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Snapshot proper orthogonal decomposition (POD) is used to investigate a rough-wall turbulent bound-
ary layer in a channel. One- and two-dimensional POD decompositions have been performed using
3D velocity database from direct numerical simulations (DNS). DNS of a turbulent channel flow with
rough walls consisting of 3D roughness elements have been performed at Reτ = 180. 1D analysis has
revealed that convergence of the POD for a rough wall is slower compared to the smooth wall, which
is attributed to the increase in range of length scales due to roughness. For the egg-carton roughness
elements, the depth of a roughness sublayer (ζ n

mode) for POD mode n decays with increasing mode
number in an exponential manner as ζ n

mode = 14e−0.86nh for roughness of height h. The reconstruction
of turbulence intensities and shear stress has revealed that the inner layer which includes the roughness
sublayer is well captured by first 10 POD modes. 2D POD analysis has revealed that roughness alters
the size and spacing of the large scale, energy containing structures of the flow.

Keywords: Roughwall; Direct numerical simulation; Turbulent boundary layers

1. Introduction

Proper orthogonal decomposition (POD) proposed by Lumley [32] to objectively identify
the coherent structures in a turbulent flow has contributed significantly to our understanding
of a smooth-wall turbulent boundary layer (TBL). POD [8, 32, 33, 47] extracts a complete,
orthogonal set of spatial eigenfunctions (i.e. modes) from the measured second-order corre-
lation function. These POD eigenmodes provide an optimal basis of expansion of the flow
in the sense that energy convergence is more rapid than any other linear representation. The
combination of the most energetic POD modes are associated with the large-scale, energy
containing structure of the flow.

One of the earliest applications of the POD was proposed by Bakewell and Lumley [6].
They extracted the POD of the wall region from the two-point correlations of a single velocity
component based on experimental fully developed pipe flow data. Herzog [20] used the same
facility as Bakewell and Lumley [6] to perform a fully three-dimensional study of the wall
region. Moin and Moser [37], Sirovich et al. [7, 47–49] thoroughly studied the coherent
structures from the POD based on numerical fully developed channel flow data. Sirovich et al.
[48, 49] extracted the POD modes using snapshot POD, a modification of direct POD. The
snapshot POD has the distinct advantage of being computationally efficient as it uses the
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2 M. Sen et al.

correlation of instantaneous snapshots of the flow and thus reduces the order of the eigenvalue
problem to that of the number of snapshots and not the physical mesh.

In the bulk of these applications, the POD has been used to analyze the experimental
and computational data with a view to extracting dominant features and trends in the flow.
These studies have demonstrated that 90% of total energy can be captured by the first 10
dominant POD modes in wall-bounded flows with a smooth surface. The studies have further
identified the coherent structures consisting of pairs of counter-rotating streamwise vortices
which produce a strong updraft of low-speed fluid away from the wall and a more gentle
downdraft of high-speed fluid toward the wall.

Surface roughness in a turbulent flow has been studied extensively, yet much continues to
be unknown regarding the flow structures and the nature and extent of influence of surface
roughness on turbulent flow. For the egg-carton roughness, our prior analysis of the rough-
wall turbulence mechanisms has revealed increased turbulence activities, and well-correlated
velocity fluctuations at the rough-wall side [11]. Compared to the smooth wall, different
turbulence structures were observed in the rough-wall region, especially stronger streamwise
vortices close to the roughness elements. We further investigated whether there is a fundamen-
tally different self-sustaining process (SSP) by which turbulence is maintained in a rough-wall
turbulent boundary layer, and the analysis has revealed that SSP (quasi-streamwise rolls and
near-wall streaks) of near-wall turbulence in the rough-wall channel is similar to that of the
smooth-wall channel. The only additional effect of surface roughness is due to kinematic
effects due to the presence of surface roughness. POD will serve as an effective tool to obtain
a clear understanding of the nature of these structures.

Unlike a smooth wall, the turbulence generation for a rough wall can also take place through
mechanisms other than SSP. For example, for mesh screen roughness [48], it was argued that it
is unlikely for self-sustaining mechanisms to survive, the turbulence generation occurs through
some other mechanisms (to date, the exact nature of this mechanism is still controversial).
However, two-point correlations have confirmed the existence of well-correlated structures.
Mesh-roughness creates high levels of turbulence by enhancing the absolute fluctuation levels
hence higher turbulent kinetic energy). Well-correlated structural patterns have been reported
by various researchers (e.g., [5, 35])

To date, we do not have a general consensus on the strength or size of these structures or
the mechanisms for the generation of these structures. In some roughness configurations, the
existence of these structures is unlikely. The mechanisms of turbulence production might be
different from the smooth wall. For example, it was shown that one possible driving mechanism
of the near-wall vortical structures is related to the normal velocity fluctuations in the plane of
the crests [40, 41]. In some other cases, for the drag reducing configurations such as riblets
it has been established that they produce a damping action on these structures. Nevertheless,
in any of these roughness configurations, based on our current understanding of rough walls,
it is obvious that there are more scales than just k or d (e.g., [11, 14, 21]). In general, rough-
surface creates (with exception of some configurations; e.g., riblets) a higher turbulence level
(TKE), serves as efficient agents in enhancing mixing, produces high drag (frictional and
form drag components), and has confirmed the presence of well-correlated structures. For any
roughness geometry, POD allows us to evaluate the distribution of energy as a function of
scale. It decomposes the flow field into modes having various scales. POD captures the well-
correlated spatial patterns, in the sense, the structures that contribute to the TKE. Comparison
of convergence rates, POD modes and the reconstruction of the TKE from these modes will
provide an effective tool to understand the influence of roughness geometry on flow physics.
In addition, as the TKE can be captured by a fraction of the total modes so it results in reduced
order of the system. Thus, the instantaneous velocity can be reconstructed only by a fraction
of these modes.
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Application of POD 3

Another motivation of the POD study is to make progress toward the long-term goal of
obtaining a classification of rough wall based on physics rather than k- or d-type classifica-
tion. For example, a new parameterization was proposed where it was demonstrated that the
roughness function is proportional to the wall normal velocity an the plane of the roughness
crest [40, 41]. POD decomposition of the flow field provides the modes that contribute to
the TKE. By comparison of the rough- and smooth-wall modes, the number of the modes
that are influenced by the roughness (such as inhomogenous effects), and the nature of the
modification of these structures can be obtained.

In a turbulent boundary layer, viscosity is dominant in the viscous sublayer (VSL) and most
of the turbulence generation happens in the buffer region, the region of self-sustaining process
(SSP). By assuming y+ (wall distance scaled in wall-units) can be viewed as a local Reynolds
number, the thickness of the viscous sublayer (VSL) can be interpreted as a critical Reynolds
number, which will increase due to a stabilizing influence (e.g., riblets [16]) and decrease
due to a de-stabilizing one (e.g., adverse pressure gradient and roughness). VSL thickness
defines the y+ at which the VSL and log region intersect. Thus, the VSL and critical Re
argument can be used as a guideline, for example, how the constant in the log-description
of the mean velocity (wall-function boundary conditions) should be altered to account for
roughness effects.

We define a roughness sublayer (RSL) as the region above the roughness is which the flow
is influenced by the individual roughness elements and is therefore not spatially homogenous
(i.e. the time averaged statistics are not independent of locations, at the same mean wall-
normal distance). If the roughness is small (and within the viscous sublayer layer) then the
inhomogeneity or RSL is within VSL. However, if the height of roughness is larger than
a few wall units, the RSL extends beyond the VSL and way into the buffer region, as the
depth of RSL increases with the height of the roughness in a proportional manner. Unlike
the depth of VSL, RSL for canonical roughness is more complicated, as the depth of this
layer exhibits a dependence on the roughness geometry. Further, the interaction of roughness
elements (kinematics effect) and the turbulence (dynamical effects) is very dominant in the
roughness sublayer. Further, there is no clear cut mathematical theory to obtain the depth of
RSL, and thus has remained an open question in rough-wall research.

An estimate of roughness sublayer has been obtained as the height of layer above the
roughness where the mean velocity profile departs from the logarithmic profile law from
the experiments of Perry et al. [43] Raupach et al. [44], Mulhearn [38]. The analysis by
Bhaganagar et al. [11, 12] has revealed that the extent of inhomogeneity is sensitive on the
statistical parameter being measured. It was shown that the roughness sublayer defined by the
pressure fluctuations (ζp) is larger than that defined by rms of velocity fluctuations (ζq ), and
much larger than that defined by the rms of vorticity fluctuations (ζω). As the dominant POD
mode represents the dynamical features of the flow, an estimate of the depth of roughness
sublayer for the dominant POD mode (ζ 1

mode) will provide a better understanding of the extent
of influence of roughness on the dominant energy containing features of the flow. A similar
analysis for the higher POD modes will provide an estimate of ζ n

mode for mode n. Based on these
results, we will be able to address an important question of the range of energy containing
structures that are directly influenced by roughness resulting in inhomogeneity of the flow
statistics. Having a realistic estimate of the depth of the roughness sublayer is also important
for parameterization in turbulence models and even LES.

In the outer region of the turbulent boundary layer, it is still not clear if roughness modifies
the dynamically active features of the flow. On the one hand, the experiments of Krogstad
et al. [25], Tachie et al. [51], Keirsbulk et al. [23], George and Simpson [18], Bhaganagar
et al. [11] have demonstrated that significant differences are discernible in the turbulence
velocity statistics throughout the boundary layer. On the other hand, the results of Perry
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4 M. Sen et al.

(a) (b)

Figure 1. (a) The channel is shown from the lower wall (y/δ = −1) to its centerline (y/δ = 0) with roughness
surface of h+ = 21.6. The streamwise and spanwise roughness-element periods are respectively lx/δ = 2π/10 and
lz/δ = 2π/16, which correspond to l+x = lx us

τ /ν = 251 and l+z = 157, (b) A portion of the lower rough wall to
highlight the roughness peaks and valleys.

et al. [43], Raupach et al. [44], Shafi and Antonia [50] demonstrate a similarity of velocity
and vorticity statistics in the outer region between the rough- and smooth-wall boundary
layers.

To get a clearer understanding of the extent of influence of roughness on dynamical features
of the flow, we perform snapshot POD analysis. The database for the analysis is obtained from
DNS of turbulent flow in a channel with rough walls consisting of 3D roughness elements
arranged in an “egg carton” pattern (see figure 1). The three-dimensional velocity database
has been used to construct the two-point correlations in time (C). An eigenvalue problem is
formulated with C as the kernel. The solution of the eigenvalue problem gives the temporal
coefficients and their corresponding eigenvalues. The velocity field is then projected onto
these temporal coefficients to obtain the corresponding spatial POD modes. Each of these
modes is considered to represent the dynamically active structures. Reconstruction of turbulent
intensity and shear-stress is performed based on first few POD modes to capture the dynamics
of turbulence—a significant consequence for turbulence modeling.

An estimate of the length of roughness sublayer based on POD modes is obtained as
follows: As the roughness elements in the horizontal x–z plane are represented by the double
sine function, the POD is performed at two different inhomogeneous locations—the ‘peak’
and the ‘valley’ regions of roughness bumps as shown in figure 1. The underlying assumption
is that by performing POD at these two extreme locations, we can get a good estimate of
the extent of inhomogeneity present in the layer. Plane averaging over a repeating unit of a
uniform array will lead to a representative profile within the roughness sublayer, which could
then be regarded as spatially homogeneous on scales larger than the unit, if it is much larger
than the lateral size of individual elements. This type of unit averaging has been done by
Raupach et al. [44], Wood and Mason [55] and Cheng and Castro [15].

We also perform a 2D POD analysis in the y–z and x–y planes to understand the nature of
the coherent structures. We are particularly interested to determine how roughness alters the
size and spacing of the coherent structures as represented by the 2D eigenfunctions. It should
be noted that the present analysis is specific to the roughness elements where the underlying
turbulence generation mechanisms are similar to that of the smooth wall. Future work needs to
be performed to understand the nature of POD structures for different scenarios of turbulence
generation mechanisms.
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Application of POD 5

The paper is organized as follows: section 2 deals with the DNS methodology used to
generate the vast database to construct the temporal two-point correlation matrix (C(t, t ′))
and description of the POD methodology to extract the modes. In section 3 we discuss the
results. We present results for one-dimensional POD, followed by the analysis to obtain depth
of roughness-sublayer. It should be noted that for small roughness heights (as in the present
case), the roughness sublayer is part of the inner layer. In cases such as meteorological flows
with large roughness heights (e.g., buildings), the roughness sublayer can extend into the outer
layer, and the analysis will be more complicated than that presented here. Next we present the
results and analysis for 2D POD in the y–z plane followed by 2D POD in the x–y plane. This
is followed by a summary in section 4.

2. Numerical methodology

2.1 Direct numerical simulations

DNS was performed by Bhaganagar et al. for a channel with a lower rough wall and an upper
smooth wall [11]. This tool has been modified to simulate the flow in a channel with both
upper and lower rough walls. DNS was performed using a parallel (message-passing interface)
implementation of a plane-channel code that employs a Fourier spectral discretization in the
streamwise x and spanwise z directions, and a fourth-order compact-finite- difference scheme
in the wall-normal y direction. The Navier–Stokes equations were solved in the vertical-
velocity and vertical-vorticity formulation [10]. The time advancement is done with a Crank–
Nicolson method for the viscous terms and a third-order low-storage Runge–Kutta scheme for
the others. The surface roughness is represented by the immersed boundary method, which
imposes the three-dimensional ‘egg-carton’-shaped surface on the lower wall of the channel
shown in figure 1. In units of the channel half-width δ, with respect to the Cartesian coordinate
system shown in figure 1 (note that y = 0 corresponds to the channel centerline and y = −1
to the (unused) smooth lower wall, above which the immersed boundary method is applied),
the virtual no-slip surface σ (x, z) is given by

σ (x, z) = σ0 + h

4

[
− 1 +

(
1 + sin

(
2πx

lx
+ 2π z

lz

))(
1 + sin

(
2πx

lx
− 2π z

lz

))]
, (1)

where h is the (peak to valley) roughness height, lx and lz are the streamwise and spanwise
wavelengths (peak-to-peak distance) of the roughness elements, and σ0 defines the mean offset
of the immersed boundary; the present results use σ = −0.96. For this surface, the roughness
‘bumps’ extend 3h/4 above σ0, while the valleys lie h/4 below it. The virtual roughness
surface is prescribed according to the immersed-boundary methodology [56], by adding an
appropriate body-force term to the momentum equations to enforce the no-slip condition on
σ (x, z). The simulations are performed at Reτ = 180 on a mesh of size 192 ∗ 129 ∗ 192.

2.2 POD implementation

For a detailed treatment of POD methodology, the reader is referred to literature [9, 32, 48, 49].
In this section, we will focus on the actual procedure used in this work to obtain the POD
modes. We follow the same procedure as outlined by Sirovich [47]. The data used for the POD
analysis in the present investigation consist of 3D fluctuating velocity fields, i.e. (u1, u2, u3) in
the entire 3D domain. The fluctuating velocity fields have been derived by subtracting the mean
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6 M. Sen et al.

velocity from the instantaneous velocity obtained from the DNS. The DNS domain consists
of Nx = 192 points in the streamwise (x) direction, Ny = 129 points in the wall-normal
direction, and Nz = 192 in the spanwise (z) direction. The instantaneous velocity fields are
collected for nondimensional time of 30 time units (in terms of uτ and δ) separated by 0.04
time units, after the flow has reached statistical equilibrium. Each 3D velocity field at given
time instant will be referred to as a snapshot, the total number of snapshots being Nt . The POD
is performed for the half-channel. The sample size used in the ensemble averaging procedure
is enhanced by imposing the symmetries inherent in the flow. As the flow is invariant under
vertical reflection, and also under spanwise reflection. The sample size is increased two-folds
by imposing the above-mentioned symmetries.

1D POD decomposition in the wall-normal (y) direction is performed to extract the three
components of the 1D eigenfunction φu(y), φv(y), φw(y). Given the velocity profiles at all
(x, z) locations and at all times, the temporal correlation function between snapshots t and t ′

is defined as

C(t, t ′) = 1

Nt

∫
y

ui (y, t)ui (y, t ′)dy, i = 1, 3. (2)

The numerical evaluation of the above integral is performed using trapezoidal rule, similar
to the approach of Moin and Moser [37]. The temporal correlation function (C(t, t ′)) is then
used as a kernel to formulate the eigenvalue problem:∫

C(t, t ′)an(t ′)dt ′ = λnan(t). (3)

Solution of the eigenvalue problem will result in the temporal coefficients (which are eigen-
vectors of the correlation tensor), an(t), and eigenvalues, λn , for mode number n. 1D spatial
eigenmodes are then calculated by projecting the temporal coefficients onto the velocity field
as

φn
i (y) =

Nt∑
p=1

an(tp)ui (y, tp), i = 1, 3. (4)

Here φn
u , φn

v and φn
w correspond to the streamwise, wall-normal and spanwise eigenmodes

or eigenfunctions, respectively. Eigenvalues obtained from the solution of the eigenvalue
problem will represent the energy content of each mode. As the fluctuating components of
velocity fields have been used for the calculation of velocity correlation tensor, the sum of
eigenvalues will represent the turbulent kinetic energy (TKE), and the eigenvalue of each
mode will correspond to fraction of the TKE contained in that mode. The mode with the
largest eigenvalue is referred to as the dominant POD.

For the 2D y–z POD, the above 1D POD analysis can easily be extended. 2D POD
decomposition is performed to extract the three components of the 2D eigenvectors
φu(y, z), φv(y, z), φw(y, z). Given the instantaneous velocity in the y–z plane at all x locations
and at all times the temporal two-point correlation matrix (C(t, t ′)) is constructed.

A eigenvalue problem is formulated with the temporal auto-correlation, C(t, t ′), as the
kernel, the solution of which gives the temporal coefficients, an(tp). The 2D spatial eigenmodes
are constructed as

φn
i (y, z) =

Nt∑
p=1

an(tp)ui (y, z, tp), i = 1, 3 (5)

whereφu(y, z),φv(y, z), andφw(y, z) correspond to the three components of the 2D eigemodes.
The 2D POD decomposition in the x–y plane is performed in a similar manner.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f M
ai

ne
] A

t: 
22

:1
1 

18
 S

ep
te

m
be

r 2
00

7 

Application of POD 7

Table 1. Convergence tests with increasing number of snapshots for 1D POD
of smooth- and rough wall.

Number of snapshots λ1/TKE (smooth) λ1/TKE (rough)

10 0.7337 0.2684
100 0.3835 0.1769
200 0.3535 0.1779
500 0.3107 0.1740

1000 0.2788 0.1876
2000 0.2755 0.1847
3000 0.2764 0.1818
4000 0.2859 0.1818
5000 0.2859 0.1816
6000 0.2858 0.1815

3. Results

The DNS simulations for a channel with rough walls have been used to compute the two-point
correlation tensor, which we will refer to as the rough-wall case. In order to understand the
relative effect of roughness, we performed DNS on a channel with smooth walls, and data have
been used to compute two-point correlation tensor, which we will refer to as the smooth-wall
case.

3.1 Convergence tests

Convergence checks of the POD were performed for increased spatial and temporal resolution,
as well. Based on spatial convergence tests, an optimal number of Nx = 12, Nz = 8, Ny = 65
for 1D POD and Nx = 24, Nz = 48, Ny = 65 for 2D POD have been used. Table 1 shows
the dominant eigenvalue with increasing number of snapshots. The POD analysis has been
performed with 6000 snapshots for both rough and smooth wall.

For validation of the POD tool, we performed POD for smooth wall and compared the
eigenvalues and eigenvectors with the existing literature. Table 2 shows the energy captured
by the first, second and third POD modes, and the number of modes required to capture 90%
of TKE. Our results for 1D smooth wall compare well the results of Moin and Moser [37].
Also shown in the table is the results for 1D rough wall. The energy captured by the first POD
mode for rough wall is less than the energy captured by the smooth wall. Furthermore 90% of
TKE is captured by dominant 10 POD modes for smooth wall, whereas it requires 22 modes
for the rough wall. The first four eigenvectors for smooth wall also compare well with the
existing literature. This is discussed in depth in the results section.

Table 2. Comparison of eigenvalues (first, second and third) and the total number of modes to capture 90% of
TKE for 1D POD: the 1D PODs of Moin and Moser for smooth wall [37] are compared with our results of 1D POD

for smooth- and rough wall.

Case λ1/TKE λ2/TKE λ3/TKE λ4/TKE Modes for 90% of TKE

1D POD of Moin and Moser [37] 0.32 0.16 0.08 – 10
Current results 1D POD smooth wall 0.28 0.16 0.085 0.05 10
Current results 1D POD rough wall 0.18 0.10 0.09 0.067 22
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8 M. Sen et al.

3.2 DNS results

In order to ensure the reliability of the data before performing the POD, the turbulence statistics
were analyzed. As the rough surface is arbitrary, in order to have a clear cut estimate of the
location of the rough wall, we define a virtual offset α for the rough side. This is done by
expressing the mean velocity (U ) normalized by friction velocity (uτ ) in the log-region in the
following form:

U

uτ

= 1

κ
ln

(y − α)

y0
. (6)

Here, α is the virtual offset, y0 is the roughness length, and y0 and α are determined by
fitting the mean velocity profile in the inertial sublayer to the above equation. uτ is the local
wall-shear velocity (i.e., uτ of each wall). For the smooth-wall case, uτ is obtained using the
definition of shear at the upper smooth wall, and for the rough wall uτ is obtained exactly from
the balance of the mean momentum equation at the rough wall. All the distances are measured
from the virtual offset for the rough wall. y+ is used to represent the distance from the wall in
wall units. All the results denote y+ taking the virtual offset into account and using uτ .

Figure 2(a) shows the mean velocity profile normalized by the wall-shear velocity plotted
in wall units for the smooth- and rough walls. In this figure, y+ represents the distance from
the wall scaled in wall-units. The roughness produces the expected downward shift in U of
5.31. Raupach et al. [44] present a relationship between �U+ ( U+ scaled by uτ ) and h+

(roughness height scaled by uτ and channel half height) for different roughness geometries.
For our h+ of 36, the corresponding �U+ is around 5.5. This result also serves as a good
validation for our numerics.

Figure 2(b) shows root-mean-square (rms) velocity fluctuations normalized by uτ . It is
plotted against the distance from the wall yw normalized by δt . We define δt as the distance
from the wall to the y location corresponding to the minimum rms velocity fluctuations. It
takes into account the virtual offset for the rough wall. The maximum turbulence intensity of
all the three components is enhanced for the rough wall compared to the smooth wall. The
location of the peak intensity shifts further away from the wall due to roughness. It should be

y+

U
/u

τ

100 101 102

5

10

15

20

U+ (smooth)
U+ (rough)

yw/δt

0 0.25 0.5 0.75 1

0.5

1

1.5

2

2.5

3

urms (smooth)
vrms (smooth)
wrms (smooth)
urms (rough)
vrms (rough)
wrms (rough)

(a) (b)

Figure 2. (a) Mean velocity scaled by uτ plotted in wall-units, (b) turbulent intensity of velocity components plotted
vs. distance from the wall yw scaled by δt .
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Application of POD 9

noted that scaled in this manner, both the inner and outer layers are altered due to roughness.
This behavior differs from the results of Orlandi and Leonardi [41], and this can be attributed
to difference in shape and spacing of the roughness elements.

3.3 One-dimensional POD analysis

3.3.1 Rough-wall POD. Figure 3(a) shows the distribution of the eigenvalues over the
mode number for rough-wall and smooth-wall POD. This distribution is a representation of
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Figure 3. Eigenvalues for one-dimensional POD: (a) fractional contribution to the TKE by the POD modes for
rough- and smooth-wall POD. (b) Accumulated energy ratio of modes as a function of the mode number for rough-
and smooth-wall POD.
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10 M. Sen et al.

the relative energy content (en = λn/
∑Nt

m=1 λm) of the total kinetic energy (TKE) of the flow
for mode n. The lower modes correspond to the larger scale, energy containing features of
the flow, and the higher modes to the smaller scale, less energetic features of the flow. On
comparing the rough-wall POD with smooth-wall POD, the fraction of the energy contained in
the first few modes is lower for the rough wall compared to the smooth wall. Furthermore, the
convergence of rough wall is slower than the smooth wall as indicated by the slower decaying
rate of the eigenvalue spectrum.

The cumulative contribution of the modes to the turbulent kinetic energy can be represented
by the accumulated energy ratio (en

accum = ∑n
m=1 λm/

∑Nt
m=1 λm ). Figure 3(b) shows an accu-

mulated energy ratio of all the POD modes. The convergence of the modes for the rough wall
is slower compared to that for the smooth wall. The first three modes capture around 35% and
50%, respectively, for the rough- and smooth walls. The first 10 modes capture around 70%
and 80%, respectively, for the rough- and smooth walls. Finally, 90% of the total turbulent
kinetic energy is captured by 22 modes for the rough wall and around 15 modes for the smooth
wall. The slower convergence of the rough wall can be attributed to an increase in the range
of length scales in roughwall turbulent boundary layer.

Figure 4 shows streamwise, φu , wall-normal, φv , and spanwise, φw, components of the first
four POD modes for rough- and smooth wall. The smooth-wall POD modes are qualitatively
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Figure 4. Spatial eigenmodes of the 1D POD for the rough- and smooth wall: (a) mode 1, (b) mode 2, (c) mode 3
and (d) mode 4.
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Application of POD 11

similar to that obtained by Moin and Moser [37] and Adrian and co-workers [29]. This also
serves as a good validation for our numerics. Similar to the smooth wall, the eigenfunctions
for the rough wall are localized near the wall and tend to zero near the center of the channel.
From y/δt = 0 to 0.1, due to spatial inhomogeneity, the high positive magnitude at roughness
peaks is offset by the negative magnitude at the valleys resulting in net low amplitude. The
eigenfunction structure of all three components, φu , φv and φw, of mode 1 exhibit significant
differences for the rough- and smooth walls throughout the boundary layer. Thus, suggesting
the effect of roughness is observed both in the inner and outer layers of the TBL for the
dominant energy containing mode. For the first mode, the peak of φu is around yw/δt of 0.1
for smooth wall and yw/δt of 0.2 for the rough wall. This is in agreement with the roughness
resulting in outward shift in rms velocity components. However, the zero-crossing of φv and
φw for rough wall is around the same location as for the smooth wall. On comparing the
spatial structures of modes 2, 3 and 4, similar trends as observed for mode 1 are present. The
differences between the rough and smooth-wall POD become les conspicuous with increasing
mode numbers. Qualitatively, this suggests that the influence of roughness is less apparent in
the higher modes. Next, we perform a quantitative analysis to get an estimate of the effect of
inhomogeneity on the POD modes.

3.3.2 Peak- and valley-POD. We perform an analysis to determine the depth of the rough-
ness layer. We select two inhomogeneous locations the ‘peak’ and ‘valley’ regions of the
roughness bump as shown in figure 1(a). We perform a 1D POD and extract POD modes at
these locations which we refer to as the peak- and valley-POD, respectively. We also perform
POD decomposition by computing the two-point correlations from the velocity measurements
at all x and z locations, that includes the peak and valley of the roughness bump, which we
refer to as the rough-wall POD. Figure 5(a) shows the fraction of energy captured by the
peak- and valley-POD. Also shown in the figure is the energy fraction for the rough-wall
POD (includes both the peak and valley locations), which is obtained by taking both the peak
and valley locations to compute the POD modes. Some differences are observed between
the peak and valley up to the first 10 POD modes. Beyond which, the differences are not
apparent. Figure 5(b) shows the accumulated energy ratio for peak, valley and rough-wall
POD modes. Spatial inhomogeneity is observed for the first 10 POD modes. We compare
the eigenfunctions (φu) obtained from the peak-POD and valley-POD analysis to determine
the extent of inhomogeneity. Figure 6 shows the first four POD modes. The first eigenmodes
obtained from the peak-POD, valley-POD, POD for the rough wall and POD for the smooth
wall are plotted. We also present the POD modes for smooth wall. Examining the first POD
mode, it is clear that spatial homogeneity is not achieved until yw/δt = 0.75. We performed
this for three different roughness heights (h+ = 5, 10, 20 and corresponding h/δt = 0.03, 0.06
and 0.12) and obtained the depth of the roughness layer i.e., ζ 1

mode to be about 6h. A similar
examination of the second mode reveals a somewhat smaller roughness sublayer. Spatial ho-
mogeneity of this mode is achieved at yw/δt of 0.25, resulting in the depth of the roughness
sublayer for second mode roughness sublayer i.e ζ 2

mode to be about 2h. It is clear that the
depth of the sublayer decreases with the increasing mode number. This trend continues for
the third and the fourth modes as well. Spatial homogeneity for the third and fourth mode is
not achieved until yw/δt of 0.16 and 0.11, respectively, resulting in the depth of the roughness
sublayer for third (ζ 3

mode) and fourth(ζ 4
mode) mode to be about 1.33h and 0.9h, respectively.

The effect of inhomogeneity is more pronounced in the first few POD modes only. Using the
depth of the sublayer for these four modes, we performed data-fitting and this has resulted in
an exponential power law of the form ζ n

mode = 14he−0.86n for mode number n. The depth of
the sublayer is almost negligible beyond the tenth mode. The peak- and valley-POD analysis
has revealed the presence of strong inhomogeneity in the large-scale features of the flow. The
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Figure 5. Eigenvalues for one-dimensional POD: (a) eigenvalue spectrum as a function of the mode number for
peak-, valley- and rough-wall POD. (b) Accumulated energy ratio of modes as a function of the mode number for
peak-, valley- and rough-wall POD.

depth of the roughness sublayer gradually diminishes for the higher modes. This result is of
significant consequence to low-dimensional modeling of rough-wall turbulent boundary layer
community: the presence of inhomogeneity due to roughness needs to be accounted only for
the dominant modes (which represent large-scale features of the flow).

3.3.3 Reconstruction. We next reconstruct the turbulence statistics using POD modes.
Velocity field at time any time instant (snapshot), t , can be perfectly reconstructed by projecting
the first m temporal coefficients to the corresponding spatial mode as

ui (x, y, z, t) =
m∑

n=1

an(t)φn
i (y), i = 1, 3. (7)

Figure 7 shows the convergence of the POD modes for turbulent stresses as a function of the
number of POD terms. The convergence is compared with the exact value obtained from the
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Application of POD 13
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Figure 6. Comparison of the eigenfunctions (φu ) from the peak-POD, valley-POD locations, rough-wall POD
(constructed from both peak and valley locations) and smooth-wall POD for (a) first POD mode, (b) second POD
mode, (c) third POD mode, (d) fourth POD mode.

DNS. This exact value matched well with that computed by taking all the POD modes which
served as a further validation of our numerics. The velocities are nondimensionalized with uτ .
The location and the amplitude of the peak of the rms of u fluctuations is well captured by the
first 10 POD modes. It is interesting that the inner-layer, which included the roughness-sublayer
is well captured by these 10 POD modes. Adding additional POD modes does not change the
inner layer significantly. This confirms our findings regarding the roughness sublayer that
effect of inhomogeneity is captured by the lower modes. To reproduce rms of u fluctuations
accurately around 50 POD modes are required. A similar trend is observed in the rms of v,
w fluctuations and shear uv. As the turbulence stresses can be reconstructed using a small
number of POD modes, and as the inner layer is well captured by the lower modes, it appears
to be promising to develop a low-dimensional model for turbulent channel flow with rough
walls.

3.4 2D POD analysis

In this section, we first present the results for 2D POD performed in the y–z plane. We are partic-
ularly interested to understand the effect of roughness on the size of the turbulence structures.
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Figure 7. Reconstruction using 1, 3, 5, 10 and 50 POD modes of (a) rms of u, (b) rms of v, (c) rms of w, (d) uv

(Reynolds stress).

A qualitative estimate of the character of the structures, in particular their streamwise and
spanwise coherence, is obtained from the two-point correlations.

An analysis of two-point correlations has revealed a modification of the average diameter
of the near-wall streamwise vortices as well as streak spacing. Figure 8 shows two-point
correlations of the streamwise and wall-normal velocity components separated in the spanwise
direction. The separation distance is normalized by the wall variables using the local wall-
shear velocity. The two-point correlation for the streamwise velocity, Ruu , indicates that the
streak spacing is increased to 140 wall units for the rough-wall case from the 100 wall units
for the smooth-wall case at y+ = 30. A similar trend of increased streak spacing is observed
at y+ = 80. Likewise, the two-point correlations of the wall-normal velocity, Rvv , indicates
that the average diameter of the near-wall streamwise vortices is increased from 30 to 45 wall
units at y+ = 30, and a similar increase is observed at y+ = 80. When the separation distance
is normalized by the channel half height, no discernible difference between the smooth- and
rough-wall cases is seen in the two-point correlations.

Figure 9 shows φu component of the first mode plotted in wall units in the y+–z+ plane for
the rough wall (upper figure) and the smooth wall (lower figure). The rough-wall structures
are further away from the wall compared to the smooth-wall structures. These structures are
centered in the valley regions of the roughness bumps. The size of these structures increases
in the spanwise direction for the rough wall compared to the smooth wall. The structures are
elongated in the y direction. This appears to be consistent with the trend observed from the
two-point correlations of the streamwise velocity component. Figure 10 shows the second
POD mode. The rough-wall structures are centered in the valley regions of the roughness



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f M
ai

ne
] A

t: 
22

:1
1 

18
 S

ep
te

m
be

r 2
00

7 

Application of POD 15
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Figure 8. Two-point correlations separated in the spanwise direction with the spanwise distance normalized by wall
variables.

bumps, similar to the first mode. Unlike the first mode, the size of the structures decreases in
the spanwise direction for the rough wall. Figure 11 shows the third mode. The spanwise and
wall-normal size of the structures for the rough wall are more or less similar to the size of the
structures for the smooth wall. However, the structures for the rough wall are displaced away
from the rough wall.

(a)

(b)

Figure 9. φu component of the first mode obtained from 2D y–z POD decomposition plotted in wall units for
(a) rough wall, (b) smooth wall.
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16 M. Sen et al.

(a)

(b)

Figure 10. φu component of the second mode obtained from 2D y–z POD decomposition plotted in wall units for
(a) rough wall, (b) smooth wall.

(a)

(b)

Figure 11. φu component of the third mode obtained from 2D y–z POD decomposition plotted in wall units for
(a) rough wall, (b) smooth wall.
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Figure 12. Two-point correlations separated in the streamwise direction with the spanwise distance normalized by
channel half-height.

Likewise, to get an estimate of the nature of the structures in the streamwise direction, we
perform 2D POD in the x–y direction and compare the dominant streamwise modes for the
rough- and smooth wall. We first estimate the streamwise extent of these structures based on
the two-point correlations separated in the streamwise directions. Figure 12 shows Ruu and
Rvv separated in the streamwise direction at two different wall-normal distance of y+ = 30
and y+ = 80. The separation distance is normalized by the channel half-height. The length of
the streaks decreases for the rough-wall case. When the separation distance is normalized by
the wall variables, no significant differences are observed.

Figure 13 shows the first POD mode for the rough- and smooth walls in the x–y plane.
The structures are further away from the rough wall compared to the smooth wall structures.
Consistent with the analysis from the two-point correlations separated in the streamwise
direction, the size of the structures decreases for rough wall compared to smooth wall. Figure 14
shows the second POD mode. Unlike the first mode, the streamwise size of the second mode
is larger for the rough wall compared to the smooth wall.

The 2D POD analysis in the y–z and x–y planes suggests that energy containing structures
of the rough wall are significantly modified compared to the smooth wall. Moreover, the first
and the second POD modes exhibit significant structural differences. Significant structural
differences between the rough- and smooth wall are not observed for higher modes.

(a)

(b)

Figure 13. φu component of the first mode obtained from 2D x–y decomposition for (a) rough wall, (b) smooth
wall.
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18 M. Sen et al.

(a)

(b)

Figure 14. φu component of the second mode obtained from 2D x–y decomposition for (a) rough wall, (b) smooth
wall.

4. Discussion

The effect of surface roughness in a turbulent channel flow has been studied using snapshot
POD analysis. The velocity database used is obtained from the DNS simulation of channel
with a ‘egg-carton’ (double sinusoidal) roughness surface at Reτ = 180. The two-point cor-
relations have been constructed from the DNS database. One dimensional POD analysis in
the y direction has revealed that the convergence of POD modes obtained for the rough wall
is slower compared to smooth wall. The first three modes capture around 35% and 50%,
respectively, for the rough- and smooth walls. The first 10 modes capture around 70% and
80%, respectively, for the rough- and smooth walls. Finally, 90% of the total turbulent kinetic
energy is captured by 22 modes for the rough wall and around 10 modes for the smooth wall.
This trend and the slow convergence of the POD modes obtained for the rough wall can be
attributed to an increase in the range of length scales due to roughness. It should be noted
that even though the number of modes to reconstruct the flow for a rough wall is higher than
the smooth wall, nevertheless, it is still a small fraction of the total number of modes, thus
justifying POD as an effective tool to study the physics of a rough-wall turbulent boundary
layer.

POD allows us to evaluate the distribution of energy as a function of scale. It decomposes
the flow field into modes having various scales. POD captures the patterns (structures) that
contribute to the TKE. A slower convergence signifies an increase in the number of structures
that contain the total TKE for the rough wall. It should be noted that the dominant modes
are still a large-scale structure as they capture significantly a large fraction of the TKE—18%
(first mode), 10% (second mode) and 9% (third mode) of the TKE. One of the reasons for
the generation for structures of various length scales is due to the kinematics of the roughness
elements. Specifically, at the roughness valleys, the recirculation results in breakdown of
the structures resulting in smaller length scales. The slower convergence thus represents the
presence of additional length scales which are significant as they carry a sizable fraction of
the TKE.

The depth of the roughness sublayer has been obtained by performing the 1D POD analysis
at the peak and valley locations of the roughness bumps. We obtained the depth of the sublayer
for the first mode ζ 1

mode to be 6h, h is the height of the roughness. The depth for second (ζ 2
mode),

third (ζ 3
mode) and fourth (ζ 4

mode) modes are 2h, 1.6h and 1.1h. The depth of the sublayer
decays with increasing mode number in an exponential manner. ζ n

mode = 14he−0.86n , where
the coefficients of the exponent have been obtained by data fitting.
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Application of POD 19

In a parallel effort to study the structural effects of turbulence, quadrant analysis was
performed by Krogstad et al. [26]. It was shown that the effect of roughness is extended upto
y = 5h. The extent of influence of roughness on the dominant POD mode, ζ 1

mode of 6h is
slightly higher, but close to that revealed by their quadrant analysis. The large-scale features
of flow based on velocity and pressure statistics were analyzed by Bhaganagar et al. [11, 12].
It was shown depth of the roughness sublayer ζq (obtained from velocity fluctuations) to be
1.5h and ζp (obtained from pressure fluctuations) to be 2h. The roughness sublayer based on
the dominant turbulence structures is nevertheless significantly larger than ζp or ζq .

The turbulent stresses have been reconstructed using the first few POD modes. The location
and the amplitude of the peak of the rms of u fluctuations is well captured by the first 10 POD
modes. The inner-layer, which included the roughness-sublayer, is well captured by these 10
POD modes. Adding additional POD modes does not change the inner-layer significantly.
This confirms our findings regarding the roughness-sublayer that effect of inhomogeneity is
captured by the lower modes. A similar trend is observed in the rms of v and w fluctuations
and shear-stress uv.

A 2D POD analysis in the y–z plane revealed that for the rough wall the dominant mode
has increased the length scale in the spanwise direction compared to the smooth wall, whereas
the second mode has a smaller spanwise length scale. Likewise, 2D analysis in the x–y plane
revealed that the streamwise length scale of the dominant mode is reduced for a rough wall,
whereas the second mode has a larger length scale compared to the smooth wall.

The 2D POD analysis in the y–z and x–y planes suggest that energy containing structures
of the rough wall are significantly modified compared to the smooth wall. Roughness alters the
length scales of the dominant structures. The structures are further away from the rough wall
compared to the smooth-wall structures. In particular, the first and the second POD modes
exhibit structural differences. Sigificant structural differences between the rough- and smooth
wall are not observed for higher modes. It appears to be consistent with our 1D analysis that
rough alters predominantly the lower, energy containing structures of the flow.

The present analysis is restrictive to 3D egg-carton roughness elements selected for this
study. Further work needs to be performed to understand the influence of roughness geometry,
such as the size of roughness elements, height and spacing between the roughness elements,
and 2D versus 3D roughness elements, on POD modes. Future investigation needs to be
performed to extract three-dimensional coherent structures to better understand the effect of
roughness.
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