

Semiconductor Device Processing (반도체 소자 공정 및 실습)

Lecture 2. Overview

Young Min Song

Associate Professor

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology

http://www.gist-foel.net

ymsong@gist.ac.kr, ymsong81@gmail.com

A207, 22655

'Real' Schedule

광주과학기술원 Gwangju Institute of Science and Technology

Weekly Course Schedule			
Calendar	Description	*Remarks	
1st week	Introduction/Semiconductor Process Overview	Lectures	
2nd week	Semiconductor Process Overview	Lectures	
3rd week	Growth of compound semiconductors – MBE & MOCVD	Presentations	
4th week	Photolithography / Nanolithography	Presentations	
5th week	PECVD / Oxidation	Presentations	
6th week	Dry etching / Cleaning & Wet etching	Presentations	
7th week	Diffusion / Ion implantation	Presentations	
8th week	Mid-term Week	No midterm	
9th week	Metallization (Ohmic Contacts) / TLM measurement	Presentations	
10th week	Fabrication & Measurement of TLM patterns	Experiments	
11th week		Experiments	
12th week		Experiments	
13th week		Experiments	
14th week		Experiments	
15th week		Experiments	
16th week	Final Exam & Final Report		

Attendance (5%)

Presentations and pre-reports (30%)

- → 15 min presentation
- → Pre-report for 6 presentation topics (select one topic
- per week, ~3 pages)
- Final report (30%)
- Final Exam (35%)

Presentation Subjects

- 1. Molecular Beam Epitaxy (MBE)
- 2. Metal-Organic Chemical Vapor Deposition (MOCVD))
- 3. Photolithography
 - 4. Nanolithography
- 5. PECVD
 - 6. Oxidation
- 7. Dry etching
 - 8. Cleaning / Wet etching
 - 9. Diffusion
 - 10. Ion implantation
 - 11. Metallization
 - 12. Transmission Line Measurement (TLM)

Contents

- 1. Semiconductors : introduction and history
- **2. Heterostructures :** basic concepts, history, materials, technologies
- 3. Device overview 1: LEDs
- **4. Device overview 2:** Bio-integrated & Bio-inspired electronics

1940s

1st electronic general-purpose computer "Eniac"

- Eniac contains 17,468 vacuum tubes, weighed more than 30 tons, consumed 150 kW of electricity
- It could multiply two ten-digit numbers 40 times per second

Vacuum tubes

The fundamental building block of modern electronic device, "Transistor"

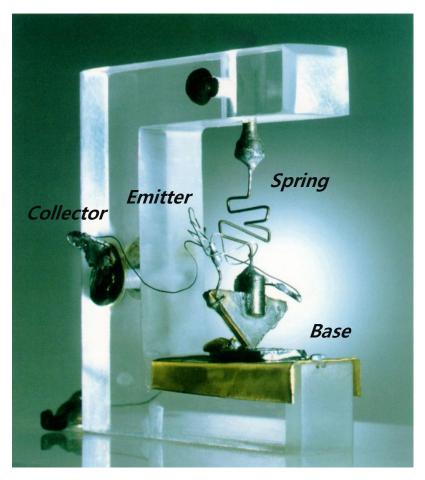
1947

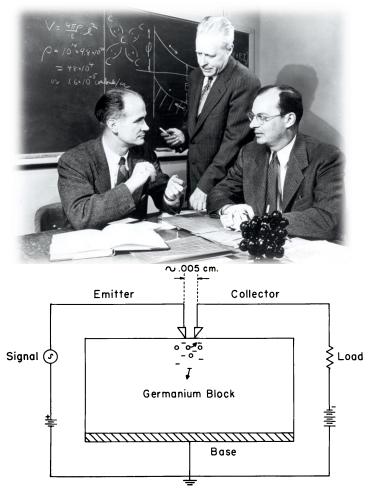
- ➤ November 17, 1947 to December 23, 1947, John Bardeen and Walter Brattain at AT&T's Bell Labs in the US performed experiments. And solid-state group leader William Shockley saw the potential in this → Transistor
- > Small size, low electric consumption, and 10 times faster than Eniac

The Nobel Prize in Physics 1956

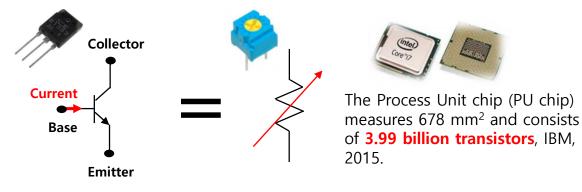
"for their researches on semiconductors and their discovery of the transtitor effect"

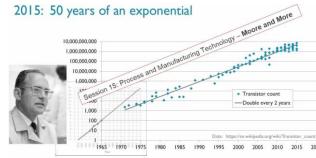
William Bradford **Shockley** 1910–1989





Walter Houser **Brattain** 1902–1987


Bell telephone lab. Dec. 23, 1947



 Schematic plot of the first "point-contact" transistor

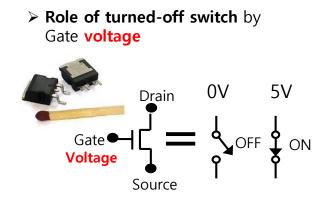
- ➢ Transfer resister → Transistor
- A small current at the base terminal can control or switch a much larger current between the collector and emitter terminals.

> Transistor output is **5,700 times** larger than the wheat

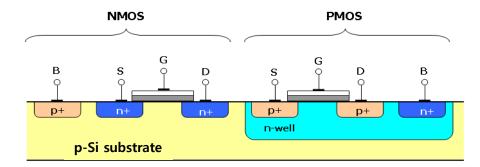
production by year

Transistor output in year : 10,000,000,000,000,000 = **2,700,000,000,000** / day

Wheat production by year: 703,000,000 t = **480,000,000,000** / day



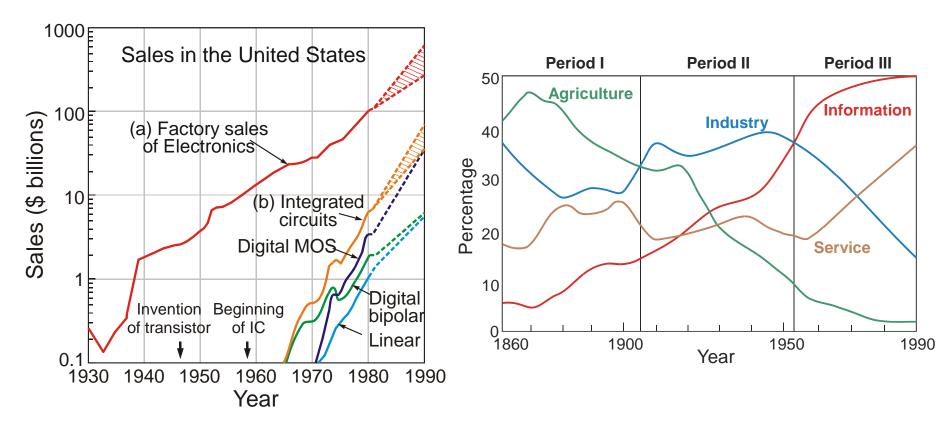
Development of semiconductor industry "MOSFET"



➢ In 1959, Dawon Jahng and Martin M. Atalla at Bell Labs invented the MOSFET
➢ Integration of transistors at silicon substrate → circuit dimensions are reduced

1959

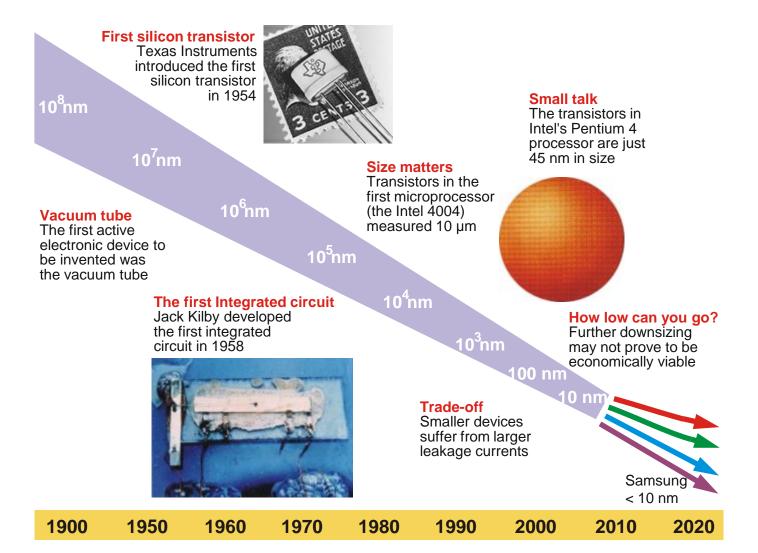
1960s


NMOS + PMOS (Complimentary MOSFET)

 \rightarrow Method for large scale integration in the circuit

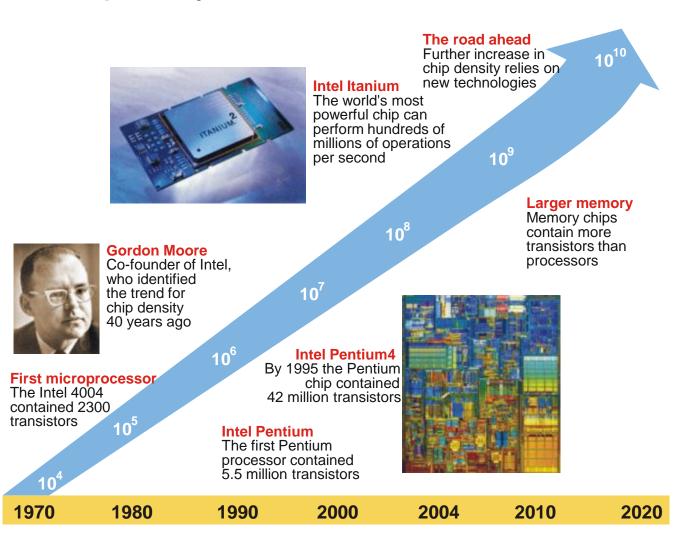
S. M. Sze, J. Appl. Phys. Vol. 22, 1983

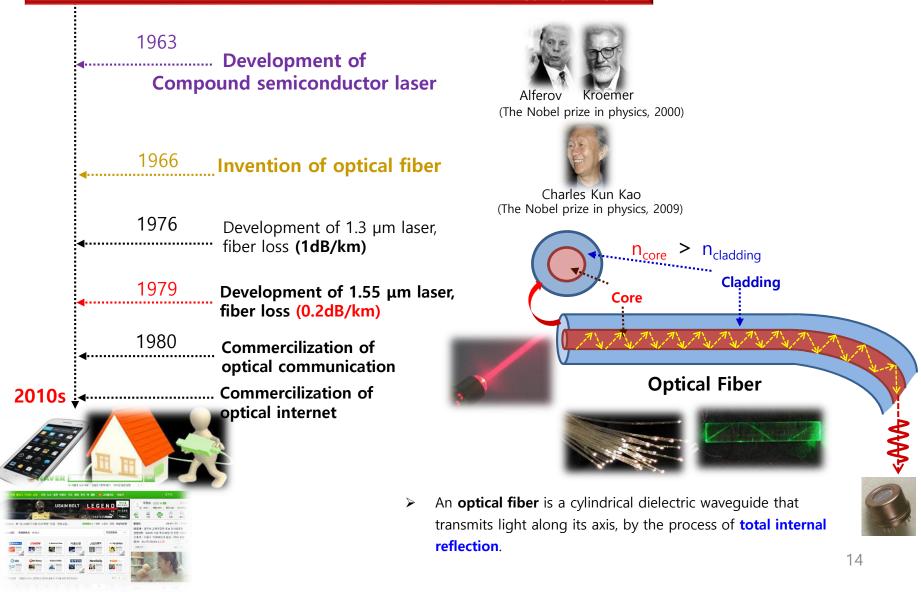
Factory sales of Electronics and IC



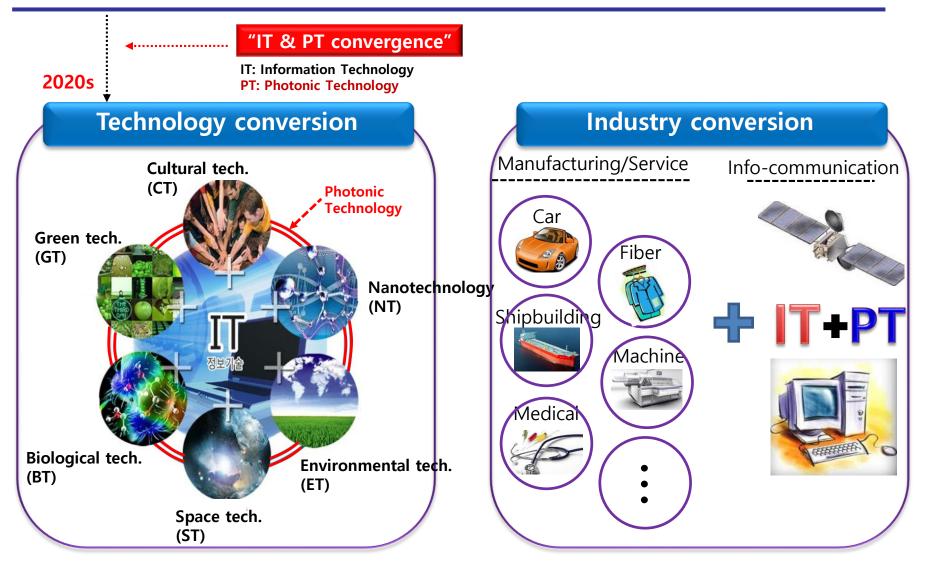
- Factory sales of Electronics in the United States over the past 50 years and projected to 1990
- Integrated circuit market in the United States

H. Iwai, H. wang, Phys. World Vol. 18, 09, 2005


Moore's law I : device downsizing


H. Iwai, H. wang, Phys. World Vol. 18, 09, 2005

Moore's law II : chip density



The Rise of Information and Communication Technology by "Light"

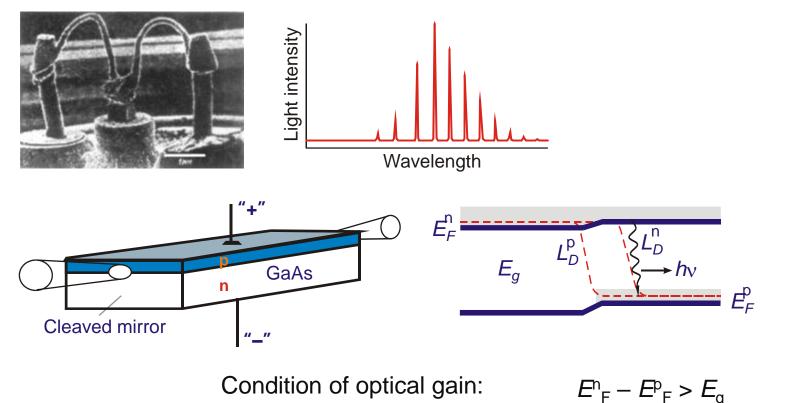
Before heterostructure : quantum electronics

The Nobel Prize in Physics 1964

"for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle"

Charles Hard Townes b. 1915

Nicolay **Basov** 1922-2001



Aleksandr **Prokhorov** 1916–2002

I S T 광주과학기술원 Gwangju Institute of Science and Technology

Before heterostructure : quantum electronics

- January 1962: observations of superlumenscences in GaAs p-n junctions (loffe Institute, USSR).
- Sept.-Dec. 1962: laser action in GaAs and GaAsP p-n junctions (General Electric , IBM (USA); Lebedev Institute (USSR).

The impact of heterostructures

Z. Alferov, "Semiconductor Revolution in the 20th Century

1. Heterostructure – a new kind of semiconductor materials:

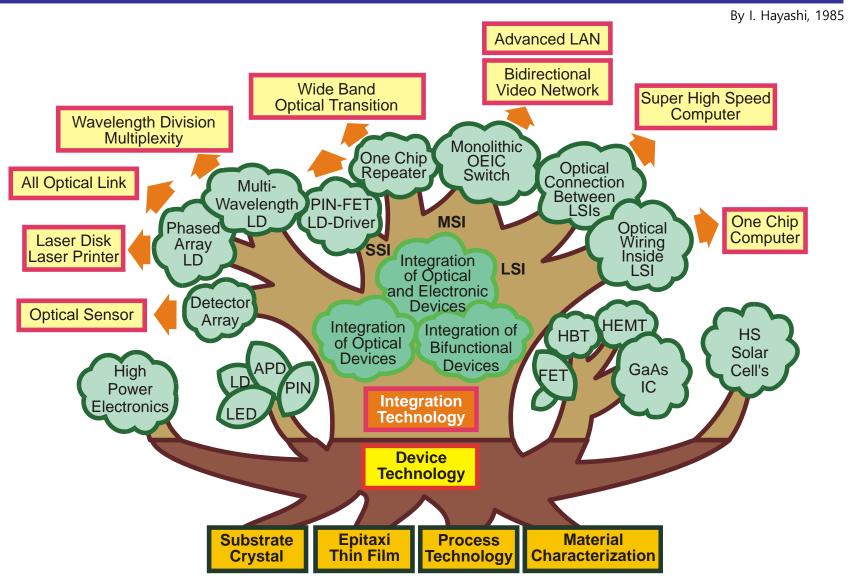
- Expensive, complicated chemically & technologically but most efficient

2. Modern optoelectronics is based on heterostructure applications:

- Double heterostructure (DHS) laser key device of the modern optoelectronics
- Heterostructure (HS) PD the most efficient & high speed photo diode
- **Optoelectronics integrated circuit (OEIC)** only solve problem of high information density of optical communication system
- 3. Future high speed microelectronics will mostly use heterostructures

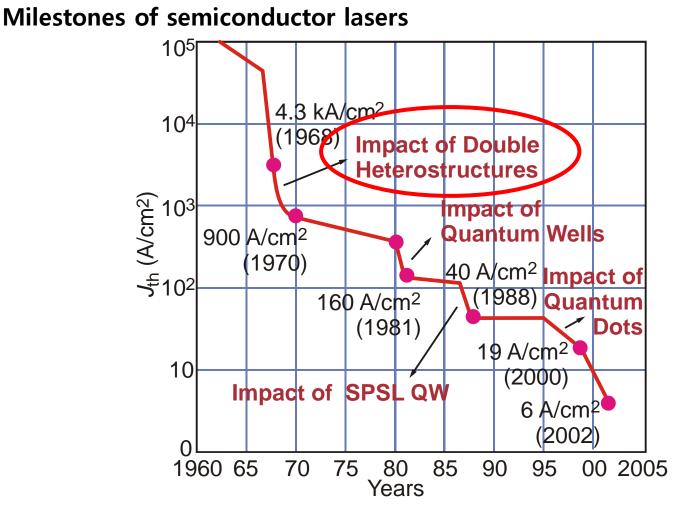
4. High temperature, high speed power electronics

- a new broad field of heterostructure applications


5. Heterostructures in solar energy conversion:

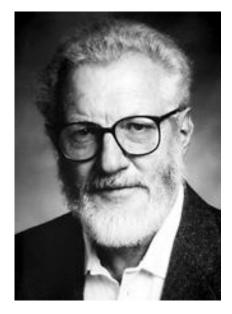
- The most expensive photocells and the cheapest solar electricity producer

6. In the 21st century heterostrucures in electronics will reserve only 1% for homojunctions


Heterostructures Tree

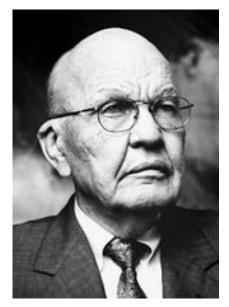
Year	Progress	Contributor
1963	Conception of double heterostructure lasers : double injection, confinement	Alferov, Kazarinov, Kroemer
1966 1967	GaAsP-lattice mismatched DH LDs, 77k AlGaAs-lattice matched heterostructures	Alferov et al. Rupprecht et al.
1969	AlGaAs- DH LD: J_{thr} =4300 A/cm ² , RT, pulse, 770 nm, LED, transistor, solar cell elements	Alferov et al.
1970	AlGaAs LDs, CW, RT, J _{thr} =940 A/cm ² InGaAsP : from IR to visible	Alferov et at., Hayashi, Panish, Alferov et al., Antipas et al.
1974	Quantum size effect in GaAs/AlGaAs (multi) graded structure	Dingle et al., Esaki, Chang, Tsu et al.
1975	First AlGaAs/GaAs MQW optically pumped laser, T=15k, hv=1.53 eV	Van der Ziel, Dingle et al.
1978	AlGaAs/GaAs LD, RT, QUANTUM WELL (QW) J_{thr} =3x10 ³ A/cm ² , λ =800 – 840 nm	Dupius, Dapcus, Holonyak et al.
1980	QW heterostuctures: transistors, Quantum Hall effect	Mimura et al., Klitzing et al.
1982	AlGaAs/GaAs GRINSH, J _{thr} =160 A/cm ²	Tsang et al.
1983	GaAs/InGaAs strained LD, RT, CW	Holonyak et al.
1996 1997	InGaAs/GaAs QDs LDs, RT, CW J _{thr} =97 A/cm ² , P=160 mW, hv=1.3 eV	Bimberg, Park, Alferov et al.
2000	InGaAs/GaAs QD transverse&VCSEL, λ =1.3 µm, J<100 A/cm ² , P=2.7 W	Ustinov et al.
1994 2000	Quantum engineering Quantum cascade lasers: λ=4 – 11 μm, T=320k	Faist, Capasso, Sirtory, Cho
2000	Nobel Prize → "For developing semiconductor Heterostructures used in high-speed- and opto-electronics"	Zhores I. Alferov, Herbert Kroemer

- Evolution and revolutionary changes
- Reduction of dimensionality results in improvements


The Nobel Prize in Physics 2000

"for basic work on information and communication technology"

"for developing semiconductor heterostructures used in **high-speed- and opto-electronics**"



Zhores I. Alferov b. 1930

Herbert Kroemer b. 1928

"for his part in the invention of the integrated circuit"

Jack S. **Kilby** 1923–2005

THE NOBEL PRIZE IN PHYSICS

Speech by Professor Tord Claeson of the Royal Swedish Academy of Sciences.

... IT is viewed as a prime mover in the economic upswing our society has experienced over the past decade.

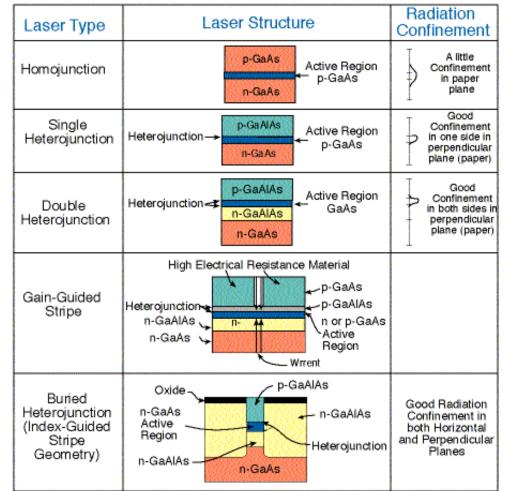
This year's Nobel Prize in Physics rewards <u>contributions to the early developments</u> of microelectronics and photonics, focusing on the integrated circuit, or "chip," as well as semiconductor heterostructures for lasers and high-speed transistors. ...

Semiconductor heterostructures can be regarded as laboratories of two-dimensional electron gases. The 1985 and 1998 Nobel Prizes in Physics for quantum Hall effects were based on such confined geometries. They can be reduced further to form one-dimensional quantum channels and zero-dimensional quantum dots for future studies. ...

Some basic definitions of heterostructures

Heterostructures:

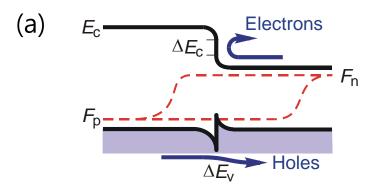
 Crystal consisted of one or more junctions between different semiconductors with different E_g, lattice constats, layer thickness

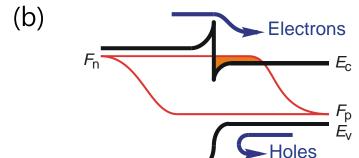

Design:

- Subsrate + a sequence of thin layers
- Potential well:
 - Active layer E_g^a < E_g^c of claddings (barriers)
 - $\underline{L_x^a} << \underline{L_y} \underline{L_z}$ and $\underline{L_x^a} >> \underline{\lambda_B}$ and $\underline{a_B}$ (λ_B is the de Broglie wavelength of the carriers, a_B is the Bohr exciton radius)

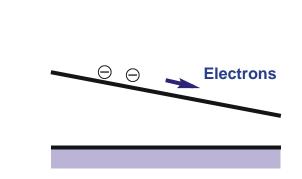
Quantum well:

- $\underline{L_{x^{a}}} << \underline{L_{y'}} \underline{L_{z}}$ and $\underline{L_{x^{a}}} \sim \underline{\lambda_{B}}$ and $\underline{a_{B}}$
- The carrier movement in the x direction is **quantized**.
- The carrier energy becomes definte discrete.


 \rightarrow Optical and carrier confinement due to ΔE_q and Δn_r


Classical heterostructures

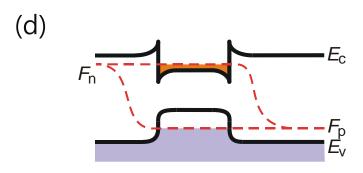
Fundamental physical phenomena in classical heterostructures


One-side Injection

Proposal — 1948 (W. Shokley) Experiment — 1965 (Zh. Alferov *et al.*)

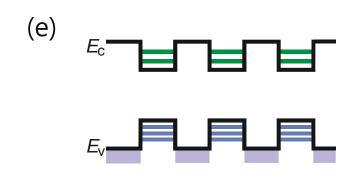
(C)

Superinjection Theory — 1966 (Zh. Alferov *et al.*) Experiment — 1968 (Zh. Alferov *et al.*)



Diffusion in built-in quasielectric field

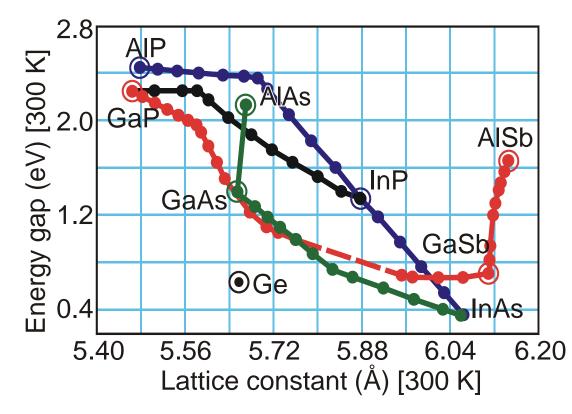
Theory — 1956 (H. Kroemer) Experiment — 1967 (Zh. Alferov *et al.*)



Classical heterostructures

Electrical and optical confinement

Proposal — 1963 (Zh. Alferov *et al.*) Experiment — 1968 (Zh. Alferov *et al.*)


Superlattices and quantum wellsTheory — 1962(L.V. Keldysh)First experiment — 1970 (L. Esaki *et al.*)Resonant tunnelling — 1963 (L.V. logansen)In Quantum Wells — 1974(L. Esaki *et al.*)

- Lattice-matched structures are necessary
- For lattice matching, multicomponent solid solution should be used
- In principle, epitaxial growth technology is necessary

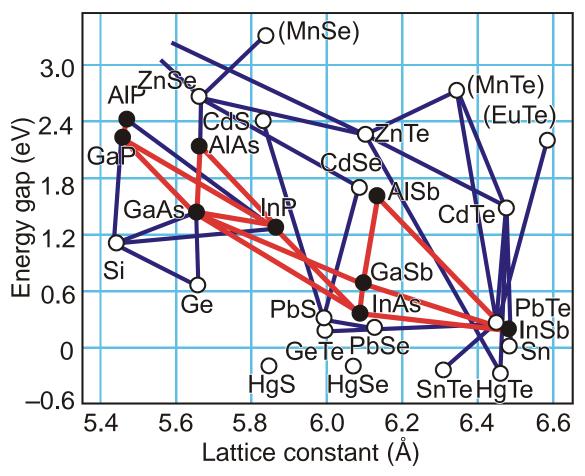
Heterostructures – a new kind of semiconductor materials

Long journey from infinite interface recombination to ideal heterojunction

Lattice matched heterostructures

- Ge–GaAs–1959 (R. L. Anderson)
- AlGaAs–1967 (Zh. Alferov *et al.*, J. M. Woodall & H. S. Rupprecht)
- Quaternary HS (InGaAsP & AlGaAsSb)

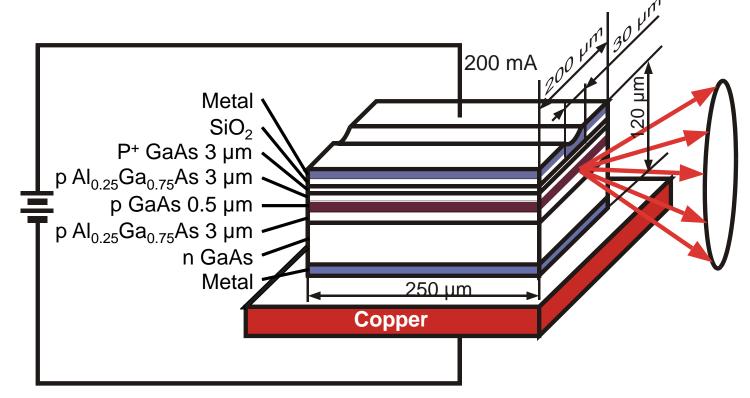
Proposal-1970


(Zh. Alferov et al.)

First experiment–1972

(Antipas *et al*.)

Heterostructures – a new kind of semiconductor materials

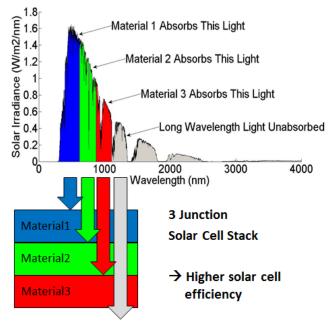


- Energy gaps vs. lattice constants for semiconductor IV elements, III-V and II(V)-VI compounds ٠ and magnetic materials in parentheses.
- Lines connecting the semiconductors, red for III-V, and blue for others, indicate quantum • heterostructures, that have been investigated.

Heterostructures – DHS laser

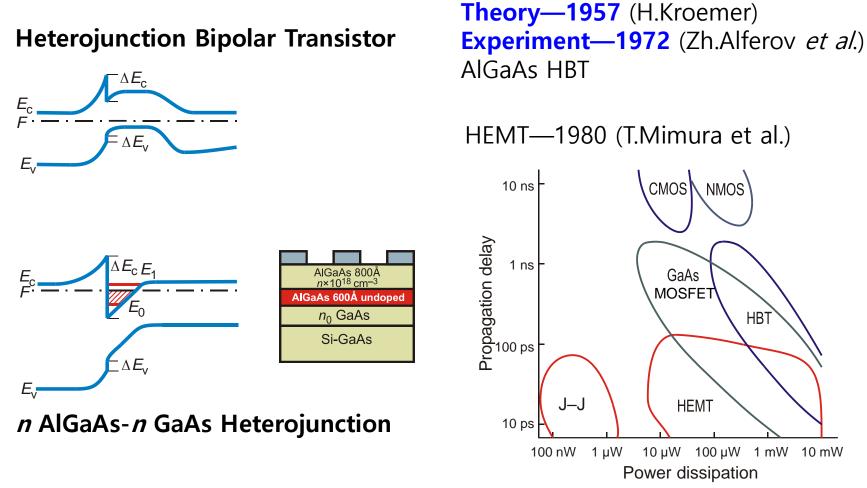
Schematic representation of the DHS injection laser in the first CW-operation at room temper ature

- Fundamental need for structures with well-matched lattice parameters
- The use of multicomponent solid solutions to match the lattice parameters
- Fundamental need for epitaxial growth techniques



Heterostructures – space solar cell

Heterostructure solar cells


• Space station "Mir" equipped with heterostructure solar cells

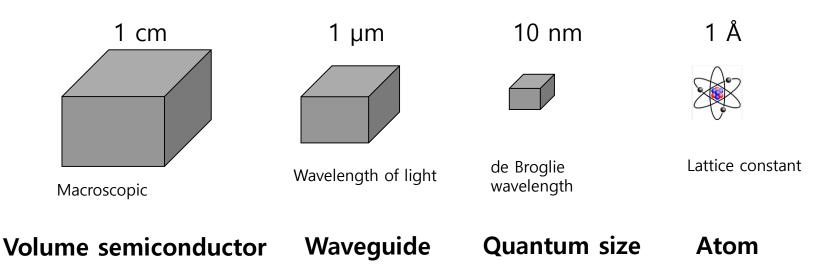
- **Multi-junction solar cell** Next-generation multijunction solar cells comprise multiple individual solar cells grown on top of each other
- → they can absord a wider range of the sun spectrum

Heterostructures – microelectronics

Speed-power performances

Suggestion—1948 (W.Shockley)

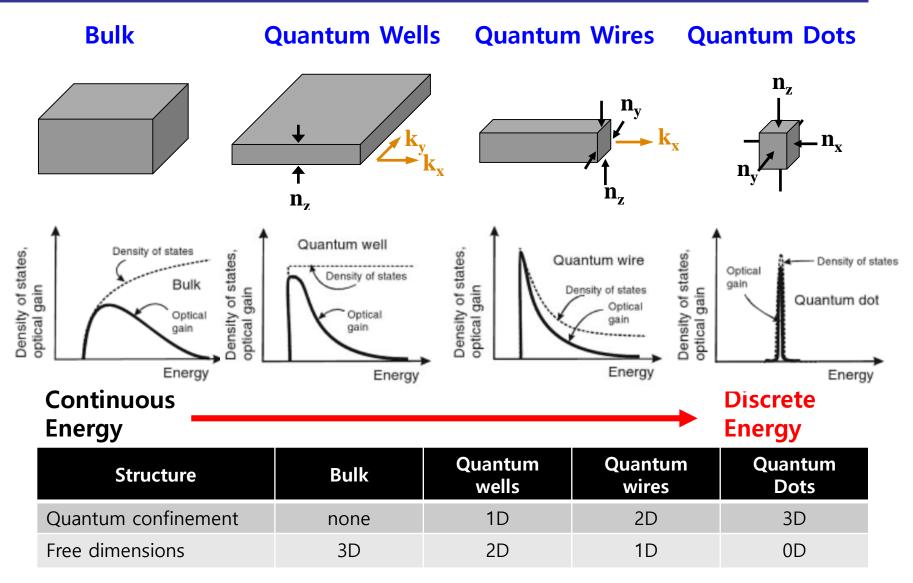
The evolution of laser diode performance


J. Phys. D: Appl. Phys. 48 (2015) 363001

 \rightarrow Enabled the crystal deposition to be controlled on an atomic scale

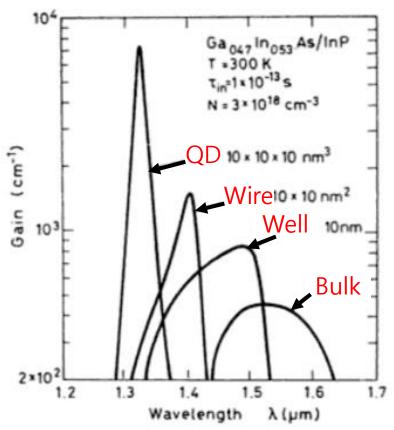
Quantum confined structures

de Broglie wavelength



$$E = hv$$
$$mv^2 = h\frac{v}{\lambda}$$

- *Size quantization effects* can be already pronounced at a thickness ten to a hundred times larger than the lattice constant.
- An electron in GaAs, λ~24 nm, this implies that we need structures of thickness ~ 10 nm in order to observe quantumconfinement effects.



Quantum confined structures

Quantum confined structures

Calculated material gain in $Ga_{0.47}In_{0.51}As/InP$ system Same electron injection (N=3 x 10¹⁸ cm⁻³)

The **peak gain increases** on going from bulk to QD. However, **gain bandwidth decrease** from bulk to QD.

Questions or comments?