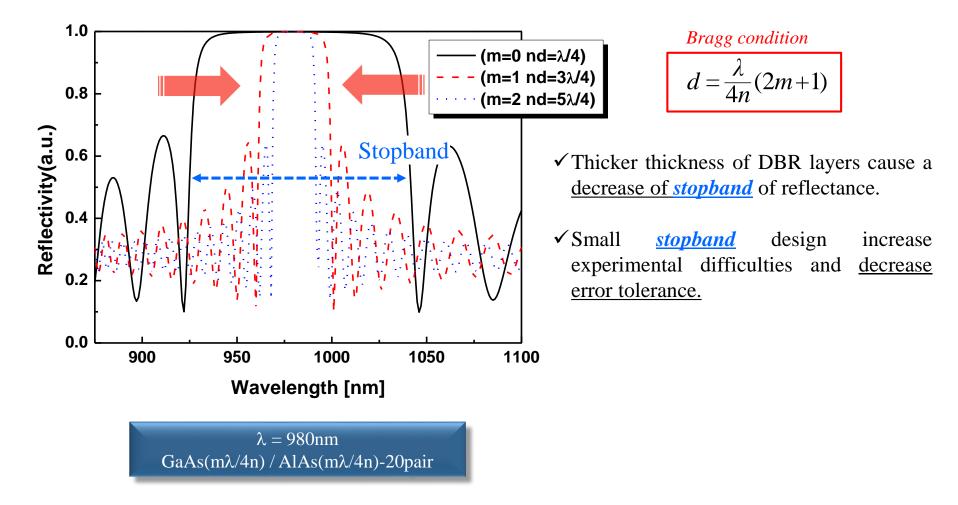
$$\left|r_{N}\right|^{2} = \frac{\left|\left(\frac{n_{2}}{n_{1}}\right)^{2N} - 1\right|}{\left(\frac{n_{2}}{n_{1}}\right)^{2N} + 1}\right|^{2} \quad Eq. (5.9.52)$$

광주과학


Gwangju Institute of Science and Technology

우ィ

Design issues for distributed Bragg reflectors (DBRs)


- ✓ DBR is formed from multiple layers of alternating materials with varying refractive index to get the high reflection like mirror.
- ✓ from each individual interface added exactly *in phase* with the reflection from every other interface

✓ Thickness of DBR layers must satisfy <u>*Bragg condition*</u> at target wavelength !

F. L. Pedrotti., "Introduction to optics" Chapter 7 Interference of light (2007).

Design issues for distributed Bragg reflectors (DBRs)

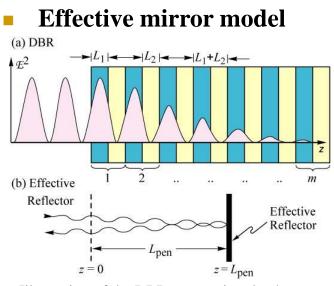
Gwangju Institute of Science and Tec

Different types of reflectors 100 100 GaAs/AlGaAs/AlAs $\lambda/4$ -reflectors Ag/Air: R = 98.5 %DBR Hybrid reflector TIR Metallic reflector 80 80 (Ag/GaAs: R = 96%)25 pairs (%) T = 300 K $I_{\rm R}$ 60 60 Fig. 10.6. Reflectance of Reflectance 5 a silver/air reflector and a 4025-pair AlAs/GaAs distri-External buted Bragg reflector medium 20 20 (DBR). R = 80 - 98 %R < 100 %R = 100 %R < 100 %T = 0 %T = 0 %T = 1 - RT = 0 %0.9 0.6 0.7 0.8 1.0 0.6 0.7 0.8 0.9 1.0 1.1 Wavelength λ (µm) Wavelength λ (µm) www.LightEmittingDiodes.org

✓ <u>Metallic reflector and hybrid reflectors</u> are absorbing and cannot be used as light-exit reflectors (T = 0%).

- ✓ <u>Total internal reflectors(TIR)</u> require that the angle of incidence be shallow in order to achieve high reflectivity.
- ✓ *Distributed Bragg reflector(DBR)* display narrow band of high reflectivity.

$$R_{DBR} = |r_N|^2 = \left| \frac{\left(\frac{n_2}{n_1}\right)^{2N} - 1}{\left(\frac{n_2}{n_1}\right)^{2N} + 1} \right|^2 \Delta \lambda_{stopband} = \frac{2\lambda_{Bragg}(n_2 - n_1)}{\pi n_{eff}} \qquad n_{eff} = 2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{-1} D_{eff}$$


$$n_{2}: \text{ high refractive}$$

 n_2 : high refractive index n_1 : low refractive index

E. F. Schubert, "Light-Emitting diodes," Cambridge university press (2006).

L. A. Coldren et al., "Vertical-cavity surface-emitting lasers: Design, fabrication, characterization, and applications," *Cambridge university* press (1999).

< Illustration of the DBR penetration depth >

Knowing that the reflection phase is zero at the Bragg wavelength(β_0), we can express reflection coefficient (r) as

$$r_{DBR}\Big|_{z=0} = \Big|r_{DBR}\Big|e^{i\varphi} = \Big|r_{DBR}\Big|e^{2i(\frac{2\pi}{\lambda})L_{pen}}\Big|$$

$$r_{DBR} = \left| r_{DBR} \right| e^{i\varphi} = \left| r_{DBR} \right| e^{-2i(\beta - \beta_0)L_{pen}}$$

(within the linear region)

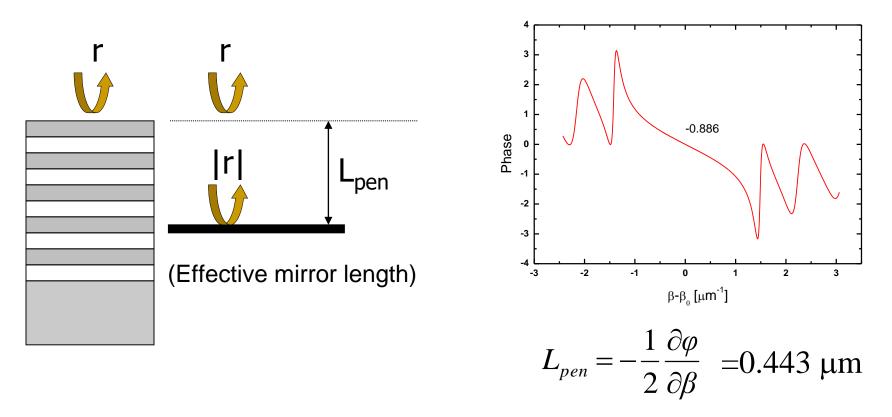
E. F. Schubert, "Light-Emitting diodes," Cambridge university press (2006).

model The incident and reflected wave amplitudes each experience a phase shift of βL_{pen} in traversing the distance to the effective mirror and back.

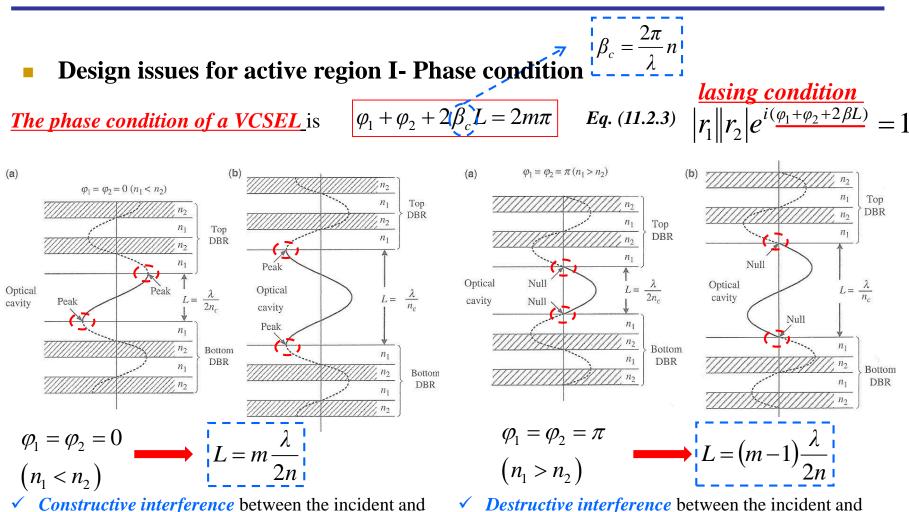
$$\beta$$
: average propagation constant $\frac{1}{\beta} = \frac{1}{2} \left(\frac{1}{\beta_1} + \frac{1}{\beta_2} \right)$

Expanding the simulated DBR reflection phase in a Taylor series about the Bragg wavelength

$$\varphi = \varphi_0 + (\beta - \beta_0) \frac{\partial \varphi}{\partial \beta} + \frac{(\beta - \beta_0)^2}{2} \frac{\partial^2 \varphi}{\partial \beta^2} + \dots$$
$$= -2(\beta - \beta_0) L_{pen}$$
$$L_{pen} = -\frac{1}{2} \frac{\partial \varphi}{\partial \beta}$$
Penetration depth


Effective cavity length $L_{eff} = L_{cavity} + L_{pen,topDBR} + L_{pen,bot.DBR}$

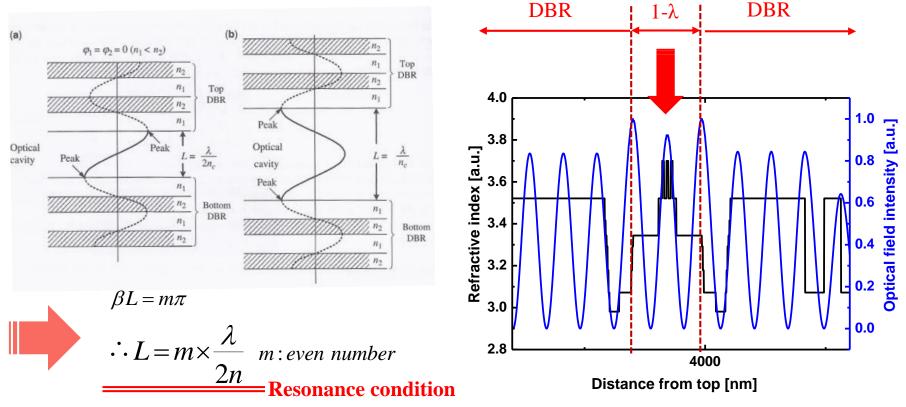
L. A. Coldren et al., "Diode lasers and photonic integrated circuits," Chapter 3. Mirrors and resonators for diode lasers John wiley & Sons, Inc. (1995). 14



Effective mirror model

Phase varies relatively linearly near the reflection maximum. Such a reflection can be well approximated by a discrete mirror reflection equal to the magnitude of the reflection but placed a distance L_{eff} away.

L. A. Coldren et al., "Diode lasers and photonic integrated circuits," Chapter 3. Mirrors and resonators for diode lasers John wiley & Sons, Inc. (1995).


- Constructive interference between the incident and reflected waves
- ✓ Standing wave pattern will have a peak at the first interface of the top and bottom DBR
- ✓ Standing wave pattern will have a null at the first
- Standing wave pattern will have a null at the first interface of the top and bottom DBR

Gwangju Institute of Science and Technology

Design issues for active region II

Fabry-Perot (FP) MQW cavity must satisfy resonance condition which occur when $\beta L = m\pi$ (m=1,2,3...) equivalently when the cavity length is an integral number of half wavelengths.

✓ For high efficiency laser, optical field is placed at quantum well region which occur when the cavity length is an integral <u>even number of half wavelengths</u>.

Threshold condition

The threshold gain of a VCSEL is

$$\Gamma g = \alpha + \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right)$$

$$\alpha : \text{ the optical absorptions inside and outside the active region,}$$

$$\beta : \text{ plus any diffraction loss}$$

$$\Gamma : \text{ the longitudinal and transverse optical confinement factor}$$

$$Eq. (11.2.4)$$

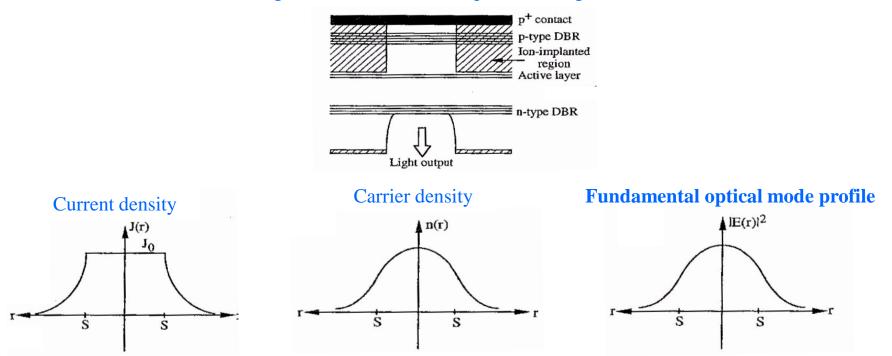
where
$$R_1 = |r_1|^2$$
 $R_2 = |r_2|^2$
 $\Gamma = \left(\gamma \frac{d}{L} \Gamma_t\right)$
 $d: \text{ the active layer thickness },$
 $L: \text{ the cavity length}$
 $\gamma: (1: \text{ thick active layer, } 2: \text{ thin active layer}) \text{ is placed at}$
the maximum of the standing wave
 $dL: \text{ account for the longitudinal optical confinement}}$
 $F_t: \text{ the transverse optical confinement factor}$
 $Eq. (11.2.5)$

Loss parameter

 α_i : absorption in DBR

 $\alpha L = 2\alpha_i L_{eff} + 2\alpha_d L_{cavity}$

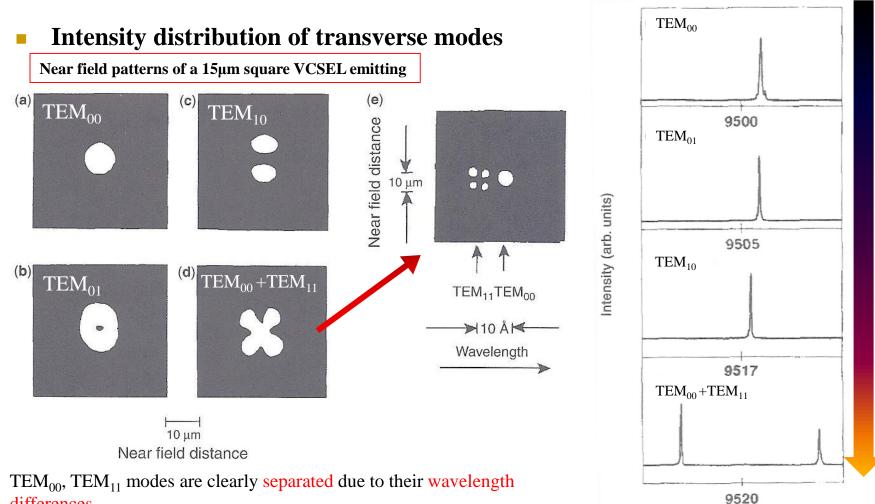
 α_d : diffraction loss due to the mode mismatche


Eq. (11.2.6)

Depends on the size of the diameter of the active region and the locations of the mirrors.

Carrier injection and optical profile

Gain-guided VCSEL with ion-plantation region


Depending on the fabrication processes and the structures of the surface-emitting lasers, the *current distribution*, the *carrier density profile*, and the *optical mode pattern* vary.

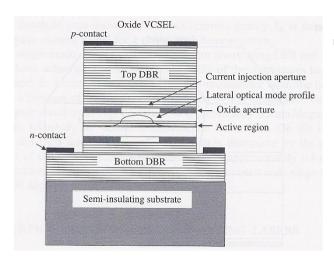
S Gwangju Institute of Science and Technology

-1Å

Wavelength (Å)

Surface Emitting Lasers

differences.


 \checkmark

 The *red shift* of the lasing wavelength is caused by the junction heating as the injection current increases. Current increase

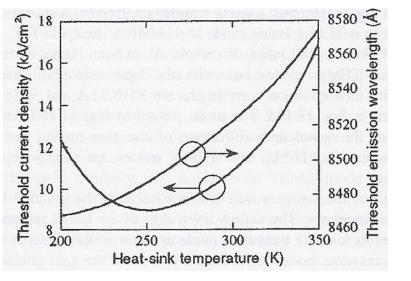
• Oxide-VCSELs: Index Confinement

Lateral confinement by oxide-apertures forms apertures for current flow into the active region of the optical cavity. The lower refractive index of the oxide regions provides lateral index confinement of the optical mode.

< Double-aperture oxide confined VCSEL>

- Advantage of oxide-VCSEL
 - ✓ High power conversion
 - \checkmark Low threshold current density
 - Low resistance design using parabolic hetero-interface grading
 - ✓ Minimize lateral current spreading
 - ✓ Lower refractive index provides index guidance and current flow

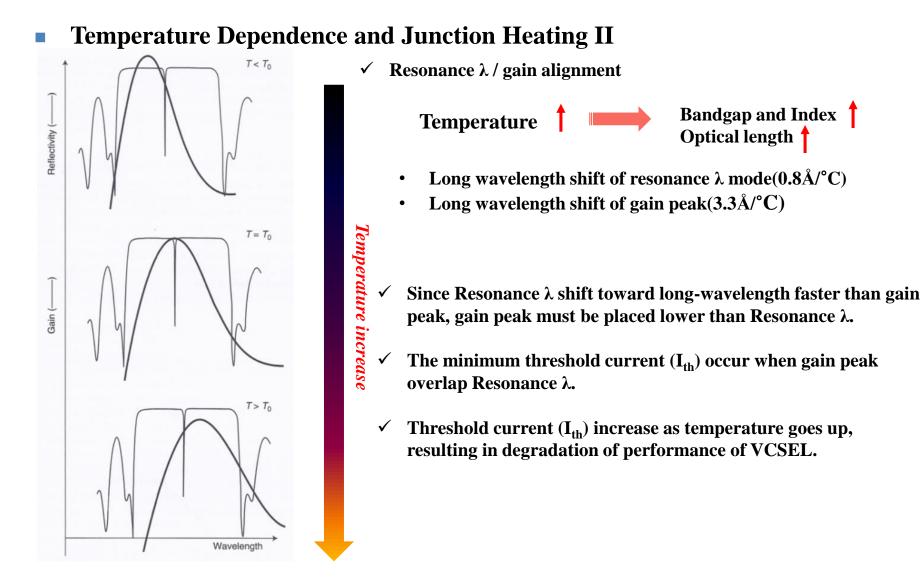
Temperature Dependence and Junction Heating I


The junction heating is important in surface-emitting lasers.

A simplified mode for the temperature rise due to the injection current from a circular disk is

$$\Delta T_{jct} = \frac{P_{IV} - P_{opt}}{4\sigma S} \qquad Eq. (11.2.9)$$

 P_{IV} : the total input electric power P_{opt} : the optical output


 σ : the thermal conductivity

S: the disk radiusThe dependence of the threshold current density and the emission wavelength as a function of the heat-sink temperature, based on a theoretical model.

power

For GaAs, the gain peak wavelength increase linearly at about 2.7 Å/K.

Gwangju Institute of Science and Tec

$P_{out} = \frac{\hbar\omega}{q} \left[\eta \left[I - I_{th}(I, T_{jct}) \right] \right]$ $\eta = \eta_i \eta_{opt}$ Eq. (11.2.10)Eq. (11.2.11)

Optical Output and Differential Quantum Efficiency I

where η depends on two factors:

The optical output power is

(1) The injection efficiency(η_i) accounting for the fraction of injected carriers contributing to the emission process. (2) The optical efficiency (η_{opt}) accounting for the fraction of generated photons that are transmitted out of the cavity.

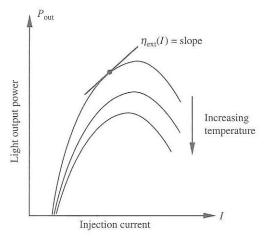
The optical efficiency is

 $\eta_{opt} =$ *Eq.* (11.2.13) $A = 2\alpha_i L_{eff} + \alpha_d L \qquad T_r = \ln\left(\frac{1}{R_1 R_2}\right) \qquad Eq. (H.2.12) \qquad L_{eff} \cdot \dots \cdot I_{ss} = 1$ $Eq. (H.2.12) e cavity length of the active <math>T_r : mirror \ transmission \ loss$

A: *the absorbance in top and* bottom DBR L_{eff} : an effective penetration

Optical Output and Differential Quantum Efficiency II

The power conversion efficiency is given by


$$\eta_p = \frac{P_{out}}{VI} \quad Eq. (11.2.14)$$

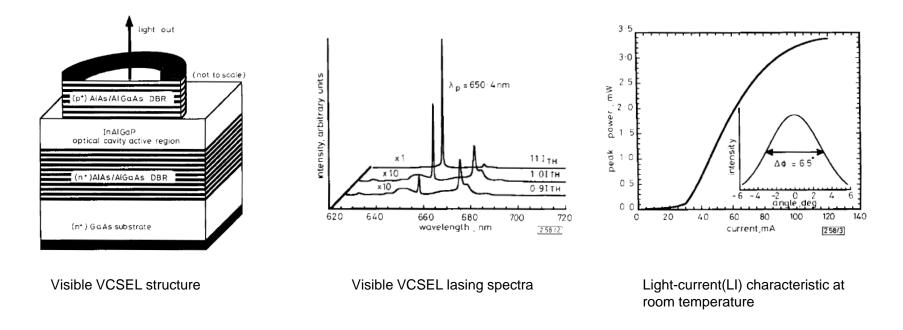
V: bias voltage I: bias current P_{out}: optical out power

The differential quantum efficiency is current-dependent

$$\eta_{ext}(I) = \frac{q}{\hbar\omega} \frac{dP_{out}}{dI} = \eta \left(1 - \frac{dI_{th}}{dI}\right) \qquad Eq. (11.2.15)$$

If $dI_{th}/dI > 1$, then the $\eta_{ext}(I)$ can be negative as shown in figure.

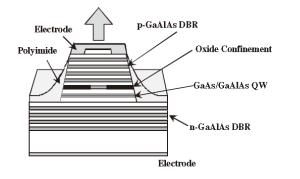
A plot of the light output of a surface-emitting laser vs. the injection current for different temperatures. The slope at a particular current level I is the differential quantum efficiency, which can be negative at a high current level or a high temperature.



• Current and emerging VCSEL applications

	Multi-mode operation	Single-mode operation	
Single VCSEL	 Local area networks Storage area networks Bio-sensors Proximity sensors 	 Laser absorption spectroscopy Chip-scale atomic clocks Laser based optical mouse sensors 	
Array VCSEL	 Very short reach (VSR) links Optical tweezers Optical pumping source 	 Intra-system links Optical memory Laser printing 	

Red VCSELs


- Active layer: InGaAIP/InGaAIP
- In 1993, first demonstration of electrically injected visible VCSELs with an InAIGaP optical cavity active region*.
- 630-670nm is considered as the laser for the first-generation digital video disc system.
- Sub-milliampere thresholds, 11% power conversion efficiency and 8mW output power have been achieved**.
- Red VCSEL has been commercialized for application to printers and plastic fiber communications

*Lott, J.A. et al., "Electrically-injected visible (639-661nm) vertical cavity surface emitting lasers," *Electron. Lett.* 29, 830-832 (1993).

**M. H. Crawford et al., OSA Trends in Optics and Photonics Series, Optical Society of America, Washington, D.C. 15, 104 (1998).

850nm wavelength VCSELs

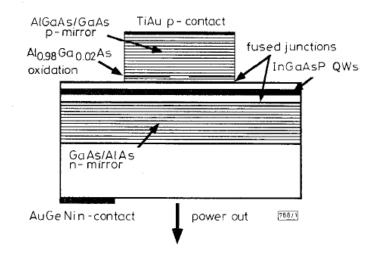
Typical structure of a 850nm GaAs-based VCSEL

980nm wavelength VCSELs

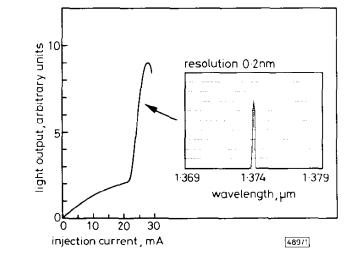
p-contact		
n-pad metal oxide aperture n-contact	I metal BCB	
AR coating semi-insulating GaAs substrate		

- Active layer: GaAs/AlGaAs
- The first room-temperature CW operation was achieved in 1988.
- In production levels, sub-mA thresholds and 10mW output have been achieved.
- Wide temperature characteristics of 850 nm VCSEL is a candidate of a light source of the media orientated system transport application*.

- Active layer: InGaAs/GaAs/AlGaAs
- In 1995, a novel laser structure employing a selective oxidizing process applied to AIAs.
- A relatively high power of more than 50mW may be possible.
- High-efficiency, high-speed, tapered-oxide-apertured 980 nm VCSELs with high data-rate/power-dissipation ratio of 3.5 Gps/mW, making these devices suitable for interconnect applications**.

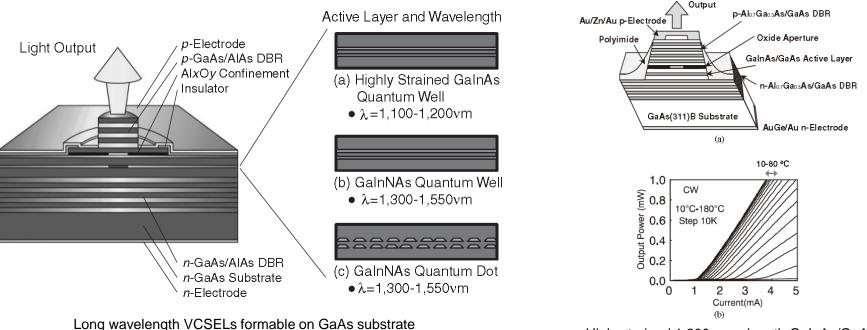

High speed 980nm VCSEL

*K. Nishikata. et al., "Wide temperature operation of 850nm VCSEL and isolator-free operation of 1300nm VCSEL for a variety of application," *Proc. of SPIE* 5737, 8-19 (2005).


**Y. –C. Chang. et al., "High-efficiency, high-speed VCSELs with 35Gbit/s error-free operation," *Electron. Lett.* 43, 1022-1023 (2007).

Long wavelength VCSELs on InP substrate

Epitaxial bonding of the InGaAsP/InP active region and GaAs/AIAs mirrors


CW operation for 1,300nm was demonstrated using MgO/Si mirror

- Active : InGaAsP/InP
- Hybrid mirror technologies are being developed since the index difference between InGaAsP and InP is too small.
- A MgO/Si mirror with good thermal conductivity was demonstrated to enable room-temperature CW operation for 1,300nm surface-emitting lasers for the first time*.
- The CW threshold of 0.8mA and the maximum operating temperature of up to 71°C was reported for 1,550nm VCSELs with double bonded mirrors**.
- Parallel light wave systems are necessary to satisfy the rapid increase in information transmission capacity in LANs.

^{*} T. Bada, "Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser," *Electron. lett.* 29 913-914 (1993). **N.M. Margalit et al., "Submilliamp long wavelength vertical cavity lasers," *Electron. lett.* 32 1675-1677 (1996).

Long wavelength VCSELs on GaAs substrate

Higly strained 1,200-wavelength GalnAs/GaAs VCSEL grown on (311)B substrate.

- Active layer: InGaAsN/InGaAsN, InGaNAsSb/GaAsN and highly strained InGaAs/GaAs/AIGaAs
- GaAs/AIAs Bragg reflectors can be incorporated on same substrate.
- In content(=40%) can provide an excellent temperature characteristic.
- Viable for λ=1,200nm VCSELs for silica-fiber-based high speed LANs*.

*F. Koyama et al., "1.2um highly strained InGaAs/GaAs quantum well lasers for singlemode fiber datalink," *Electron. lett.* 35 1079-1081 (1999).

VCSEL

VCSEL output beam properties **VCSEL** LED EEL S $v_{1}^{V_{3}^{V_{4}}}$ Symmetrical beam V2 V1 Low divergence -0.5 mm 0.5 mm • Simple, low cost optics cleaving LED

LED

VCSEI

EEI

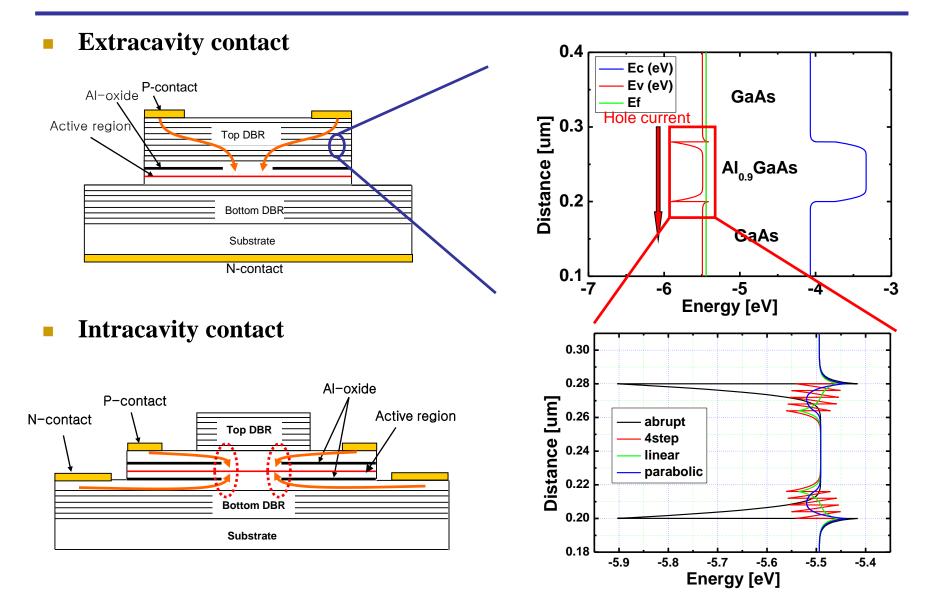
Main parameters in VCSELs

Parameter	Symbol	Stripe Laser	Surface Emitting Laser
Active layer Thickness	d	100Å-0.1µm	80Å-0.5µm
Active Layer Area	s	$3 \times 300 \mu m^2$	$5 \times 5 \mu m^2$
Active Volume	V	60µm ³	0.07 µm ³
Cavity Length	L	300µm	≈lµm
Reflectivity	R _m	0.3	0.99-0.999
Optical Confinement	ξ	≈3%	≈4‰
Optical Confinement (Transverse)	ξ,	3-5%	50-80%
Optical Confinement (Longitudinal)	ξ,	50%	2×1%×3 (3QW's)
Photon Lifetime	$ au_{p}$	≈1 ps	≈1 ps
Relaxation Frequency (Low Current Levels)	f _r	<5GHz	>10GHz

High speed VCSELs

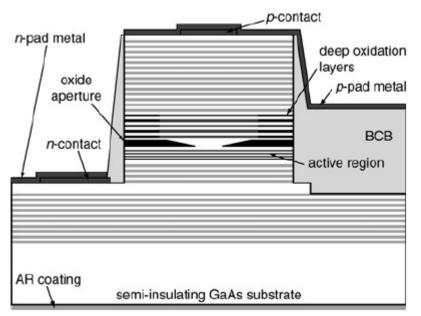
3dB bandwidth in semiconductor lasers

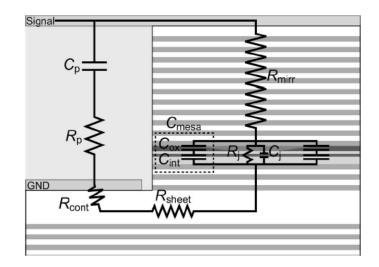
$$f_{3dB} \cong \frac{\sqrt{1+\sqrt{2}}}{2\pi} \sqrt{\frac{v_g a}{qV_p}} \eta_i (I - I_{th})$$

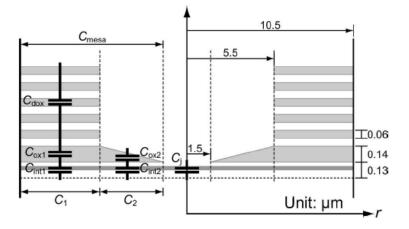

v_g : group velocity

- a : differential gain
- V_p : optical cavity volume
- η_i : internal quantum efficiency
- I_{th} : threshold current

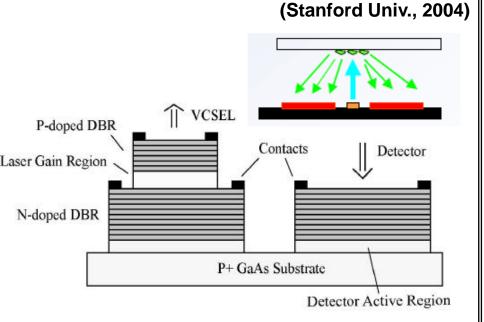
To increase the modulation bandwidth


- ✓ Increase differential gain
 - \rightarrow Optimization the thickness and number of QW
- ✓ Decrease threshold current
 - \rightarrow Uniform carrier injection, Optimization of interface grading
- ✓ Decrease RC time constant
 - \rightarrow Coplanar contact, interface grading



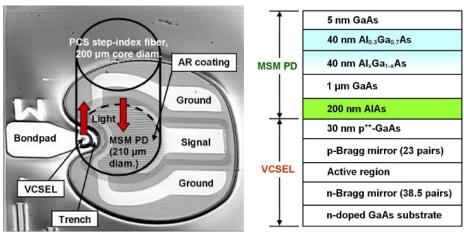


High speed VCSELs


- Modified intra-cavity contact
- Tapered oxide aperture
- Deep oxidation layers

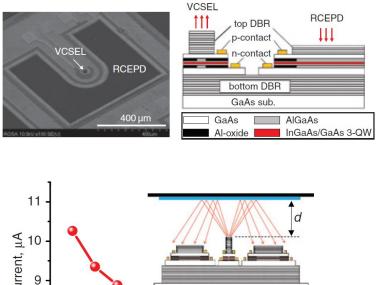
Y.-C. Chang et al., "Efficient, High-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum. Electron. 15, 704 (2009)

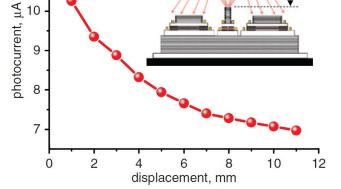
VCSEL/PD integration


VCSEL/pin-PD integration

- VCSEL/pin-PD integration for bio sensor application
- Not applicable to high-speed operation

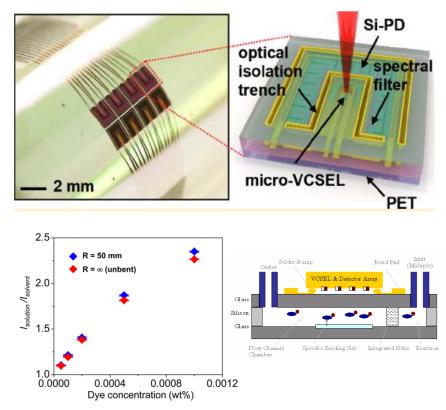
VCSEL/MSM-PD integration


(Univ. of Ulm, 2003)



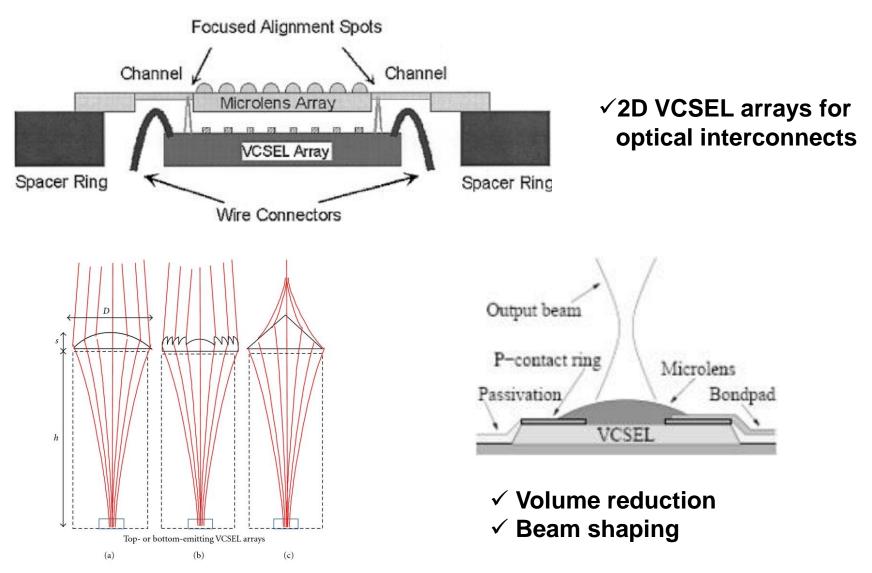
- VCSEL/MSM-PD integration for transceiver application
- Bi-directional optical interconnects

VCSEL/PD integration VCSEL/RCEPD integration (GIST, 2016)

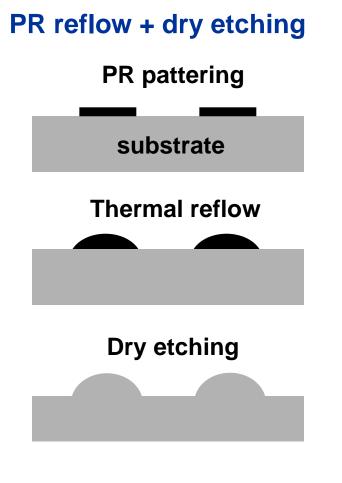


✓ Monolithic integration✓ Displacement sensor applications

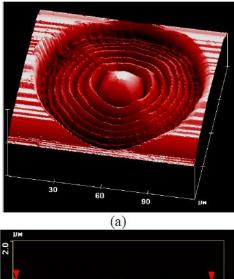
VCSEL/ Si-PD integration

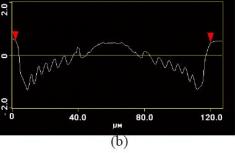

(USC, 2016)

✓ Hybrid integration
 ✓ Flexible forms, optofluidic applications



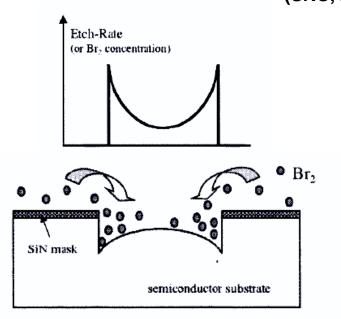
VCSEL – microlens integration

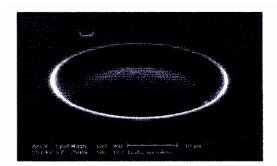



VCSEL – microlens integration

E. M. Stzelecka et al., Microlectron. Eng. 35, 385 (1997)

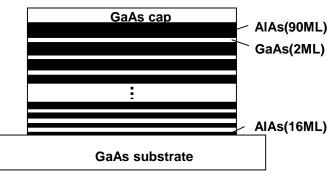
Focused ion beam milling



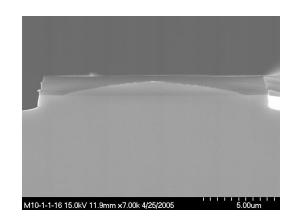

F. Qi et al., Opt. Express 10, 413 (2002)

VCSEL – microlens integration

Diffusion-limited wet-etching (SNU, 2000)

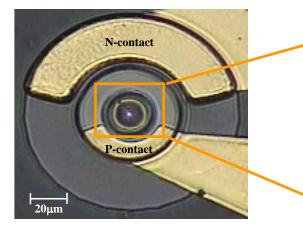


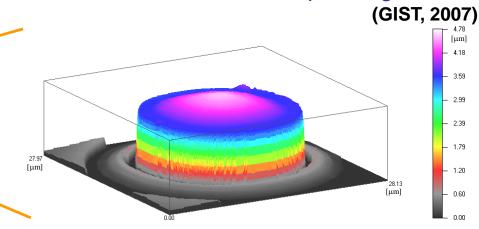
Selective oxidation


(GIST, 2006)

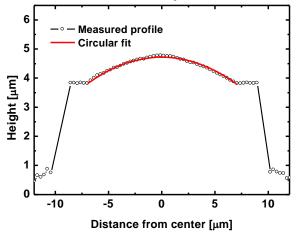
우ィ

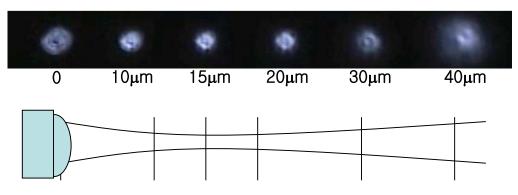
Epitaxial layer structure


Linear composition grading of AlxGa1-xAs (x=0.89~0.98) using digital alloy method



VCSEL – microlens integration


Optical microscope image


3-D confocal microscope image

Microlens profile

Output beam from oxide-removed microlens-integrated VCSEL

Question or Comment?