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Awell resolved and highly accurate direct numerical simulation (DNS) solver has been developed to understand
the implication of hydrodynamics to sediment transport. In the first part of the study we focus on steady flow
over two-dimensional and three-dimensional ripples at two Reynolds numbers Reτ=180 and 400 (defined by
channel half-height and wall-friction velocity) in a channel geometry. The DNS scheme is based on a fourth-
order vertical velocity and second-order vertical vorticity formulation, which resolves the difficulties in pressure
boundary condition encountered when solving the Navier–Stokes equations. The complex boundary introduced
due to the ripples has been imposed in the Cartesian domain using an elegant immersed boundary method.
Detailed hydrodynamic analysis has revealed turbulence statistics (in particular, the higher order) and
henceforth, the flow structures are sensitive — whether the ripples are two-dimensional or three-dimensional.
The importance of fluctuating component of the bottom stress in addition to its mean component; and its
significance to sediment transport and ripple migration speed have been investigated.

Published by Elsevier B.V.

1. Introduction

Bedform dynamics is of great importance for fluvial and coastal
research. For example, bedform is a major source of energy dissipation
of water waves outside the surf zone (e.g., Ardhuin et al., 2002). In the
fluvial environments, the migration of river dunes often affects the
stability of the river bed and bank (Amsler and Garcia, 1997; Ashworth
et al., 2000; Best, 2005), which further causes sedimentation at
downstream dams, lakes and river mouth. In typical large-scale fluvial
and coastal numerical modeling systems, detailed bedform and wave
boundary layer processes cannot be well resolved and the energy
dissipation of the overlaying hydrodynamics due to the presence of
bedform is parameterized by a friction factor and roughness height.

Accurate prediction of fluvial and coastal hydrodynamics thus
depends on detailed understanding and parameterization on the
bottom boundary layer processes, including the interactions between
the near-bed flow and the bedform (e.g., McLean and Smith, 1979) and
wave-current interactions (e.g., Mathisen and Madsen, 1996). Dunes or
sand ripple migration is also a major mode of sediment transport in
fluvial environment (Best, 2005; Parsons et al., 2005) and under
moderate wave energy in the coastal environment (e.g., Traykovski
et al.,1999;Hanes et al., 2001). Hence, understandingbedformdynamics
is critical in predicting morphodynamics.

Fundamental studies dealing with turbulent flow over rough
surfaces have revealed that surface-roughness alters both the first and
the higher order statistics significantly (e.g. Perry et al., 1987; Hudson et
al., 1996; Antonia and Krogstad, 2001). Furthermore, there is evidence
that depending on the geometrical nature of the roughness elements,
flow is altered due to roughness both in the inner- aswell as outer-layers
of the turbulent boundary layer (e.g. George and Simpson, 2000;
Bhaganagar et al., 2004, 2007). Our current understanding clearly
demonstrates thatflowover rough surfaces is complicated and to obtain
accurate flow physics, it is essential to perform simulations without a
priori assumptions regarding the effect of roughness. Direct numerical
simulation (DNS) tool is an ideal choice towards this direction.

In the past, turbulence models have been used to simulate turbulent
flows over bedforms. Conventionalmodels based onReynolds-Averaged
Navier–Stokes (RANS) equations (e.g., Chang and Hanes, 2004; Fredsøe
et al., 1999) suffer from limitations such as requiring a priori knowledge
of flow physics for model closures, low-order accuracy, and over-
simplification of flow physics. Due to vastly improved computational
capability in recent years, 3-D large-eddy simulations (LES) have
successfully demonstrated the superiority over the RANS approach
due to less assumptions involved in sub-grid closure (Henn and Sykes,
1999; Calhoun and Street, 2001; Chang and Scotti, 2003a,b; Barr et al.,
2004;Yueet al., 2005). This progress is encouraging for furthermodeling
sediment transport because flow turbulence can be more accurately
calculated with highly resolved 3-D computations (e.g., Zedler and
Street, 2001, 2006; ChangandScotti, 2003a,b)while inaccuraciesmaybe
eventually isolated into more concentrated regime dominated by fluid-
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sediment interactions and inter-granular interactions (e.g., Hsu et al.,
2004; Calantoni et al., 2005). This progress also justifies the further use
of direct-numerical-simulation (DNS) approach to fully resolve the
turbulent flow (and transition to turbulent flow) without any closure
approximation. Nevertheless, in the past the well-known limitations of
DNS on extensive computational requirements have precluded their
widespread use as a practical tool.With the current advances in compu-
tational resources, and with novel numerical methods such as
immersed-boundary-methods, it is now becoming feasible to use DNS
as a research tool for complex geometries (Bhaganagar et al., 2004). The
DNS results will provide fundamental understanding of turbulent flow
over bedforms, comprehensive database for various flow conditions (De
Angelis et al., 1997; Cherukat et al., 1998; Scandura et al., 2000) and
improved closures for LES and RANS modeling approaches.

In the natural stream bed and sea-bed, the bedforms are often
highly three-dimensional (e.g., Raudkivi, 1997; Traykovski et al., 1999)
while existing DNS studies focus on the flow over two-dimensional
bedforms (De Angelis et al., 1997; Cherukat et al., 1998; Scandura et al.,
2000). Hence, in the present study we first address the difference
between the two-dimensional (2-D) and three-dimensional (3-D)
bedforms. The DNS model results are used to understand the flow
structure due to 2-D and 3-D ripples for two different Reynolds
numbers of steady flow by comparing with the corresponding
smooth-wall condition. As a preliminary step toward sediment
transport modeling, we also investigate the significance of the
fluctuating component of the bottom stress (Jensen et al., 1989) in
relation to the mean component and its implication of sediment
transport (McLean et al., 1994).

We first briefly present the formulation and numerical implemen-
tation of a well-resolved, accurate, higher-order DNS that has been
developed as a valid tool to understand the physics of turbulent flow
over bedforms in Section 2. In Section 3 we discuss the first and higher
order statistics and the differences between two-dimensional and
three-dimensional ripples, and we focus on the flow structures in the
presence of three-dimensional ripples. We then discuss the bottom
stress over ripples and the implications to sediment transport. This is
followed by a summary in Section 4. This is part-I of our study where
we concentrate on the steady flow conditions.

2. Numerical approach

2.1. Derivation of Navier–Stokes equations in vertical velocity–vorticity
formulation

In DNS, one seeks for a highly accurate numerical solution of the
Navier–Stokes equations by solving these equations exactlywithout any
a priori assumptions or parameterizations (i.e. without any turbulence
modeling (Pope, 2000)). In this study, the Navier–Stokes equations are
expressed in vertical velocity and vertical vorticity formulation. The
vertical velocity and vertical vorticity formulation has been used
because of its advantage of eliminating the pressure term from the
Navier–Stokes equations while requiring the solution of only two
governing equations, namely an evolution equation for the Laplacian of
the vertical velocity and an evolution equation for the vertical vorticity.
As will be discussed next this formulation leads to reduced storage
requirements compared to solutions using the Navier–Stokes equations
in primitive variables (e.g., Canuto et al., 1988; De Angelis et al., 1997) or
in a vorticity transport formulation (e.g. Rist and Fasel, 1995).

The incompressible Newtonian fluid with viscosity ν is described
by the Navier–Stokes equation

@ui

@t
¼ −uj

@ui

@uj
−
@p
@xi

þ 1
Re

Δui; ð1Þ

@ui

@xi
¼ 0; ð2Þ

with Re=UH/ν the Reynolds number based on averaged centerline
velocity U and channel half-heightH. In this study, we define (x1, x2, x3)=
(x,y, z) the streamwise, spanwise and wall-normal coordinates respec-
tively, (u1,u2,u3)=(u,v,w) are the respective velocities and p is the total
pressure. The last term inEq. (1) is theviscous termandΔ ¼ @2

@x2 þ @2

@y2 þ @2

@z2

h i
.

The vertical velocity and vertical vorticity formulation of the
Navier–Stokes equations for viscous, incompressible fluid in a channel
geometry is derived from the governing Navier–Stokes equations
expressed in the classical primitive variable formulation as follows:

The momentum equation can be rewritten into the following form
for typical DNS approach (e.g., Cherukat et al., 1998)

@ui

@t
¼ �ijkujωk−

@p
@xi

þ 1
Re

Δui; ð3Þ

where εijk is the alternating symbol used in Cartesian tensor notation,
(w1,w2,w3) are the corresponding components of vorticity and p is
total pressure.

A pressure Poisson equation can be further obtained by taking the
divergence of the momentum equation and using the continuity
condition as follows:

Δp ¼ @Hi

@xi
−Δ

1
2
ujuj

� �
ð4Þ

where Hi=(H1, H2 , H3)=u×w=εijkujwk

To seek for a numerical solution inmost DNS studies, themomentum
and thepressure Poissonequationswith theboundaryconditions for the
velocity and the pressure are solved. An inherent disadvantage of this
formulation is the a priori determination of the pressure boundary
condition. This problem can be obviated when the governing equations
are expressed in vertical velocity and vertical vorticity formulation
(BenneyandGustavsson,1981).The vertical component of the curl of the
Navier–Stokes equations results in an evolution equation for the vertical
vorticity, ωz. Application of the Laplace operator to the momentum
equation for the normal component of velocity yields an equation for
that component through the use of the momentum and the pressure
Poisson equations. The resulting equations are a second order evolution
equation for vertical vorticity,ωz, and a fourth order evolution equation
for vertical velocity, w, as,

@ωz
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It is computationally efficient to split the fourth-order equation forw
into two second-order equations and solve the resulting system
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(Bhaganagar et al., 2002). For numerical simplicity the fourth-order
vertical velocity Eq. (6) is split into two second-order equations as follows,

@/
@t

¼ Hv þ 1
Re

j4w; ð11Þ

j2w ¼ /; ð12Þ

Eq. (11) is the evolution equation for the Laplacian of the vertical
velocity (ϕ) and Eq. (12) is an equation forw. Once the normal velocity
and normal vorticity are computed, the other components of velocity
are solved by using the continuity constraint and the definition of
normal vorticity.

2.2. Spatial discretization

In the horizontal x–y directions, the spatial discretization are done
using Fourier series expansion assuming periodicity. In the wall-normal
z direction the flow is inhomogeneous, and flow near the bedforms
needs to be well resolved. Hence high resolution compact finite differ-
ences have been used to obtain the spatial derivatives @

@z

� �
. For typical

finite difference scheme, the low-wavenumber components are well
resolved but resolving high-wavenumber components are difficult due
to large truncation error. Therefore in order to obtain high resolution,
higher-order finite differences are necessary (Canuto et al., 1988).
Alternatively, without increasing the formal order of accuracy, spectral-
like resolution can be achieved to compute the spatial derivatives using
compact finite differences (for details see Lele, 1992). In addition to
having spectral-like resolution, the compact finite differences are
computationally efficient as this implementation results in a linear
system of equations, that can solved using a tridiagonal solver.

2.3. Time integration: Helmholtz and Poisson equations

To avoid stringent time step restrictions, a semi-implicit time
integration has been implemented to integrate the resultant dis-
cretized equations. For the nonlinear terms, an explicit low-storage,
three-stage, fourth order Runge–Kutta scheme (Williamson, 1980) has
been used and for the linear viscous terms, an implicit Crank–
Nicholson scheme has been used. The solution at the end of each time-
step is the sum of the solution of the explicit part and the implicit part.
See Carpenter and Kennedy (1994) for the details of the formulation.

The spatial derivatives in Eqs. (5) and (11) are discretized using
Fourier series expansion in the horizontal directions, and using compact
finite difference in the wall-normal direction. The time advancement is
then performed to the discretized Eqs. (5) and (11) which results in
Helmholtz type of equations for ϕ andωw (wall-normal vorticity) and a
Poisson type of equation for w. The resultant Helmholtz- and Poisson-
type of equations are solved using tridiagonal solvers. Using the
definition of ωw and continuity condition u and v are obtained.

2.4. Immersed boundary method

The ripples are introduced into the domain using an immersed
boundary method (IBM) (Goldstein et al., 1993; Yusof, 1997; Fadlun
et al., 2000) so that the simplicity and efficiency of computation in a
Cartesian system is retained. The equations of fluid motion are
calculated on the regular geometry of a periodic channel. The ripples
are introduced as a virtual boundary σ prescribed within the channel
as a function of the streamwise (x) and spanwise (z) variables, such
that the active boundary D is given by D=(x,y,z)|z=σ(x,y) To enforce
the no-slip condition at this virtual boundary, a linear profile is
assumed for the streamwise u and spanwise velocity components v
between zero at z=σ (x,y) and the velocity at a grid point above the
virtual boundary. The wall-normal component of velocity is then

prescribed from u and v, mass conservation and the no-slip condition.
The immersed no-slip boundary is prescribed via a body force term.
The definition of the body force term is described as follows. To
determine the body force, we employ a first-order temporal discre-
tization of the Navier–Stokes equations:

unþ1−un

δt
þ un �jun ¼ −jpn þ mj2un þ f ; ð13Þ

where f=(fx,fy,fz) is the body force, u=(u,v,w) the velocity vector, p the
pressure, ν the kinematic viscosity, δt the time-step increment, and the
superscripts n and n+1 respectively indicate the current and next time
level. On the immersed boundary σ (x,y), the velocity is zero, such that:

unþ1 ¼ 0;0;0ð Þ ð14Þ

and we approximate the body force as:

f ¼ V−un

δt
þ un �jun þjpn−mj2un; ð15Þ

where V=(0,0,0). The time-dependent body force is applied at a set of
two points, the one just below the immersed boundary and the other
one just above. When the boundary coincides with the grid, the body
force is applied at the boundary and at a point below. Thismethod gives
flexibility in choosing the immersed boundary not found in some other
methods, since there is no need to line up the boundary with a grid.

3. Results

3.1. Numerical parameters

DNS has been performed for a steady flow over idealized ripples in
a channel geometry. The physical dimensions of the channel are as
follows: the half-height is 2.5 cm (H/2), the streamwise and spanwise
domain is 10 cm respectively. The upper surface of the channel is flat
(we refer to as the smooth-side) and the two sinusoidal ripples are
imposed near the lower surface. The ripples have a height from crest
to trough of 0.5 cm, and wavelength of 5 cm. A periodic ripples has
been imposed close to the lower-wall of the channel on a virtual no-
slip surface σ for 2-D and 3-D ripples respectively as follows:

σ x; yð Þ ¼ σo þ h=2sin λx2πxð Þ; ð16Þ

σ x; yð Þ ¼ σo þ h=2sin λx2πxð Þsin λz2πzð Þ; ð17Þ

where, σo is virtual offset of the immersed boundary, λx and λz are the
streamwise and spanwise wavelengths (peak-peak distance) of the
ripple and h is the maximum height of the ripple.

A portion of the computational domain extending from lower-wall
z=0 to z=1 cm in the wall-normal direction is shown in Fig. 1. A spline
method was used to interpolate the ripple on to the computational
mesh. In the wall-normal direction, non-uniform mesh was used. The
grid spacing varied from0.94wall-units (corresponding to real length of
0.003 cm) adjacent to the virtual no-slip surface to 6.5 wall-units
(corresponding to real length of 0.02 cm) at the centerline. In the
horizontal directions, the streamwise and spanwise grid spacing was
approximately 15 and 8 wall-units respectively. In this paper, we
represent thewall unitswith superscript +, and the conversion of length
scale from physical units (y) to wall units (y+) is y+=yuτ/ν=(y/H)Reτ.

DNS have been performed for Reτ=180 and 400 (Reynolds number
based on wall-shear velocity uτ and channel half-height H) in a periodic
channel of streamwise and spanwise size Lx/H=4.0 and Lz/H=4.0, where
2H is the distance between the plane walls. Two-dimensional and three-
dimensional ripples have been placed on virtual surface near the lower-
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wall and the upperwall is considered to be smooth (i.e., the upper no-slip
solid boundary of the computational domain is flat). The spatial
discretization used 256 streamwise Fourier modes, 257 wall-normal
compact finite-difference grid points of fourth-order accuracy and 256
spanwise Fourier modes. Turbulent initial conditions were imposed for
the entire computational domain and the simulations of steady flow over
the ripples were performed for sufficiently long time (20–25 non-
dimensional time units based on channel half height and uτ) until
converged statistics were obtained. Simulations were performed on a
parallel super-computing cluster consisting of thirty-four nodes with
wall-clock time of 2 days. Once the velocity field reached a statistically
steadystate, the computationswere continued in time foranadditional10
non-dimensionalized units to obtain mean statistics (which were
gathered by averaging over x and y directions as well as in time). For
each case, the results obtained from the upper solid-boundary (without
ripples) is considered to be the “smooth wall” case, while the results
obtained from the lower ripple bed is the corresponding “rough wall”
case. TheDNScodehasbeen thoroughlyvalidated forchannelwith rough-
walls consisting of three-dimensional egg-pattern roughness elements
(Bhaganagar et al., 2004; Sen et al., 2007). The spatial and temporal
resolution, grid convergence, turbulence statistics have been validated.

3.2. Computation of uτ

The wall shear velocity (friction velocity), uτ is obtained by solving
the x (streamwise) momentum equation for the mean velocity,

0 ¼ −
@p
@x

þ 1
Re

ΔU þ f1; ð18Þ

where, f1 is the x component of the body force term f (refer to Eq.
(15)). As the non-dimensional domain extends from z=−1 to z=+1 in
the wall normal direction, integrating the above equation from the
lower wall (z=−1) to the upper wall (z=+1) results in the uτ at the
rough surface as follows:

uτ ¼ −2
dp
dx

þ 1
Re

dU
dy

jz¼1 þ
Z z¼1

z¼−1
f1dz ð19Þ

The last term of the above equation is evaluated using a trapezoidal
rule for a non-uniform mesh. For the smooth (flat) upper wall, the
friction velocity is expressed as:

uτ ¼ 1
Re

dU
dy

jz¼1 ð20Þ

uτ is computed at every x–y grid point, and is averaged over all these
locations as well as in time (as the statistics have reached a statistically
steady state uτ does not change significantly with time).

We next compare the turbulence statistics for flow over two-
dimensional and three-dimensional ripples at two different Reynolds
numbers of Reτ=180, 400.

3.3. Mean flow velocity

The effects of bedforms/ripples on the statistically-averaged mean
flow velocity is generally parameterized based on an equivalent sand
grain roughness height (e.g., Grant and Madsen, 1979, 1981). The
classical framework established by Nikuradse predicts that the effect
of roughness on statistically averaged mean-velocity distribution is
confined to a thinwall layer. In the log-region, assuming a logarithmic
velocity distribution for flow over a smooth wall is given by,

U
uτ

¼ 1
κ
ln

zuτ

m

� 	
þ C0; ð21Þ

while the rough-wall modification is

U
uτ

¼ 1
κ
ln

zuτ

m

� 	
þ C0−

ΔU
uτ

; ð22Þ

where, ΔU/uτ=ΔU+= f(ks+) is the roughness function with ks
+ the

equivalent sand grain roughness, and we assume κ=0.41, C0=5.5 is
the additive constant for both the rough and smooth wall, uτ is the
local wall-shear velocity (i.e., uτ of each wall). Comparing the rough-
and the smooth-wall distributions, the roughness results in a down-
ward shift of the logarithmic profile with no discernible change in
slope.

The boundary layer over a rough surface is characterized by a
surface layer, which can be subdivided into the inertial and roughness
sublayer (Raupach et al., 1991).The flow in the inertial sublayer is
known to be logarithmic, the mean velocity profile can be described
by the common logarithmic law:

U
uτ

¼ 1
κ
ln

z−αð Þ
zo

ð23Þ

where zo is the roughness height and α is the zero-plane displacement
which represents the virtual offset due to roughness. It was shown that
α and zo are surface properties determined solely by the roughness
geometry and they are obtained by fitting themean velocity data in the
inertial sublayer to the above equation using uτ as the slope (Cheng and
Castro, 2002). The roughness height zo can be explicitly related to ΔU+

shown in Eq. (22). Table 1 gives the values ofα and zo for the 2-D and 3-D
ripples at Reτ=180 and 400. They are obtained by fitting the mean
velocity to a log-law. Also, shown for comparison are the values of
equivalent sand grain roughness inwall units (ks+), wall friction-velocity
(uτ) and the bulk or depth averaged velocity (Ub).

Fig. 2 (a) shows the mean velocity profile normalized by the local
wall-shear velocity plotted in wall units for the smooth-wall side and
rough-wall side for 2-D and 3-D ripples for Reτ=180. In this figure z+

represents the distance from the wall in wall units. As seen from the
figure, the presence of ripples result in a downward shift in U+. There is
no discernible difference between the 2-D and the 3-D ripples. Similar
analysis is repeated for Reτ=400 and the results are shown in Fig. 2 (b).

Fig. 1. The computational domain in the lower-half of the channel for flow over 3-D
ripples (upper panel) and 2-D ripples (lower panel). The domain contains 2 ripples on
the virtual (immersed) surface near the bottom-wall. The total computational domain is
z=5 cm, x=10 cm and y=10 cm. The half-height of the channel is at z=2.5 cm.
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Unlike the previous case, noticeable differences to some extent are
observed. It appears that asRe increase further, themeanvelocitywill be
sensitive if the ripples are 2-D or 3-D. Themagnitude ofΔU+ for Reτ=180
and 400 is 6.0 and 7.4 respectively. These values are consistent with
values presented by Raupach et al. (1991) for corresponding equivalent
sand grain roughness in wall-units of 48 and 80 respectively for 2-D
roughness elements. It serves as a good validation for our numerics.
According to Eq. (22), for a fully-rough case (when the equivalent sand
grain roughness is greater than 70) the calculated ks(30zo) is around 50%
of ripple height, which is consistent with field observations. Further
work needs to be performed to obtain a relation of the roughness height
as a function of the ripple parameters.

Fig. 3 shows the mean streamwise velocity profile scaled by shear
velocity of the upper smooth-wall for 2-D and 3-D ripples at Reτ=

180,400. Due to the presence of ripples in the lower solid-boundary, the
location of peak mean-velocity shifts from the center of the channel
towards the upper-half of the channel resulting in loss of symmetry. No
discernible differences are observed between the 2-D and the 3-D
ripples. Similar trend is observed for the Reτ=180 case. Note that the
domain above the virtual offset has been not been shown in all the
horizontally averaged profiles as the solution below the ripple (inside
the ripple) is not physicallymeaningful for immersed boundarymethod
approach. The dashed line corresponds to the virtual origin.

A characteristic recirculation region downstream of the crest is
observedwhen examining themean streamwise velocity averaged over
the y planes (figure not shown). The velocity gradients are very large
near the weather-side of the ripple crest, suggesting a strong bottom
stress, while themagnitude of velocity and velocity gradient are smaller
at the lee-side and the trough regime of the ripples. These flow
characteristics may have important implications to sediment transport
processes, which will be discussed in more details in Section 3.6.

3.4. Root-mean-square velocity and vorticity fluctuations

To represent accurate flow physics in turbulence modeling as well
as in modeling of mixing/transport processes of the sediment, it is
important to account for higher order flow statistics. We are
particularly interested in the turbulent intensities (root-mean-square
of velocity fluctuation and vorticity fluctuations) in the turbulent
boundary layer, since behavior of the former allows us to infer how
presence of ripples affects the largest scales of motion, while that of
the latter indicates how it alters the small-scale turbulence features.

Fig. 4 shows the r.m.s. of u streamwise velocity fluctuations for 2-D
and 3-D ripples at two different Reynolds number of Reτ=180 and 400.
Comparing with the upper smooth wall condition, both 2-D and 3-D
ripples conditions exhibit an increase of turbulence intensity above the
ripple crest as the Reynolds number increases, and this is in agreement
with our existing knowledge of turbulent flow over rough surfaces
(BandyopadhyayandWatson,1988;George and Simpson, 2000; Antonia
andKrogstad, 2001; Ashrafian et al., 2004). On comparing the2-D and 3-
D ripples at Reτ=180 we observe the peak r.m.s. value for 3-D case is
higher compared to the 2-D case, and differences between the two are
apparent throughout the boundary layer. For 3-D ripple, the r.m.s. of u
velocity is larger than that of 2-D ripple below the ripple crest. On the
other hand, above the ripple crest the r.m.s ofu velocity is smaller for 3-D
ripple condition. Also notice that for 2-D ripple the location of the
minimum of r.m.s. of velocity fluctuations shifts from the center of the
channel to upper side of the channel, suggesting different roughness

Table 1
For 2-D and 3-D ripples at Reτ=180, 400, the values of virtual offsets (α) and roughness
height (zo) obtained by fitting the mean velocity to a log-law, equivalent sand grain
roughness in wall-units (ks+), wall friction-velocity (uτ) and bulk velocity (Ub)

Cases Reτ α/H zo/H ks
+ uτ(cm/s) Ub(cm/s)

2-D ripple 180 0.08 5.34e−3 48 1.36 12.79
3-D ripple 180 0.08 9.81e−3 53 1.51 12.22
2-D ripple 400 0.12 1.2e−2 80 2.1 13.12
3-D ripple 400 0.12 2.9e−2 103 2.71 10.83

Fig. 2. Mean velocity profile normalized by the local uτ shown for the smooth-wall, 2-D
and 3-D ripples plotted in wall-units at (a) (upper panel) Reτ=180 and (b) (lower panel)
Reτ=400.

Fig. 3. Mean velocity profile normalized by uτ for smooth wall shown for 2-D and 3-D
ripples at Reτ=180 and 400.
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thicknesses. A similar trend is observed for Reτ=400. In fact, the
difference in magnitude of the r.m.s. of streamwise velocity fluctuation
appears to be more pronounced when the Reynolds number is higher.
Fig. 4 b and c presents the r.m.s. of w wall-normal and v spanwise
velocity fluctuations respectively. Comparing with the upper smooth-
wall, there is again an increase of the turbulence intensity due to ripples.
The difference in the magnitudes is apparent throughout the boundary
layer between the 2-D and 3-D ripples. However, unlike the peak r.m.s of

u fluctuations (Fig. 4a), the peak r.m.s. of v andw fluctuations are larger
for 2-D ripple than that of 3-D ripple. These results indicate that the three
components of velocity fluctuations are rather anisotropic. This trend is
more apparent close to the bedform. Ripple bed modifies the large scale
features of the flows and significant differences are discernible between
the 2-D and 3-D ripples both in the vicinity of the ripple bed as well as
away from the wall layer.

Fig. 4. Turbulent intensity of velocity (cm/s) of (a) (upper panel) streamwise (b) (middle
panel) wall-normal and (c) (lower panel) spanwise components plotted vs. the distance
from the wall for the 2-D and 3-D ripples at Reτ=180, 400.

Fig. 5. For the 2-D and 3-D ripples at Reτ=180 and 400, the r.m.s. of (a) (upper panel)
streamwise component (b) (middle panel) wall-normal component and (c) (lower
panel) spanwise component of vorticity fluctuations (s−1).
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The behavior of the small scale turbulence is revealed by the
vorticity fluctuations presented in Fig. 5 a, b and c. The r.m.s. of
streamwise (ωx), wall-normal (ωz) and spanwise (ωy) vorticity
fluctuations are shown for both 2-D and 3-D fluctuations at the two
Reynolds number of Reτ=180, 400. Comparing with the upper smooth
wall, the intensity of ωx and ωy increases due to the ripples, while
intensity of ωz is similar between the upper smooth-wall and lower
ripple-bed. On comparing the 2-D and 3-D ripples, magnitude of peak
value is higher for 2-D compared to the 3-D for r.m.s. of ωx and ωz

fluctuations. Furthermore, significant differences between the 2-D
and 3-D ripples are observed for the spanwise ωy fluctuation close to
the ripple surface. These differences gradually fade as we move away
from the ripple surface. These results indicate that the ripples modify
the small scale features of the flow as the three components of
vorticity fluctuations are enhanced due to the ripple. Substantial
differences are observed between the 2-D and 3-D ripples in both the
small-scale features and large-scale features of the turbulent flow.

3.5. Turbulence structures

We are interested to analyse the modification of the turbulence
structures due to the presence of ripples compared to smooth (flat)
wall. For this purpose, we focus on specific case of three-dimensional
ripples at Reτ=400.

We examine the velocity and vorticity structures in x–z and y–z
planes. Fig. 6 is contour plot of u, w and v velocity fluctuations in x–z
plane. The u structure reveal an alternating positive and negative
patters. These structures are of much larger scale near the ripples
compared to the smooth wall. Similar trend is observed in bothw and
v fluctuations. The structure of w component of velocity shows an
increased activity in the rough-wall side of the channel, and the angle
of inclination of the structures also differs. Fig. 7 is a contour plot ofωx,
ωz and ωy vorticity fluctuations in the x–z plane. The ωy contours
show that an irregular pattern of structures is present above the peak

locations of the rippled surface. The turbulence above the ripples
affects the vorticity on the ripples. Theωz contours showan organized,
alternating pattern of dominant vorticity close to the ripple. A similar
pattern is observed for the ωx fluctuations. Fig. 8 presents the
instantaneous velocity v–w vectors superimposed on u contours in
the y–z plane. Large scale streamwise rolls are observed near the
rough wall compared to the smooth wall.

Based on analysis of the turbulence statistics and the turbulence
structures, we conclude that rippled surface results in an enhanced
and more energetic turbulence structures with an increased turbu-
lence activity compared to a flat surface. Further, the kinematics (2-D
or 3-D ripples) also plays an important role, in addition to the
dynamics (turbulence) in altering the flow characteristics. The higher
order statistics and hence the nature of the flow structures are more
sensitive whether the ripples are two-dimensional or three-dimen-
sional. This implies that 2-D and 3-D ripples have a different effect on
the sediment transport. In the next two sections, we concentrate on
the implications of sediment transport from a perspective of bottom
stress which may be further used to infer bedload transport. Both
bottom stress and turbulence structure are also expected to affect
suspended load transport. Direct modeling of suspended load
transport is necessary and will be pursued as future work.

3.6. Bottom stress over ripples

Snapshots of the spatial distribution of streamwise bottom shear
stress τbx over the 2-D and 3-D ripples are shown in Figs. 9 and 10. In
the present DNS study, the instantaneous bottom stress is calculated
directly at the ripple surface and hence τbx ¼ μ @u

@z, where µ is the
dynamic viscosity. The streamwise bottom stress τbx at the weather-
side of the ripple is positive, i.e., following the direction of the steady
current. On the other hand, due to the separation bubble, τbx at the
lee-side of the ripple is mostly negative and the magnitude is also
smaller compared to that at the weather-side.

Fig. 6. Velocity fluctuations scaled by uτ in the x–z plane (a) (upper panel) u streamwise velocity fluctuations, (b) (middle panel)wwall-normal velocity fluctuations, (c) (lower panel)
v spanwise velocity fluctuations.

326 K. Bhaganagar, T.-J. Hsu / Coastal Engineering 56 (2009) 320–331



Author's personal copy

In turbulent flow, the instantaneous velocity can be separated into
mean and fluctuating components. In this study, we consider steady
flow over ripple and hence the overbar represents the time-averaged
quantity. Because the bottom stress is in direct response to the
overlaying turbulent flow, the bottom stress can also be decomposed
into mean and fluctuating components in boundary layer study
(Jensen et al., 1989; Fredsøe et al., 2003):

τbx ¼ τbx þ τVbx ð24Þ

Therefore, we calculate

τbx ¼ μ
@u
@z

; ð25Þ

τVbx ¼ μ
@uV
@z

ð26Þ

Here, u
_
represents the time-averaged mean velocity and u′ is the

fluctuating component (deviation from the mean).
The magnitude, temporal patterns and spatial distribution of the

bottom stress are critical in determining the sediment transport. The

transport that occurs within few grain diameters above the bed is
directly in response to bottom stress. This is often referred as bedload.
The transport that occurs more away from the bed, i.e., the suspended
load, is strongly affected by the turbulent flow patterns (Zedler and
Street, 2006). However, the bottom reference concentration (e.g.,
Engelund and Fredsøe, 1976) or pick-up function (Van, 1984) required
in the suspended load model is also parameterized by bottom stress.
Therefore, by examining the spatial and temporal distribution of
bottom stress over the ripples, it is possible to understand at least
qualitatively some morphodynamic features of ripples, such as
migration speed (e.g., McLean et al., 1994).

It is a common practice to represent sediment transport by
nondimensionalizing the bottom stress as the Shields parameter:

θ ¼ τb
ρ s−1ð Þgd ð27Þ

where d is the grain diameter, s is the specific gravity of the sediment
and ρ is the fluid density. For small ripples, the ripple dimensions are
determined by the grain size (Raudkivi, 1997). Here, in order to further
interpret the DNS results for sediment transport, we consider fine
sand grain of specific gravity s=2.65 and diameter d=0.1 mm. This

Fig. 7. Vorticity fluctuations normalized by uτ in the x–z plane (a) (upper panel) ωx, (b) (middle panel) ωz, (c) (lower panel) ωy vorticity fluctuations.

Fig. 8. Instantaneous v–w velocity vectors superimposed on u velocity shown in the y–z plane. All the velocity components have been scaled with uτ and are dimensionless.
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choice of grain size is consistent with laboratory and field observa-
tions of sand ripple dimensions (e.g., Mantz, 1978; Wiberg and Harris,
1994) similar to the ones we considered in this paper.

Fig. 11 presents a 2.2-second realization of the instantaneous
nondimensionalized bottom stress at the ripple crest (Fig. 11 a) and
trough (Fig. 11 b) for the 3-D ripple case. The time-averaged mean
Shields parameter is 0.218 (dashed line in Fig. 11 a) at the ripple crest
consistent with the general observation that ripple bed exist when the
Shields parameter is smaller than unity. Notice that the time-averaged
Shields parameter at the ripple trough is only −0.0163. Because the
critical Shields parameter is about θc=0.08 according to Shields
diagram, suggesting that there is almost no transport at the ripple
trough. This is also consistent with the general observation that the
bottom stress at the lee-side of the ripple/dune is small due to flow
separation (e.g., Tjerry and Fredsøe, 2004).

Fig. 12 further presents a similar realization of the instantaneous
nondimensionalized bottom stress at the ripple crest (Fig. 11a) and
trough (Fig. 11b) for the 2-D ripple case. In terms of the time-averaged
Shields parameter, there is not much difference between the 2-D and
3-D ripples. The time-averaged Shields parameter at ripple crest is
0.216, rather close to that of the 3-D ripple. The time-averaged Shield
parameter at the ripple valley is −0.0413. Its magnitude is somewhat
larger than that of 3-D ripple but remains to be small in terms of
transport intensity. However, the fluctuating component of the
Shields parameter (τb′) are quite different between the 2-D and 3-D
ripple cases. The fluctuating component of the Shield parameter is
significantly larger for 3-D ripple (r.m.s. value 0.0332 at crest and
0.0418 at trough) than that of the 2-D ripple (r.m.s. value 0.0085 at
crest and 0.0218 at trough). This can be directly attributed, perhaps, to
larger turbulent fluctuation levels of the 3-D ripple (see Fig. 4a).
Because the fluctuating bottom stress and turbulence intensity
(streamwise direction) are both much larger in 3-D ripple, it is
reasonable to expect the suspended load transport to be affected by
these features.

3.6.1. Implication to ripple migration
Using the bottom stress calculated by the DNS for 2-D and 3-D

ripples, we can qualitatively estimate the local sediment transport
rates. We note here that a complete calculation of sediment transport
of sand ripple requires additional governing equations for sediment
concentration and velocity. This is not yet developed in this study.
However, to make use of the detailed bottom stress information
obtained from DNS, we will adopt a simple theory for sediment
transport in order to study its implication for ripple migration speed.

Following Tjerry and Fredsøe (2005), we consider a train of ripples
of identical shape migrating at a constant speed driven by a steady
current. The shape of the ripple is described by a given function h(x,t)
with height Hr, and length Lr. The shape of the migrating ripple is
assumed to be in equilibrium, namely, the ripples move with a
permanent shape and a constant speed a in the x-direction:

h ¼ h x−atð Þ ð28Þ

It is often assumed that the net transport in the trough regime is
negligible at the ripple crest. Significant (or the entire) amount of
sediment that is transported over the crest is also assumed to be
deposited at the lee-side of the ripple. Under these assumptions, the
transport rate at the crest is defined here as qr and is considered to
deposit completely at the lee-side of the ripple. Using qr, and the
ripple height Hr, the ripple migration speed can be determined
through mass conservation (Tjerry and Fredsøe, 2005):

a ¼ qr
Hr 1−nð Þ ð29Þ

where, n=0.37 is the porosity of the sand bed. Eq. (29) requires an
estimate of qr in order to calculate ripple migration speed. Tjerry and
Fredsøe (2005) assume the transport rate can be directly parameter-
ized by local bottom stress (i.e., bedload assumption, see also
Andersen (2000) for the implementation in Dune2D), the nondimen-
sionalized transport rate can be calculated by a power law (Meyer-
Peter and Muller, 1948):

ψc ¼
qrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s−1ð Þgd3
p ¼ 8 θ−θcð Þ3=2 ð30Þ

The net transport rate at the ripple crest for 3-D ripple over the given
2.2-seconds bottom stress realization (Fig. 11) is qr=6.661e−6 m2/s,
while the net transport rate at the valley is −1.244e−8 m2/s. This is
consistentwith the assumption used in Eq. (29) that the transport in the
trough regime is negligible. The migration speed estimated using Eq.
(29) for 3-D ripple is a=0.212mm/s(0.76m/h). On the other hand, using
the 2-seconds bottom stress realization for 2D ripple, the net transport
rate at the2D ripple crest is qr=6.414e−6m2/swhich is very close to that
of the 3-D ripple because the time-averagedbottom stress for 2-Dand3-
D ripple cases are similar. Thenet transport rate for 2-D ripple at valley is
again small (−4.022e−9 m2/s). The migration speed for 2-D ripple
estimate from Eq. (29) is a=0.204 mm/s (0.733 m/h), which is only

Fig. 10. The instantaneous bottom stress (dimensionless as it is scaled by uτ and H)
along the ripple surface for the 2-D ripple.

Fig. 9. The instantaneous bottom stress (dimensionless as it is scaled by uτ and half-
height of the channel, H) along the ripple surface for the 3-D ripple.
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slightly smaller than the migration speed of the 3-D ripple under the
same flow condition.

Kuhlborn (1993) proposed an empirical formula for estimating the
migration speed of ripples (see also Raudkivi, 1997):

Vr ¼ 2:1
θ
θc

� �2:42

−2:1: ð31Þ

Taking the critical Shields parameter θc=0.08, the migration
speeds of the 2-D and 3-D ripples are calculated to be 0.022 m/h

and 0.021 m/h, which are much smaller than that estimated by DNS
bottom stress and bedload formula. We must note here that the
empirical estimation of migration speed shown in Eq. (31) is rather
sensitive to grain size, which appears to be consistent with laboratory
observation (Baas and Koning, 1995). Additionally, such large
difference in estimated migration speed may imply that ripple
migration for such fine sediment is dominated by suspended load.

We comment here that because the time-averaged bottom stress
for 2-D and 3-D ripple are similar, their resulting migration speeds
based on simple power-law type approach is also similar. However, it

Fig. 12. Shields parameter (nondimensionalized bottom stress) at 2-D ripple crest (upper panel) and ripple trough (lower panel). Two-dimensional ripple with sand grain diameter
0.1 mm (assumed grain size for typical ripple dimension studied here).

Fig. 11. Shields parameter (nondimensionalized bottom stress) at 3-D ripple crest (upper panel) and ripple trough (lower panel). Three-dimensional ripple with sand grain diameter
0.1 mm (assumed grain size for typical ripple dimension studied here).
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is apparent that the bottom stress fluctuation is much larger for 3-D
ripple case. For the simple power-law type approach adopted here, the
instantaneous transport rate is assumed to be completely in-phase
with the bottom stress. Because the bottom stress fluctuations are
chaotic and despite the instantaneous fluctuating transport rate may
be large, the net transport rate due to the fluctuating component of
bottom stress is very small. Hence, the net transport rate and
migration speed are represented well by the time-averaged compo-
nent of bottom stress. In reality, it is possible that noticeable amount
of sediment transport may not be in-phasewith the bottom stress (i.e.,
suspended load). These suspended sediment transport is further
affected by the turbulence structure over the ripples. Therefore, one
can expect larger differences for net sediment transport rate and
migration speed between the 2-D and 3-D ripples when a more
complete sediment transport formulation is implemented.

4. Summary

A well resolved (spatially and temporally) and highly accurate
direct numerical simulation (DNS) tool has been developed to
understand the fundamental differences in the hydrodynamics of
flow over two-dimensional and three-dimensional ripples in a
channel geometry and its implications on sediment transport. As a
first step, in this paper we focus on the steady flow over the ripples.

The Navier–Stokes equations are solved in the vertical velocity and
vertical vorticity formulation. This formulation has the distinct
advantage of eliminating the pressure term from the Navier–Stokes
equations while requiring the solution of only two governing
equations, namely an evolution equation for the Laplacian of the
wall-normal velocity and an evolution equation for the wall-normal
vorticity. This formulation has reduced storage requirements com-
pared to solutions using the Navier–Stokes equations in primitive
variables or in a vorticity transport formulation. In the horizontal x–y
directions, periodicity has been assumed and the spatial discretization
has been performed using Fourier series expansion, as the flow is
statistically homogeneous. In the wall-normal z direction the flow is
inhomogeneous, and the flow near the bedforms needs to be well
resolved. Without increasing the formal order of accuracy, a high
spatial resolution is obtained by resolving the low and high wave-
numbers using a fourth order compact finite differences scheme.
Immersed boundary techniques have been used to introduce two-
dimensional and three-dimensional ripples into the physical domain
as a body force term. The simplicity and efficiency of computing in a
Cartesian coordinate system is retained. To avoid stringent time step
restrictions, a semi-implicit time integration has been implemented to
integrate the resultant discretized equations. For the nonlinear terms,
an explicit low-storage, three-stage, fourth order Runge–Kutta
scheme has been used and for the linear viscous terms, an implicit
Crank–Nicholson scheme is used. On applying the time integration
scheme to the resultant spatially discretized equations has resulted in
Helmholtz- and Poisson-type of equations. These equations are been
solved using tridiagonal solvers resulting in the solution of wall-
normal velocity and wall-normal-vorticity. Using the continuity
condition and the definition of vorticity, streamwise and spanwise
velocity components are obtained.

DNS have been performed for two different Reynolds numbers of
Reτ=180 and 400. The height of the ripples have been kept at a
constant value of Hr/H=0.2 (H being the half height of the channel). A
detailed analysis of the turbulence statistics and the flow structures
has been performed to understand the nature of the differences
between the 2-D and 3-D ripples. The presence of ripples shifts the
mean velocity away from the wall resulting in the loss of symmetry.
Mean velocity scaled by corresponding uτ revealed that there is no
discerning difference between 2-D and 3-D ripples at both Reτ=180
and 400. Based on the first order statistics, there are no discernible
differences between the 2-D and 3-D ripples.

However, considerable differences are observed for higher-order
statistics. Our analysis clearly indicates that large-scale and small-
scale features of the flow in the presence of 2-D and 3-D ripples are
distinct. Both 2-D and 3-D ripples significantly enhance the peak r.m.s.
of velocity and vorticity fluctuations compared to a flat bed. The
results indicate that there is a distinct difference in the r.m.s. of
velocity fluctuations between the 2-D and 3-D ripples both in vicinity
of the bed as well as away from the bed. Further, the effect of 2-D and
3-D ripples is different on r.m.s. of u fluctuations compared to that on
the v and w. However, despite significant differences between the 2-D
and 3-D ripples are observed in the r.m.s. of vorticity statistics in the
vicinity of the ripples, negligible differences are observed in the region
away from the bed.

The hydrodynamic analysis has clearly demonstrated that the
kinematics of the ripples in addition to the dynamics play an important
role in altering the flow dynamics due to the rippled-surface. Hence, the
modifications in turbulence statistics (in particular, the higher order
statistics) and therefore the resultant flow structures are significantly
dependent whether the ripples are two-dimensional or three-
dimensional.

The DNS results are further analyzed to study their implication on
sediment transport by separating the bottom stress into mean and
fluctuating components. The fluctuating component of bottom stress
is noticeably larger for 3-D ripple compared to 2-D ripple. The
distribution of the bottom stress plays an important role in bed load as
well as suspended load. To investigate the significance of having
accurate bottom stress distributions from DNS calculations for
sediment transport analysis, a simplified sediment transport analysis
has been performed to obtain ripple migration speed. Due to simple
bedload assumption adopted, the resulting migration speeds for 2-D
and 3-D ripples are similar and the effect of fluctuating component of
bottom stress on net bedload transport rate appears to be small.
However, we believe that accurate bottom stress distribution obtained
from the DNS will play a critical role in future studies towards more
accurate analysis of suspended sediment transport.

In conclusion, the importance of this work is three folds: (1) a
robust DNS tool to simulate flow over 2-D and 3-D ripples has been
developed. The Navier Stokes equations are solved in vertical-velocity
and vertical-vorticity formulation, (2) analysis has been performed to
better understand the differences in the hydrodynamics and its
implications to sediment transport for 2-D and 3-D ripples, and finally,
(3) the importance of fluctuating component of bottom-stress in
relation to the mean components and its implication to the sediment
transport is explored using a simple sediment transport analysis.
Considerable differences between 2-D and 3-D ripples are observed
for higher order turbulent flow statistics. The prediction of higher
order statistics is important for several critical coastal applications,
such as suspended load transport. We believe these findings
summarized above are important to coastal applications and provide
good guideline to further extend this DNS tool for suspended load or
gas/nutrient transport across the seabed with bedforms. This study
demonstrates results of Reτ=400 (higher than prior studies of Reτ of
180) and feasibility of using DNS to study coastal problems in the
future. The robust DNS tool that has been developed as a part of this
work coupled with more complicated sediment transport models in
the near future is an important direction for more process-based
prediction of coastal sediment transport.

In the ocean, as the forcing is due to current and waves, in our
future work wewill focus on oscillatory flow over 2-D and 3-D ripples,
and study the differences in sediment transport rate and the ripple
migration speed. Further, as the sediment transport may not be in-
phase with the bottom stress, suspended load transport is further
affected by the turbulence structure over the ripples. Therefore, one
can expect larger differences for net sediment transport rate and
migration speed between the 2-D and 3-D ripples when a more
complete sediment transport formulation is used.
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