<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>877</td>
<td>Editorial</td>
<td>Editorial</td>
</tr>
<tr>
<td>878</td>
<td>Lectures</td>
<td></td>
</tr>
<tr>
<td>882</td>
<td>Workshops</td>
<td>Workshops for Young Researchers: Validation of Analytical Methods</td>
</tr>
<tr>
<td>882</td>
<td>Workshops</td>
<td>Workshops for Young Researchers: Cell Culture</td>
</tr>
<tr>
<td>882</td>
<td>Workshops</td>
<td>Permanent Committees on Manufacturing and Quality Control of Herbal Remedies and Regulatory Affairs of Herbal Medicinal Products</td>
</tr>
<tr>
<td>883</td>
<td>Workshops</td>
<td>Permanent Committee on Biological and Pharmacological Activity of Natural Products: Phytoestrogens: risks and benefits for human health</td>
</tr>
<tr>
<td>883</td>
<td>Workshops</td>
<td>Permanent Committee on Breeding and Cultivation of Medicinal Plants: Genetic Resources, Conservation and Breeding</td>
</tr>
<tr>
<td>884</td>
<td>Short lectures</td>
<td></td>
</tr>
<tr>
<td>903</td>
<td>Poster</td>
<td>Topic A: Lead finding from Nature</td>
</tr>
<tr>
<td>928</td>
<td>Poster</td>
<td>Topic B: Conservation and biodiversity issues</td>
</tr>
<tr>
<td>939</td>
<td>Poster</td>
<td>Topic C: Plants and aging of the population</td>
</tr>
<tr>
<td>944</td>
<td>Poster</td>
<td>Topic D: Natural products and neglected diseases</td>
</tr>
<tr>
<td>966</td>
<td>Poster</td>
<td>Topic E: Anti-cancer agents</td>
</tr>
<tr>
<td>988</td>
<td>Poster</td>
<td>Topic F: HIV and viral diseases</td>
</tr>
<tr>
<td>991</td>
<td>Poster</td>
<td>Topic G: Quality control and safety assessments of phytomedicines</td>
</tr>
<tr>
<td>1007</td>
<td>Poster</td>
<td>Topic H: Prevention of metabolic diseases by medicinal plants and nutraceuticals</td>
</tr>
<tr>
<td>1019</td>
<td>Poster</td>
<td>Topic I: Cosmetics, flavours and aromas</td>
</tr>
<tr>
<td>1029</td>
<td>Poster</td>
<td>Topic J: Free Topic</td>
</tr>
<tr>
<td>1083</td>
<td>Authors’ Index</td>
<td></td>
</tr>
<tr>
<td>1094</td>
<td>Masthead</td>
<td></td>
</tr>
</tbody>
</table>
Dear Colleagues,

The 57th Congress of the Society of Medicinal Plant and Natural Product research will be held this year in Geneva, Switzerland. The congress venue is going to be at the CICG (Centre International des Conférences Genève) which is very well equipped to host such an important scientific event. As chairman of the Organizing Committee and also currently Director of the Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, I am highly pleased that the proposed programme attracted numerous scientists of 71 different countries who submitted more than 900 abstracts for poster or oral presentation.

The main topics of the Congress are:

- Lead finding from Nature
- Conservation and biodiversity issues
- Plants and aging of the population
- Natural products and neglected diseases
- Anti-cancer agents
- HIV and viral diseases
- Quality control and safety assessments of phytomedicines
- Prevention of metabolic diseases by medicinal plants and nutraceuticals
- Cosmetics, flavours and aromas

The programme of the Congress is offering invited lectures to be delivered by distinguished scientists, short oral communications which will be in parallel sessions and numerous posters. The opening lecture will be given by HRH Princess Chulabhorn Mahidol, President of the Chulabhorn Research Institute in Bangkok. The present issue of *Planta Medica* devoted to our Congress could be realized thanks to the help of Dr. Kuhlmann from Thieme Verlag and also because of the efficient work realized by staff members of my Laboratory, namely Karin Megzari, Martine Cabo, Prof. Jean-Luc Woffender, Dr. Karine Ndjoko, Dr. Philippe Christen and Dr. Frederic Martin. My thanks go also to the agency selected for organizing this Congress, namely Kuoni Destination Management and their collaborators, Laetitia Roch, Franck Grosset and Steve Girod. Checking more than 900 abstracts represents an enormous work which was achieved by the members of the scientific Committee. I express my gratitude to all of them for helping us to publish abstracts of good quality in this volume of *Planta Medica*.

I hope that everybody will enjoy their stay in Geneva.

Prof. Kurt Hostettmann
Chairman, Organizing Committee of the 57th International Congress & Annual Meeting of the Society for Medicinal Plant and Natural Product Research
L1
Recent Investigation of Diverse Cytotoxic Natural Products from Thai Bioresources
Mahidol C
Chulabhorn Research Institute, Vipawadee Rangsit Highway, Bangkok 10210, Thailand

It is considered that because of the structural and biological diversity of their constituents, terrestrial plants offer a unique and renewable resource for the discovery of potential new drugs and biological entities. The potential of large areas of tropical rainforests remains virtually unexplored. With much of the biological diversity found in tropical and subtropical regions, the investigation of these resources is of paramount importance. It has been estimated that about half of the plants in the world are found in the tropics. However, only a small percentage of the world’s flowering plants have as yet been analysed for their possible medicinal uses. Apart from the abundance of plants, Thailand is also endowed with a variety of endophytic fungi which are potential sources for the production of a diverse array of bioactive metabolites, endophytic fungi associated with Thai medicinal plants are of our special interest in the past few years we have investigated some of such endophytic fungi. In addition to our current interests in the natural products from plants and endophytic fungi, we are also interested in the marine natural products isolated from marine organisms found along Thai coastal lines from the Gulf of Thailand to the Andaman Sea. In this presentation, our recent investigation on the chemistry as well as biological activities, especially cytotoxic activity of some natural products derived from the above mentioned Thai bioresources will be presented. References: [1] Younsga-ad, W. et al. (2007) Planta Med. 73:1491 – 1494. [2] Prachyawarakorn, V. et al. (2008) Planta Med. 74:69 – 72. [3] Chomcheon, P. et al. (2009) Phytochemistry 70:121 – 127.

L2
New chemistry from South East Asian medicinal plants
Rudiyansyah1,2, Suciati1,3, Lambert LK1, Ross BP4,
Carson MG1
1School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane Q 4072, Australia; 2Department of Chemistry, Faculty of Mathematics and Natural Science, Tanjungpura University, West Kalimantan, Indonesia; 3Faculty of Pharmacy, Airlangga University, East Java, Indonesia; 4School of Pharmacy, The University of Queensland, Brisbane Q 4072, Australia

Indonesia comprises only 1.3% of the earth’s land surface, but has 11% of the world’s higher plants, with over 1000 different plant extracts used in traditional medicines. [1] In a collaborative program on the chemistry of Indonesian medicinal plant species, we have examined the natural products chemistry of plants of the genus Durio and Fagraea. Both triterpene and lignan metabolites were isolated from Durio along with well known compounds such as 3-hydroxymellein that are characteristic of fungi. The relative and absolute configuration of a set of new neolignan metabolites (1) – (4) were explored by NMR and by CD studies. The genus Fagraea was generally characterized by iridoid glycosides, however the unusual new terpene alkaloid fagraeaside (5) was isolated from Fagraea racemosa.

L3
Novel GABAa ligands, inspired by nature
Sterner O
Division of Organic Chemistry, Department of Chemistry, Lund University (Sweden)

The major inhibitory neurotransmitter γ-aminobutyric acid (GABA) exerts its inhibitory effect by binding to three different classes of receptors: GABAa-, GABae- and GABAg receptors. GABAa– and GABag receptors are both ligand gated chloride ion channels, while GABae are G-protein coupled receptors. GABAa receptors are important therapeutic targets for anxiety disorders, cognitive disorders, epilepsy, mood disorders, schizophrenia and sleep disorders. Due to the commercial interest, many compound classes, such as benzodiazepines, steroids, and barbiturates, are known to allosterically modify the effect of GABA by binding to distinct sites of the GABAa receptors. The pharmacological properties of the benzodiazepines (anxiolytic, anti-convulsant, muscle relaxant and sedative/hypnotic) make them the most frequently used GABAa receptor modulating drugs in the clinic. We have developed several new classes of ligands that bind to the benzodiazepine binding site of the GABAa receptors, and used the knowledge to fine-tune a pharmacophore model that has suggested yet new and very potent ligands. Examples of compounds, all with sub-nM Kᵢ-values, that we have worked with are shown below.

L4
Opportunities and challenges that face those interested projects that link natural product chemistry, plant uses and conservation
Simmonds MSJ
Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK

Changes in land use, habitat loss, pollution and climate change are all factors that are contributing to a decrease in biodiversity. Stopping this decline is an important challenge. We are not only losing plant species that have potential to be developed as foods but also those that have medicinal and pesticidal properties. The development of DNA-based
Matter A 1

fungus

which surprisingly contain high flavonoid contents i.e. of Indonesia (BPOM RI) we have also studied the chemistry and stan-

(Weigh.) Walp. traditionally used as anti-diabetic

anthum

products of various classes, e. g. iridoids, alkaloids, flavonoids, fatty

and marine organisms have led to the identification of many natural
diseases (INDs). Our recent research mostly on endemic Turkish plants
the discovery of new drug leads for the treatment of infectious neglected
changes through the influences of climate change.

Recent study on the Chemistry of Sumatran Medicinal Plants
Arbain D, Putra DP, Bachtar A
Faculty of Pharmacy/Laboratory of Sumatran Biota, Andalas University, Kampus Limau Manis, Padang 25163, West

Sumatra Indonesia

Sumatra is the fourth largest island in the world and known to be very
rich with varieties of tropical rainforest plants. Many of these plants
have been used traditionally for centuries for many purposes such as
medicines, coloring matters, food, spices, insecticides, aromatics, etc. In
continuation of our work to study the chemistry of Sumatran Traditional
Medicinal Plants [1], recently we investigated the chemical constituents
of two species of Lerchea (Rubiaceae), as well as liverworts Bazzania sp.,
fungus Scleroterma sp and lichen Stereocouelon sp. In addition, in colla-
nation with National Agency of Drug and Food Control of the Republic
of Indonesia (BPOM RI) we have also studied the chemistry and stan-
dardization of extracts of some widely used Sumatran Medicinal Plants
which contain high flavonoid contents i.e Scygygium plat
anthum (Weigh.) Walp. tradtionally used as anti-diabetic, Scuralla ferr
ruginea Danser (Loranthaceae) as anti-cancer, Pierporia pelucida (L) Kunth. (Piperaceae), Sida rhombifolia L. (Malvaceae) as anti-rheumatic,
Gymna procumbens (Lour.) Merr. (Asterae) as anti-pyretic and anti-
inflammatory, Phyllanthus amarus (L.) Less. (Phyllanthaceae) as anti-bacterial, Un
caria gambier (Hunter) Roxb. (Rubiacae) as anti-diarrhoea and indu-
sional sources of tannis. The isolation, structure elucidation and analysis
of chemical contents of these Sumatran medicinal plants will be dis-

Natural products for the treatment of infectious neglected diseases
Tasdemir D
Centre for Pharmacognosy and Phytotherapy, School of
Pharmacy, University of London, 29 – 39 Brunswick Square,
London WC 1N 1AX, UK

Neglected, mostly tropical diseases affect large, poorest populations of
ten living in rural areas, urban slums or in conflict zones. Approximately
1 billion people, one sixth of the world’s population, suffer from one or
more neglected tropical diseases, yet there is almost no effective treat-
ment. Despite the recently boosted research activity, infectious diseases,
such as AIDS, tuberculosis, diarrhea, or vector-borne parasitic diseases,
such as malaria, trypanosomiasis and leishmaniasis continue to take
an enormous toll on human health. The absence of vaccines and the emer-
gence of drug-resistant strains render the eradication and the control of
these diseases nearly impossible. Hence, the search for new drugs
against these diseases has become a pressing, global demand. Except
for malaria, national resource have remained an untapped resource for
the discovery of new drug leads for the treatment of infectious neglected
diseases (INDs). Our recent research mostly on endemic Turkish plants
and marine organisms have led to the identification of many natural
products of various classes, e.g. iridoids, alkaloids, flavonoids, fatty
acids, saponins, terpenoids and steroids, which are generally selectively
toxic to the parasitic protozoa, i.e. Plasmodium falciparum, Trypanosoma brucei, T. cruzi and Leishmania donovani [1 – 4]. We have also isolated or
synthesized a number of natural products (quinones, sesqui-terpenes etc)
with significant activity against the tubercle bacillus, M. tuberculosis, as
well as the causative agents of food poisoning and diarrhea, E. coli and S.
aureus. The potential cellular target of some of these antibacterial and
antimycobacterial natural products has been identified [3,4]. This lec-
ture will give a summary of our results concerning the isolation, charac-
terization and biological activity of mostly secondary metabolites that
could serve as potential drug scaffolds against INDs. References: [1]

Natural products for the treatment of HIV/AIDS
Klimkait T1,2, Hamy F1, Vidal V1,2, Gercke N1, Sangier JJ1,
Guiard P1, Giger R1, Molac B, Matter A1
1Esperanza Medicines Foundation (EMF), Basel, Switzerland; 2InPheno AG, Basel, Switzerland

Access to anti-viral drug (ARV) therapy remains a serious issue for poor
people in developing countries. Despite the influx of major funds in Sub-
Saharan Africa over the last few years (10 billion USD in 2008) only
about one third of all patients get regular access to ARV therapy. For
people living with HIV/AIDS that do not fulfill the criteria of fullblown
AIDS, there are very few options. Traditional medicines have long filled
this gap albeit under conditions that are not optimal. EMF would like to
contribute in three ways to better health care, i) in supplementing ARV
therapy in fullblown AIDS patients with medicines that can contribute
to the well being, quality of life and life span, ii) supporting AIDS pa-
tients that are unable to access ARV therapy with alternative medicines,
iii) in providing such medicines to people with HIV/AIDS that are not yet
fully symptomatic. The goal of EMF is to discover, develop and ulti-
mately bring to market a diverse portfolio of three types of products:

i) Food supplements that fulfill safety criteria and have a favorable nu-
tritional effect in people with HIV/AIDS, ii) Complementary medicines

that are safe and demonstrably, in limited Phase I/II clinical trials have
a positive and measurable effect on the quality of life of people
with HIV/AIDS, and iii) novel anti-AIDS therapies registered for treat-
ment of HIV/AIDS. EMF is a charity-funded, not-for-profit organization
that has since its inception in 2004 studied a large variety of more than
12'000 Natural Products for use in above settings. Important partners in
this endeavor were the Natural Products Unit at Novartis AG, and are
InPheno AG in Basel for the systematic testing of antiviral activity in a
variety of cellular systems employing several HIV-1 substrains that are
representative of the African epidemiology, CSIR in Pretoria, SA (Dr.
Vinesh Maharaj) and, most recently, the Molecular Biology Institute in
Yaoundé, Cameroon (Dr. Céline Nkenfou Nguéfu) and the Institute of
Pharmaceutical Biology, Pharmazentrum, University Basel (Prof. M.
Hamburger & Dr. O. Potterat). A number of antivirally attractive product
candidates have been discovered that are now in the process of being
tested for their pharmacological suitability and developability. Some
concrete examples of such products will be presented.

Anti-cancer Agents from Plants, Current and
Future Prospects
Grothaus PG, Newman DJ
Natural Products Branch, Developmental Therapeutics
Program, Division of Cancer Treatment and Diagnosis,
National Cancer Institute, 1003 W 7th Street, Suite 206,
Frederick, MD, USA

Plants remain an important source of new anti-cancer drugs. The U.S.
National Cancer Institute maintains an active program to discover and
develop new drugs from plant sources. Plant materials are collected
world-wide and processed to yield extracts which are screened in-house
to identify promising leads. These extracts are also made available to
scientists world-wide for independent study. The NCI’s development
efforts include full pre-clinical studies and clinical trials with the goal
of FDA approval. The current project will present a summary of past
successes, current efforts and possible directions for new research
on plant natural products.
Chemical constituents from Chinese liverworts and their biological significances
Lou H, Xie C, Cheng A, Sun I
School of Pharmaceutical Sciences, Shandong University, 44 West Wenhu Road, Jinan 250012, People’s Republic of China

The dimorphic yeast Candida albicans is the most prevalent human fungal pathogen due to its high frequency of clinical isolation and the much amount of morbidity and mortality it causes. The natural high tolerance for antifungal drugs and the increase of clinically resistant C. albicans strains have lent the urgency for the development of new antifungal drugs. Such compounds should inhibit the morphological transition from yeast to filament which is one property contributing to C. albicans virulence. As a part of our ongoing research program on the isolation and identification of potentially antifungal compounds from the Chinese liverworts, over 30 macrocyclic bisbibenzyls have been isolated in our lab, including new bibenzofurane bisbibenzyls, which paves the way for screening the small molecule that block morphogenesis in C. albicans and obtaining structure-activity relationship data. Riccardin D, one of the macrocyclic bibibenzyls was found to inhibit C. albicans biofilm formation with a sub-MIC concentration, which is associated with its block of hyphal growth. The underlined mechanism was also investigated.

Phytomedicines Safety and Pharmacovigilance: Some Important Considerations
Khalid SA
Faculty of Pharmacy, University of Science & Technology, Omdurman, P.O. Box 11507 Khartoum, Sudan

Contrary to popular belief that herbal medicines are not innocuous there is sufficient evidence to question this premise. There is an urgent need, therefore, to perform more evidence-based herbal studies and provide conclusive evidence of their quality, efficacy and safety, which require well designed randomized controlled clinical trials to establish their therapeutic risk-benefit profiles [1]. Although the number of reports stating adverse drug reactions (ADRs) of phytomedicines is increasing, most of these cases are poorly documented and accordingly pre- and post-marketing surveillance of herbal medicine presents a unique challenge when compared with conventional medicines. The likelihood of their pharmacodynamic and pharmacokinetic interactions with conventional drugs warrants further investigations by modern in vitro and in silico predictive tools with special reference to their possible metabolisms by cytochrome P450 s and their potential interactions with P-glycoprotein. In silico simulations of absorption, distribution, metabolism and elimination (ADME) as well as toxicity can be used successfully to predict the disposition of certain secondary metabolites. The use of these innovations coupled with hyphenated techniques (e.g LC/MS/MS) may provide a reliable and comprehensive characterization of these herbal preparations and aid in the elucidation of their potential toxicity. Application of post-genomic techniques such as DNA microarrays may discern patterns of genomic changes that can be used as biomarkers to predict specific effects and provide an insight into the pharmacodynamics, pharmacogenomics and toxicogenomics of herbal medicines. The presentation intends to incorporate all the aforementioned modern technologies to better understanding of ADRs associated with herbal medicines in relation to disease state, geriatrics as well as pregnancy and lactation which remain major causes of morbidity and mortality. Reference: [1] Mills, S. and Bone, K. (2005) The essential guide to herbal safety. Elsevier. Philadelphia USA.

Phytopharmaceuticals for Dementia Therapy
Perry E1, Okello E2, Howes MJR3, Chazot P4
1Institute of Ageing and Health, University of Newcastle, Newcastle upon Tyne, NE4 6BE, UK; 2School of Agriculture, University of Newcastle, UK; 3Royal Botanic Gardens, Jodrell Laboratory, Kew, Surrey, TW9 3AB, UK; 4School of Biomedical Sciences, University of Durham, UK

The rising ‘epidemic’ of diseases like Alzheimer’s has not been met by effective symptomatic treatments or preventative strategies. Two current prescription drugs are acetylcholinesterase (AChE) inhibitors derived from plants: galantamine from Galanthus and Narcissus and rivastigmine based on the structure of physostigmine from Physostigma venenosum [1]. Clinical evidence relating to cognition for other plants includes extracts from the European sage (Salvia officinalis) and lemon balm (Melissa officinalis), for complex mixtures of traditional Chinese
The food industry is looking for magic bullets to enhance taste [1]. This presentation discusses an approach based on a low-throughput screen-
the scientists working with bacterial, animal or plant medicinal used products and is a real alternative to animal experiments. The cells themselves and their use as a test system create unique re-
mendicidal and to show the latest statistical tools which can help producing more reliable results in a faster and consistent manner. The demonstration of the ability of an analytical method to quantify is of great importance to ensure quality, safety and efficacy of pharmaceuti-
cals. Consequently, before an analytical method can be implemented for routine use, it must first be validated to demonstrate that it is suitable for its intended purpose. The analyst refers to guidelines and regulatory documents, and therefore the validity of the analytical methods is de-
pendent on the guidance, terminology and methodology, proposed in these documents. It is therefore of prime importance to have clear defi-
itions of the different validation criteria used to assess this validity. The harmonization of validation of analytical procedures was developed by numerous members of the scientific community to understand the objec-
tives of a procedure and to propose protocols that will include these criteria and these objectives. A comparative commentary of official documents regulating the validation of analytical methods (ICH, FDA, ISO, etc.) and understanding the basics in statistical requirements will help to consider some validation protocols and examples. This seminar will help you to understand the current definitions in method validation and to show the latest statistical tools which can help producing more reliable results in a faster and consistent manner.

WS2 Workshops for Young Researchers:
Cell Culture

Chair: Hensel A
Co-Chair: Tasdemir D¹, Efferth T²
¹Hochschule Wädenswil, Pharmaceutical Biotechnology, Glycopharmacy Research Group, University of Applied Sciences, Box 335, Grüntal, CH-8820 Wädenswil, Switzerland; ²Centre for Pharmacognosy and Phytotherapy, University of London, London WC1N 1AX, United Kingdom; ³German Cancer Research Center, M070, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany

Common practice of (animal) cell culture: requirements, problems and answers
Deters A
Institute for Pharmaceutical Biology and Phytochemistry, Westfälische Wilhelms University Muenster, Hittorferstr. 56, 48149 Muenster, Germany

The frequency of prokaryotic and eukaryotic cell cultures used for bi-
medical and pharmaceutical research rises with accelerated progress and growing knowledge. Cell cultures permit the investigation of new products regarding their bioactivity, the (industrial) production of new medicinal products and is a real alternative to animal experiments. The cells themselves and their use as a test system create unique re-
quirements on the scientists working with bacterial, animal or plant cells. Independent of the used cell type considerable results and reliable information will only be obtained if the tests are carried out with optim-
mal growing cells and using an appropriate experimental set up. The work with cells is extremely complex and offers a lot of sources of er-
rors and problems that need to be solved before the investigations. The lecture will give a survey of common requirements of animal cells in regard to their environment, the correlation between physical incuba-
tion parameters and the composition of media and buffers. In connection with these generalities the most frequent problems and their solu-
tion will be discussed. Some examples of experimental set ups will illustrate different designs of cell based studies with following funda-
mental steps: In general an experiment starts with the characterization of physico-chemical properties of the natural product giving a direction to the necessary pre-investigations. Major topics to consider for the achievement of significant results are appropriate controls and the most adequate methods for analysis. A suitable statistical evaluation com-
pletes the warranty to achieve reliable information concerning the bioactivity of natural compounds.

WS3 Permanent Committees on Manufacturing and Quality Control of Herbal Remedies and Regulatory Affairs of Herbal Medicinal Products

Chairs: Meier B¹ and Vlietinck AJ²
¹Zürich University of Applied Sciences, Wädenswil, Switzerland; ²University of Antwerp (UA), Antwerp, Belgium

Are European Pharmacopoeia (Ph. Eur.) monographs on Extracts a useful basis for the development of herbal medicinal products?
Heneka B¹, Wierer M², Kroses B³, Helliwell K⁴
¹Swiss Agency, Swissmedic, Bern, Switzerland; ²European Directorate for the Quality of Medicines (EDQM), Strasbourg, France; ³Committee on Herbal Medicinal Products (HMPC), European Medicine Agency (EMEA); ⁴William Ransom and Son plc, UK

The general monograph on Extracts, which classifies extracts into stan-
dardised, quantified and other extracts, and the majority of individual extract monographs detailed in the 6th Edition of the Ph. Eur were elab-
orated before the Herbal Medicinal Products Committee (HMPC) began publishing Community Monographs on medicinal plants and their ex-
tracts. However, the HMPC is now publishing an ever increasing number of Community Monographs, many of which are already the subject of Ph. Eur monographs. As the HMPC Community Monographs are referred to in the quality assessment for the licensing/registration of herbal med-
cinal products it is important that there are no discrepancies between these monographs and those of the Ph. Eur. However, problems may arise because Community Monographs are based on historical data whereas Ph. Eur monographs are being updated in response to current scientific knowledge and improved analytical methodology. The ap-
pointment of observers by both the HMPC and the Ph. Eur should help in understanding the rationale for the decisions taken by each organisa-
tion and lead to harmonisation in the key areas of nomenclature, pro-
duction and assay methods. This understanding and co-operation should be strengthened by proposals to have meetings between the relevant groups from the two organisations. The aim of this workshop is to bring together representatives from the Ph. Eur Phytochemistry Groups of Experts, the HMPC Quality Working Group and the pharmac-
aceutical industry to present their views as to both the usefulness and shortcomings of the Eur. Ph. monographs on extracts and to propose resolutions to some of the current problems. These presentations will be followed by a panel and audience discussion to further explore this important area of herbal medicinal product development.
Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Based upon their chemical structure, the most common phytoestrogens can be classified into four main groups, i.e. isoflavonoids, flavonoids, stilbenes and lignans. Isoflavonoids can be subclassified into isoflavones, flavonones and chalcones. Less common flavonoids belong to the terpenoids and saponins. For each group, the chemistry, dietary sources, exposure and biotransformation of the most interesting compounds will be discussed. Since most phytoestrogens are structurally quite similar to the estrogen 17β-estradiol, they may exhibit selective estrogen receptor modulation activities. Therefore, the structure-activity relationship of various isoflavonoids, premylated flavonoids and stilbenes will be discussed in terms of hormonal as well as non-hormonal biological effects.

Benefits: Biological effects of phytoestrogens following long term exposure

Möller F1, Zierau O1, Hertrampf T1, Molzberger A2, Diel P1, Vollmer C2
1Molekulare Zellphysiologie & Endokrinologie, Technische Universität Dresden, 01062 Dresden, Germany; 2Institut für Kreislaufforschung und Sportmedizin, DSHS-Köln, 50927 Köln, Germany

Isoflavones (ISO) are bioactive food ingredients of the traditional East Asian diet and currently discussed as alternatives to classical hormone replacement therapies. The initial “health claim” towards menopausal applications of ISO containing products stems from epidemiologic observations as soy isoflavones seem to reduce the prevalence of hormone-dependent cancers, e.g. endometrial, breast or prostate cancer. These claims were further supported by the observation, that neonatal exposure to ISO can prevent DMBA induced mammary cancer in rats. Although there are numerous studies on ISO phytoestrogens, experimental animal data on their long-term effects eventually supporting or disapproving observations in epidemiological studies are scarce. Therefore we and others [1] performed dietary exposure studies in rats with ISO-free diets or diets specifically enriched in ISO or pure genistein. Differently to others we started the exposure already prior to mating of the parental animals and it was maintained throughout the life of the offspring up to day 97. The dietary exposure to ISO improved bone gland, but dramatically affected estrogen responsiveness in the uterus. The first two observations clearly represent beneficial properties of lifelong dietary exposure to ISO. How the finding on induction of increased estrogen responsiveness by ISO has to be interpreted within in the frame of risk/benefit debate of ISO is subject of further studies. In summary, chronic dietary exposure with soy ISO or pure genistein remain unclear. Data from animal experiments provide convincing evidence that a prepubertal exposure to PEs may not affect the onset of reproductive function but reduces fertility outcome and accelerates reproductive ageing. In contrast to these adverse effects of PEs prepubertal exposure followed by a life-long intake of PEs at concentrations, naturally present in vegetarian food, reduces the risk of steroid dependent cancer. Taken together, to perform a reliable assessment of the magnitude of any adverse effect of PEs on the health of individuals or populations improved experimental and epidemiological approaches are required to model demographic effects of PEs on fertility and the risk of cancer.

Risks: Nutritional and toxicological considerations of phytoestrogens

Jarry H
Department of Endocrinology, Georg-August-Universität Göttingen. Robert-Koch-Straße 40, 37075 Göttingen, Germany

The term “phytoestrogens (PE)” defines a structurally diverse class of natural compounds that possess the ability to alter various components of the endocrine system (e.g. receptors, metabolizing enzymes, transporters) and potentially induce adverse health effects in exposed individuals and populations. Particularly nuclear receptors which include steroid receptors are known to bind many of such substances mimicking or antagonizing the effects of estrogens and androgens and this may have substantial impacts for female and male fertility. By the example of the isoflavone genistein (Gen) a risk assessment with focus on fertility and hormone dependent cancer is performed. Soy products contain significant amounts of Gen. Those products are used to improve health, i.e. they are consumed as drugs to ameliorate for example psycho-vegetative climacteric complaints or even to prevent cancer. Another exposure to Gen results from the intake of processed soy products which often are supplemented with isoflavones. An increasing number of babies are fed with industrially-prepared formula milk or vegetable based puree, however the effects of PEs contained in these products on babies’ health remain unclear. Data from animal experiments provide convincing evidence that a prepubertal exposure to PEs may not affect the onset of reproductive function but reduces fertility outcome and accelerates reproductive ageing. In contrast to these adverse effects of PEs prepubertal exposure followed by a life-long intake of PEs at concentrations naturally present in vegetarian food, reduces the risk of steroid dependent cancer. Taken together, to perform a reliable assessment of the magnitude of any adverse effect of PEs on the health of individuals or populations improved experimental and epidemiological approaches are required to model demographic effects of PEs on fertility and the risk of cancer.
Influenza still represents a major threat leading to zoonosis. The appearance of highly pathogenic avian influenza viruses of the H1N1 and H5N1 subtypes being able to infect humans reveals the urgent need for new and efficient countermeasures against this disease. Several antiviral compounds have been developed against influenza virus; their long-term efficacy is often limited, because of their toxicity or the emergence of drug-resistant virus mutants. Moreover, neuraminidase inhibitors are the most common anti-influenza agents are less effective against new H5N1 isolates. In this regard, we were able to show that a polyphenol rich plant extract from a special variety of Cistanhecus named Cystus052 exhibits antiviral activity against influenza viruses in vitro, in a mouse model and a randomized, placebo controlled clinical study. The recovery from clinical symptoms was 2.5 days faster in the Cystus052 group compared to patients taking the placebo. The protective effect of Cystus052 appears to be mainly due to binding of the polymeric polyphenol components of the extract to the virus surface, thereby inhibiting binding of the hemagglutinin to cellular receptors. The antiviral potential of Cystus052 against seven H5N1 viruses by IC50, EC50, K1 and Ki values indicated that Cystus052 was much more potent than oseltamivir. In addition, using an in vitro infectivity inhibition assay we found that a single treatment of Cystus052 was up to 100-fold more effective against these H5N1 viruses compared to oseltamivir, during the first 24 hours after infection. We conclude that Cystus052 given prior to infection might be an effective antiviral with prophylactic potential against influenza viruses including H5N1.

The blood brain barrier (BBB) controls the transport of xenobiologic compounds from blood into brain and maintains the brain’s integrity towards harmful insults. A major functional constituent of BBB represents the efflux transporter, P-glycoprotein (P-gp) 1 capillary endothelium. P-gp is highly expressed at the luminal membrane of brain capillary endothelium cells. Hence, P-gp still represents a major obstacle to the effective treatment of common central nervous system diseases. One attractive concept in experimental neurology to overcome failure of drug treatment is to selectively modulate BBB function by P-gp inhibitors to facilitate drug penetration into the brain. To identify novel P-gp inhibitors, we applied the calcein assay in flow cytometry, spectrofluorometry, and confocal microscopy. The compounds were compared with P-gp-expressing CEM/ADRS500 and P-gp-negative parental CCRF-CEM cells. In parallel, brain capillaries were isolated from pigs and porcine brain capillary endothelial cells were cultured. Protein and mRNA expression profiles were determined by microarray analyses, real-time RT-PCR, and Western blot. We analyzed 70 phytochemicals, twelve of which strongly interacted with P-gp. Intracerebral calcein fluorescence increased to >500% of controls (fluorescence in absence of P-gp inhibitors), suggesting high affinity of these compounds to P-gp. In conclusion, identification of novel P-gp inhibitors from phytochemicals derived from TCM may have high impact on the development of strategies to modulate BBB function for therapy of brain diseases.

The endophytic fungus Sterphyllum globuliferum was isolated from stem tissues of the Moroccan medicinal plant Mentha pulegium. Extracts of the fungus, which was grown on solid rice medium, exhibited considerable cytotoxicity when tested in vitro against L5178Y cells. Chemical investigation yielded eight new secondary metabolites, alterporriol F and G, its atropiosmer H, alterporriol I and its atropiosmer J, altersolan K, altersolan L and stemphyopyrone, beside eight known compounds. The structures were determined on the basis of one- and two-dimensional NMR spectroscopy and mass spectrometry. Among the alterporriol-type anthraannid dimers, the mixture of alterporriols G and H exhibited considerable cytotoxicity against L5178Y cells with an EC50 value of 2.7 μg/mL, whereas the other congeners showed only modest activity. The compounds were also tested for protein kinase inhibitory activity in an assay involving 24 different kinases. Compounds methyl-lalatarien, macrosorin, altersolan A and the mixture of alterporriol G and H were the most potent and also selective inhibitors, displaying EC50 values between 0.64 and 1.4 μg/mL toward individual kinases.
Differential cytotoxic and prooxidant activity of knipholone and kniphofine anthrone

Knipholone (KP) and kniphofine anthrone (KA) are natural 4-phenylanthraquinone structural analogues with established differential biological effects including in vitro antioxidant [1] and antimicrobial properties [2]. The present study was designed to investigate the comparative in vitro cytotoxic activity and the possible mechanism of action of these two compounds. We demonstrated that KA is by order of magnitude more cytotoxic to mammalian cells than KP. In parallel with the demonstrated cytotoxic effect, KA but not KP induces prooxidative DNA damage in the presence of copper ions. In order to establish the possible involvement of reactive oxygen species in the KA-mediated prooxidative effect, we investigated the protective effect of several metal chelators and reactive oxygen species scavengers. Our data suggest that reactive oxygen species such as hydrogen peroxide are involved and a good correlation between prooxidative action, antioxidant effect and cytotoxicity is established for these two structural analogues. The chemistry, pharmacology and potential medicinal/toxicological potential of these compounds are discussed. Acknowledgements: This research was supported by the HEFCE capability funding. References: [1] Habtemariam, S. (2007). Food Chem. 102:1042 – 1047. [2] Bringmann, G. et al. (2008) Nat. Prod. Rep. 25:696 – 718.

SL6

Rapid and efficient purification of hypericin and pseudohypericin and inhibition of thioredoxin reductase

Karioti A, Sorrentino P, Gratteri P, Rigobello MP

1Department of Pharmaceutical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padua, Italy; 2Laboratory of Metals in Medicine, Department of Chemistry, Univ. of Florence, Via della Lastruccia 3, 50019, Florence, Italy; 3Institute of Neurosciences (CNR), Section of Pathology and Clinical Department of Biological Chemistry, Padua, Italy

Hypericins have many biological and pharmacological activities and in particular reported as potent anticancer molecules [1]. These molecules are widely distributed in plant kingdom but their availability is limited due to the low content in the plants. A rapid and efficient isolation of hypericin and pseudohypericin from H. perforatum hydro-alcoholic dried extracts has been developed. Briefly, the method consists of a partition of the extract between organic and aqueous layers, further purification with Sephadex LH-20 column chromatography and a final separation of constituents using Sephadex LH-60 column chromatography. The three-step fractionation resulted in 98% content in total naphthodianthrones. Combined treatment groups had elevated superoxide dismutase (SOD) and catalase (CAT) antioxidant enzyme activities compared to the diabetic control (p<0.05). In addition, combined treatment caused noteworthy increase in pancreatic insulin levels and declines in plasma triglycerides (TG) and cholesterol (TC) levels as well as glucose concentrations. The study thus demonstrated the potential ability of baikalin to enhance the antidiabetic effect of metformin as well as reduce oxidative stress when used alone or in combination with metformin.

SL7

Molecular chaperons mediated pathways of stress protective and anti-aging effects of adaptogens

Panossian A, Wilkman G, Kaur P, Asea A

1Swedish Herbal Institute Research and Development, Åsklaster, Sporwagen 2, SE43296 Sweden; 2Division of Investigative Pathology, Scott & White Memorial Hospital and Clinic and The Texas A&M Health Science Center College of Medicine, Temple, TX, USA

SL8

Evaluation of the Antioxidant and Anti-Diabetic effects of Baicalin in Type 2 Diabetic Goto Kakizaki (GK) rats

Tan KHB, Siu SY, Hu A, Huang DJ, Waisundara VY

Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, PC 117597

Oxidative stress, claimed to be triggered directly by hyperglycemia, is increased in Type 2 diabetes and is the root cause of many diabetic complications. Numerous studies have shown that current treatments with Western drugs do not eradicate the probability of developing complications. In this study, Goto-Kakizaki (GK) type 2 diabetic rat models were used to look into the effect of the combination of the anti-diabetic drug, metformin, with baicalin, a compound from Scutellaria baicalensis, which is recognized for its radical scavenging ability. Three groups of GK rats were given the following treatments orally for 30 days: (1) Metformin 500 mg/kg, (2) Baicalin 120 mg/kg, (3) Metformin 500 mg/kg + Baicalin 120 mg/kg. Vehicle-treated diabetic controls were also used to obtain data for comparison. The rats in both baicalin and combined treatment groups had elevated superoxide dismutase (SOD) and catalase (CAT) antioxidant enzyme activities compared to the diabetic control (p<0.005). In addition, combined treatment caused noteworthy increase in pancreatic insulin levels and declines in plasma triglycerides (TG) and cholesterol (TC) levels as well as glucose concentrations. The study thus demonstrated the potential ability of baikalin to enhance the antidiabetic effect of metformin as well as reduce oxidative stress when used alone or in combination with metformin.

SL9

Preferred, Novel and Neglected Scaffolds: Natural Products in a Drug Discovery Program

Sequoia Sciences, Inc., St. Louis, Missouri USA

Over the past few years, Sequoia Sciences has identified preferred, neglected, and novel drug-like scaffolds from its extensively purified li-
Cyanobacteria (blue-green algae) produce many metabolites that are directed towards competing photoautotrophs. Such algidical compounds might offer new approaches for the selective inhibition of the malaria parasite, *Plasmodium falciparum*, as this organism contains an organelle (apicoplast) of algal origin [1]. In this communication, we report the identification of two classes of cyanobacterial secondary metabolites with antiplasmodial activity.

Aerucyclamide B

Nostocarbone

New antiplasmodial natural products from cyanobacteria: linking their ecological role to their therapeutic potential

Portmann C, Blom JF, Kaiser M, Brun R, Jüttner F, Gademann K

1Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; 2Limnological Station, University of Zurich, 8002 Kilchberg, Switzerland; 3Parasite Chemotherapy, Swiss Tropical Institute, 4002 Basel, Switzerland

The characterization, total synthesis and antiprotozoal activities of novel bichalcones from *Rhus pyroides*

Shetonde O, Mdee L, Bezabih M, Marobelka K, Mammo W, Abegaz B

1Department of Chemistry, University of Botswana, Private Bag 00704, Gaborone, Botswana; 2Department of Biological Sciences, University of Botswana, Private Bag 00704, Gaborone, Botswana; 3Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

Rhus pyroides is a tree which is resistant to attack by common pests including the corn cricket. Early investigations were directed to determining if anti-feeding metabolites were present in the plant [1]. As part of our effort to look for anti-protozoal substances we obtained from the leaves of the same plant novel O-linked chalcone dimer (1) and the previously unknown C-C coupled dimer (2) [2]. We also reported on the synthesis of the O-linked dimers (achieved through application of the Ullmann coupling of appropriately substituted chalcone moieties), and their antiproliferative properties. We have now concluded an investigation that culminated in the total synthesis of the C-C linked dimers from simple and available resorcinol and 4-hydroxybenzaldehyde and have also determined their antiprotozoal and cytotoxic properties. Key steps included the solvent-free syntheses of chalcones, and the first application of the Suzuki-Miyaura coupling reaction in the synthesis of bichalcones. The present work constitutes a general method for the rapid syntheses of a number of rhuschalcone VI related bichalcones. The synthesis and biological properties will be presented.

SL10

Aerucyclamide B

Nostocarbone

SL11

Mozambique Centre of Research and Development on Ethnobotany

Agostinho AB, Mocumbi AO, Matlombe JC, Miranda FL, Silva CP

1Ministério da Ciência e Tecnologia, Av. Patrice Lumumba 770, Maputo, Mozambique; 2Instituto do Coração, Maputo, Mozambique; 3Centro de Terapias Naturais Integradas e Ervanário, Av. da Marginal 4272, Maputo, Mozambique; 4Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1600 – 019 Lisbon, Portugal

In this communication we present the Center of Research and Development in Ethnobotany, created by the Scientific Council on Ethnobotany (COCIE) of the Ministry of the Science and Technology of Mozambique. This center, located at Namaacha and inaugurated in June of 2009, is responsible for the coordination of the research activities, interconnection with other institutions, definition of research priorities and promotion of small companies formation on the basis of native plants. Of its
plan of share already in course they are to enhance: Make a list of the most useful medicinal and feeding plants used in the different regions of the country; Accomplishment of taxonomic studies and study of the in vitro propagation methods for preservation and conservation of species at risk; Accomplishment of chemical, pharmacological and toxicological studies aiming at to prove the traditional uses of the plant-target and to guarantee its quality, security and effectiveness; Creation of a nutritional table with data regarding the Mozambique native feed plants; Creation of a garden including medicinal and alimentary plants and promotion of its use and conservation next to the local communities. Expected outcomes includes the basic formation of students concerning exploitation and conservation of the medicinal, culinary and aromatic plants; development of plant products and the consequent transfer of technology to small companies; technician formation specialists (BSc, MSc and PhD degrees) in taxonomy, vegetal biology, ethnopharmacology and biodiversity conservation of Mozambican plants. Research team is constituted by researchers from the above-mentioned institutions.

The African Herbal Pharmacopeia – Challenge and Potential

The African continent with an estimated 216 634 000 ha of closed forest area encloses some 40 – 45 000 higher plant species that present enormous industrial potential. Africa contributes 25% of the global pool of plants and 80% of the species currently being traded. While over 5 000 plants are known to be used medicinally, few have been described and studied. This large-scale utilisation is further challenged with massive loss of biodiversity. The African continent is known to have the highest rate of deforestation in the world (1% loss compared to the global rate of 0.6%). In spite of these challenges, Africa has contributed to the world’s leading commercial medicinal plants, albeit on the low side (83 out of the 1100). Among them are the following: Madagascar Periwinkle (Catharanthus roseus), Devil’s Claw (Harpagophytum procumbens), Rauwolfia (Rauwolfia vomitoria) amongst others. With so much potential and diversity, why is African ‘absent’ on the international scene? It is becoming increasingly clear that the potential for the business and agricultural sectors is enormous unless African countries prepare internationally recognised medicinal plant standards. The absence of the latter is a major barrier to regional and international trade. It could also explain why is African ‘absent’ on the international scene. With so much potential and diversity, it is becoming increasingly clear that the potential for the business and agricultural sectors is enormous unless African countries prepare internationally recognised medicinal plant standards. The absence of the latter is a major barrier to regional and international trade. It could also explain why is African ‘absent’ on the international scene.

Quality control of herbal medicines in Japan

Goda Y
National Institute of Health Sciences, 1 – 18 – 1 Kamiyoga, Setagaya-ku, Tokyo 158 – 8501, Japan

Herbal medicines in Japan are mostly used for the Kampo medicine, (the medicine traditionally practiced in Japan, based on ancient Chinese medicine). The Kampo medicine was established by the 18th century in Japan. A Kampo prescription traditionally is administered in many forms, but mainly in the form of decoction of five to ten different crude drugs (herbs). Nowadays, Kampo medicines are mainly distributed in the shape of ready-made granules, powders or tablets, containing a spectrum of crude drugs. The quality of the crude drugs is controlled by the Japanese Pharmacopoeia (JP) and the Japanese Herbal Medicine Codex (JHMC, non-JP crude drug standard). The 15th edition of JP (JP15) with the supplement 1 contains 153 crude drugs and 54 powdered ones. The JHMC covers additional 39 crude drugs and 2 powdered one. For each crude drug, the origin, physical properties and criteria for identification are rigorously specified by respective testing methods. In addition, purity test and chemical assay are required. The quality of the ready-made Kampo products for ethical use is controlled by the regulations for manufacturing control and quality control of ethical extract products in Kampo medicine formulations (the Kampo extract preparation GMP). The quality of the proprietary ones is also controlled by the corresponding regulations. These regulations are self-imposed ones of Japan Kampo-Medicine Manufactures Associations (JKMA: http://www.nikkanyakyo.org/frame.html). In the GMP, each crude drug must satisfy the criteria of JP or JHMC. Also, it is required to obtain data of TLC profile to identify individual crude drugs. In addition, quantitative HPLC analyses of the main constituents of at least two crude drugs are needed as indicator ingredients. The requirement of each Kampo extract preparation on TLC profile and HPLC analysis is written in JP or the corresponding letter of the approved period. With the supplement 1 contains 8 monographs of Kampo extracts. It is planned that the monographs of the top 20 Kampo extracts at least appear in the JP16. In Japan, 148 Kampo formulae are approved for ethical use and the total sales of the top 20 extract products account for about 67%, in the whole sales of ethical Kampo products.

Multi-disciplinary approach of Tahitian vanilla biodiversity assessment

Brunschwig C1,2, Lepers-Andrzejewski S3, Collard FX2, Bianchini JP1, Drom M4, Fabricavaloana M2, EMBRAPA T1, Fialho D1,2, Goda Y1,2,3
1Laboratoire “Biodiversité Terrestre et Marine”, Université de la Polynésie Française, BP 6570 Faaroa, 98702 Polynésie Française; 2Établissement Vanille de Tahiti BP 912 Uturoa, 98735 Raivavae, Polynésie Française; 3Institut de Biotechnologie des Plantes, Université Paris Sud 11, Bât. 630, 91405 Orsay, France

Three vanilla species are cultivated in the world: V. planifolia, V. pompona and V. tahitensis. Tahitian vanilla is characterized by anise notes [1] and oily texture. Its diversification seems to have occurred in French Polynesia since its introduction and despite its vegetative mode of propagation [2]. Vanilla growers distinguish about twenty cultivars according to their morphological traits but in local farms, two cultivars are mainly produced: “Tahiti” and “Hapape”. More than two hundred plants have been collected in the Polynesian islands and cultivated in a preservation shade house. Tahitian vanilla biodiversity is investigated using morphological, genetic, aromatic and lipidic traits. To assess genetic diversity, fingerprints (AFLP) and chromosome counts were realized. The chemical composition of the pods was investigated by HPLC analysis of aromatic compounds and fatty acids. Many morphological traits were also measured. We report here the results of the diversity characterization of five cultivars which were chosen for their large variation in morphological traits. The five cultivars show differences in their fingerprints and/or in their diploidy level. Moreover, they are well discriminated by their aroma and fatty acid compositions. The two most distinct cultivars, according to their genetic pattern, also present the most divergent chemical compositions. Such a combined analysis may provide useful information for breeding programs by allowing i) the selection of the best cultivars according to their aromatic and fatty acid composition, ii) the identification of genes related to the flavor and fatty acid biosynthesis for the selection of the best hybrids. References: [1] Da Costa, C. et al (2006) Dev. Food Sci. 43:161 – 164. [2] Duval, M.F. et al. (2006) Les Actes du BRG 6:181 – 190.

Falcarniol (Panaxynol) is a CB2 cannabinoid receptor antagonist and induces pro-allergic effects in skin

Gertsch J1,3, Leonti M2, Casu L2, Cotiglia P2, Raduner S1, Altmann KH1
1Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland; 2Dipartimento Farmaco Chimico Tecnologico, Università di Cagliari, Italy; 3Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland

In our ongoing search for new cannabinoid receptor (CB) ligands we isolated falcarniol (panaxynol) from the endemic Sardinian plant species Seseli praecox Graminsan. This polyne is also found in different food plants, such as carrots, parsley, celery, and in the medicinal plant Panax ginseng C.A. Meyer. We show that falcarniol exhibits non-selective binding affinity to human CB receptors (CB2= 3.78 ± 0.23 μM; CB1= 3.78 ± 0.4 μM) whereas its natural derivative falcarniol does not bind. Since purified falcarniol was highly unstable under all conditions tested we repeatedly isolated this compound for biological characterization. Major breakdown products were identified and one new polyne was isolated. Based on experiments measuring intracellular...
calciun and cAMP using Cb/Cb transfection cell lines and selective antagonists, falcarinol is a weak partial Cb agonist but a more significant Cb inverse agonist. In Cb receptor expressing human HaCaT keratoocytes falcarinol (5–20 μM) but not falcarinol-β increased the expression of the pro-inflammatory chemokines CCL2/MCP-1 and IL-8 and blocked the inhibition of TNF-α/IFN-α-stimulated CCL2/MCP-1 and IL-8 expression exerted by the endocannabinoid anandamide. Intriguingly, falcarinol strongly aggravated histamine-induced allergic reactions in skin prick tests performed on humans. Given the known contact allergic potential of topical falcarinol and the known anti-allergic effects mediated by anandamide and δ9-tetrahydrocannabinol (THC) in the skin, falcarinol-associated dermatitis may be directly related to its blockage of the Cb receptor and increased IL-8 and CCL2/MCP-1 expression. Overall, falcarinol may facilitate sensitization to other allergens rather than being an allergen itself.

SL17

Antiadhesive natural products for a new therapeutic approach against the early stages of infection by pathogenic bacteria. Lengsfeld C1, Niehaus M1, Gescher K1, Lörh G1, Wittschier N1, Kühn J2, Hensel A1

1University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Hittorfstr. 36, D-48149 Münster, Germany; 2University of Münster, Institute of Medical Microbiology, v-Staufenbergstr. 36, D-48151 Münster, Germany

Because of immense resistance problems the effective antibiotic, virucidal and parasitic therapy will emerge as a major goal within the near future. Antiadhesive compounds (entry blockers) reveal a new class of cytoprotective agents, interacting with outer surface structures from pathogens, responsible for the recognition of host cells and the initiation of adhesion. Inhibition of the adhesion will result in a strongly diminished infection rate. Because many bacterial adhesins are interacting with host cells via carbohydrate-protein interaction rhamnogalacturonans from Glycyrrhiza glabra and Abelmoschus esculentus were shown to inhibit strongly the in situ adhesion of Helicobacter pylori and Campylo- bacter jejuni against intact intestinal tissue. Structure-activity relations indicated highly acidic polymers with a high degree of glucuronic acid to be most active. In vivo infection studies in C. jejuni infected babies showed, that the oral use of such polysaccharides is inactive due to intestinal metabolism of the polysaccharides. Using low-molecular compounds, acidic N-phenylpropenol-amino acid amides were shown to be highly effective against the adhesion of H. pylori, leading to a new class of antiadhesives with good intestinal adsorption and better pharmacokinetic potential. Beside these compounds, which are interacting directly with the adhesins, tannin-like polyphenols were shown to change the protein structure of viral adhesins, resulting in a reduced adhesion kinetic potential. Beside these compounds, which are interacting directly with the adhesins, tannin-like polyphenols were shown to change the protein structure of viral adhesins, resulting in a reduced adhesion kinetic potential. Beside these compounds, which are interacting directly with the adhesins, tannin-like polyphenols were shown to change the protein structure of viral adhesins, resulting in a reduced adhesion kinetic potential. Beside these compounds, which are interacting directly with the adhesins, tannin-like polyphenols were shown to change the protein structure of viral adhesins, resulting in a reduced adhesion kinetic potential.

SL19

Research into chemistry and biological activities of Prangos Lindl. (Apiaceae) species of Turkey. Baser KHC1, Demirci B1, Ozbek C1, Duran A2, Tabancio N3, Wedge DF4

1Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470 Eskisehir, Turkey; 2Selcuk University, Faculty of Education, Department of Biology, 42090 Meram, Konya, Turkey; 3USDA, ARS, NPURU, National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA

Prangos Lindl. (Apiaceae) is represented in the world by 40 species and altogether 43 taxa. 17 taxa belonging to 16 species are recorded in Turkey. Herbal parts of these species called caksir are used as fodder and the roots are used as aphrodisiac like members of some other related genera such as Ferula L. Ferulago W. Koch and Peucedanum L. We have analyzed essential oils of different parts of the following species: Prangos bornmuelleri Hub.-Mor. et Reese (New name: Ekimia bornmuelleri (Hub.-Mor. et Reese) H. Duman et M.F. Watson, P. ferulae (L.) Lindl., P. turrica A. Duran, M. Sagiroglu et H. Duman, P. pabularia Lindl, P. platyclaena Boiss. et Tchih., P. iranica Pimenov, N. Sin et Klijyskow, P. achillei R. Br. et Hausskn., P. pinnatae H. Duman et M.F. Watson, P. denticulata Fich. et Mey., P. basari A. Duran et M. Ozturk. A new acetyl- ylenic derivative was isolated from the fruit oil of P. platyclaena subsp. platyclaena. Essential oil compositions of all the other oils are presented in a cumulative manner as analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Some of the species were subject to tests for antibacterial, antifungal, antiprotozoal and insecticidal (anti-mosquito) activities.

SL20

The Kava Anxiety Depression Spectrum Study (KADSS): A randomized, placebo-controlled, cross-over trial using an aqueous extract of Piper methysticum. Sarris J1, Kavanagh D2, Byrne G1, Bone KM3, Adams J4, Deed C5

1School of Medicine, The University of Queensland, Brisbane, Australia; 2Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; 3School of Health, University of New England, Armidale, Australia; 4School of Population Health, The University of Queensland, Brisbane, Australia

Rationale: Piper methysticum (Kava) has been withdrawn in European, British, and Canadian markets due to concerns over hepatotoxic reactions. The WHO recently recommended research into ‘aqueous’ extracts of Kava. Objective: To conduct the first documented human clinical trial assessing the anxiolytic and antidepressant efficacy of an aqueous extract of Kava. Design and Participants: The Kava Anxiety Depression Spectrum Study (KADSS) was a 3-week placebo-controlled, double-blind, crossover trial that recruited 60 adult participants with one month or more of elevated generalized anxiety. Five Kava tablets per day were prescribed containing 250 mg of kavalactones per day. Results: The aqueous extract of Kava reduced participants’ Hamilton Anxiety
Huck CW
Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck 52a, 6020 Innsbruck, Austria

Near- and mid-infrared spectroscopy (NIRS: 10.000 – 4.000 cm⁻¹; MIRS: 4.000 – 400 cm⁻¹) are non-invasive spectroscopic tools enabling a fast qualitative and quantitative characterization of medicinal plants and their constituents down to the ppm-level. Treatment of spectra recorded with chemometrical and multivariate approaches allows determining chemical (e.g. secondary plant metabolites, leading compounds) and physical parameters (e. g. water, alcohol content) simultaneously by one single measurement lasting only a few seconds. Liquid plant extracts are investigated in the transfection mode at thermostated conditions using light-fibre optics, dried parts of plant (flowers, leaves, roots) also in the reflection mode using a sample desk. For the quantitative analysis of secondary metabolites including 3’,5,7-trimethoxyflavone in Flos Primulae veris, hypercin and hyperforin in St. John’s Wort, ethic oils in Achillea species, a reference method based on liquid chromatography (LC), gas chromatography (GC) or capillary electrophoresis (CE) is applied. Qualitative cluster analysis not only allows identifying different parts of a plant but also enables to distinguish different species, which is essential also in traditional Chinese medicine (TCM). For the investigation of active ingredients distribution within a plant part imaging spectroscopy with a resolution down to 5 µm combined with hierarchical cluster analysis (HCA) offers an immense potential as a novel screening tool. In the present contribution the main advantages of the novel quality control IRS tool in medicinal plant analysis are pointed out and discussed in detail by several applications.

Polyphenolic fingerprint of methanolic extracts of Mentha sp. cultivated in Slovakia

Mentha L. species (Lamiaceae) represent a large source of natural anti-oxidants, mainly of phenolic origin [1]. HPLC-DAD and LC/MS/MS were used for a qualitative examination of polar flavonoids and phenolic carboxylic acids in methanolic extracts of leaves of different Mentha sp. Flavonoid-0-glycosides eroricrone (1), luteolin-7-O-glucurono (2), luteolin-7-O-rutinoside (3), luteolin-7-O-glucoside (4), naringenin-7-O-rutinoside (5), apiigenin-7-O-rutinoside (6), hesperetin-7-O-rutinoside (7), diosmin (8) were identified as major flavonoid constituents. Beside the caffeic acid derivatives luteoagoric acid (9) and rosmarinic acid (10), salvicinic acid B (11) was detected which has not been described for Mentha sp. previously. This work additionally presents the flavonoid spectrum of M. villosa Huds. (cv. ‘Snežná’) for the first time. The polyphenolic fingerprints of Mentha leaves indicate the metabolic plasticity of the investigated species and beside the essential oil also flavonoids and phenolic carboxylic acids could serve as additional markers for their differentiation.
SL25 Authentication of skullcap (Scutellaria lateriflora L.) – a commonly adulterated medicinal plant
Wohlmut H1, Aulton B1,2,3, Penman K4, Lehmann R4, Upton R1
1Centre for Phytochemistry and Pharmacology, Southern Cross University, PO Box 157, Lismore NSW 2480, Australia; 2Medicinal Plant Herbarium, Southern Cross University, PO Box 157, Lismore NSW 2480, Australia; 3School of Health and Human Sciences, Southern Cross University, PO Box 157, Lismore NSW 2480, Australia; 4Abant Içli̇k University, Etiler, 06330 Ankara, Turkey

INTRODUCTION: The North American herb skullcap (Scutellaria lateriflora) is widely used as a mild sedative, but it has been plagued by adulteration and substitution problems for more than a century. Aims: To identify reliable HPLC and HPTLC methods for the authentication of Scutellaria lateriflora raw material. Methods: A total of 45 samples were analysed by LC-MS, HPLC and HPTLC, including commercial raw material (genuine and substituted) and authentic herbarium material of S. lateriflora, five other Scutellaria taxa, and the potentially hepatotoxic substitute Teucrium chamaedrys. Four flavonoids (baicalin, baicalin, scutellarin and chrysin) were quantified and several others identified in the samples. The dataset was also subjected to principal components analysis. Results: Genuine S. lateriflora was shown to possess a characteristic chemical profile and was readily distinguishable from the other taxa examined, both by HPLC and HPTLC. S. lateriflora had a high content of baicalin (1700 ± 550 µg/g) and a low content of scutellarin (100 ± 70 µg/g). S. galericulata had a somewhat similar profile, but also contained chrysin (39 ± 4 µg/g), whereas S. baicalensis (leaf), S. altissima and S. barbata contained scutellarin as the main flavonoid. T. chamaedrys contained trace levels but none of the flavonoids typical of Scutellaria. Four lots of commercial raw material offered as S. lateriflora in a global market in 2007 were found to consist of a different species of Scutellaria. CONCLUSION: Genuine S. lateriflora can readily be identified from likely adulterants by either HPTLC or HPLC, but adulteration still occurs and rigorous authentication of raw materials is essential.

SL27 Computational evaluation of isoorientin (C-glycosyl flavone) on PPAR-gamma receptors and HMG-CoA reductase using MOE 2008.10
Fidan O, Aslan M, Mor M, Setik E
Department of Pharmacoegy, Faculty of Pharmacy, Gaziantep University, Etizer, 06230 Ankara, Turkey

Peroxosme proliferators-activated receptor-gamma (PPAR-gamma) plays an essential role in lipid and glucose homeostasis. Numerous studies and comprehensive reviews have documented various naturally derived ligands as PPAR-α potential source of novel anti-diabetic compounds from plants and herbs [1]. Isoorientin, a C-glycosyl flavone, has been isolated as an anti-diabetic and antihyperlipidemic agent from aerial parts of Gentiana olivieri Griseb. [2]. The objective of this study is to find out, the relation between these receptors and ligand. We used docking property and site finder and electrostatic map tools of molecular operating environment (MOE) 2008.10 program computer from Chemical computing group. Protein structures were taken from Protein Data Bank PDB and operated with Protonate 3D and minimized. Ligands were designed by LigX. Results shown that, E score1: -16.0501 and E refine: -17.2581 for isoorientin-HMG-CoA docking study. Data obtained from experiments demonstrated that isoorientin can be candidate as a good multi-target drug template. Acknowledgements: Authors to thank Ms. Patricia Middleton from G-Research INC. for supply MOE 2008.10 programme.

SL28 Phytoequivalence in the global marketplace for botanical products (II): Phytochemical composition and antioxidant capacity of standardized commercial Andrographis paniculata extracts
Low M1, Lee S1, Hennell J1, Kho C1, Govindaraghavan S2, Sucher NJ1
1Centre for Complementary Medicine Research, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia; 2LIPA Pharmaceuticals Ltd., 21 Beaghs Farm Road, Minto NSW 2566, Australia

In our effort to understand the phytoequivalence of botanical extracts used in complementary medicines, we examined batch-to-batch phytochemical variability of standardized commercial Andrographis paniculata (Acanthaceae) extracts sourced from India. A. paniculata is used in Ayurvedic medicine as a liver stimulant and for the treatment of jaundice and in Chinese medicine to alleviate body heat and to dispel toxins. Andrographolide and related diterpenoids have been isolated from this species. Commercial extracts are standardized to andrographolide. Significant quantitative variation in andrographolide content has been observed among accessions of A. paniculata from Thailand and India. Manufacturers modify extraction parameters to achieve consistent composition and to compensate for seasonal variability of the starting material. The downside of this method of standardization is the process-induced quantitative variation in other chemical constituents. Using HPLC/DAD/MS-MS, we characterized 12 different batches of standardized extracts sourced from one manufacturer. Results revealed the presence of 21 compounds with variation in number and quantity among the tested batches. Five major constituents, andrographoside, iso-, neo-, deoxy-, and dehydroandrographolide, were tentatively identified. Andrographolide showed maximum quantitative variation (18 fold). In order to determine the phytochemical differences between the extracts relate to their pharmacological activity, we determined the antioxidant capacity of the extracts using DPPH free radical scavenging and oxygen radical antioxidant capacity (ORAC) assays. Although neither andrographolide nor its major derivatives exhibited DPPH radical scavenging activity, we observed a 2.5 fold variation in the EC50 of the whole extracts suggesting that other components contribute to batch-to-batch variation. Ongoing work is directed at the elucidation of the pharmacological significance of batch-to-batch variations to develop better criteria for the determination of phytoequivalence of “standardized” extracts.
Evidence based efficacy of adaptogens in fatigue
Panossian A, Wikman G
Swedish Herbal Institute Research and Development, Spärvägen 2, SE-432 96 Askloster, Sweden

The aim of this systematic review was to assess the level of scientific evidence of efficacy of adaptogens on cognitive functions in fatigue. The results were evaluated by Natural Standards Evidence-Based Validated Grading Rationale (NSR) and by European Medicines Agency Assessment Scale (EMEAS), as recommended. There is strong scientific evidence (grade A) that treatment with Rhodiola SHR-5 extract is able to improve cognitive performance across “attention” tasks. These results were observed in three randomized, placebo controlled, and double-blind clinical trials (257 patients). In addition, good (grade A level) scientific evidence was estimated in chronic fatigue syndrome. Grade B level was also documented for Schisandra, which was shown to increase endurance and mental performance in 2377 patients over eight trials. Grade B level can also be accepted for Eleutheroceoccus in 729 patients with mild fatigue and weakness. Grade C level of evidences, mainly due to conflicting results obtained in different studies, is related to Ginseng, which can improve cognitive functions. In conclusion, adaptogens can be defined as a pharmacotherapeutic group of herbal preparations including rutin, isoquercetin, quercitrin, chlorogenic acid, 3,5-di-O-caffeoylquinic acid and 4,5-di-O-prenylcatechol which can improve cognitive functions. In conclusion, adaptogens can be defined as a pharmacotherapeutic group of herbal preparations including rutin, isoquercetin, quercitrin, chlorogenic acid, 3,5-di-O-caffeoylquinic acid and 4,5-di-O-prenylcatechol which can improve cognitive functions.

References:

Genus Garcinia is rich in xanthones and prenylated phenolic compounds. Fruits of Garcinia mangostana, distributed in Southeast Asia have common folk uses like treatment of diarrhoea, anti-inflammatory and ulcers healing. It is a rich source of mangostin-type of xanthone with variety of biological activities. Repeated chromatographic separation and purification of the total alcohol extract of the pericarps of the titled fruits afforded six compounds identified as α-mangostin (1) β-mangostin (2), 1-hydroxy 3,6,7-trimethoxy 8-(3-methylbut-2-enyl)-xanthone (3), mangostanin (4), 1,6,7-trihydroxy 6,6'-dimethyl-2H-pyrano (2',3':3;4)-2,8-dimethyl-2-enyl)xanthone (5) and catchin (6). Structural elucidation was achieved utilizing different spectroscopic techniques, including 1D and 2D NMR. α-Mangostin showed strong central and peripheral analgesic effects in addition to a potent antibacterial activity particularly against Bacillus subtilis and Staphylococcus aureus with MIC 1.6 and 3.2 μg/ml, respectively.

Anti-inflammatory and antioxidative effects of leaf extract from Acanthopanax trifoliatus
Sithisarn P, Jarikasem S, Thiyakorn K
Pharmaceutical and Natural Products Department, Thailand Institute of Scientific and Technological Research, 35 M.3, 12120 Pathumthani, Thailand

Acanthopanax trifoliatus is a Thai plant belonging to the ginseng family or Araliaceae, which has been traditionally used for the treatment of oxidative-stress related diseases such as lung hemorrhages, bruises, ulcers, partial paralysis, and neurosis [1 – 2]. Its leaves are also popularly consumed as tonic vegetables. Our recent work has shown that the decoction extract from the leaves of A. trifoliatus significantly exhibited in vitro antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay and thiobarbituric acid reactive substances (TBARS) method for lipid peroxidation of rat brain homogenate [3]. From our previous finding, we evaluated its ability to inhibit inflammation using carrageenan-induced rat paw edema model [4]. Two hours after inflammatory induction, A. trifoliatus leaf extract showed inhibitory effect in dose-dependent manner. At the dose of 600 mg/kg, the extract exhibited a significant anti-inflammation (41% inhibition, P<0.05), whereas the non-steroidal anti-inflammatory drug, indomethacin (20 mg/kg), showed 35% inhibition (P<0.05). High performance liquid chromatography-mass spectrometry (HPLC-MS) of the leaf extract revealed peaks correlated to some flavonoids and polyphenolics including rutin, isoquercetin, quercetin, chlorogenic acid, 3,5-di-O-caffeoylquinic acid and 4,5-di-O-coumaroylquinic acid which have been reported to exhibit antioxidant and anti-inflammatory activities [5 – 12].

POCU1b reverses diabesity induced in rats fed a high-fat diet
Kim J, Kim H, Jeong IH, Jang DS, Kim JS
Diabetes Research Center, Division of Traditional Korean Medicine Intergrated Research, Korea Institute of Oriental Medicine, Daejeon 305 – 811, South Korea

Diabesity, obesity-dependent diabetes, has emerged as a major public health problem that is increasing in frequency. This study investigated the effects of POCU1b, an herbal medicine, in rats previously fed a high-fat diet with or without 1% POCU1b were then administered orally for 7 weeks. The treatment of POCU1b significantly decreased body weight compared with vehicle-treated control without change of high-fat diet intake. Plasma glucose and insulin were restored to levels of normal chow-fed rats, and
circulating triglyceride and cholesterol were significantly decreased. POCU1b treatment also reverses the altered circulating adiponectin level. Adipose tissue mass, adipocyte hypertrophy, and deposition of triglyceride in liver were significantly decreased. These changes were accompanied by significant improvement of insulin sensitivity in POCU1b-treated rats. These data indicate that POCU1b provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat diet.

Six pure compounds were isolated and showed potent growth inhibition; vulgarin (1), isolated from Artemisia judaica, inhibited the growth of human colorectal cancer cells (27 – 100%, IC50 = 14 µg/ml) and human melanoma cells (24 – 100%, IC50 = 12 µg/ml) with 7 – 14% growth inhibition of the normal human fibroblasts. Saudinolide (2), isolated from Cluytia richardiana, inhibited the growth of colorectal cancer cells (16 – 100%, IC50 = 15 µg/ml) and melanoma cells (26 – 100%, IC50 = 12 µg/ml) with 14 – 18% growth inhibition of normal fibroblast cells. Psoralen (3), isolated from Ruta chalepensis, inhibited the growth of colorectal cancer cells (22 – 100%, IC50 = 5 µg/ml) and melanoma cells (41 – 100%, IC50 = 12 µg/ml) with 6 – 23% growth inhibition of normal fibroblasts. On the other hand, 2β-angeloyloxy-5β,8b-dihydroxypresilphiperfolane (4), isolated from Senecio hadiensis, inhibited the growth of colorectal cancer cells (28 – 100%, IC50 = 12 µg/ml) and melanoma cells (26 – 100%, IC50 = 12 µg/ml) while exerting 6 – 34% growth inhibitory effect on normal human fibroblasts. Moreover, plectranthone (5) and casticin (6) were both isolated from Plectranthus cylindraceus. Compound 5 inhibited the growth of colorectal cancer cells (15 – 100%, IC50 = 20 µg/ml) and melanoma cells (39 – 100%, IC50 = 12 µg/ml) with 8 – 25% growth inhibition of normal fibroblasts, while compound 6 had very potent growth inhibitory effects on both colorectal cancer cells and melanoma cells (80 – 100%, IC50 = 10 and 12 µg/ml, respectively) with 4 – 35% effect on normal human fibroblasts.

Figure 1. Effects of daily administration of POCU1b on (A) body weight, plasma glucose, plasma insulin, and (B) adipocyte hypertrophy in rats with diet-induced diabesity. Representative images (x 40 magnifications) of epididymal adipocytes. All values are means ± SE. *P < 0.01 vs. normal fat diet, *P < 0.01 vs. high fat diet.
Macelignan suppresses Porphyromonas gingivalis supernatant-stimulated urokinase-type plasminogen activator expression via signal transduction in human KB oral cells

Yanti1,2, Hwang JK1

1Department of Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120 – 749, Korea; 2School of Biotechnology, Atma Jaya Catholic University, Jl Jenderal Sudirman 51, Jakarta 12930, Indonesia

Macelignan, a bioactive compound isolated from Myristica fragrans Houtt. or nutmeg, has been reported for its anti-cariogenic and antibiofilm activities for dental plaque control [1,2]. However, its efficacy to block the expression of urokinase-type plasminogen activator (uPA), a serine protease that is expressed in various inflamed and normal healing cell types in response to cytokines and bacterial products, for periodontal inflammation treatment has not been investigated. This study was aimed to examine whether macelignan suppressed Porphyromonas gingivalis supernatant-stimulated uPA expression through regulation of mitogen-activated protein kinase (MAPK) and activating protein (AP)-1 signalling in human KB oral cells by performing casein zymography, reverse transcription-PCR, Western blotting, and reporter gene assays. The main caseinolytic band secreted from the cells was found to be migrated at 54 kDa and represented uPA. Macelignan dose-dependently inhibited the expression of uPA activity, protein, and gene in KB cells in response to P. gingivalis supernatant. In accordance with these findings, macelignan effectively decreased phosphorylation of p38 and c-Jun N terminal kinase (JNK) in P. gingivalis supernatant-stimulated KB cells. The levels of c-Jun phosphorylation and c-fos expression, which composed of AP-1 transcription factor for uPA gene expression, were also reduced by macelignan in KB cells exposed to P. gingivalis supernatant. In linear with these results, macelignan was found to block P. gingivalis supernatant-stimulated AP-1 activity in KB cells. These results suggest that macelignan decreased P. gingivalis supernatant-stimulated uPA expression by blocking AP-1 activity which may be facilitated by inhibiting phosphorylation of p38 and JNK in KB cells. References: [1] Chung, J.Y. et al. (2006) Phytomedicine 13:261 – 266. [2] Yanti et al. (2008) Phytother. Res. 22:308 – 312.

Tulbaghia alliacea: A potential anti-cancer phytotherapy

Thamburan S, February F2, Meyer M2, Rees J1, Johnson O1
1SA Herbal Science and Medicine Institute, University of the Western Cape, P/Bag X17, Bellville, 7535, South Africa; 2Department of Biotechnology, University of the Western Cape, P/Bag X17, Bellville, 7535, South Africa

Tulbaghia alliacea is an indigenous garlic plant used in traditional medicine as an anti-cancer remedy. To evaluate this claim, five human cancer cell lines were treated with Tulbaghia alliacea aqueous (TAA) and chloroform extract (TAC), for their potential to induce apoptosis (0 – 10 mg/ml over 24 hours) in vitro. Using phosphatidylserine externalisation, Caspase-3 cleavage, mitochondrial depolarisation and DNA fragmentation as markers, this study showed that both extracts induced apoptosis in three of these cell lines (Jurkat, MCF7 and MG63) while the other two cell lines (HeLa and H157) were completely resistant.

Gene product studies through real time PCR (Fig.1) revealed that TAA and TAC significantly induced the expression of Caspase-3, Caspase-9 and Bax, over time (P < 0.001). Whilst a previous study showed that Tulbaghia violacea extracts induced apoptosis [1], this is the first report on the apoptotic effects of T. alliacea in Jurkat, MCF7 and MG63 cancer cells during in vitro conditions. Reference: [1] Bungu, L. et al. (2006) Afr. J. Biotechnol. 5:1936 – 1943.

Production of medicinal and aromatic plants for drug industries in Egypt

Omer EA
Department of Cultivation and Production of Medicinal and Aromatic Plants, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt

The flora of Egypt includes about 2000 species of plants distributed in its different localities that vary in type of soil and prevailing climatic and other environmental conditions that hence encourage the growth of a wide range of plant species. In addition, many medicinal plants have been successfully introduced and acclimatized in Egypt. The medicinal plants are in great demand in folk medicine. The modern pharmaceutical industry also requires a large quantity of medicinal plants for manufacture of drugs. Cultivation of medicinal and aromatic plants in Egypt is taking place mainly for feeding drug industries and for exportation. It had been cultivated in Delta and Nile Valley especially in Upper Egypt (the old soil). Recently, its cultivation moved to the new reclaimed soils in order to save the fertile soils (the old soil) for the production of strategically crops i.e. cotton, rice and wheat. Several species of medicinal and aromatic plants were subjected to cultivation in the new reclaimed soils in order to achieve the technological package for maximum production of the different studied species. Some of these species are used in drug industry and others are used in production of raw materials for cosmetic industry. New techniques in irrigation (dripping or sprinkler), fertilization, mechanization and organic farming systems
were applied in the production of medicinal and aromatic plants in reclaimed soils. Some wild species were subjected for cultivation and production in the new reclaimed areas. The vegetation found on the reclaimed lands were applied in the production of medicinal plants in Egypt either in old soil or in the new reclaimed lands.

Malaria is one of the most devastating infectious diseases killing approximately one million people annually, mostly young children [1]. Natural resources – especially plants with the examples of quinine and Artemisia annua – have already been demonstrated to be a very successful source of effective and safe antimalarial drugs. The assay on β-hematin is based on the selective detection of the non polymerized hematin after complexation with pyridine [2]. The test was implemented in our laboratory and optimized for the screening of crude plant extracts and pure natural products on 96 well-plates [3]. A total of 70 natural products belonging to various chemical classes and 320 extracts have been tested qualitatively. Inhibitors of the β-hematin synthesis are tested for their activity in vitro [3]. This assay is performed in 96 well-plates with a primary screening. After confirmation of the inhibitory activity in vitro, the isolated compounds were subjected to further characterization. The β-hematin assay was employed in order to rapidly identify antimalarial hits [3].

Antimicrobial interactions between medicinal plants in African traditional medicine were studied to determine their anti-infective properties in combination. Synergistic interactions were observed for the Gram-positive test organisms. Artemisia afra, a renowned medicinal plant in South African traditional medicine [2], is commonly used in combination with other species to treat respiratory infections. Some examples from these interactions will be demonstrated i.e. the combination of A. afra with Osmotopsis asteriscoides. The essential oils and extracts demonstrated varied interactions. Diarrhoeal diseases are one of the highest causes of mortality in southern African [3].

In African traditional medicine it is well known that traditional healers often combine various plant species in order to enhance efficacy [1]. Using an anti-infective model, various plants from different geographical areas within southern Africa were examined to validate their use in combination. Antimicrobial interactions between medicinal plants were determined and the result indicated a high degree of these parameters. The fractional inhibitory concentration (FIC) for this combination ranged between 0.09 (synergistic) to 2.25 (non-active) when tested against pathogens associated with diarrhoea. In Swaziland, the bark of Ozoroa sphaerocarpa, Bremondia salicina and Syzygium cordatum are traditionally used in a triple combination for the treatment of diarrhoea. When investigated against Escherichia coli, higher efficacy was found in the 1:1:1 combination when tested independently. These examples validate the traditional use of combination therapy. References: [1] Hutchings, A. et al. (1996) Zulu Medicinal Plants – an inventory. University of Natal Press. Pietermaritzburg, South Africa. [2] Thring, T.S.A. et al. (2006). Ethnopharmacol. 103:261 – 275. [3] Bradshaw, D. et al. (2003) S. Afr. Med. J. 93: 682 – 688.

Fig. SL37

Rapid screening and targeted isolation of antimalarial hits using β-Hematin assay

Ndjoko Isot K1, Vargas S1, Hay AE2, Isot J2

Hostettmann K1

1Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, EPFL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland; 2Drug for Neglected Disease (DNDi), Chemin Louis-Dunant 15, 1202 Geneva, Switzerland

Pharmacognostic standardization and monograph development of Artemisinin from Artemisia annua grown in Nigeria: Step towards local production of Artemisinin based combination therapies

Jegede A1, Okpako L2, Orisadipe A1, Okhale S1, Kunle Y1, Okogun J1, Inyang U1

1Nat. Inst. for Pharm. Res. and Dev. (NIPRD) PMB 21 Garki Abuja Nigeria; 2Dept of life Sciences, Univ. of Bradford, UK

Towards combating the epidemic of malaria in Nigeria, cultivated Artemisia annua was subjected to various investigations. Isolation and characterization of artemisinin, along with antimalarial screening were carried out in order to standardize the product and produce a monograph. These studies resulted in the 0.5% artemisinin yield employing a modified method [1], melting point of 155°C. TLC fingerprints and white spindled crystals. Pharmacognostic investigation on Artemisia annua yielded the presence of alkaloids, steroids, terpenes, anthraquinone, flavonoids and carbohydrates, with absence of saponins and tannins. Moisture content of 13.1%, total ash value of 12.6%, acid insoluble value of 1.9%, water soluble extractive value of 22.7% and alcohol soluble extractive value of 14.3%. NMR and HPLC analyses were further carried out to determine the identity, purity and quality of the artemisinin obtained and the result indicated a high degree of these parameters. Antiplasmodial activity (in vitro) of the isolated artemisinin from A. annua against chloroquine resistant Plasmodium falciparum (strain K1) parasite lactate dehydrogenase (pLDH) assay [2] yielded a comparable antimalarial activity to the reference drug. Efforts are currently on to determine the artemisinin contents in the different A. anua biomasses obtained from different pilot farms in Nigeria as guide to further cultivation expansion. These results along with others being compiled are aimed at local production of ACTs in the country as Nigeria strives to meet the Millennium Development Goals (MDGs).

Bacopa monniera, also referred to as *Bacopa monnieri*, *Herpestis monniera*, *Scrophulariaceae*, *juevaka A¹*, *juveka M²*, *Hule A³*, *Wankhede Sº*, *University Institute of Chemical Technology (UICT)*, Mumbai, Maharashtra, India; *Bharati Vidyapeeth Homeoepathic Medical College and University, Homeoepathic hospital, Pune*

Resurgent interest in Traditional, Alternative & Complementary Medicines (TACM) has opened new areas of exploration. India, with oldest civilization history harbours many TACM. Ayurveda dates back to 5000 B.C., is developed based on the daily life relationship between human and nature. They are a part of health care industry among world countries in order to explore new chemical entities [1]. Ayurveda reports more than 2000 plants, which may be explored through modern scientific approaches. Safety and efficacy of these plants are always a cause of concern. Quality control, validated manufacturing processes and post marketing surveillance are the key points to ensure their safety and efficacy. Marker analysis based on chemos profiling and characteristic fingerprints for individual plants could help to develop uniform standard control for their g-stimulation [12]. Their regulations vary among countries causing difficulty in maintaining uniform standards. Integrated approaches may help in developing therapeutic lead with understanding on their mechanism of action and interactions for synergy [3]. Thus development of TACM from Ayurveda will help to cherish them. In this regard several approaches involved in developing Ayurveda will be discussed including, features in development of Indian TACM including Ayurveda, evaluation of their quality, safety and efficacy and harmonization of regulation and promotion with international co-ordination. References: [1] Mukherjee, P.K. (2002) Quality Control on Herbal Drugs. Business Horizons Ltd. New Delhi. [2] Mukherjee, P.K. and Verpoorte, R. (2003) GMP in Herbal Drugs. Eastern Publishers. New Delhi. [3] Mukherjee, P.K. and Wahile, A. (2006). Ethnopharmacol. 103:25 – 35.

SL40 Integrated approaches for finding leads from Ayurveda – Way forward
Mukherjee PK, Venkatesh M
School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India

SL44 Efficacy of Brazilian propolis extract and gel for the management of denture stomatitis
Santos VR, Gomes KT, Teixeira KIR, Pretti H, Aguilar EG, Cortez ME
Laboratory of Microbiology and Biomaterials-Dentistry School/Universidade Federal de Minas Gerais – Belo Horizonte – Belo Horizonte – CEP 31270 – 901-Brazil

Denture stomatitis presents as a chronic diseases in denture-bearing patients, especially under maxillary prosthesis. Despite the existence of a great number of antifungal agents, treatment failure is observed frequently. Propolis, a natural product, possesses well-documented anti-fungal and anti-inflammatory activities. The purpose of this study was to evaluate the clinical efficacy of a new Brazilian propolis extract and gel formulation in patients diagnosed with denture stomatitis. Forty-five complete-denture wearers with denture stomatitis were enrolled in this pilot study. At baseline, clinical evaluation was performed by a single clinician and instructions for denture hygiene were provided. Fifteen patients received Daktarin® (Miconazole gel), 15 received propolis extract (BPE) and 15 received propolis gel. All patients were recommended to apply the product four times a day during one week. Clinical evaluation was repeated by the same clinician after treatment. All patients treated with Brazilian propolis extract, Brazilian propolis gel and Daktarin® had complete clinical remission of palatal edema and erythema. This new Brazilian propolis gel formulation had efficacy comparable to Daktarin® and could be an alternative topical choice for the treatment of denture stomatitis. Acknowledgements: FAPEMIG – Fundação de Apoio a Pesquisa do Estado de Minas Gerais; CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico; CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Pharm. Dra. Sheila Rago Abreu (Pharmacentro- Belo Horizonte- Brazil).

In vitro and in vivo immunomodulatory activity evaluation of *Bacopa monniera*, *Scrophulariaceae*

Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur. Malaysia

Efficacy of Brazilian propolis extract and gel for the management of denture stomatitis

SL41 Herbs for the treatment of diabetes and hypertension: remedies from traditional and ethnic formulations
Ibrahim H¹, Yusoff MM²
¹Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; ²Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhaya Tun Razak, 26300 Gambang, Pahang, Malaysia

Patients with diabetes have a much higher rate of hypertension than would be expected in the general population. In general, only 25 percent of patients with hypertension have adequate control of their blood pressure. Fortunately, reductions in blood pressure can decrease the risk of this complication. Malaysia has rich and biologically diverse natural resources with over 15,000 flowering plants and 2,000 medicinal plants. An inventory of selected ethnic communities in East and West Malaysia was undertaken in an effort to identify potentially antidiabetic and anti-hypertensive plant species used within the traditional pharmacopoeia of the communities. Respondents were randomly selected and interviewed were conducted with community elders and persons knowledgeable in traditional medicine. Specific questionnaires were used and whenever possible plants documented in the survey were processed for voucher specimens. The data revealed that there are variations and differences in the method of preparation and utilization of plants as remedies for diabetes and hypertension. While there has been a notable decrease in the practice of using plant-based remedies by the ethnic communities; interest in developing product based on such knowledge is on the upsurge around the world. Twenty species common to the ethnic communities studied are selected for discussion in this presentation. Acknowledgements: University of Malaya, University Malaysia Pahang. References: [1] Epstein, M. and Sowers, J.R. (1992) Hypertension 19:403 – 418. [2] Bakris, G. et al. (2000) Postgrad Med. 107:53 – 56, 61 – 64. [3] Goh, S.H. et al. (1995) Malaysian Medicinal Plants for the Treatment of Cardiovascular Diseases. Pelanduk Publications, Kuala Lumpur.
Bacterial infections are becoming more challenging to treat as a result of the emergence of multidrug resistant (MDR) bacteria. The genetic and physiological basis for the MDR phenotype of clinical isolates has been associated with porin deficiencies and over-expression of efflux pumps which, when present in the same organism, decrease the permeability of the bacteria to two or more unrelated antibiotics. The problem of resistant bacteria (Gram-positive and Gram-negative) highlights the urgent need for new drugs. A solution is to develop efflux pump inhibitors that will restore the activity of the antibiotic to which the bacteria became resistant [1]. In this study we evaluated the efflux modulating effect of cucurbitane-type triterpenes isolated from the methanol extract of aerial parts of Momordica balsamina L. in some Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative (E. coli and Salmonella enteritidis) bacterial strains. The previously developed semi-automated real-time fluorometric method was used to monitor the accumulation and extrusion of the fluorochrome ethidium bromide, in the presence and absence of tested compounds [2]. The tested compounds have shown to increase the accumulation of ethidium bromide in the Gram-positive bacteria tested, with higher accumulation than observed in positive controls, such as tiloridine. No increase in EB accumulation was observed in S. enteritidis and E. coli strains tested. These findings show that these compounds have potential to be used as efflux pump inhibitors of Gram-positive bacteria, and thus to restore the activity of antibiotics. This is especially important due to the increase of multidrug resistance in Gram-positive pathogenic bacteria like S. aureus, S. pneumoniae and Enterococcus spp. Acknowledgements: The authors wish to thank the Science and Technology Fundation of FCT, grant SFRH/BD/82321/2005, for the financial support. References: [1] Pietras, Z. et al. (2008). Curr. Drug Targets 9: 719 – 728. [2] Viveiros, M. et al. (2008). Int. J. Antimicrob. Agents 31: 458 – 462.

Functional genomics of immuno-modulatory activities of medicinal plant extracts/phytocompounds in human dendritic cells/monocytes

Yang WS, Wang CY, Chiu SC, Shyur LF
Agricultural Biotechnology Research Center, Academia Sinica, No.128, Sec. 2, Academia Rd., Nangang District, 115 Taipei, Taiwan

Echinacea spp. extracts and the derived phytocompounds have been used as drugs or nutraceuticals for immuno-modulatory functions [1]. Dendritic cells (DCs) play an important role in both innate and adaptive immune responses. Recently, we investigated differential gene expression profiles in human immature DCs (iDCs) in response to treatment with a broad range of compounds isolated from Echinacea spp. (BF/S+L/Ep). DNA microarray results showed significant up regulation of specific genes for cytokines (IL-8, IL-1β and IL-18) and chemokines (CXCL 2, CCL 5, and CCL 2) within 4h after treatment. Bioinformatic analysis revealed a key-signaling network involving immune-modulatory gene families leading to the activation of a downstream antioxidant cascade 8. Proteomic analysis showed increased expression of antioxidants and cytoskeletal proteins after this treatment [1,2]. Human monocytes (THP-1) were also tested under LPS stimulation with [BF/S+L/Ep], along with three anti-inflammatory phytocompounds (emodin, shikonin and cytopline). Initially (within 0.5 h), shikonin [3] and emodin significantly inhibited the expression of approximately 50 genes, most notably cytokines TNF-α, IL-1α and IL-1β, chemokines CCL4 and CCL8, and inflammatory modulators NFATC3 and PTGS2. Cytopline and BF/S+L/Ep did not inhibit early expression of these 50 genes, but inhibited the late-stage expression (~12 hours) for many of them, particularly IL-4, NFATC3 and PTGS2, and the cell migration and chemokine molecules CD1H1 and ITGAl. The ERK 1/2 activation pathway was identified as the putative target of BF/S+L/Ep and cytopline. These studies provide useful information for future development of phytocompounds/extracts as defined health supplements or herbal medicines. Acknowledgements: Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. National Science Council, Taiwan. References: [1] Wang, C.Y. et al. (2008). BMC Genomics. 9:479. [2] Wang, C.Y. et al. (2006). Genomics 88:801-808. [3] Stanisifor, V. et al. (2004). J. Biol. Chem. 279:5877– 5885.

Activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrogenesis. (5)-aramepine (Arm, C19H23O3N), an active compound from Nelumbo nucifera, has been shown to exert immunosuppressive effects. In this study we investigated whether Arm could exert anti-hepato-fibrogenic effects in vitro and in vivo. A cell line rat HSCs (HSC-T6) was stimulated with tumor necrosis factor-α (TNF-α) or lipo-polysaccharide (LPS) to evaluate the inhibitory effects of Arm. In vivo therapeutic studies were conducted in both bile duct-ligated (BDL) and thioacetamide (TAA)-intoxicated rats. BDL or TAA rats were given Arm (3 or 10 mg/kg) by gavage daily for 3 or 4 weeks, respectively, starting from the onset of BDL or TAA. Liver sections were taken for fibrosis scoring, immuno-fluorescence staining and quantitative real-time mRNA measurements. One-way analysis of variance was used for comparison of parameters. In vitro, Arm (1 – 10μM) concentration-dependently attenuated TNF-α and LPS-stimulated α-SMA protein expression and collagen deposition by HSC-T6 cells without adverse cytotoxicity. Arm also suppressed TNF-α-induced NFκB and AP-1 activation and MAPK (p38, ERK1/2, and JNK) phosphorylations. In vivo, Arm treatment significantly reduced (a) plasma AST and ALT levels, (b) hepatic α-SMA expression and collagen contents, (c) α-SMA- and NFκB-immuno-positive cells, (d) mRNA expression levels of IL-6, TGF-β1, TIMP-1, col 1α2, INOS, and ICAM-1 genes, and (e) fibrosis scores of BDL and TAA rats as compared with vehicle treatment. Our study results showed that Arm exerted both in vitro and in vivo antifibrotic effects in rats, possibly through anti-NFκB activation pathways.
Our aim is to develop tools for predicting the bioactivity of complex natural products of defined chemical composition or metabolome. For long time aromatic plants have been at the centre of intensive research for their antioxidant, antibiotic, and antiinflammatory activities, among others. Their bioactivity relies on a well characterised subset of their metabolome, namely essential oils. We here report on the use of artificial intelligence to predict the antioxidant and antibiotic activities of essential oils as a first step towards linking metabolome and bioactivities. Multilayer, feed forward artificial neural networks were developed and run using the Fast Artificial Neural Network (FANN) software. The chemical composition of 81 essential oils and their antioxidant (DPPH and linoleic acid models) or their antimicrobial (inhibition disc diameter for Candida albicans, Clostridium perfringens, Escherichia coli, and Staphylococcus aureus in disc-diffusion tests) activities were extracted from the scientific literature and used as input/output values, respectively. The artificial neural networks could predict the antioxidant capacities of essential oils of known chemical composition in both DPPH and linoleic acid assays with an average error of only 3.16% and 1.46%, respectively. The antimicrobial activity could also be predicted but within the intrinsic limitations of the disc-diffusion test. These results confirm that artificial neural networks can be used as reliable, fast and cheap tools for predicting bioactivities of natural products with well defined metabolomes. Limiting factors for their performance are the inherent errors of the in vitro assays and the complexity of the network.

The objective was to show the superiority of Comfrey root extract ointment (Kytra-Salbe®; Merck Selbstmedikation GmbH) to placebo ointment in patients with acute upper or lower back pain. The double-blind, multi-centre, randomised clinical trial with parallel group design was conducted over a period of 5 days ± 1 day. The 120 patients were treated with verum or placebo ointment 3 times a day, 4 g ointment per application. The trial included four visits. The primary efficacy variable was the area-under-the-curve (AUC) of the Visual Analogue Scale (VAS) on active standardised movement decreased on average (median) 33.0% in the Comfrey extract group (104.8 to 60.4 (mean VAS sum)) and 33.2% in the placebo group. After one hour the pain intensity was already decreased about 33.0% in the Comfrey extract group (104.8 to 60.4 (mean VAS sum)) and 33.2% in the placebo group. There was a significant treatment difference between Comfrey extract and placebo regarding the primary variable. In the course of the trial the pain intensity on active standardised movement decreased on average (median) about 95.2% in the Comfrey extract group and 37.8% in the placebo group. After one hour the pain intensity was already decreased about 33.0% in the Comfrey extract group (104.8 to 60.4 (mean VAS sum)) and 12.0% in the placebo group (100.00 to 86.5 (mean VAS sum)) indicating an early onset of the treatment effect. The results of this clinical trial were clear-cut and consistent across all primary and secondary efficacy variables. Comfrey root extract showed a remarkably potent effect in reducing acute back pain. Reduction of pain and impaired movement was fast and correlated with each other. For the first time a fast-acting effect of the ointment (1 hour) was also witnessed in this trial.

Active compounds from Fraxinus excelsior L. seeds: Anti-diabetic and body weight control effects
Ibarra A1, He K1, Bai N2, Bily A1, Chen X2, Rühl R3, Song S4, Visn T5, Roller M1
1Naturex Inc, 375 Huyler St., South Hackensack, NJ 07606, USA; 2Department of Biomedical Sciences and Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; 3Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Hungary; 4Department of Chemical Biology, Rutgers University, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA; 5St. Michael's Hospital, Faculty of Medicine, University of Toronto, 70 Richmond Street East, Main Floor, Toronto, Ontario, M5C 1N8, Canada

Fraxinus excelsior L. seed extract (FE) is recognized as an anti-diabetic agent [1]. Two new secoiridoid glucosides, excelsin A (1) and excelside B (2) were isolated and elucidated from FE: (25, 3E, 4S) 2H-Pyran-4-acetic acid-3-ethylidene-2-[[6-O-β-D-glucopyranosyl-b-D-glucopyranosyl]oxy]-3,4-dihydro-5-(methoxycarbonyl) methyl ester and (25, 3E, 4S) 2H-Pyran-4-acetic acid-3-ethylidene-2-[[6-O-β-D-glucopyranosyl-β-D-glucopyranosyl]oxy]-3,4-dihydro-5-(methoxycarbonyl) 2-(4-hydroxyphenyl) ethyl ester, respectively. Eight known isolated compounds were identified as nuzhenide (3), GI3 (4), GI5 (5), liguistroside (6), oleoside-11-methyl ester (7), oleoside dimethyl ester (8), 11-O-β-D-glucosylsyllosides (9), and salidroside (10) [2]. Compounds 1-9 showed inhibitory activity against adipocyte differentiation in 3T3-L1 cells. FE (1:10,000) as well as 1, 3, 5, and 8 were activating in PPARα-reporter cell system in the range of 10−5 M comparable to 10−5 M Wy14,643. Therefore, PPARα-mediated mechanism is a possible relevant pathway for FE anti-diabetic activity. We also evaluated the effects of a low-fat diet (LFD), high-fat diet (HFD), and high fat diet + 0.5% FE (FED) on C57BL/6 mice during 16-weeks. FED decreased fasting blood glucose (33.2%, P<0.05), plasma insulin level (53.4%, P<0.05), and body weight gain (33.2%, P<0.05) compared to HFD. Finally, we used a screening model against glucose (50g) to assess the effect of FE on plasma glucose and insulin levels. FE (1.0g) was used in a double blind, randomized, cross-over, placebo (wheat bran) controlled study on 16 healthy volunteers. FE reduced the glycemic AUC (P=0.02), but not the insulinemic AUC. These results encourage conducting long term clinical studies to further evaluate the efficacy and safety of FE. References: [1] Maghrani, M. et al. (2004)]. Ethnopharmacol. 91:309 – 316. [2] LaLonde, R.T. et al. (1976). J. Ethnopharmacol. 91:309 – 316.

Antiardhesive effects of natural extracts out of Myrothamnus flabelliforme Welw. and Rumex acetosa L. against Porphyromonas gingivalis
Loehr C1, Bekler F1, Bicket J1, Hensel A2
1University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Hittorfstrasse 56, 48149 Münster, Germany; 2University of Düsseldorf, Department of Operative and Preventive Dentistry and Periodontics, Moorenstrasse 5, 40225 Düsseldorf

Porphyromonas gingivalis (ATCC 33277), a Gram-negative anaerobic bacterium, is strongly associated with adult periodontitis, one of the major public health problems. The bacterium expresses a number of well-characterized virulence factors, including lipopolysaccharides, fimbriae and proteolytic activity and hemagglutinins. Toxicity of the extracts on P. gingivalis (1 mg/mL) and KB cells (0.1 mg/mL) were tested using MTT assay and did not show any toxic effects. Polyphenol-enriched extracts from M. flabelliforme Welw. and R. acetosa L. showed strong inhibition (two titer steps) of hemagglutinating activity against P. gingivalis. The adhesion of P. gingivalis on epithelial buccal cells (KB cells, ATCC CCL 17) was investigated and quantified by flow cytometric analysis (FACS). Precipitation of P. gingivalis with 1 mg/mL, resp. 0.1 mg/mL extract of M. flabelliforme Welw. reduced adhesion 44%, resp. 20%. Incubation with 1 mg/mL, resp. 0.1 mg/mL extract of R. acetosa L. reduced adhesion by 35%, resp. 15%. Precipitation of KB cells with the extracts showed no significant inhibition of adhesion, supporting the thesis that adhesion factors on P. gingivalis are affected by the extracts.
Real-time PCR analysis revealed that 10 μg/mL extract of *M. flabellifolia* Welw. did not influence the expression of *Lys-* or *Arg-Gingipains*, but enhanced the expression of *FimA* gene in *P. gingivalis* threefold compared to an untreated control.

Changes in caffeic acid derivatives, alkalamides/polyacetylenes and phenylalanine-ammonia-lyase (PAL) activity in three Echinaeae species in response to salinity stress

Sabra A, El Hadrami A, Daify F, Renault S

1Department of Biological Sciences, University of Manitoba, R3T 2N2, Winnipeg, Canada; 2Department of plant Science, University of Manitoba, R3T 2N2, Winnipeg, Canada

Echinaeae is a native North American medicinal plant widely used as a non-specific stimulant for the immune system [1]. Three species of *Echinaeae* (*E. purpurea*, *E. pallida* and *E. angustifolia*) were exposed to 50, 75 and 100 mM NaCl under a hydroponic system to test the hypothesis that salinity stress will cause qualitative and quantitative changes in caffeic acid derivatives, alkalamides/polyacetylenes, as well as the activity of phenylalanine ammonia-lyase. Hydrophilic and lipophilic compounds were extracted from the roots by Accelerated Solvent Extractor (ASE) then analysed simultaneously by HPLC. Caffeic acid was the main phenolic compound in *E. purpurea* (35.1 mg g⁻¹ dry weight), whereas echinacside was the major phenolic in *E. pallida* and *E. angustifolia* (11.8 and 7.5 mg g⁻¹ dry weight, respectively). The lipophilic fraction contained mainly alkaloid 8/9 in *E. purpurea* and *E. angustifolia*, while in *E. pallida* it was ketone 22 [2]. Low salinity stress increased caffeic acid and cinnarin content in *E. purpurea*, and chlorogenic acid, caffeic acid, cinnarin and alkaloid 8/9 in *E. angustifolia*. However, high salinity stress diminished the content of cinnarin, alkaloids 2 and 8/9 in *E. purpurea* as well as echinacside in *E. angustifolia*. In *E. pallida*, moderate and high salt concentrations significantly increased cinnarin and ketones 20 and 21. HPLC-based assay of PAL activity revealed no significant changes in salt-stressed *E. pallida* or *E. angustifolia*, while in *E. purpurea*, the highest salt concentration significantly increased PAL’s specific activity. These changes in marker compounds, in response to salinity stress, will affect the quality of medicinal compounds. Willow bark extracts (WB) are known for their anti-inflammatory activities. Their efficacy is primarily attributed to the content of salicin and its derivatives. However, WB has a substantial content of polyphenols known to possess also antioxidant, neuroprotective and regenerative effects on signalling pathways. We used the gene microarray technique (Agilent whole Genome Rat array) to analyse the expression of the complete rat genome (~41 000 genes) which may be modulated by WB or its different fractions. The WB STW 33-1 was sequentially separated into five fractions of different polarity, using toluene, ethyl acetate, n-butanol and ethanol in addition to the aqueous extract. 84 rats were treated with these fractions (30 mg/kg). Blood samples (3 ml) of treated and untreated rats were collected in PAX® gene collection tubes. RNA was isolated and gene modulation was determined in three animals per group. After filtering the data to remove genes showing no differences between the differentially treated samples, an ANOVA analysis was performed. The resulting gene set was clustered both hierarchically and by applying SOTA. The analysis revealed groups with a consistent gene expression according to the treatment. 1143 genes were identified as differentially regulated. They included genes for AMP-activated protein kinases, hyaluronoglucosidase 6, chondroitin sulfate N-acetylgalactosaminyltransferase 2, H2-Ea (histocompatibility class II antigen) or Gria2, a glutamate receptor, activated in a variety of normal and neurophysiological processes. WB appears to be more than an anti-inflammatory agent. Microarray expression profiling will support us in understanding the mode of action of phytopreparations.

Halenia elliptica D. Don is a biennial herb belonging to the family Gentianaceae that has a long history of widespread use in traditional Tibetan folk medicine. It has beneficial effects on the liver, and is used to treat gall conditions and various other diseases [1,2]. Based on rDNA ITS sequences of *Halenia elliptica* and the other samples from *Svertia* and *Lomatogonium*, respectively, a pair of allele-specific diagnostic primers, was designed for differentiating *H. elliptica* from its adulterants (*Svertia angustifolia*, *S. erythrosticta*, *S. franchetiana*, *S. punicea*, *S. pallida*, *S. przewalskii*, *S. tetrapera* and *Lomatogonium oreochrias*) by PCR. Before the diagnostic PCR, the primer pair, TS4 and ITS5, for amplifying the whole ITS region was used to validate template DNA and to obtain the appropriate template DNA for the diagnostic PCR. Diagnostic PCRs were performed using the diagnostic primers with the total DNAs of the original plants as a template. When the annealing temperature was raised to 60 °C, only the template DNA of *H. elliptica* could be amplified whereas the diagnostic PCRs of the other samples were all negative. The diagnostic PCRs have been repeated many times and have played an important role in authenticating the herbarium specimens: [1] Hu, C.Y. et al., (2000) Genus *Halenia* Elliptica in China. This is a major diagnostic improvement, as all other methods for the specific identification of *H. elliptica* are more time consuming and practical as-

An ethanol extract from Alstonia scholaris is a potent irritation inhibitor in human skin

Lee SJ, Lee CW, Kim HS, Cho SH, Kim HK, Kim JW

1Amore Pacific Co. R&D Center, 314 – 1, Bora-dong, Giheung-gu, Yongin-si, Kyonggi-do, 449 – 729, Republic of Korea

Alstonia scholaris is a plant known for having bitter tonic and astrangent properties in India and the Philippines; it is particularly useful for chronic diarrhea and dysentery [1]. These potentials allow us to inves-

tigate the applicability of *A. scholaris* extract as a cosmetic ingredient; basically we have measured its ability to inhibit the release of pro-

inflammatory cytokines, including MCP-1 (monocyte chemotactic protein-

1), IL-6, and IL-8, thus providing anti-inflammatory effect on the human keratinocytes. In an anti-inflammatory assay, measuring the degree of inhibiting inflammatory cytokines release in human normal keratino-

cyte HaCaT cells, we have observed that the ethanol extract of *A. scholaris* significantly inhibit cytokine production in 1 μM retinoic acid treat-

ment. We have also found that our extract, whose concentration is 50ppm, inhibits the release of MCP-1 and IL-6 by 81.2% and 79.7%, respectively. Moreover, our extract has inhibited the release of IL-8 by 72.2% at concentration of 100ppm, which is remarkably comparable to the result of non-treated condition. In our further human clinical tests, we have demonstrated that the extract of *A. scholaris* inhibited skin irritation induced by arinol at concentration of 0.1%. Moreover, it does not reveal the skin primary irritation, which allow us to rule out the possi-

bility to primarily irritate human skin through 24h occlusive patch test in lower back skin (*n = 40*). These results show that extract of *A. scholaris* has sufficient irritation inhibitory effect as well as skin safety, thereby
A simple and efficient method was developed to carry out biotransformation reactions on terpenoid compounds. For these experiments, sporulated surface culture of Penicillium sp. was inoculated on solid media in conical flasks. After a short incubation period, the spores germinated and a mycelia culture was formed. After 1 week, the cultures had completely sporulated and bioconversion reaction was started. For this purpose, known volume of menthol was added onto the sporulated surface culture. After 7 days, a period during which transformation took place, menthol was extracted with Et2O three times and after evaporation, recognition by GC and GC/MS was followed. The main bioconversion product obtained from menthol by surface Penicillium sp. was α-pinene (18.0%), trans-p-Menth-1-ol (10.6%), p-Menth-1-ene (5.8%), sabinene (3.9%) 1,8-Cineole (6.4%), and limonene (3.2%) using sporulated surface culture. The pathways involved in the biotransformation of menthol by Penicillium sp. to main products are also discussed.

Bioassay-directed isolation of hypotensive alkaloid from Holarrhena pubescens
Aftab K1, Usmani SB2, Begum S1, Siddiqui BS2
1Department of Pharmacology & Therapeutics, Peshawar Medical College, Peshawar; 2H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan

Holarrhena pubescens belongs to the family Apocynaceae, commonly known as “kurchi” is highly reputed in traditional medicine as a remedy for amoebic dysentery and other intestinal ailment. Bioassay-directed fractionation [1] of the ethanolic extract of Holarrhena pubescens resulted in the isolation of steroidal alkaloids i.e. holamide and pubscinine. Holamide showed a three proton doublet at 1.45 (J = 6.56 Hz) and two AB doubles at 3.17 and 3.00 each for on proton (J = 12.06 Hz) in the 1H NMR spectrum suggested that it belongs to conanine series of alkaloid (a class of compounds with the steroid nucleus and a five member heterocyclic ring with nitrogen). In contrast pubscinine showed one methyl at 1.28 while the doublet is missing, a three proton singlet was observed at 2.28 due to a vinyl methyl doublet indicated a bond in the 18,20 – epimino ring of the conanine series of alkaloids. In anaesthetized rats, the holamide and pubscinine caused a fall in blood pressure in a dose-dependent manner. Pretreatment of animals with atropine completely abolished the hypotensive response of acetycholine; whereas hypotensive effect of holamide and pubscinine were not modified by atropine [1]. Similarly, acetylcholine produced contractile effect in guinea-pig ileum, which was antagonized by atropine, however both holamide and pubscinine failed to produced any stimulant response on guinea-pig ileum. These data indicate that the steroidal alkaloids i.e. holamide and pubscinine from Holarrhena pubescens mediated hypotensive response through a mechanism different to that of acetycholine. Reference: [1] Aftab, K. et al. (1996) Adv. Exp. Med. Biol. 404:429 – 442.

Mushroom tyrosinase activity of phenolic compounds isolated from Greyia flanaganii (Bolus)
Lail N1, Mapunya MB1, Hussein AA2
1Department of Plant science, University of Pretoria, Pretoria 0002, South Africa; 2Department of Chemistry of Medicinal Plants, National Research Center, El-Tahrir St., Dokki, Cairo, Egypt

Pigmentation has become an important phenotypical characteristic in the pharmaceutical, medicinal as well as in the cosmetic field. Plants are inexpensive resource that can be utilized to inhibit tyrosinase activity as well as melamin production [1]. Ethanolic leaf extract of Greyia flanaganii (Bolus) showed significant (p < 0.05) anti-tyrosinase activity when L-tyrosine was used as a substrate exhibiting the 50% inhibitory concentration (IC50) of 32.62 μg/ml. The extract exhibited significant (p < 0.05) 9.89% reduction of melanin content at 6.25 μg/ml and no toxicity on melanocyte cells was observed at the highest concentration (400 μg/ml) tested. Seven phenolic compounds; 2’,4’-di-hydroxydihydrochol-
Triterpene saponins are a class of plant natural products with a wide range of bioactivities, and therefore they are a promising research subject. In previous work a triterpenoid saponin mixture was isolated from the leaves of *Maesa lanceolata* and the compounds were identified [1,2]. These compounds showed virucidal, haemolytic, molluscicidal and antiangiogenic activity [3,4]. Maesasaponin II displays the highest antiangiogenic activity, but is only present in very small amounts in the plant. To increase this amount, a platform of combinatorial biosynthesis in the plant was developed. By introducing genes involved in saponin biosynthesis we are attempting to identify new active compounds, and a higher production of the known compounds. In the first phase of the project, only small amounts of transgenic plant material are available. Therefore it is important to use very sensitive analytical methods. For the fast and sensitive analysis of the extracted and purified plant samples, ultra-performance liquid chromatography (UPLC) was coupled to a triple-quad mass spectrometer for MS/MS detection (TQD). The intensity of the signal obtained by fragmentation of the sodium adducts of the saponins was optimized by addition of sodium acetate to the mobile phase. The method was linear over the investigated concentration range with a correlation coefficient higher than 0.99. Furthermore the method was shown to be repeatable and accurate and therefore suitable for screening of the saponin production of transgenic plants.

References:

were observed [2]. New findings suggest also a role of galanthamine as an adjunctive treatment in major depression [3]. In the presented paper significant improvements in screening methodology of AChE inhibitors among Amaryllidaceae alkaloids were elaborated. It comprised optimized pressurized liquid extraction (PLE) of plant materials followed by highly selective solid-phase extraction (SPE) using Oasis HLB cartridges. Pure alkaloidal fractions were analyzed by a newly developed high-performance liquid chromatography (HPLC) on a 3 μm Atlantis HI-UC silica stationary phase combined with recently introduced electrospray ionization (ESI) octopole-orthogonal acceleration time-of-flight (oa TOF)-mass spectrometry (MS) with high mass accuracy (about 2 ppm) and high sensitivity [absolute limit of detection (LOD) for galanthamine (oa TOF)-mass spectrometry (MS) with high mass accuracy (about 2 ppm) and high sensitivity [absolute limit of detection (LOD) for galanthamine was about 43 fg at signal-to-noise 13:1]. Moreover, a newly developed and validated TLC-bioautography permit galanthamine sensitivity at pg levels. In this way, more potent than galanthamine AChE inhibitor namely 1,2-dihydrogalanthamine in activities at pg levels. In this way, more potent than galanthamine AChE inhibitor namely 1,2-dihydrogalanthamine and newly developed and validated TLC-bioautography permit galanthamine sensitivity at pg levels. In this way, more potent than galanthamine AChE inhibitor namely 1,2-dihydrogalanthamine and newly developed and validated TLC-bioautography permit galanthamine sensitivity at pg levels. In this way, more potent than galanthamine AChE inhibitor namely 1,2-dihydrogalanthamine and newly developed and validated TLC-bioautography permit galanthamine sensitivity at pg levels. In this way, more potent than galanthamine AChE inhibitor namely 1,2-dihydrogalanthamine in Narcissus jonquilla 'Pipit' extract could be found (with IC50 value 0.19 μM) lower of about 42% than that of galanthamine [4].

Acknowledgments: I would like to thank Ms. Dominika Dyk for her assistance in laboratory work, and The Polish Ministry of Science and Higher Education for funding the new LC/ESI-TOF-MS system and financial support of this research project (Grant No 2 P05 F 006 29).

SL66

Jcaranone derived glucosidic esters from Jacaranda glabra

Gachet MS1, Schühl W2, Kuner O2, Kaiser M2, Brun R1, Münzner K2, Bauer R1

1Pharmacognosy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; 2Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; 3Swiss Tropical Institute, Socinstrasse 57, 4002 Basel, Switzerland; 4Laboratorio de Química Orgánica e Investigaciones Aplicadas, Escuela Politécnica Nacional, Ladrón de Guevara E11 – 253, POBOX: 17 – 01 – 2759, Quito, Ecuador

The genus Jacaranda (Bignonieae) native to the New World, but also widely cultivated in the Old World, contains 49 species. Recently, a review of the ethnobotanical and pharmacological uses of Jacaranda species has pointed out interesting biological and chemical perspectives with regard to skin illnesses and protozoa related diseases [1]. In our current project on the validation of anti protozoal activity of plants traditionally used in Ecuador, the dichloromethane extract of the leaves of *Jacaranda glabra* (DC.) Bureau & Schumann has shown promising activity against *Plasmodium falciparum* K1 strain. Activity guided isolation yielded 4 novel glucosidic esters (1–4) containing quinolacetic acid (R1), phenylacetic acid (R2) and para-hydroxy phenylacetic acid (R3) moieties. The compounds identified by NMR experiments and MS techniques exhibited activity against *Pl. f.* K1 strain (IC50 1: 1.1, 2: 0.6, 3: 0.6 and 4 0.5 μg/mL) and low cytotoxicity on L-6 cells, except for compound 1 (IC50 1: 2.6, 2: >90, 3: 87 and 4 85 μg/mL). In addition, 4 ethnobotanical preparations were found active. Similar structures have been previously reported in literature [2,3].

SL65

A new pyridine cysteine-sulphoxide identified in *Allium stipitatum*

Kusterer J, Keusgen M

Institut für Pharmazeutische Chemie, Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany

Allium stipitatum Regel is known as ornamental plant in Europe. In Central Asia it is used as spice and in folk medicine and known as “Musir” or “Anzur”. *Allium stipitatum* belongs to subgenus *Melanocrommyum* section *Megaloprason*. A newly developed HPLC-MS/MS method was used for screening on amino acids, amines and sulphoxides. Amino acid derivatives were analysed as corresponding α-phthalaldialdehyde derivatives. Besides the already described cysteine sulphoxide methin, a new compound was identified, which is a 2 pyridyl-S-L-cysteine sulphoxide (Figure). Structure elucidation was performed by HRESI, NMR, IR and polarometric measurements. This compound could also be found in further members of the section *Megaloprason* and is probably useful as chemical marker for this group. Interestingly, the recently described 3 pyrrol-S-(+)-L-cysteine sulphoxide [1], which is also characteristic for the subgenus *Melanocrommyum*, could not be found in these species carrying the corresponding pyridine derivative. It can be assumed that both biogenetic pathways are excluding each other. Additionally to the above described structure elucidation, the alliinase of *A. stipitatum* could be partially characterized.

(R)-2-amino-3-((R)-pyridin-2-ylsulfinyl)propanoic acid

References

Quality control and standardisation of phytomedicines – From cultivation of medicinal plants to its clinical application

Kamil M, Ali Noji M

Zayed Complex For Herbal Research & Traditional Medicine, DPH&P-Health Authority Abu Dhabi, P.O Box: 29300, Abu Dhabi

In the recent years with ever growing commercialization in the field of herbal medicines, there has been an instant demand for quality control of the drugs used in this system. The studies on the identity, purity and quality of the genuine drug will enhance information in checking the adulteration. A set of standards would not doubt be deterrent on substitution and adulteration and also an aid both for ‘Drug law Enforcement’ as well as for Safety Assessment of the Finished Herbal Products. In the present paper an attempt has been made for a sequential study of the Quality Control of Phytomedicines starting from – Selection of Medicinal Plants, Good Agricultural Practices (GAP), Cultivation, Good Field Collection Practices (GFCP), Organized and Unorganized Drugs, Source and Period of Collection, Identification and authentication, Storage, Chemical Standardisation, Assay, Good Manufacturing Practices (GMP), Pre Clinical studies up to Clinical Approach, with special reference to maintain Standardisation at each and every stage. Besides above protocols, this study deals with approaches towards establishing the Safety & Quality starting from preliminary examination of a medicinal plant, its morpho-anatomical, pharmacognostic, physicochemical and analytical parameters, foreign organic matter, pesticide residue, radioactive and microbial contamination, chemical assay, finger printing of different extractives using modern extractors, Chromatographic and Spectroscopic techniques, phytochemical screening, quantitative analysis of inorganic constituents and standardisation with special reference to marker compounds in plant species and their fingerprinting along with its modern perspective. Different stages, i.e. Quality Control Studies of Raw medicinal plant, Controlled Studies on Method of Processing, Quality Control Studies of Finished Phytomedicines and Standardisation Procedures at each stage from birth of the medicinal plant up to clinical application of herbal medicine have been described. An emphasis has been given on the protocols which are required for Registration of phytomedicines. An example is cited with standardisation and quality control studies of *Salvadora persica* carried out in our laboratories.
Dry olive leaf extract promotes avant-garde apoptosis in melanoma cells; switch from caspase-dependent to caspase-independent pathway

Mijatovic S1, Radovic J1, Timotijevic G2, Mojc M1, Mijkovic D1, Dedanski D1, Stosic-Grujicic S2
1Institute for Biological Research “Sinisa Stankovic”; 2Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia

Aim of work: It is well known that malignant melanomas respond poorly to chemotherapy. Having in mind efficacy of some traditional approaches in treatment of apoptotic unresponsive cancers, it was of interests to evaluated sensitivity of melanomas to compounds present in total dry olive leaf extract (DOLE) with known antimicrobial, anti-inflammatory and antioxidative properties. Applied methods: Crystal violet and MTT viability assays, analysis of cell cycle distribution of PI stained cells, Anex/PI double staining for detection of apoptotic/necrotic cell death, Western blot analysis of relevant protein and Real time PCR analysis of gene expression; solid melanoma were induced by subcutaneous inoculation of B16 cells in syngeneic C57BL/6 strain.

Conclusions: DOLE strongly abrogated growth of B16 cells in vitro, while the expression of caspase-independent endonuclease – Endo G was exaggerated, thus indicating its involvement in finalization of apoptotic process. Time limited upregulation of cell protective Bcl-2 within first two hours of incubation with DOLE, followed with its rapid and permanent decrease, possibly contributed to switch from caspase-dependent to caspase-independent pathway. Conclusions: Compounds present in DOLE are capable to overcome insensitivity of melanoma cells to classical apoptosis by unconventional mechanisms, indicating that data presented are worthy of further investigation. Acknowledgements: This work was supported by Serbian Ministry of Science and Technological Development (Grant No 143020).
The scope of this research was to analyze the XO-inhibitory activity of *F. ulmaria* and a related species, *F. vulgaris*, in order to rationalize the traditional use of these plants. Extracts were tested for their capacity to inhibit XO by spectrophotometrical determination of the rate of uric acid formation. The anti-gout drug allopurinol and its active metabolite oxypurinol were used as positive controls. Methanolic extracts of the flowers of *F. ulmaria* and *F. vulgaris* were demonstrated to have high inhibitory activity towards the XO enzyme with IC50-values of 6.2 ± 0.6 µg/ml and 8.9 ± 0.8 µg/ml, respectively. In comparison, IC50-values of allopurinol and oxypurinol were 2.6 ± 0.9 µg/ml and 1.0 ± 0.2 µg/ml, respectively. Thin-layer chromatographic analysis showed flavonoids to be present as the main constituents in the methanolic extracts. This is in line with literature data reporting *F. ulmaria* to contain 5.1 – 7.3% of flavonoids in the flowering tops [4]. Since flavonoids have previously been described as inhibitors of XO [5], these constituents probably attribute to the activity of the methanolic extracts of *F. ulmaria* and *F. vulgaris*. The XO-inhibitory activity of *F. ulmaria* and *F. vulgaris* extracts further substantiates the traditional use of these medicinal plants in the treatment of gout. References: [1] Madaus, G. (1938) Lehrbuch der biologischen Heilmittel. Georg Thieme Verlag, Leipzig. [2] Gessner, O., Orzechowski, G. (1974) Gift- und Arzneipflanzen von Mitteleuropa. Carl O. Kiek. It is used in traditional medicine against fever-like symptoms, such as in malaria [2]. Previous screening of medicinal plants from South West Africa [1].

Bioassay guided isolation of antiplasmodial constituents from *Ormoscarum kirkii* Dhooge L1, Maregesi S1, Maes L2, Cos P2, Apers S1, Vietsnick A1, Pieters L1

1Laboratory of Pharmacognosy and Pharmaceutical Analysis, University of Antwerp, Universiteitsplein 1, B-2600 Antwerp, Belgium; 2Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Ormoscarum kirkii (Papilionaceae) is a shrub or small tree that grows in South West Africa [1]. It is used in traditional medicine against fever-like symptoms, such as in malaria [2]. Previous screening of medicinal plants used in Tanzania showed that the extract of the root of *O. kirkii* has high in vitro antiplasmodial activity (IC50 of 15.6 – 31.3 µg/ml against *Plasmodium falciparum*) [3]. Since this genus is used in traditional medicine and limited phytochemical information is yet available, further investigation by means of bioassay guided isolation was performed. After extraction and liquid-liquid partitioning, ten fractions were obtained from the ethyl acetate layer by means of column chromatography. Using HPLC, several compounds were obtained that were identified according to their NMR- and mass spectra and optical rotation measurements, and evaluated for their antiplasmodial activity. Four new compounds were identified: 5,5′-dimethoxy-diphypon (IC50 = 15.8 µM), 4′-hydroxy-diphyponol (IC50 = 16.4 µM) and two biflavonoids, liquiritigeninyl-(1,3-lll)-naringenin (IC50 = 30.3 µM) and apigeninyl-(1,3-lll)-naringenin (IC50 > 64.0 µM).

Immunopharmacological potential of the leading chemical constituents from *Leuzea carthamoides* Harmatha J1, Knokicniovka E2, Zidek Z2

1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences, 166 10 – Prague 6, Czech Republic; 2Institute of Experimental Medicine v.v.i., Academy of Sciences, 142 20 – Prague 4, Czech Republic

Antiprotozoal activities of *Melampyrum arvense* and its secondary metabolites Karmazbekmez H1, Atay İ1, Kaiser M2, Veskala E1, Tasdemir D1

1Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey; 2Department of Medical Parasitology, Swiss Tropical Institute, 4002 Basel, Switzerland; 3Centre for Pharmacognosy and Phytotherapy, School of Pharmacy, University of London, London WC1N 1AX, UK

The genus *Melampyrum* (Scrophulariaceae) consists of annual semi-parasitic plants and represented by two species, *M. arvense* and *M. pratense* in the flora of Turkey [1]. In the continuation of our efforts to find natural antiprotozoal compounds from the Scrophulariaceae family [2,3], the crude MeOH extract of *M. arvense* was found to show in vitro activity against parasitic protozoa *Trypanosoma brucei rhodesiense* and *Leishmania donovani* (IC50 values 8.8 and 30.5 µg/ml). The MeOH extract was suspended in H2O and partitioned against CHCl3. Both aqueous and CHCl3 phases showed activity against two parasites and possessed no cytotoxicity against mammalian L6 cells (IC50 > 90 µg/ml). Using a guided fractionation of the H2O extract using MPLC and repeated column chromatography techniques afforded ten pure compounds, whose structures were elucidated by spectroscopic methods (1H and 13C NMR, ESIMS) to be iridoid glucosides aucubin (1), melampyroside (2), musaenoside (3), musaenosidic acid (4), epi-loganin (5), flavonoids, apigenin (6), luteolin (7), luteolin-7-O-glucopyranoside (8), lignan glycoside dehydroconiferyl alcohol 9-O- β-glucopyranoside (9) and benzoic acid (10). All compounds showed moderate to remarkable trypansomocidal activity (IC50 3.8 – 60.8 µg/ml), with compound 7 being the most potent one. The majority of the metabolites also possessed leishmanial properties and again compound 7 was the most active constituent (IC50 3.0 µg/ml). Except for compounds 6 and 7, all compounds lacked cytotoxicity towards mammalian cells (IC50 > 90 µg/ml). This is the first detailed phytochemical study on Turkish *M. arvense* and first report on the

Scutellaria is a genus of the Lamiaceae family with about 300 species widespread in temperate regions and on tropical mountains, whose essential oils possess ecological properties such as anti-feedant [1]. Scutellaria brevibracteata Stapf. is a species typical of Lebanon whose chemical composition or biological activity were never previously studied. Therefore, in this communication we report on the study of the chemical composition of the essential oil of this plant collected in June 2007 on Mont Chabrour in Lebanon, on rocky ground at 1500 m a.s.l., and on its activity against the feeding and oviposition behaviour of Spodoptera littoralis, a polyphagous insect attacking a number of plant species. The oil was isolated by hydrodistillation [2]. GC and GC/MS analyses evidenced the presence of 48 compounds; the most abundant components were sesquiterpenes (24.9%), Caryophyllene (14.4%) was recognized as the main constituent together with hexadecanoic acid (12.6%), phytol (10.7%) and 4-vinylguaiacol (10.2%). Binary choice bioassays were undertaken to investigate if the essential oil could modulate the feeding behaviour of final stadium larvae of S. littoralis; data show that S. brevibracteata essential oil did not significantly modify the larval feeding behaviour but deterred the oviposition behaviour of adult moths. References: [1] Rosselli, S. et al. (2007) Biochem. Syst. & Ecol. 39:797 – 800. [2] European Pharmacopoeia 5th ed. (2004) Council of Europe, 217.

Seselis praecox (Gramisans) Gramisans, (Apiaceae) is an endemic chamaephyte species from Sardinia. The lipophilic extract of S. praecox stems was subjected to a bioactivity guided fractionation and isolation process with the binding affinity towards human CB receptors as a lead. The activity guided isolation process afforded (R)-falcarinol (panaxynol), with the binding affinity towards human CB receptors as a lead. The material was subjected to HPLC isolation. Falcarinone and E-falcarinone were used for comparative purposes. Their immunobiological effects were screened in vitro using rat peritoneal cells primarily activated with lipopolysaccharide (1 µg/mL). The cells were cultured at a density of 2 x 10^6/mL in complete RPMI-1640 medium for 24 h. The supernatant levels of interferon-gamma (IFN-γ), IL-1β, IL-6, and vascular endothelial growth factor (VEGF) were determined by ELISA. The production of NO was assayed using Griess reagent. In sharp contrast to costunolidine and bethylanin, the tested SLs were found to be free of cytotoxic effects up to a concentration of 50 µM. The highest potential to inhibit cytokine and NO production is possessed by laserodiol, which is effective at an IC50 of approximately 5 µM. Laserodiol also inhibits VEGF, a factor known to be

Bioactivity guided and random isolation of polyacetylenic compounds from Seselis praecox

Seselis praecox (Gramisans) Gramisans, (Apiaceae) is an endemic chamaephyte species from Sardinia. The lipophilic extract of S. praecox stems was subjected to a bioactivity guided fractionation and isolation process with the binding affinity towards human CB receptors as a lead. The activity guided isolation process afforded (R)-falcarinol (panaxynol), which accounted for 12 – 15% of total crude lipophilic extract. Random isolation afforded the new polyacetylenic compound heptadeca-1-ene-4,6-diyne-3,10-diol (dhydroxyselidiol) (fig). With respect to seselidi reported by [1] dhidroseselidiol differs by the missing double bond between C-8 and C-9.

Falcarnolin is known for its notorius instability. In order to identify the main degradation products sunlight exposed and freezer stored falcarnol was subjected to HPLC isolation. Falcarnine and E-Heptadeca-1,8-diene-4,6-diyne-3,10-diol were found to be the main oxidation products of sunlight exposed falcarnolin, while 4,5-dihydrofalcarnolin was found in freezer stored falcarnolin. It was shown that only falcarnalin elicits allergic contact dermatitis in patch tests, while the degradation products have no allergenic potential [2]. We found that only freshly isolated falcarnolin showed CB receptor affinity and that this might be the mechanism of action for its pro-allergenicity. References: [1] Hu, C.Q. et al. (1990). Nat. Prod. 53:932 – 935. [2] Hansen, L. et al. (1986) Phytochemistry 25:285 – 293.
associated with tumour growth. Acknowledgements: The work was supported by the grant 305/07/0061 from GAČR.

PA11

Thapsigargin and trilobolide – sesquiterpene lactones with immunostimulatory properties

Kmoničková E, Harmatha J, Vokač K, Mélkusová P, Zidek Z.

1Institute of Experimental Medicine, Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic; 2Institute of Organic Chemistry and Biochemistry, Academy of Sciences, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

Thapsigargin (TG) and trilobolide (TB) are sesquiterpene lactones of guaianolide type isolated from *Thapsia garganica* L. and *Laser trilobum* (L.) Borkh., respectively. TG is widely used experimentally as an inhibitor of sarco-endoplasmic reticulum Ca$^{2+}$-ATPase (SERCA) leading to rapid elevation of intracellular calcium.

We have investigated effects of TG and TB on secretion of interferon-gamma (IFN-γ). The experiments were done under conditions in vitro using rat and mouse peritoneal cells (PECs) and human peripheral blood mononuclear cells (hPBMCs). The concentrations as low as 40 nM and 1 μM were effective ($P < 0.001$) in rat PECs and hPBMCs, respectively, to induce IFN-γ. It was associated with enhanced production of NO by rat PECs. The immunostimulatory effects are mediated by transcription factor NF-κB and depend on the activation of MAP kinases p38 and ERK1/2. The Ca$^{2+}$-chelating agent BAPTA-AM was unable to suppress the enhancing effects of TG and TB on IFN-γ production. Acknowledgements: The work was supported by the Grant Agency of the Czech Republic, no. 305/07/0061.

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-octanoyl</td>
<td>butyryl</td>
</tr>
<tr>
<td>Trilobolide</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>3-methylbutyryl</td>
</tr>
</tbody>
</table>

PA12

New antibacterial terpenes from Cretan propolis

Popova M, Chinou I, Bankova V.

1Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria; 2Department of Pharmacognosy and Chemistry of Natural Products, University Campus of Zografou – School of Pharmacy, University of Athens, 157 71 Athens, Greece

Propolis (bee glue) is a well known natural product with healing properties. Chemical composition of propolis is highly variable and depends mainly on the local flora. Mediterranean region and Greece are characterized by high biodiversity flora, assuming different propolis chemical composition. In this study, propolis from the island of Crete, which demonstrated significant antibacterial activity, was studied. Twenty two compounds, mainly diterpenes, were isolated and their structure elucidated by means of modern spectral methods. Out of them, four were new natural compounds: two cycloartane triterpenes (1 and 2) and two diterpenes (3 and 4), while another eight compounds were found for the first time as propolis constituents. The majority of the isolated compounds showed significant antibacterial activity against all assayed human pathogenic bacteria and fungi.

PA13

Shikonin pigments from cultures of *Lithospermum canescens* and *Arnebia euchroma*

Damianakos H, Graikou K, Pietrosiuk A, Sykłowska-Baranek K, Chinou I.

1Dept. of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Zografou, 15771, Athens, Greece; 2Dept. of Biology and Pharmaceutical Botany, Warsaw Medical University, Banach 1, 02 – 097 Warsaw, Poland

Two plants from Boraginaceae family *Lithospermum canescens* (Michx.) Lehmn, a common plant in northern America also known as Indian paint and *Arnebia euchroma* (Royle) Jonst., a perennial plant of the alpine region, were investigated. Shikonin and its derivatives are well known since ancient times and have been used for food products, as dyes for silk [1] and have been reported to possess antimicrobial, anti-inflammatory and antitumor activities [2]. In the present study, hairy root cul-
Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania

Ranyoro D1, Ngassapa D2, Vagionas K2, Aliaginnis N2, Graikou K2, Chionas F2

1Department of Pharmacognosy, School of Pharmacy, Muhimbili University of Health and Allied Sciences (MUHAS), P.O. Box 65013, Dar es Salaam, Tanzania; 2Division of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, University Campus of Zografou, 157 71 Athens, Greece

Guided by ethnobotanical literature and availability from natural sources, in the framework of our research on odoriferous Tanzania plants, used as edibles or spices, and their biological activities, we report herein the analysis of six samples of essential oils from four Ocimum species (O. basilicum (A and B), O. kilimandscharicum, O. lamiifolium, O. suave (A and B)). Leaves and flowering tops of these Ocimum species were collected from the wild, in Mbuia region, Tanzania. The samples were analyzed by GC and GC-MS. Eighty-one compounds, corresponding to 81.1 – 98.2% of the chemical components of the oils, were identified. Major compounds were either, phenyl propane derivatives or terpenoids, including methyl eugenol, 1,8-cineole, camphor, bornyl acetate, germacrene-D, E-myroxide, germacrene-B, caryophylene oxide and p-cymene. The oils were also evaluated for antimicrobial activity against eight bacterial strains and three fungi. The oil of O. suave (B), showed the strongest antibacterial activity; O. suave (A), O. kilimandscharicum, O. lamiifolium were moderately active, while O. basilicum oil was weakly active. However, none of the oils was active against the fungi species. The study has shown that, Ocimum oils could be used potentially as antimicrobial agents, as well as accordingly, as food preservatives against food spoilage microorganisms. Acknowledgements: This study was partially supported by a grant from the Directorate of Research and Publications, Muhimbili University of Health and Allied Sciences, as well as by a grant from National Kapodistrian University of Athens (70/4/88807), which are gratefully acknowledged. References: [1] Vagionas, K. et al. (2007) Food Chem. 105:1711.

In Vitro antigenotoxic activities of the aqueous extract from Thai Noni’s Leaves (ANL) against chemotherapeutic agent, mitomycin C

Ratanavalachai T2, Nandhasri P3, Tanuchit S4, Jansom C4

1Division of Anatomy, Preclinical Science Department; 2Division of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, University Campus of Zografou, 157 71 Athens, Greece; 3Division of Biochemistry, Preclinical Science Department; 4Division of Applied Thai Traditional medicine; 5Research center, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand

The leaves from Noni (Morinda citrifolia L.; Rubiaceae) have been increasing popular usage as food supplement and therapeutic medicine especially in form of tea, powder and serum. Their therapeutic effects have been known for various treatments such as malaria, diabetes and topical inflammation [1]. In our previous study, we found that Noni fruit juice has some antigenotoxic effects as demonstrated by significantly decrease in the sister chromatid exchange (SCE) level induced by mitomycin C (MMC) (p < 0.05) [2]. This study was focused on antigenotoxic activities of the aqueous extract from Thai Noni’s leaves (ANL) against a chemotherapeutic drug, MMC. Chromosomal aberration and SCE assays in human lymphocytes in vitro were conducted. The method was performed by pretreatment of ANL at concentrations of 0.8 – 25 mg/ml for 2 h followed by MMC at 3 μg/ml for 2 h. Our result showed that ANL pretreatment could not significantly reduce chromosomal aberration and SCE levels induced by MMC (p > 0.05). Combination usage of ANL and MMC also leads to cell cycle toxicity as shown by significantly decrease in mitotic index and proliferation index (compared to that of the negative control). We concluded that ANL pretreatment followed by MMC did not show antigenotoxic potential. However, other form of Noni’s leaf extract such as ethanolic extract containing high antioxidant activities would be investigated further to verify the antigenotoxic activities. Acknowledgement: This study was supported by Research Fund, Faculty of Medicine, Thammasat University, Thailand. References: [1] Wang, M.Y. et al. (2002) Acta pharmacol. Sin. 23:1127 – 1141. [2] Ratanavalachai, T. et al. (2008) Songklanakarin J. Sci. Technol. 30:583 – 589.
The Brazilian biodiversity represents a particularly rich source of new biologically active compounds. *Guapira graciliflora* (Mart. Ex J. A. Schmidt) Lundel (Nyctaginaceae) is an endemic small tree found in Atlantic forest and Cerrado which is used in folk medicine for cicatrization [1]. Despite its medicinal use, there are no reports on its chemical composition. In the present work, we have investigated the constituents of the methanolic extract of *G. graciliflora* leaves collected at Ipatininga, São Paulo State, Brazil. The powdered dried leaves were percolated with methanol. A portion of MeOH extract was partitioned between n- BuOH and water. The n-BuOH portion was chromatographed on a Sephadex LH-20 gel column, eluted with MeOH. Fractions collected were checked by TLC for the presence of saponins and subsequently purified by HPLC to afford several oleanane saponins including the new derivative 3-O-[β-D-xylopyranosyl-(1-3)]-(β-D-galactopyranosyl-(1-3)]-β-D-glucuronopyranosyl]-oleanolic acid 28-O-D-glucopyranosyl ester. The compounds were identified by detailed spectroscopic analysis including 2D NMR and ESI-MS as well as acid hydrolysis. These results represent the first data on the chemistry of plants of the genus *Guapira*. The isolated compounds are being currently evaluated in various biological test systems including cytotoxic and antimicrobial assays. Acknowledgements: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico Tecnológico (CNPq) for financial support and a fellowships to Severi JA. References: [1] Rocha-Coelho, F.B. et al. (2005) Rev. Eletrom. Farm. 2:52 – 55.

PA17

Profiling of Iris germanica extracts by LC-PDA-MS and off-line microprobe NMR

Potterat O1, Schütz C1, Bänziger-Tobler N2, Detmar M2, Hamburger M3

1University of Basel, Division of Pharmaceutical Biology, Klingelbergstrasse 50, CH-4056 Basel Switzerland; 2Institute of Pharmacological Chemistry, Institute of Chemistry, UNESP – São Paulo State University, R. Prof. Francisco Degni, s/n, 14800 – 900 Araquara – SP, Brazil; 3University of Basel, Division of Pharmaceutical Biology, Klingelbergstrasse 50, CH-4056 Basel Switzerland.

The roots of German iris (*Iris germanica* L., Iridaceae) have been traditionally used for various topical applications including the treatment of sores and freckles [1]. Characteristic constituents of the root are isoflavones which reportedly show anti-inflammatory and anti-oxidative properties [1] [2]. For these reasons iris root extracts are used as cosmetics. The presence of phenolic and polar extracts of iris root was submitted to a phytochemical profiling by semi-preparative HPLC and off-line NMR measurements in a 1 mm TXI microprobe (active volume 5 μl) [3]. A total of 18 compounds were purified in sub-milligram to milligram amounts via two successive chromatographic steps on a SunFire column (10 x 150 mm; 5 μm. Waters) with a gradient of acetonitrile in water containing 0.1 % HCOOH. The compounds were identified as isoflavones, isoflavone glycosides and acetovanillone by analysis of on-line MS and PDA, and off-line NMR data including HSQC an HMBC spectra. The activity of the isolated compounds on the proliferation of endothelial cells is currently being investigated. The example demonstrates the applicability of the off-line HPLC microprobe NMR approach as a robust means for a rapid chemical and biological characterization of the constituents of plant extracts. References: [1] Rahman, A.U. et al. (2003). Ethnopharmacol. 86:177 – 180. [2] Wollenweber, E. et al. (2003) Planta Med. 69:15 – 20. [3] Griflin, J.L. et al. (2002) Analyst 127:582 – 584.

PA18

Bioactivity-guided isolation of acetylcysteine ester indicating constituents of the flowers of Bride's Feathers (*Aruncus dioicus*)

Szwagier S1, Zeilner M2, Elmerer EP1, Antal DS2, Tollerger J1, Stupper H1

1Institute of Pharmacy/Pharmacognosy*, University of Innsbruck; Josef-Moeller Haus, Innrain 52a, A-6020 Innsbruck, Austria; 2Institute of Organic Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria, *Member of the Center for Molecular Biosciences (CMBI)

Acetylcysteine (AChE) inhibition is the main strategy in the clinical management of Alzheimer’s disease. Natural products have already established themselves as an excellent source for AChE inhibiting compounds (e.g. galantamine, huperzine A), but new substances with better efficacy and less side effects are still demanded. The aim of the performed study was to bioactivity-guided isolation of constituents of the aerial parts of Bride’s Feathers (*Aruncus dioicus* (Walter) Fern., Roseaceae) in order to obtain novel AChE inhibitors. The activity of the obtained extracts and sub-fractions was monitored by an in vitro enzyme inhibition assay based on the method of Elman [1]. Investigations of extracts of different polarity and from varying plant parts identified a methanolic extract of the flowers as ideal starting material. Activity guided isolation afforded several active principals with moderate activity e.g. quercetin-3-O-β-D-galactopyranoside (= hyperin), quercetin-3-β-D-glucopyranoside (= isoorientin), 4’-O-methylquercetin-3-β-D-galactopyranoside (= tamarixetin-3-O-β-D-galactoside), 3’-O-methylquercetin-3-O-β-D-glucopyranoside (= isorhamnetin-3-O-β-D-glucopyranoside) as well as a mixture of 3,4-dicaffeoyl-β-D-glucopyranoside and 3,4-dicaffeoyl-β-D-glucopyranoside. Among them the isomer-mixture of caffeic acid glucosides showed the highest activity with an IC50 value of 67.8 μg/mL (CI90: 50.8 – 90.2 μg/mL). Isolation of two further inactive but prominent compounds required in the identification of two new monoterpene lactone glucosides: aruncolactonoside (= 4’-hydroxy-55”-(2-methylprop-1-enyl)-3-(2-(D-glucopyranosyl)-oxyethyl)-E-en)-dihydrofuran-2(3H)-one and isooranocolactoside (=4”-hydroxy-55”-(2-methylprop-1-enyl)-3-(2-(D-glucopyranosyl)-oxyethyl)-Z-en)-dihydrofuran-2(3H)-one). Acknowledgements: This work was supported by the Austrian Science Fund (P18379). References: [1] Elman, G.L. et al. (1961) Biochem. Pharmacol. 7:88 – 95.

PA19

Role of phenolic compounds release by Peganum harmala L. on germination and growth suppression of Convolvulus arvensis L.

Soderstrom H1,2, Bänziger-Tobler N1,2, Van Damme P3

1Laboratory of Tropical and Subtropical Agronomy and Ethnobotany, Coupry Links 653, B-9000 Gent, Belgium; 2Department of Microbiology, Nutrition and Dietetics Czech University of Life Sciences Prague, Kamýcka 129, 16521 Praha 6 – Suchdol, Czech Republic; 3Faculty of Natural Resources & Desert Studies, Yaze University, Yazd, Iran

Peganum harmala L. (Zygophyllaceae) is a medicinal herb with a wide range of pharmacological properties [1]. In traditional medicine, various parts of the plant are used to treat several diseases [2]. In order to search for new integrated strategies to improve weed management, we investigated potential herbidal activities of *P. harmala* against *Convolvulus arvensis*. Sixteen g of fresh *P. harmala* leaves were soaked in 100 ml distilled water for 24 h. After filtering and centrifuging, the extract was diluted with sterile distilled water to concentrations of 4, 8, 12 and 16% (w/v). Fifteen seeds of *P. harmala* (or distilled water for control). Results indicate that in 8, 12 and 16% extract concentrations, a significant reduction in germination, seedling length, seedling dry weight and total chlorophyll content of *C. arvensis* was obtained when compared to control. In general, the effect was concentration-dependent whereas there was a significant correlation between each parameter and extract concentration. The adverse effect on *C. arvensis* indicates the presence of some water-soluble inhibitory substances in *P. harmala* aqueous extract. Upon HPLC analysis, seven phenolic compounds were identified in the extract. Between these phenolics, 4-hydroxybenzoic acid is present in maximum amount followed by caffeic acid and ferulic acid. The study concluded that *P. harmala* aqueous extract exerted phytotoxicity effect on germination and growth of *C. arvensis*, possibly by releasing water-soluble phenolic acids. Acknowledgements: This research was supported by project MSM 6046070901. References: [1] Kartal, M. et al. (2003)).
PA20

Discovery of benzofuran derivatives in Ratanhiae radix as novel inhibitors of NF-κB activation

Baumgartner L1, Fakhrudin N2, Atanasov AG2, Heiss E2, Schwaiger S1, Ellmerer EP3, Rolinger JM1, Girbach PA1, Steppner H1

1Institute of Pharmacy/Pharmacognosy (CMBI), University of Innsbruck, Inrain 52c, 6020 Innsbruck, Austria; 2Faculty of Life Sciences/Department of Pharmacognosy, University of Vienna, Althanstr. 14, 1000 Vienna, Austria; 3Institute of Organic Chemistry (CMBI), University of Innsbruck, Inrain 52c, A-6020 Innsbruck, Austria

The roots of Red Rhatany (*Krameria triandra* Ruiz et Pavon), listed in several pharmacopoeias, have been used in traditional medicine for their anti-inflammatory, anti-microbial and astringent potential [1]. Until now the polyphenolic constituents, high molecular weight procyanidines, were held responsible for the activities. The aim of this study was to determine whether the anti-inflammatory activity of Ratanhiae radix may be also due to other constituents. As a general model to assess the anti-inflammatory potential of Ratanhiae radix constituents, the inhibition of TNFα-induced NF-κB activation was chosen. Thus, the dichloromethane root extract of *K. triandra* was analyzed for its ability to inhibit the NF-κB activation in a TNFα-induced NF-κB-luciferase reporter assay in HEK293 cells. Since the crude extract showed a moderate activity (265% inhibition at 10μg/ml), it was further phytochemically investigated, ending up in the isolation and identification of nine benzofuran and two tetrahydrofuran lignan derivatives. All isolates were analyzed for their ability to inhibit NF-κB activation. Among the tested compounds six benzofuran derivatives showed a significant inhibition of NF-κB activation at a concentration of 10μM. Half of them, ratanhiapheanol II, 2-(4-hydroxyphenyl)-5-(E)-propiyonbenzofuran and 2-(2,4-dihydroxyphenyl)-5-(E)-propionbenzofuran, inhibited NF-κB activation to the level of unstimulated control cells with IC50 values of 8.9μM, 0.9 μM and 0.3 μM, respectively. The mode of action of the isolated compounds within the NF-κB pathway remains to be elucidated.

Acknowledgements: This work was granted by the Austrian Science Foundation (NFN: Drugs from Nature Targeting Inflammation, B89-B03).

PA21

eNOS-activating polyphenol fractions from Austrian red wines

Donath O1, Hager E1, Eder R, Reznick G1, Dirsch VM1

1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1000 Wien, Austria; Federal College and Research Institute for Viticulture and Pomology, Wiener Straße 74, 3400 Klosterneuburg, Austria

Red wine polyphenol extracts (RWPE) lead to an increased endothelial nitric oxide synthase (eNOS) activity in EA.hy926 endothelial cells [1]. Trans-resveratrol seems to partly contribute to this effect by inducing eNOS expression [1]. This study aims to identify further major active components by bio-assay guided fractionation. The principal components of 60 representative red wines from Austria were quantified. Two samples (Blaufränkisch and Merlot) were selected for bio-assay guided fractionation using EA.hy926 endothelial cells and the [3H]-arginine/[3H]-citrulline conversion assay measuring eNOS activity. DEALcoholised concentrates were separated by polystyrene column chromatography to obtain the first eluate (FE) and the red wine polyphenol extract (RWPE). Further partition of RWPE of the two samples was done by liquid-liquid dispersion with ethylacetate and water resulting in a polar fraction (PF) and an apolar fraction (AF). Subsequently, the AF of both wines was fractionated using solid-phase extraction with increasing MeOH concentrations into five solid phase fractions (SPF1 – SPF5) which showed differences in their HPLC-ELSD fingerprints. The RWPE of both red wine samples showed enhanced eNOS activity at a concentration of 600μg/ml. The FE, tested in equal concentration, were inactive. AF of the samples revealed an effect on eNOS activation at 200μg/ml, whereas the complementary PF did not increase enzyme activity at 400μg/ml. SPF1 – SPF3 were completely inactive but SPF4 of both wines was activating the enzyme significantly. SPF5 only of the Merlot, containing one single peak as detected by an evaporative light scattering detector, enhanced NO release. This peak was identified as Queceritin. Ongoing fractionation of SPF4 will lead to the identification of further eNOS activating compounds. Reference: [1] Ráthel, T.R. et al. (2007) J. Hypertens. 25(3):541 – 549.

PA22

Anthraquinones from the Roots of Rennellia elliptica Korth. (Rubiaceae)

Osman CP, Ahmad R, Ismail NH

Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Rennellia elliptica Korth. (Rubiaceae) is a Malaysian tropical shrub. De- cocction of the roots of *R. elliptica* Korth. is taken by the locals for general good health and also claimed to be anti-diabetic [1]. The powdered roots of *R. elliptica* Korth. collected from Kuala Keniam, National Park, Pahang were successively extracted with hexane, dichloromethane and methanol. The dichloromethane crude extract was fractionated using column chromatography packed with acid-washed silica gel eluted with various compositions of hexane-dichloromethane and dichloromethane-methanol in increasing polarity. The isolation of anthraquinones was accomplished following repeated column chromatography and preparative thin layer chromatography. The chemical structures were established on the basis of spectral data. As a result, two new anthraquinones, 1-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone and 1,2-dimethoxy-6-methyl-9,10-anthraquinone were isolated and characterized along with eight known anthraquinones which were nordamnacanthal, damnacanthal, rubiadin, rubiadin-1-methyl ether, lucidin-6-methyl ether, 2-formyl-3-hydroxy-9,10-anthraquinone, 3-hydroxy-2-methyl-9,10-anthraquinone and 3-hydroxy-2-hydroxymethyl-9,10-anthraquinone from the roots of this plant. One of the major anthraquinones, 2-formyl-3-hydroxy-9,10-anthraquinone has been shown to possess in vitro anti-inflammatory and antispasmodial activities [2]. This is the first phytochemical report on *Rennellia elliptica* Korth. Acknowledgements: 1. Universiti Teknologi MARA 2. Mt Shamsal Khamis References: [1] Mat Salleh, K., Latiff, O., 2002 Tumbuhan Ubatan Malaysia: Universiti Kebangsaan Malaysia & Kems, Sains, Teknologi dan Alam Sekitar. [2] Sittie, A.A. et al. (1999) Planta Med. 65:259 – 261.

PA23

Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis attenuates glutamate- and LPS-induced oxidative stress of neuronal and microglial cells

Ku HY1, Lee DS2, Yang EJ1, Min JS2, Kim SI2, Jeong JH1, Sung KS1

1Division of Applied Biology & Chemistry, Kyungpook National University, 1370, Sankyuk-Dong, Daegu 701 – 702, Korea; 2Lab of Molecular Neurobiology, College of Natural Sciences, Kyungpook National University, 1370, Sankyuk-Dong, Daegu 701 – 702, Korea

In neuronal cells, excessive glutamate stimulation leads to accumulation of reactive oxygen species (ROS) which ultimately contribute to cell death in stroke, trauma and other neurodegenerative disorders. Activated microglia produce inflammatory mediators, including nitric oxide (NO) and proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α as well as neurotoxic substances, which are thought to be responsible for brain injuries and various neurological diseases, including stroke, Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis, and cerebral ischemia [1,2]. Thus, inhibition of oxidative stress and production of proinflammatory mediators would be an effective therapeutic approach to alleviate the progress of neurodegenerative diseases. In this study, we examined whether the isoliquiritigenin (1) of *G. uralensis* would protect HT22-immortalized hippocampal cells and BV2-microglial cells against gluta- mate- LPS-induced oxidative stress, respectively. The protective action of 1 is mainly due to its antioxidative effect. In using microglial BV2 cell, 1 is an effective inhibitor accompanied by the decrease in expression of inducible NO synthase (iNOS) as one of important proinflammatory mediators. The inhibition of iNOS was evident by the reduction of NO. In addition, 1 also effectively inhibited LPS-induced cytokines, such as IL-1β, IL-6 by regulating the transcriptional levels. These results suggest that 1 inhibits microglial cell activation by decreased NO and proinflammatory cytokines. These results represent new insights about protection of neuronal and microglial cell by the 1 after oxidative stress stimulation.

The genus Scutellaria comprises about 300 species of herbs or subshrubs and rarely shrubs, some of which with ecological properties such as anti-feedant and anti-fungal [1]. These properties are often due to the therapeutic activity of medicinal plants, although it showed that some small peptides rich in cysteine (defensins) could be responsible for antimicrobial activity. In this work, we looked for antibacterial peptides with potential use in veterinary medicine. With this goal, protein fraction from seeds of Passiflora quadrangularis and Passiflora mucronata were used to determine antibacterial activity against Gram-negative and Gram-positive bacteria, using tests in vitro. Seeds flour were obtained and utilized to produce protein fraction by precipitation with ammonium sulphate salt. After the dialysis against water using membrane of very small pore (3,000 Daltons), this material was used in several in vitro assays employing different bacteria and culture media. When the culture media blood agar was utilized, the red cell lysis halos between 10 and 15 mm were observed in all samples analyzed. Banerjee and Sen [1] reported the purification of a protein called lectin from C. zigisum seeds with haemagglutinating activity towards erythrocytes of sheep and cow as well as haemolytic activity towards rabbit erythrocytes. Thus, probably, some proteins such as lectin could be one of the compounds present in the protein mixture used in this work. Although this protein fraction showed to be an effective antibiotic in vitro, the characterization of this haemolytic molecule is necessary, as well as its inactivation or isolation to ensure safe and proper use in vivo.

References:

Volatile components and antifeedant activity of the essential oil from Scutellaria hastifolia L.

PA25

The genus Scutellaria contains about 300 species of herbs or subshrubs and rarely shrubs, some of which with ecological properties such as anti-feedant and anti-fungal [1]. These properties are often due to the presence of essential oils [2]. Scutellaria hastifolia (leafy skullcap) is a perennial gramineous plant with the running rhizome; it is a rare species in Lithuania, where is called Ie/C231ialape kalpoke. This herb is used in traditional remedies. Leaves and flowers are used in traditional folk medicine to treat disorders of the stomach and intestines. The essential oil of this species has been found in the literature so far, therefore in this communication we describe the volatile compounds of S. hastifolia collected in Lithuania on June 2007 and its activity against the feeding and egg laying behaviour of Spodoptera littoralis. A polyphagous insect attacking a number of plant species. The oil was isolated by hydrodistillation [4]. The GC and GC/MS analyses evidenced the presence of 50 compounds, accounting for 92.1% of the oil that consisted mainly of terpenoids, particularly sesquiterpenes (61.5%), among which sesquiterpenes hydrocarbons (44.9%) prevailed over oxygen containing sesquiterpenes (16.6%). The most representative compounds were carophyllene (12.9%), germacrene D (7.7%), caryophyllene oxide (6.9%), hexadecanoic acid (6.3%) and hexahydrofarnesylacetone (5.6%). Binary choice bioassays were used to investigate the antifeedant oil modulated the feeding behaviour of final stadium larvae of S. littoralis. References: [1] Ameri, A. (1998) Prog. Neurobiol. 56:211 – 223 [2] (1994) J. Nat. Prod. 57:963 – 1408. [3] Bai, Y. et al. (1994)). Nat. Prod. 57:963 – 970.

Anti-inflammatory and toxicity evaluation of Maytenus heterophylla and M. senegalensis extracts

PA27

Medicinal extracts of Maytenus heterophylla (Eckl & Zeyh.) Robson and M. senegalensis (Lam.) Exell used in Mozambican traditional medicine to treat pain and inflammatory conditions were evaluated for their anti-inflammatory potential. Thus, leaf, stem, and root extracts of M. heterophylla and the leaf and stem extract of M. senegalensis were tested in vivo by using the carrageenan-induced paw oedema model in rats. Previous studies report the anti-inflammatory activity of the maitenoic acids isolated from leaf extracts of M. senegalensis. However, there is no reference to the activity of the hydroalcoholic extract of both species, complemented by its toxicological evaluation [1,2]. Two doses were tested in this model, specifically 120 and 240 mg/kg. In adjuvant-carrageenan-induced inflammation, orally administered extracts, inhibited the inflammatory phase of this experimental model of inflammation. None of these extracts exhibited potent anti-inflammatory activity throughout the experiment, and were compared against effective NSAID reference drugs, such as indomethacin (10 mg/kg body wt.). The results were expressed as the mean ± SEM and were compared using a one-factorial ANOVA test, followed by a Bonferroni’s post-hoc test. A P value less than 0.05 was considered to be statistically significant. The most interesting plant extracts were the leaf hydroalcoholic extract of M. heterophylla, and the leaf hydroalcoholic extract of M. senegalensis. Furthermore, toxicological data is reported for all five extracts. Acute toxicity tests were tested at 1200 mg/kg, in mice. At this dose, extracts of M. heterophylla revealed to be non-toxic and extracts of M. senegalensis have shown to be toxic. These data confirm the traditional use of M. heterophylla and M. senegalensis for painful and inflammatory conditions, contributing to the pharmacological validation. References: [1] Sosa, S. et al. (2007) Phyto-
Effects of MSM (methylsulfonylmethane) on SNP (sodium nitroprusside) and H₂O₂ (hydrogen peroxide) induced RAW 264.7 macrophages

Karabay ZA, Özkan ZK, Koç A, Büyükkiężöl Z. Sunguroğlu A

1Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey; 2Ankara University, Institute of Biotechnology, Ankara, Turkey; 3Ankara University, Faculty of Medicine, Department of Medical Biology, Ankara, Turkey

MSM is an organic sulfur compound with therapeutic potential that occurs naturally in various fruits, vegetables, grains and humans [1]. SNP is a direct donor of nitric oxide (NO); high NO concentrations induce cell death [2]. H₂O₂, a non-radical molecule that leads to the generation of highly toxic hydroxyl radicals, could also participate in cell death and various disease processes [3]. In this study, we investigated the effects of MSM on SNP- and H₂O₂-induced RAW264.7 cells. Cell viability and nitrite levels were determined with MTT and Griess assays respectively. For this purpose, after co-incubation with MSM (6mM,12mM,16mM,20mM) for one hour, the cells were incubated with different concentrations of SNP (500 mM,1000 mM,2000mM) and H₂O₂ (0.5mM,5mM,50mM,500mM) for 24 h. Our results showed that 500μM H₂O₂ decreased cell viability significantly and MSM partially restored the effect of H₂O₂ only at a concentration of 6mM. However, MSM potentiates the anti-proliferative effect of H₂O₂ at doses higher than 12mM. Among the doses tested, the SNP concentration which causes less than 80% viability was found to be 2000μM. MSM could not restore the anti-proliferative effect of SNP and decreased cell proliferation for all the doses tested (p<0.001). There was no significant change in nitrite levels among H₂O₂ treated cells and MSM did not exert any effect on nitrite levels. SNP treatment increased nitrite levels dose dependently (p<0.001). 6mM concentration of MSM weekly decreased nitrite levels of 500μM SNP treated cells. In our previous work we have shown that MSM boosts cell viability and decreases nitrite levels in lipopolysaccharide activated RAW264.7 cells. In this study we tested the same concentrations of MSM. However, it does not exert the same strong effects in this stress model. Further research is needed to test the effective dose or mechanism of action of MSM. References: [1] Methylsulfonylmethane Monograph (2003) [2] Espey, M.G. et al. (2000) Ann. NY Acad. Sci. 899:209–221. [3] Fridovich, I. J. Biol. Chem. 272(18):515 – 517.

Antinociceptive activity of Ficus deltoidea aqueous extract in experimental animals

Ahmat N, Basilion S, Zakaria ZA, Ahmad R, Zain WZWM

Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400 Jengka, Pahang, Malaysia

The aqueous extract of leaves of *Ficus deltoidea* (AFD) was evaluated for antinociceptive activity. The analgesic activity was studied by meanwheel writhing, formalin, acetic acid and hot plate methods in several in vivo experimental models. These methods investigated both the peripheral and central antinociceptive mechanisms [1,2]. The results showed that intraperitoneal administration of AFD at doses of 100, 300, and 1000mg/kg indicated the presence of both peripheral and central mediated activities. In the formalin test, highest inhibition at late paw licking responses caused by the formalin-induced pain was displayed by 100mg/kg AFD (71.2%) followed by 300mg/kg (70.0%) and 1000mg/kg (65.7%) AFD respectively. In contrast, 300mg/kg AFD demonstrated highest % inhibition at early response (61.4%) followed by 1000mg/kg (50.9%) and 100mg/kg of AFD. At early phase, 1000mg/kg AFD (50.9%) exhibited equal inhibition as compared to acetylsalicylic acid (ASA 100mg/kg) 50.8%. Animals treated with ASA showed significant inhibition at the late phase (72.7%) and reduced inhibition at early phase (50.8%). Morphine (5mg/kg) displayed very strong inhibition both at early (92.1%) and late (91.0%) phases. In the acetic acid induced abdominal test, both 300 and 1000mg/kg AFD significantly reduced the number of writhes in mice with 67.3% of inhibition. 100mg/kg of AFD however showed low rate of inhibition at 17.4%. In the hot plate test, all extracts exerted significant prolong in the response latency time to heat stimulus. Both 300 and 1000mg/kg AFD demonstrated early effect at 60 min after administration of AFD and persists until the following fifth hour. The results demonstrate that *F. deltoidea* presents potent antinociceptive activity in mice and rats, which supports its folkloric use as an analgesic. References: [1] Ridditid, W. et al. (2007). Ethnopharmacol. 118:226 – 230. [2] Mahmoudi, M. et al. (2008) Fitoterapia 79: 361 – 365.

New labdane diterpenes from Solidago canadensis

Wangensteen H, Phan TT, Malterud KE

Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, N-0316 Oslo, Norway

Solidago canadensis L. (Asteraceae), commonly known as Canadian goldenrod is a medicinal plant native to North America. Today the plant is widespread and invasive all over Europe and in East Asia, as well. Due to its invasiveness, it is considered a threat to biodiversity. S. canadensis has been used by Canadian Indians as traditional anti-inflammatory, antiflogistic, antispasmodic, and antirheumatic medicine. The aim of this study was to investigate the chemistry of roots of Canadian goldenrod. Fractionation and isolation were performed by using VersaFlash CC (normal phase Si-gel and reverse phase C18), centrifugally accelerated TLC (Si-gel), and preparative HPLC (reverse phase C18). Chemical structures were determined using 1D and 2D NMR techniques and MS analysis. The ethanol extract of the roots of *S. canadensis* yielded six labdane-type diterpenes. Three of them were new natural compounds (15,16-epoxy-labdane-7,13-diene-6,16-dione; 15-ethoxy-9,15,16-bisoxypoy-labdane-7-ene-6-one; 9-hydroxy-15,16-epoxy-16-cyclo-9-friedolabdane-7-ene-6,15-dione), while solidagenone, deoxysolidagenone and ent-16-hydroxy-6-oxo-labdane-7,13-diene-15 acid lactone are previously known diterpenes.

Effect of *Nelumbo nucifera* on nitric oxide production and co-stimulatory molecules

Mukherjee DP, Khataa TN, Biswas A, Biswas T, Saha BP

1School of Natural Product Studies, Jadavpur University, Kolkata-700 032, India; 2Division of Immunology and Vaccine Development, National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Kolkata-700 010, India

Nelumbo nucifera Gaertn. (Nymphaeaceae) is a well known aquatic plant which has been used for the treatment of several disorders including inflammation, fever, cough etc. [1]. The hydro-alcoholic extract of *Nelumbo nucifera* rhizome (HENN) showed potent immunomodulatory effect on delayed type hypersensitivity (DTH), phagocytic response and neutrophil adhesion test [2]. The aim of this study is to evaluate the mechanism of immunomodulation involved for the extract and its three solvent fractions viz. ethyl-acetate (EANN), n-butanol (BUNN) and water (AQNN) using the in vitro models like nitric oxide (NO) production, expression of co-stimulatory molecules, e.g. CD40, CD80 and CD86 [3]. HENN, EANN, BUNN and AQNN inhibited NO production and co-stimulatory molecules, e.g. CD40, CD80 and CD86 [3]. HENN, EANN, BUNN and AQNN inhibited in vitro NO production induced with lipopolysaccharides (LPS, 100 ng/ml). The most significant (P<0.001) inhibition was observed for BUNN (5μg/mL) compared to control. Expression of CD40, CD80 and CD86 were observed based on the fluorescent intensity produced by the extract and its fractions. The mean fluorescent intensity (MFI) on treatment with CD40, CD80 and CD86 were observed based on the fluorescence intensity produced by the extract and its fractions. The maximum fluorescent intensity (MFI) on treatment with CD40, CD80 and CD86 were observed but the maximum reduction of MFI with BUNN (P<0.001) were 19.57, 12.84 and 7.45 respectively. The results supports that BUNN was the most effective fraction of HENN and it acts similarly to that of dexamethasone, a standard immunosuppressive drug. Acknowledgements: Council for Scientific and Industrial Research (CSIR), Govt. of India, for financial assistance ([Rle no.-9)95(053)2K8-EMRI, 2008] to the School of Natural Product Studies, Jadavpur University. References: [1] Mukherjee, P.K. et al (2000). J. Pharm. Pharmacol. 51:407–422. [2] Mukherjee, P.K. et al (2009) International Herbal Conference SNPS-09127, 67. [3] Ludger, L. et al. (1999) Am. J. Pathol. 154:1711 – 1720.
Bio-active secondary metabolites from two Malaysian Clusaceae: Calophyllum flavo-ramulun and C. wallichianum

Ferchichi L1, Le Ray AM1, Guillet D1, Litoutaud M2, Assa Mount K1, Hadi A1, Hamid A1, Richomme P1

1IFR 149, EA 921 SONAS, Université d’Angers, 16 bd Daviers 49100 Angers France; 2ICSN-CNRS, Gif-sur-Yvette, 91191 Villeurbanne, France; 3Department of Chemistry, Faculty of Sciences, University Malaya, 55100 Kuala Lumpur, Malaysia

Calophyllum species (Clusiaceae) are known as a rich source of various secondary metabolites and prenylated phenolic derivatives [1] are very common among them. As part of our continuing phytochemical investigation on Calophyllum species from Malaysia [2] we report here our results on the fractionation of different crude extracts obtained from two endemic species – Calophyllum flavo-ramulun and C. wallichianum – which exhibited significant anti-oxidant activities. This study mainly resulted in the identification of phenolic derivatives among which prenylated xanthones and biflavonoids (amentoflavone) appeared as the active principles. The structure of flavoramulone, a new xanthone exhibiting a quite unusual α-dimethyl β-hydroxy tetrahydropyrene was determined through extensive NMR studies.

Malassezia spp. extracts and metabolites induce the AhR dependent genes in HaCaT cells

Mohajeri P1, Mexia N2, Galanou M2, Koutrakis S2, Stathopoulou K1, Gaitanis G3, Velegraki A1, Bassakas I1

1Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis, Athens 15771; 2Department of Pharmacology, Medical School, University of Ioannina, Stavros Ioannina; 3Department of Skin and Venerable Diseases, University Hospital of Ioannina, Medical School, University of Ioannina, Ioannina; 4Mycology Laboratory, Department of Microbiology, Medical School, University of Athens, Athens, Greece

In previous works [12] we compared Malassezia furfur isolates from healthy and seborrhoeic dermatitis skin for the production of indole derivatives and identified the preferential biosynthesis of malassezin, indolo[2,3-b]carbazol (ICZ) and indirubin by M. furfur strains isolated from diseased skin. These compounds, which are known highly-reactive Acyl hydrocarbon receptor (AhR) inducers, were synthesized and used as standards for their quantification in extracts of M.furfur strains grown on L-tryptophan agar. HPLC analysis revealed that ICZ (1.2 – 6.0 µg/mg), indirubin (0.1 – 1.7 µg/mg), malassezin (2.3 – 40.9 µg/mg) are produced in significant quantities especially in the extracts of the clinical strains. The extracts were trapped using MS as triggering signal for the SPE unit and subsequently analyzed by 1D and 2D NMR spectroscopy [2]. Noteworthy, the HPLC-MS measurements showed that the hexane extract was constituted by a high purity single compound, the naphtoquinone plumbagin. Plumbagin has been reported to have potent antimicrobial activity, corroborating the good results of the hexane extract in the antimicrobial assays [3]. The main constituents of the malassezin extract were flavonoids which are likely responsible for the antimicrobial activity, as plumbagin was only extracted in residual amounts. The water extract showed a low content in secondary metabolites, which explains its relatively low antimicrobial activity. Acknowledgements: This research was supported by the European Community activity Large-Scale Facility Wageningen NMR Center (496 – 2004 – 2006 – 2009). T. Grevenstuk acknowledges a grant from Portuguese Science and Technology Foundation (SFRH/BD/31777/2006) References: [1] Grevenstuk, T. et al. (2009) Nat. Prod. Commun. (submitted); [2] Grevenstuk, T. et al. (2008) Planta Med. 74:1101. [3] Gonçalves, S. et al. (2009) Nat. Prod. Res. 23:219 – 229.

Identification of antimicrobial agents from Drosora intermeda using HPLC-MS/ HPLC-SPE-NMR

Grevenstuk T1, van der Hooft J2, Vervoort J1, Gonzalves S1, Romano R1

1Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Ed. 8, 8005 – 129 Faro, Portugal and IBB/CIB – ITAD, 5001 – 801 Vila Real, Portugal; 2Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands

Drosora intermedia (H. (.) is a carnivorous plant species that is known for its use in traditional medicine. A recent study showed that extracts (methanol, water and hexane) prepared from in vitro grown D. intermedia plants have remarkable antimicrobial activity [1]. Despite the fact that the hexane extract showed much greater activity than the methanol and water extract, the methanol extract showed activity against one particular microbial strain (Pseudomonas aeruginosa), which was tolerant to the hexane extract. This work describes the chemical investigation of these extracts in order to identify the antimicrobial agents produced by D. intermedia. The methanol, water and hexane extracts were cleaned from apolar compounds using a SPE column before being analyzed by HPLC-MS/SPE-NMR. All major peaks of the HPLC chromatogram were trapped using MS as triggering signal for the SPE unit and subsequently analyzed by 1D and 2D NMR spectroscopy [2]. Noteworthy, the HPLC-MS analyses showed that the hexane extract was constituted by a high purity single compound, the naphtoquinone plumbagin. Plumbagin has been reported to have potent antimicrobial activity, corroborating the good results of the hexane extract in the antimicrobial assays [3]. The main constituents of the methanol extract were flavonoids which are likely responsible for the antimicrobial activity, as plumbagin was only extracted in residual amounts. The water extract showed a low content in secondary metabolites, which explains its low antimicrobial activity. References: [1] Grevenstuk, T. et al. (2009) Nat. Prod. Commun. (submitted); [2] Grevenstuk, T. et al. (2008) Planta Med. 74:1101. [3] Gonçalves, S. et al. (2009) Nat. Prod. Res. 23:219 – 229.

Structural investigation of phytochemical compounds from Algerian plant Convulvulus tricolor (Convolvulaceae)

Kacem N2, Huy AE1, Zelagu A1, Rhuart S1

1Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, EPFL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland; 2Laboratoire des Produits Naturels d’origine Végétale et de Synthèse Organique, Département de Chimie, Faculté des Sciences, Université Mentouri de Constantine 25000 Constantine, Algérie

The convolvulaceae family composed of about 50 genera and 1500 species is distributed across the world’s tropical and subtropical regions [1], although some species also reach temperate zones. Convulvulus tricolor a member of the convolvulaceae family, commonly called dwarf morning glory (local name “Souçane berr”), occurs in the region of Tell in Algeria [2]. Up to now, a few studies have been reported on C. tricolor. Analyses of the genus have demonstrated the presence of polyhydroxy alkaloids [3] and polysaccharides (galactomannans) [4]. The purpose of this present work is to phytochemically investigate some constituents of its leaves, flowers, stems, seeds, roots. The preliminary study of methanolic
 extracts of seed coats from C. tricolor, exhibited in vitro a very good antileishmanial activity (99.51% inhibition against L. amazonensis) with percentage of cytotoxicity equal to zero. In addition, a strong antioxidant activity has been shown in a DPPH TLC assay for the methanol extract of flowers. The latter was chromatographed on silica gel 70 – 230 mesh using as gradient eluant containing increasing ratio of MeOH in CHCl₃. The isolation and purification were performed by preparative TLC on silica gel and Sephadex LH-20 column, leading six compounds which major compound was identified as the flavon quercetin-3-O-rhamnogluco-side by using spectral analysis (UV, ¹H NMR, ¹³C NMR, 2D NMR, and MS).

PA36
Fractional Extraction of Plant Biomass: Generation of Botanical Extract Libraries Venkataraman SK¹, Moores A², Stone A², Hurst A², Mikkel Jr.², Moraes RM², McChesney JD¹
¹Chromadex, Inc., 2830 Wilderness Place, Boulder, CO 80301, USA; ²Natural Center for the Development of Natural Products and The Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

A novel protocol has been developed to improve the detection and discovery of biologically active substances present in plant extracts. There has been an increased interest in revisiting the ancient concept of botanical therapeutics [1] and development of new therapies from natural complex mixtures [2]. We believe the process will amplify the rate of detection of biologically active constituents and accelerate the efforts to identify new compounds. With the concordant introduction of ultra high pressure liquid chromatography (UHPLC) systems and new generation of columns packed with sub-micron particles with very stable chemistries, the determination of log P has been considerably improved in term of throughput and pH range [2]. In the present study, the exploitation of generic UHPLC profiling gradients for rapid and robust log P determination has been estimated on a representative library of NPs, selected by cluster analysis different molecular descriptors. The relations log P – log k have been established at different pH and using various UHPLC conditions, compatible with crude extract profiling studies. This strategy is expected to provide a rapid estimation of NPs lipophilicity and acceleration of dereplication database is foreseen to ideally characterize NPs retention independently from chromatographic conditions in well characterized systems. Reference: [1] Woffender, JL.
The Norepinephrine transporter (NET) belongs besides serotonin and dopamine transporters to the family of monoamine transporters, regulating the re-uptake of norepinephrine released from neurons [1]. Several drugs binding to the norepinephrine transporter have been utilized therapeutically for the treatment of various disorders of the central (CNS) and peripheral nervous system (PNS), or cardiovascular disorders. In particular, norepinephrine re-uptake inhibitors are useful drugs in the therapy of depression, attention deficit disorder, obsessive compulsive disorder and panic disorder. Natural products as lead substances in the synthesis of bioactive therapeutics are an emerging field. In order to assess the inhibitory potential of natural products on the norepinephrine transporter, we have recently established a new screening assay based on COS-7 cells, transiently transfected with human norepinephrine transporter cDNA. Norepinephrine uptake studies were carried out using tritium labelled norepinephrine by quantifying radioactivity via liquid scintillation counting. The known selective inhibitor nisoxetine and the tricyclic antidepressant desipramine were used as positive controls with IC_{50} values comparable to literature data [2]. Heterocyclic and biphenyl type skeletons with different kinds of saturated and unsaturated, generally unbranched alkyl side chains showed moderate activity. These natural products as well as a set of derivatives thereof were investigated at different screening concentrations ranging from 10 to 100 μM. Promising candidates are currently under further investigation. References: [1] Mandela, P., Ordway, G. A. (2006). J. Neurochem. 97:310 – 333. [2] Olivier, B. et al. (2000) Prog. Drug Res. 54:59 – 119.

References:

PA40

Traditional use, chemical analysis and antiinfective effects of Hyptis crenataahl Pohl Bueche G., Doughan J.V., Leech MC., Hecknell PM., Ingram CD J., Brandt K2

The dichloromethane extract of the roots and heartwood of Caesalpinia sappan exhibited potent inhibitory activity against β-hexosaminidase release as marker of degranulation in rat basophilic leukemia (RBL-2H3) cells, with inhibition of 98.7% and 97.5% at concentration of 100 μg/ml respectively. These extracts were further separated by chromatographic techniques to give two chalcones and seven homoisoflavones. Among the compounds tested, sappanchalcone (b) possessed the most potent effect against allergic reaction in RBL-2H3 cells with an inhibitory concentration (IC_{50}) value of 7.6 μM, followed by 3-deoxy-sappan-panchalcone (1, IC_{50}= 15.3 μM), whereas other compounds showed moderate and mild effects. The results suggested the following structural requirements of chalcones (1 and 2) and homoisoflavones (3-9) for anti-allergic activity: (i) chalcone exhibited higher activity than homoisoflavone (ii) vicinal hydroxyl at B-ring of chalcone confered higher activity than one hydroxylation; and (iii) for homoisoflavone, the hydroxyl groups at C-3 and C-4 positions decreased the activity. This is the first report of Caesalpinia sappan for anti-allergic activity. Acknowledgments: We are grateful to the Thailand Research Fund through the Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC), the Commission on Higher Education (CHE-RES-RC), the MRG5080164 and Prince of Songkla University through Natural Products from Mangrove Plants and Synthetic Materials Research Unit (NSU) and the Graduate School for financial support.

References:

PA39

The norepinephrine transporter as a target for natural products and derivatives

Blunder M1, Lass A2, Schüll W1, Bucar F1, Bauer R2

1Institute of Pharmaceutical Sciences – Department of Pharmacognosy, Karl-Franzens-Universitäet Graz, Universitäetsplatz 4/1, 8010 Graz, Austria; 2Center for Molecular Biosciences, Karl-Franzens-Universitäet Graz, Heinrichstrasse 3/II, 8010 Graz, Austria

The norepinephrine (β noradrenaline) transporter (NET) belongs besides serotonin and dopamine transporters to the family of monoamine transporters, regulating the re-uptake of norepinephrine released from neurons [1]. Several drugs binding to the norepinephrine transporter have been utilized therapeutically for the treatment of various disorders of the central (CNS) and peripheral nervous system (PNS), or cardiovascular disorders. In particular, norepinephrine re-uptake inhibitors are useful drugs in the therapy of depression, attention deficit disorder, obsessive compulsive disorder and panic disorder. Natural products as lead substances in the synthesis of bioactive therapeutics are an emerging field. In order to assess the inhibitory potential of natural products on the norepinephrine transporter, we have recently established a new screening assay based on COS-7 cells, transiently transfected with human norepinephrine transporter cDNA. Norepinephrine uptake studies were carried out using tritium labelled norepinephrine by quantifying radioactivity via liquid scintillation counting. The known selective inhibitor nisoxetine and the tricyclic antidepressant desipramine were used as positive controls with IC_{50} values comparable to literature data [2]. Heterocyclic and biphenyl type skeletons with different kinds of saturated and unsaturated, generally unbranched alkyl side chains showed moderate activity. These natural products as well as a set of derivatives thereof were investigated at different screening concentrations ranging from 10 to 100 μM. Promising candidates are currently under further investigation. References: [1] Mandela, P., Ordway, G. A. (2006). J. Neurochem. 97:310 – 333. [2] Olivier, B. et al. (2000) Prog. Drug Res. 54:59 – 119.

References:

PA41

Anti-allergic activity of principles from the roots and heartwood of Caesalpinia sappan on antigen-induced β-hexosaminidase release

Yodsaue O1, Cheenpracha S1, Karali C1, Pongtimmont C1, Teawtrakul S2

1Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkla, 90112, Thailand; 2Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkla, 90112, Thailand

Acronychia laurifolia Bl. (Rutaceae) is a tree growing in tropical regions [1]. It is well documented for the occurrence of phenolic compounds and alkaloids. The diethylether extract of the plant bark was analyzed qualitatively using HPLC-DAD and LC-MS methods. From the same extract numerous of acetophenones, monomers and dimers, among them acrovestone (1) and acrovestone (2) were isolated via classical approach (LC) and FCPC techniques [2]. The method used for FCPC analysis resulted to the separation of acetophenone monomers from dimmers; moreover two acetophenone dimers were isolated almost quantitatively and in high purity. All the isolated metabolites were structurally identified via spectroscopic methods (IR, MS, and NMR 1D & 2D). Furthermore, the coupling of semi-preparative-HPLC-DAD with microprobe 1 mm NMR (off-line) resulted to the isolation and structural determination of minor acetophenone monomers and dimmers contained into the extract.

Reference:
The use of subclinical doses of conventional antibiotics in food animals results in improved feed efficiency and better meat quality in food production. However, such practice has been linked to increased levels of resistance among pathogens isolated from food animals. There is also evidence that the resistant bacterial gene can be transferred to humans through the food chain. This study was conducted in the UK. Listeria monocytogenes NCTC 11994 is among the most virulent food-borne pathogens and can cause miscarriages in pregnant women. Fifty-five plant specimens were extracted with various solvents and screened for sensitivity against the chosen organisms using a microbiological microtitre plate procedure. Results indicated that nine of the extracts tested inhibited Listeria monocytogenes relatively. Dichloromethane (59.2%) was the most effective solvent. This result has led to enrichment of active constituents in the sample. All the extracts' total phenol content was shown to be in strong correlation with their anti-bacterial activity. Size exclusion chromatography with Sephadex LH-20, using hydroalcoholic solution (50% EtOH) is proposed as a fast and efficient method for the isolation and purification of verbascoside (purity > 98% determined by HPLC/DAD/ESI-MS). The anti-hyperalgesic activity of verbascoside was tested by LABs with 100 mg/kg, as a model of neuropathic pain: a peripheral mononeuropathy produced either by a chronic constriction injury of the sciatic nerve (CCI), or by an intra-articular injection of sodium monoiodoacetate (MIA). Verbascoside administered intraperitoneally (i.p.) at the dose of 100 mg/kg, reversed the mechanical hyperalgesia in both CCI and MIA treated rats, evaluated in the Paw-pressure test. The anti-hyperalgesic effect started 15 min after administration and persisted for 30 – 45 min. Verbascoside was also effective against mechanical hyperalgesia after oral administration. At the doses of 300 and 600 mg/kg p.o. reversed the hyperalgesia induced by both CCI and MIA injection: the anti-hyperalgesic activity started 15 min after administration and was still significant at 80 min. References: [1] Hausmann, M. et al. (2007) Clin. Exp. Immunol. 148(2):373. [2] Effert, T. et al. (2007) Trends Mol. Med. 13(8):353. [3] Akbay, P., Calis, I., et al. (2002) Clin. Exp. Immunol. 148(2):373. [4] Efferth, T. et al. (2007) Trends Mol. Med. 13(8):353. [5] Calvo, M.I. (2006) J. Ethnopharmacol. 107:380.

The genus Mentha belongs to the Lamiaceae family and it consists of ca. 25 – 30 species of subcosmopolitan distribution, of which 7 are found in the Greek territory. Members of the genus Mentha are known for their spasmylic, antibacterial and antigenotoxic properties. Extracts (dichloromethane, methanol, water) of M. microphylla, M. aquatica, M. longifolia and M. pulegium were obtained with A.S.E. (Accelerated Solvent Extraction). Methanolic and aqueous extracts were tested for DPPH scavenging and Total Phenolic Content and showed very strong antioxidant activity. Among them M. microphylla K.Koch was chosen for further phytochemical investigation. The Total Phenolic Content for M.microphylla K.Koch was 315.5 mg CAE/g of ethanolic extract and 274.5 mg CAE/g of aqueous extract. The DPPH %A values were 100% for the ethanolic and 98% for the aqueous extract relatively. Dichloromethanic, ethanolic and aqueous extracts were received with conventional extraction. From the dichloromethanic extract several monoterpenes (i.e. piperitone, piperitenone oxide), sesquiterpenes (i.e. β-aminyl), phenolic compounds (i.e. thymol) and a luteolin derivative were isolated by classic column chromatography. On the other hand, the ethanolic and aqueous extracts were fractionated with F.C.P.C (Fast Centrifugal Partition Chromatography) technique and were proved to be rich sources of rosmanin acid and flavonoid compounds (i.e. diosmin). Structural elucidation of all compounds was determined by spectroscopic methods (NMR 1D, 2D). References: [1] Dorman, D. et al. (2003). J. Agr. Food Chem. 51:4563 – 4569.
Gill. (Solanaceae) is a native Chilean plant which possesses large butterfly-like purple flowers and grows up to 60 cm high. Numerous alkaloids have been isolated from this plant, mainly tropane ester derivatives with isomeric C₅ acids (angelic, senecioic, tiglic, itaconic and mesaconic acids) [1] including grahamine, an unusual tropane alkaloid with a 2-methyl-4-phenyl-cyclobutane 1,2,3-tricarboxylic ester as a central structure (Figure 1) [2]. In this study, the alkaloid extract of this species was investigated by LC-MS and was found to accumulate several tropane alkaloids which also encompass this cyclobutane unit. Among them, seven new tropane alkaloids were isolated by semi-preparative liquid chromatography, namely four isomers of 638 Da, two isomers of 777 Da and one of 889 Da, and their structures elucidated by NMR.

Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells

Choi Y, Lee MK, Lim SY, Yang HJ, Sung SH, Kim YC
College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151 – 742, Korea

Background and purpose: Traditionally, the stem and root bark of Ulmus davidiana var. japonica (Ulmaceae) have been known to be anti-inflammatory in Korea [1]. Anti-inflammatory effects of torilin, isolated from this plant [2] and the underlying mechanisms were examined by using lipopolysaccharide (LPS)-stimulated microglial BV2 cells. Experimental approach: The cells were treated with torilin prior to LPS exposure and the effects on pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and a pro-inflammatory cytokine, interleukin-1beta (IL-1beta) were analysed by RT-PCR, Western blot or elisa. To reveal the mechanism of action of torilin we investigated the involvement of mitogen-activated protein kinase (MAPK) cascades and their downstream transcription factors, nuclear factor-kappaB (NF-kappaB) and cyclic AMP-responsive element (CRE)-binding protein (CREB). Key results: Torilin significantly reduced the LPS-induced expression of iNOS, COX-2 and IL-1beta, and the subsequent release of NO, prostaglandin E2 and IL-1beta into culture medium. LPS stimulation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 MAPK was inhibited by torilin. In addition, the inhibitory effect of torilin on NF-kappaB and CREB was shown by torilin-mediated recovery of LPS-induced degradation of inhibitor kappaB-alpha and suppression of LPS-induced phosphorylation of CREB respectively. Conclusion and implications: This study indicates that torilin inhibited LPS-induced iNOS, COX-2 and IL-1beta via down-regulation of ERK1/2, p38 MAPK, NF-kappaB and CREB and suggests that torilin has a potential as an anti-inflammatory drug candidate.

References:

Brine shrimp toxicity and anti-inflammatory properties of the methanolic extract of Zingiber officinale var. rubrum (Zingiberaceae)

Yusoff MM1, Nazaimoon WMW2
1Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhaya Tun Razak, 26300 Gambang, Pahang, MALAYSIA; 2CDNRC, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, MALAYSIA

Rhizomes of Zingiber officinale var. rubrum have been used as poultice in the treatment of joint pains and swelling in the traditional medicine of indigenous peoples of Malaysia. The concentrations of phenolic ketones,
namely, 6-, 8- and 10-gingerols in the methanolic extract of *Zingiber officinale* var. *rubrum* were found to be higher than in *Zingiber officinale* var. *officinale*. The former was also found to exhibit greater toxicity toward *Artemia salina*. Toxicity is directly proportional to polarity of phenolic ketone.

Chemical profile characterization of biologically active extracts obtained from Salvia species

S. sclarea, *S. argentea,* *Salvia officinalis,* *S. fruticosa,* *S. confertifolia,* and *S. microphylla* are some of the largest and most important genus of the Labiatae family. *S. officinalis* is one of the most commonly used herbs in the world. The bacterial growth inhibition, anti-inflammatory agents. In this study, we also evaluated the methanolic extracts of *Zingiber officinale* var. *rubrum* and *Zingiber officinale* var. *officinale* for nitric oxide formation (for iNOS inhibitors) in lipopolysaccharide (LPS)-induced mouse macrophages cells. Preliminary results show the methanolic extract of *Zingiber officinale* var. *rubrum* to be almost 50% more potent as anti-inflammatory agent as compared to dexamethasone. The active extract mediating iNOS inhibitory activities is warranted for further elucidation of active principles for development of new anti-inflammatory agents.

Bioassay-guided isolation studies on mesophilic Actinomycete cultures

U. martinensis and *U. zofuran* were isolated from Aegean Region of Turkey. The antimicrobial activities of pure isolates were tested by using agar-plaque method. Based on high antimicrobial activity versus methicillin resistant *Staphylococcus aureus* (MRSA) and *Escherichia coli* 232 (E. coli), the isolate M-33 – 5 was selected for bioactivity-guided isolation. Fermentation followed by solvent partition studies (H₂O-EtOAc, H₂O-n-BuOH) showed that the highest activity was present in EtOAc extract. By using chromatographic methods, two bioactive compounds were isolated. Structures of the active metabolites were determined to be griseusin A (1) and 4-deacetyl griseusin (2). MIC values of 4-deacetyl griseusin (2)

Bioassay-guided isolation studies on mesophilic Actinomycete cultures

One hundred and twenty six mesophilic Actinomycete cultures were isolated from Aegean Region of Turkey. The antimicrobial activities of pure isolates were tested by using agar-plaque method. Based on high antimicrobial activity versus methicillin resistant *Staphylococcus aureus* (MRSA) and *Escherichia coli* 232 (E. coli), the isolate M-33 – 5 was selected for bioactivity-guided isolation. Fermentation followed by solvent partition studies (H₂O-EtOAc, H₂O-n-BuOH) showed that the highest activity was present in EtOAc extract. By using chromatographic methods, two bioactive compounds were isolated. Structures of the active metabolites were determined to be griseusin A (1) and 4-deacetyl griseusin (2). MIC values of 4-deacetyl griseusin (2) were less than 1 μg/ml versus MRSA and E. coli. The cytotoxicities of the EtOAc extract and 4-deacetyl griseusin (2) were also evaluated by the MTT assay using two human cancer cell lines (L-929, HeLa). Both showed potent cytotoxic activities against aforementioned cell lines.
The present study was carried out to evaluate the effects of indigenous plant *Anthocephalus indicus* (family- Rubiaceae) on reproductive functions of male albino rats, as literature shows that plant is rich in sapo-nins. Shade dried stem bark of *A. indicus* extracted with 70% methanol, further chromatographed with different solvent systems (Fr. I 75:25 CHCl₃:CH₃OH, Fr. II 50:50 CHCl₃:CH₃OH, Fr. III 25:75 CHCl₃:CH₃OH and Fr. IV CH₃OH) and fed to male rats at the dose level of 50 mg/rat/day for 60 days. After drug treatment, the weight of testes, accessory sex organs were significantly decreased (P < 0.001), whereas the body weight did not reveal any significant changes. A marked decline was observed in sperm motility in cauda epididymides and in density of cauda epididymal spermatoza. Serum testosterone levels were also declined significantly. Protein, sialic acid, glycogen in testes and seminal vesicular fructose content were decreased significantly. On the other side hematological parameters remained unaltered, which shows its non-toxic nature.

Microbial control agent containing a Sri Lankan *Bacillus thuringiensis* isolate for control of Lepidopteran pests

Samarasekera R¹, Sirwardhana DA¹, Herath L¹, Anagama I²

¹Herbal Technology Section, Industrial Technology Institute, 363, Baudhhaloka Mawatha, Colombo 7, Sri Lanka;
²Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka

A complex of Lepidopteran pests is a worldwide problem in crucifers, including cabbage and cauliflower. This pest complex includes mainly diamondback moth (DBM), semilooper and cutworm. Many control measures rely on the intense use of synthetics, which has led to the development of pest resistance and caused adverse environmental consequences. The bacterium, *Bacillus thuringiensis* (Bt) has been identified as the most widely used microbial control agent. The objectives of this study were to isolate, identify and formulate indigenous Bt strains and test insecticidal activity against Lepidopteran pests of crucifers. In search of insecticidal indigenous Bt strains, the insecticidal activity of *Bt* AB142 and AB125 was identified against DBM, semilooper and cutworm. There were no previous records on the investigation of indigenous Bt and their cry proteins for insecticidal activity against these pests. Environmental samples were collected from different climatic zones of Sri Lanka and isolation was carried out according to standard protocols (1). Isolates were propagated in a fermenter using molasses-based medium (2). Insecticidal activity of Bt primary powders were tested against laboratory reared DBM, semilooper and cutworm following the leaf-dip bio-assay (2). Field assay was conducted to test bio-efficacy of oil emulsion formulation containing Bt isolates AB125 and AB142. In laboratory assays, Bt isolate AB142 showed more activity against semilooper and Bt AB125 against DBM and cutworm. According to field data, Bt isolates AB142 and AB125 were found to be highly toxic against Lepidopteran pests (DBM in male rat and cutworm) found in cabbage and cauliflower. The present study provides valuable susceptibility data for the deployment of Bt-based control methods for Lepidopteran pests of crucifers grown in Sri Lanka. Acknowledgements: National Research Council (Grant No 05.10) and National Science Foundation (Grant No RG/2006/AG/08). References: [1] Collings, C.H. et al. (2001) Microbiological Methods. Oxford University Press. [2] Lisansky, S. et al. (2004) CPL Press Science Publishers.
Isolation and structure elucidation of new antioxidants from leaves of *Populus ussuriensis* Sm.1,2, Wu L1, Zhu ZY1, Li SM2

1Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457 Tianjin, China; 2State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640 Guangzhou, China; 3Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, D-35032 Marburg, Germany

Populus ussuriensis Kom. (Salicaceae) leaves have been widely used in folk medicines to treat various diseases [1–2]. A 70% acetone extract of *P. ussuriensis* leaves was analyzed for antioxidant activity by ABTS*+* and DPPH free radical scavenging assays. After partitioning with several solvents, the Ethanolic soluble fraction, which showed strong antioxidant activity, was further purified by Sephadex LH-20 column chromatography. The known phenolic acids p-coumaric acid (I) and caffeic acid (II), 5 known phenolic glucosides, salireside (III), populose (IV), suwonpoposide (V), salicortin (VI) and grandidentatin (VII), and 2 new phe-

Phytochemical and antibacterial studies of *Cissus ibuensis*

Ahmadu AA1, Omonuga A2, Agunu A3

1Department of Pharm. & Medicinal Chemistry, Niger-Delta University, Wilberforce island, Bayelsa state-Nigeria; 2Department of Pharmaceutical Microbiology and Biotechnology, Niger-Delta University, Wilberforce island, Bayelsa state-Nigeria; 3Department of Pharmacognosy and Drug Development, Ahmadu Bello University, Zaria-Nigeria

Cissus ibuensis L.Hook, family Vitaceae, is a climber found in tropical countries including Nigeria. The plant is used in folkloric medicine of Northern Nigeria to treat bacterial infections and also to relieve pain and inflammation [1]. In our continuing search for bioactive plant metabo-

Many species of *Diospyros* (Ebenaceae) are used in African and Chinese traditional medicinal systems for the prevention of gastric ulcers, inflammatory disorders and hepatotoxicity [1]. Recent studies show that some of these species possesses antitumor, antiinflammatory and antioxidant effects [2]. The methanol extract from the stem bark of *Diospyros sanzan-minika* showed radical scavenging activity against DPPH with IC50 values of 1.33 mg/mL. This extract was exhaustied with hexane, dichloromethane and ethyl acetate. The strongest active fraction (ethyl acetate, 1.18 mg/mL) was subjected to activity-guided purification to give norbergenin (1) and 4-O-galloylnorbergenin (2). These compounds were isolated for the first time from *Diospyros sanza-minika*. Norbergenin and 4-O-galloylnorbergenin, the main components of the plant, showed DPPH scavenging activities with IC50 values of 1.12 and 0.61 mg/mL, respectively, which are comparable to that of quercetin (0.74 mg/mL).

The genus Centaurea (Asteraceae) is represented by 178 species in the flora of Turkey, 61.6% of which is endemic [12]. In this study, MeOH extracts of the aerial parts of *C. depressa* bi娓 was partitioned between water and n-butanol. Butanol extract was fractionated by using several chromatographic methods. 2 flavones (apigenin and luteolin), a flavone glucuronide (scutellarin), a phytosterol (β-sitosterol-3-O-p-hydroxybenzoate) and a flavonol glycoside (chlorogenic acid) were isolated and identified. Structure elucidation of the pure compounds was achieved by using spectroscopic methods (1D and 2D-NMR). Apigenin, luteolin, β-sitosterol-3-O-p-hydroxybenzoate, syringin and chlorogenic acid are reported for the first time in *C. depressa*.

The antimicrobial potential was evaluated by using several antibacterial strains. The crude extracts and isolated molecules are active against several Gram-positive and Gram-negative strains, while the extracts of pure strains were isolated and characterized by capillary NMR (CapNMR) at the sub-micron level.

Comparative antioxidant and antimicrobial activities of branches extracts of five *Jupenerus* species in *Juniperus* section from Turkey

This work was designed to define and compare the biological potential of branches methanol extracts of *Juniperus* species from Turkey: *J. communis* L. var. communis (jcc), *J. communis* L. var. saxatilis Pall. (jcs), *J. drupacea* Labill. (jd), *J. oxycedrus* L.ssp. oxycedrus (joo), *J. oxycedrus* L. ssp. macrocarpa (Sibth. & Sm.) Ball. (jom). Total polyphenol content (TPC) was determined using the Folin-Ciocalteu assay (R² = 0.354). The antimicrobial potential was evaluated using spectroscopic methods (1D and 2D-NMR). Apigenin, luteolin, β-sitosterol-3-O-p-hydroxybenzoate, syringin and chlorogenic acid are reported for the first time in *C. depressa*.

In vivo investigation of the wound healing effect of the traditional Hungarian medicinal plant* Centaurea sadleriana*

The decocation of the aerial parts of *Centaurea sadleriana* JANKA (Asteraceae), a plant native to Hungary, is traditionally used to treat the wounds of sheep in the Southern Great Plain region. Phytochemical and pharmacological studies on this plant have not been performed so far. Our preliminary in vitro pharmacological screening has revealed that the extract of the aerial parts of *C. sadleriana* possess a marked anti-inflammatory effect. The objective of the present work was the *in vivo* investigation of the supposed wound healing effect and the identification of the active fractions of the herbal extract. Aerial parts of *C. sadleriana* were extracted with methanol and water. The concentrated methanol extract was partitioned using n-hexane and chloroform. The wound healing effect of different fractions of the methanol extract and the water extract of the plant material was investigated on rats [1]. Extracts (2.5%) incorporated in a Carbomer gel were applied topically to experimental wounds inflicted on healthy rats by means of a branding iron. Wound-healing time is calculated as the number of days required for 50% of the scabs to separate spontaneously from the animals. Two groups served as controls, one was treated with pure gel only, and the other was not treated at all. The third group was treated with 1% salicylic acid gel as positive control. The hexane fraction of the methanol extract accelerated significantly wound healing. This effect was similar to that of the active control. Other fractions exhibited moderate activities. Our present study confirmed the rationale of the traditional ethnomedicinal application of this plant and may serve as the basis for the identification of wound healing compounds of *C. sadleriana*. Acknowledgements: The financial support of OTKA PD 71724 is gratefully acknowledged.

Competitive interactions between fungi: a new source of original bioactive molecules

An innovative approach is presented for the chemical and biological investigation of plant compounds formed by the fighting between fungi growing in confined spaces. In these zones the fungi are submitted to intense stress and this may lead to the induction of original defense compounds. In this work, two wood-decaying fungi involved in eschatological studies, *Botryosphaeria obtusa* and *Proteus mirabilis*, and *Botryosphaeria obtusa* and *Proteus mirabilis*, were isolated and characterized by capillary NMR (CapNMR) at the sub-micron level. Ferulic acid and phytotaxic acids were applied to the crude extracts and isolated molecules. The extracts of pure strains were inactive, the extract from confrontation zones exhibited significant activities. A very strongly induced compound, O-methylmellein, was found to be involved in these toxic properties. The developed approach [1] demonstrates the use of fungal confrontations as an original source of bioactive molecules, and opens the way for investigations on human pathogens such as opportunistic fungi responsible for skin or nail infections. Reference: [1] Glauser, G. et al. (2009). Agric. Food Chem. 57:1127 – 1134.
Tulbaghia alliacea: A potential anti-tuberculosis phytotherapy

Tulbaghia alliacea is used in traditional medicine to combat infections. Extracts of Tulbaghia (0–10 mg/ml), were comparatively assessed for in vitro activity against Mycobacterium smegmatis using a disk diffusion assay, and IFN-γ human cells using ELISA technology. Tulbaghia aqueous (P > 0.002) and ethanolic (P < 0.003) extracts inhibit the pathogen in a dose-dependent fashion compared to controls. More specifically, the 10 mg/ml chloroform extract of T. alliacea most potently inhibited the growth of the pathogen (P < 0.0001). Developed TLC plates of the Tulbaghia chloroform extract inactivated with Mycobacterium smegmatis were sprayed with 2.5-diphenyltetrazolium bromide. Comparatively, developed TLC plates of the Tulbaghia chloroform extract were sprayed with vanillin-sulphuric acid reagent. NMR analysis identified the active compound A as Marasmicin, with chemical shift values (ppm) of 2.38, 4.07, 4.18, 4.25 and 2.27, which have been previously reported for this entity. The inhibitory effect of Tulbaghia alliacea against Mycobacterium smegmatis is due to three active compounds, observed using TLC. Through NMR, one of these compounds was identified as Marasmicin, with chemical shift values (ppm) of 4.07, 2.25, and a new compound identified as Marasmicin (R = 0.44), a potent anti-infective compound previously identified in T. alliacea. In addition, the aqueous extracts of Tulbaghia alliacea showed greater potency in stimulating the expression of IFN-γ when compared with the chloroform extract (P < 0.05). Tulbaghia alliacea phytotherapy is antimycobacterial and modulates IFN-γ which is vital in fighting TB infection. References: [1] Thamburan, S. et al. (2006) Phytother. Res. 20 (10):844 – 50.
DNA damage which was demonstrated by DNA tail formation, lipid peroxidation which was demonstrated by the formation of thiobarbituric acid reactive substance, and protein oxidation which was demonstrated by protein carbonyl formation. Based on these results, oryzadine protected H$_2$O$_2$-induced cell damage. Our results show that the cytoprotective effects of oryzadine stem from its ability to inhibit H$_2$O$_2$-induced apoptosis, as demonstrated by a decrease in apoptotic body formation and the inhibition of mitochondrial membrane potential (ΔΨm) loss. References: [1] Kim, E.S. et al. (2009) Bull. Korean Chem. Soc. 30:739 – 741. [2] Shin, J.S. et al. (2008) Cell Biol. Int. 32:1099-1107.

PA71

Wheatgrass extract increases proliferation of RAW 264.7 macrophages induced by hydrogen peroxide (H$_2$O$_2$) or lipopolysaccharide (LPS)

NO production accompanied by cell apoptosis was achieved with LPS have antioxidant properties. In RAW 264.7 macrophages, a high level of

PA73

Phytochemical characterization of Juniperus spp. leaves

Tavares I. Pimpão RC, Santos C, McDougall G, Stewart D, Ferreira RB. 1,2

1Deisease & Stress Biology Laboratory, Instituto de Tecnologia Química e Biológica, New University of Lisbon, Portugal; 2Plant Products and Food Quality Programme, Scottish Crop Research Institute, Dundee, DD2 5DA, Scotland, UK; 3Departamento de Botânica e Engenharia Biológica, Instituto Superior de Agronomia, Technical University of Lisbon, Lisbon, Portugal

Juniperus is the second most abundant genus among the conifers. Numerous folk medicinal uses have been reported for Juniperus leaves and fruits, such as their application as antirheumatic, blood cleansing, digestive, diuretic and febrifuge agents; they have also been used in the treatment of arteriosclerosis, bronchitis, colic, common cold, cough, inflammation, tuberculosis, cancer, psoriasis and wounds [1]. The aim of this work was to evaluate the potential application of Juniperus leaves from species naturally occurring in Portugal (J. phoenicea subsp. phoenicea, J. turbinata, J. oxycedrus subsp. oxycedrus, J. oxycedrus subsp. badea and J. navicularis) against some diseases in which oxidative reactions play a crucial role. To this end, the seasonal evolution of total polyphenols [2], total flavonoids [3] and antioxidant activity for pteroxyl radical [4] was determined. All species exhibited minimum polyphenol and flavonoid contents in March/April and July and therefore a reduced anti-oxidant activity. Maximum concentrations of these compounds were detected in November/December, with the levels of antioxidant activity peaking three times a year, May/June, August/September and November/December. J. phoenicea subsp. phoenicea, the most widespread species, showed the lowest levels of polyphenols, flavonoids and antioxidant activity. To compare their metabolite composition by HPLC-MS, leaves from all Juniperus under study were collected in November/December. The polyphenolic profiles obtained for J. phoenicea subsp. phoenicea and J. turbinata are very similar. Analogous HPLC profiles were also obtained for both J. oxycedrus subspicients and for J. navicularis. Acknowledgements: To FCT for financial support of C. Santos (SFRH/BD/37382/2007) and L. Tavares (SFRH/BPD/26562/2006) and L. Tavares (SFRH/BD/37382/2007). References: [1] Johnson, T. (1999) CRC Ethnobotany Desk Reference. CRC Press. Boca Raton. [2] Singleton, V.L. et al. (1965) Am. J. Enol. Vitic. 16:144 – 158. [3] Michalska, A. et al. (2007) Eur. Food Res. Technol. 225:545 – 551. [4] Cao, G. et al. (1993) Free Radic. Biol. Med. 14:303 – 311.

Wheatgrass, the young grass of *Triticum aestivum* L. contains chlorophyll, amino acids, minerals, vitamins, and enzymes, and is acclaimed to have antioxidant properties. In RAW 264.7 macrophages, a high level of NO production accompanied by cell apoptosis was achieved with LPS treatment [1]. Direct treatment of cells with oxidants such as hydrogen peroxide(H$_2$O$_2$) was thought to exclusively cause necrosis and apoptosis (2). Therapies aimed to inhibit NO-dependent cell apoptosis and oxidative stress mediated cell toxicity may contribute to improving the outcome of various diseases. In this study, the effect of wheatgrass extract on proliferation of RAW 264.7 macrophages induced with H$_2$O$_2$ or LPS was tested. RAW 264.7 cells seeded in 96 well plates were incubated with (positive controls) or without (negative controls) different concentrations of wheatgrass extracts dissolved in water, LPS (1 μg/ml and 10 μg/ml) or H$_2$O$_2$ (500 μM) for 24h. To test the effect of wheatgrass extract on proliferation, cells were pre-treated with different concentrations of wheatgrass extract for 1 h and then induced with LPS or H$_2$O$_2$ for 24 hours. At the end of the incubation period cell proliferation was estimated by MTT test and the statistical significance of differences was evaluated using one-way ANOVA. After 24 hours of incubation with LPS (1 μg/ml and 10 μg/ml) and H$_2$O$_2$ (500 μM) cell proliferation decreased significantly (p < 0.0001) and wheatgrass extract increased cell proliferation in both LPS and H$_2$O$_2$ induced cells. The effective proliferative doses of wheatgrass extract in H$_2$O$_2$ and LPS induced cells were found to be 0.5%; 1.5%; 2.5%; 3.5%; 5%, 7.5%, 10%v/v with p values of <0.0001 and <0.001 respectively. Our previous research has demonstrated that wheatgrass extract induced apoptosis and decreased proliferation in various cancer cell lines (3). While wheatgrass has an anti-inflammatory activity. To compare their metabolite composition by HPLC-MS, leaves and Juniperus spp. were applied phorbol-12,13-dibutyrate (1 μg daily) on the right ear for 5 days as toxin. After 30 min of toxin application, the animals of Group III were applied 20 mg of cream formulation of indomethacin and Group IV animals were applied OB extract (4 μg) daily. On the 5th day, all the animals were sacrificed and their ears were separated for the estimation of various parameters viz. ear weight, lipid peroxidation, interleukin-1β, interleukin-6 and tumor necrosis factor-α. OB extract significantly (p<0.05) reduced the ear weight variation (difference in the weight of right and left ear of animals), levels of LPO (malonaldehyde), IL-1β, IL-6 and TNF-α when compared with toxin group using ANOVA test and as shown in table.

![Values with 'a' exhibit significant difference (p<0.05) when compared to normal group and value with 'b' exhibit significant difference (p<0.05) from toxin group. Therefore we can conclude that ethanol-water extract of OB has shown significant anti-inflammatory activity against phorbol-12,13-dibutyrate induced topical inflammation in mouse ear. Reference: [1] Yadav, N. et al. (2008). Pharm. Pharmacol. 60(Suppl.1):A-31.](mailto:Planta Med 2009; 75: 877–1094 Georg Thieme Verlag KG Stuttgart · New York · ISSN 0032-0943)
Phytochemical analysis of the leaves of *Boldoa purpurascens* Cav. [1] led to the isolation of two flavonol glycosides [2,3]. The structure of the new compound was determined by mass spectrometry and by 1D and 2D NMR analysis as 4',5-dihydroxy-6,7-methylenedioxyflavonol-3-O-α-L-rhamnopyranosyl-(1-2)-D-xylopyranoside [4]. The aglycone 3,4,5-trihydroxy-6,7-methylenedioxyflavonol is known as gomphrenol [5]. The new flavonol was evaluated for its effects in the acute and chronic phases of inflammation. For this reason, two experimental techniques were developed: edema induced by dextran, and granulomas induced by cotton disks. Test doses of 2.5, 5.0 and 10 mg/Kg of weight were used, with a volume of administration of 10 mL/Kg. Indomethacin was the control of 99% and a level of significance of 0.816. The flavonol; showed significant (P<0.05) anti-inflammatory activity in the acute phase to superior dose to 2.5 mg/Kg in the experimental pattern of edema to plant induced by dextran; also, this activity increased when increasing the dose. In the granulomas pattern induced by cotton disks, the compound presented significant anti-inflammatory activity to the indomethacine to all the evaluated doses, being bigger the effect to the 10 mg/Kg dose. The statistical analysis was carried out by the test of Kruskal-Wallis with an interval of trust of 99% and a level of significance of 0.05. The flavonol; showed significant dose-dependent inhibition of both acute and chronic inflammation. The activity was comparable to that of the standard reference drug, indomethacine. The results of the present investigation indicated that the flavonol isolated of *B. purpurascens* Cav. shows profound anti-inflammatory activity, probably due to the presence of flavonoids and other phytochemical compounds. The in vitro antioxidant activity of the flavonol was evaluated using as oxydable substrates a vegetable fat and the pentose sugar 2-deoxyribose. The inhibitory activity of the flavonol against the enzyme superoxide dismutase (SOD) was determined. The flavonol; showed significant (P<0.05) activity against SOD in a dose-dependent manner. The flavonol; was also tested for its ability to inhibit the activity of the matrix metalloproteinase (MMP)-9, an enzyme involved in cancer invasion. The intracellular radical scavenging activity of the plant extracts in an oxidative stress-induced model of neurodegeneration in SK-N-MC cells was evaluated to the non-toxic range of concentrations. The pre-treatments with the extract protected the cells from the oxidative stress injury as detected by an increase in cell viability up to 42% with 15 μg GAE.mL⁻¹ and 86% with 30 μg GAE.mL⁻¹. An enriched polyphenolic fraction, obtained by a SPE, presents an IC₅₀ of 2.88 μg.mL⁻¹ for the MMP-9 inhibitory activity, a very interesting result when compared with the value obtained for the green tea extract, with already described significant inhibition [2], in the same assay conditions (4.28 μg.mL⁻¹). The HPLC-MS analysis of the leaves reveals several gallic acid derivatives that could be responsible for the observed effects, further analysis should be done to correlate the compounds with the detected activities. Acknowledgements: To FCT for financial support of C. Santos (SFRH/BPD/26562/2006) and L. Tavares (SFRH/BD/73732/2007). References: [1] Brouham, M. et al. (2007) Pharmacazie 62:630 – 632. [2] Adhami, V.M. et al. (2003) J. Nutr. 133:2417S-2424S.

Neuroprotective and MMP-9 inhibitory activity of hydroethanolic extract of *Arbutus unedo* leaves

Santos C, Tavares L, Fortaleza S, Carilho D, Pontes V, McDougall GP, Stewart D, Ferreira BB

1 Disease & Stress Biology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781 – 901 Oeiras; Portugal; 2Department of Pharmaceutical and Medicinal Chemistry, Facultad de Farmacia, Universidad de Concepción, Parque Tecnolóxico, Casilla 160-C, Concepción, Chile; 3Centro de Investigación en Neurociencias, Universidad de Carabobo, Apartado 779, Valencia, Venezuela; 4Department of Pharmaceutical and Medicinal Chemistry, Facultad de Farmacia, Universidad de Concepción, Parque Tecnolóxico, Casilla 160-C, Concepción, Chile

The leaves of *Alchornea floribunda* and *Alchornea cordifolia* are used traditionally as topical anti-inflammatory agents. Several studies have shown that the hexane extracts of the plant materials exhibited significant anti-inflammatory activity [1,2,3]. In the present study, we subjected the hexane extracts of *A. floribunda* and *A. cordifolia* leaves to column chromatographic separation and isolated two highly lipophilic fractions AFLF and ALCF respectively. The anti-inflammatory effects of these fractions were investigated using xylene - induced oedema as a model of inflammation. AFLF and ALCF at 5 mg/ear showed significant (P<0.001) topical anti-inflammatory effect with oedema inhibitions of 64.0 and 79.0% at 2h respectively. These fractions showed significantly higher topical anti-inflammatory effect than 5 mg/ear indomethacine (oedema inhibition of 48% at 2h). GC/MS analysis of these fractions revealed that AFLF is composed mainly of long chain saturated and unsaturated hydrocarbons (18.78%) and their oxygenated derivatives (18.0%), long chain carboxylic (fatty) acids (2.72%) and their esters (5.53%); while ALCF is rich in volatile oils eugenol (21.62%) and cedrol (4.76%) and other constituents like long chain primary alcohols (4.78%), long chain saturated hydrocarbon, nanocosane (36.86) and steroid derivatives, ethyl iso-allocholate (4.59%) and 3-acetoxy-7,8-epoxyla-
In conclusion, FHAS showed significant results for cellular infiltration on pleurisy model, which suggests new studies in its mechanisms of action.

PA78

Preliminary fractionation indicates that flavonoids, steroids and terpenoids are the main immunomodulatory constituents of *Loranthus micranthus* (Linn)

Osadebe PO, Omeje GO
Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, university of Nigeria, Nsukka. 410001, Enugu, Nigeria

In recent times, we have established the immunomodulatory effects of the Eastern Nigerian mistletoe, *Loranthus micranthus* [1, 2] as well as its antimicrobial property [3,4]. In our continued efforts to isolate the active constituents, five solvents of varying polarity namely: n-hexane, chloroform, ethyl acetate, acetone and methanol were respectively and successively employed in the complete fractionation of the crude aqueous methanol extract of *Loranthus micranthus* Linn., harvested from Kola acuminata. The fractions were dried in vacuo using a rotary evaporator maintained at a temperature of 40 ± 5 °C. The different fractions were screened for immunomodulatory activity using a well established model:- the cellular- mediated delayed type hypersensitivity test in experimental mice. This was performed by administering intraperitoneally, two different dose levels: 250 and 500 mg/kg of each fraction against standard positive and negative controls. Results of the study established dose dependent immunostimulatory (upregulatory) effects. The five fractions of the extract exhibited different percentage stimulations compared to controls (p < 0.05). At the dose levels of 500 and 250 mg/kg body weight, the percentage stimulation observed were as follows: chloroform fraction-311.11% and 122.22%, ethyl acetate fraction: 193.38% and 95.56%, n-hexane-155.56 and 3.50%, acetone fraction: 95.56% and 51.11% and methanol fraction: 68.89% and 24.44% respectively.

PA79

Anti-inflammatory properties of hexanic fraction of *Agave sisalana* in pleurisy model

Dunder RJ1, Luiz-Ferreira A1, Almeida ACA1, De Faria FM2, Takayama C1, Brito ARMS1
1Department of Physiology and Biophysics UNICAMP, Monteiro Lobato St, 255 – Campinas – SP – Brazil – CEP 13083 – 862; 2Department of Pharmacology UNICAMP, Tessália Vieira de Camargo St, 126 Campinas- SP- Brazil CEP 13084 – 971

Carrageen (CARR), when injected into the pleural cavity, causes several injuries and local inflammation attracting the neutrophil and mononuclear cells to this inflammation. Some plants have secondary metabolites with anti-inflammatory activity, such as steroidal sapogenins present in *Agave* genus. The anti-inflammatory activity of the Hexanic fraction of *Agave sisalana* (FHAS) was evaluated in pleurisy model. Male Unih/WH rats where separated and treated in groups FHAS 10 mg/kg, FHAS 25 mg/kg, PEG-40% and Dexamethasone (DEX) 2.0 mg/kg. All the groups received an injection of 0.2 ml of Freund's Complete Adjuvant (Sigma) in the subplantar region of the left hind paw [3]. Arthritis developed 14 days after the adenular injection and then treatment was continued for another 14 days according to the treatment protocol. On 28th day, animals were sacrificed and antioxidant status and myeloperoxidase activity changes in control and experimental animal were analyzed. MEBL at the both doses significantly regulated the inflammation in the arthritic joints by reducing the paw volume and myeloperoxidase activity and by increasing the antioxidant levels. The effect might be attributed to the combined effect of phytoconstituents like flavonoids and glycosides present in the extract. Acknowledgements: All India Council for Technical Education, New Delhi, India for scholarship to the presenting author.

PA80

Analogic study of hexanic fraction of *Agave sisalana*

Osadebe PO, Omeje GO
Department of Physiology and Biophysics UNICAMP, Monteiro Lobato St, 255 – Campinas – SP – Brazil – CEP 13083 – 862; 2Department of Pharmacology UNICAMP, Tessália Vieira de Camargo St, 126 Campinas-SP- Brazil CEP 13084 – 971

The therapeutic use of medicinal plants is widely used throughout the world. It is an ancient tradition in several cultures. The objective of these tests is to analyze the analogic property the Hexanic fraction in Agave sisalana (FHAS) with doses of 5, 10, 25 and 50 mg/kg. The analogic investigations were carried out in two types of noxious stimuli: chemically (acetic acid-induced writhing) using a positive control, (indomethacin) and thermal (hot plate and tail flick tests) with morphine and sufentanil control, respectively, and Polietileneglycol 40% (PEG) as vehicle. FHAS decreased the acetic acid model writhings in doses of 5, 10 and 25 mg/kg (22, 54 ± 48%, respectively) in comparison with PEG and the standard drug Indomethacin (45%). It showed an increasing latency time in tail flick tests in doses of 10 mg/kg (47.4% in 90 minutes), 25 mg/kg (61.5% in 60 minutes) and 50 mg/kg (96.2% in 45 minutes). Hot Plate showed increased latency time in 10 (5.91 ± 0.08 s), 25 (6.58 ± 0.08 s) and 50 (7.49 ± 1.14) doses 120 minutes. These results showed that FHAS had central and peripheral acting effects, but they do not involve an opioid receptor. In conclusion, FHAS has analogic activity. Acknowledgements: CAPES, FAPESP

PA81

Effect of methanolic extract of *Barleria lupulina* Lindl. in adjuvant induced arthritis in rats

Mitra Mazumder P, Mondal A, Arulmozhi S, Sasamal D
Department of Pharmaceutical Sciences, Birla Institute of Technology Mesra, Ranchi, Jharkhand-835215, India

Barleria lupulina Lindl. has been traditionally used in rheumatoid arthritis but now no pharmacological data has been provided supporting the claimed ethnomedicinal use [1, 2]. Thus the present study was designed to illustrate the beneficial outcome of the methanolic extract of *Barleria lupulina* Lindl. in adjuvant induced arthritis in rat model with respect to the changes in pathological lesion and extra-articular manifestation. Female Sprague Dawley rats of body weight 150 – 250 g were used for the study. The animals were divided into six groups of 6 animals each viz. Normal control, arthritic control, Standard drug treated (Indomethacin), MEBL (Methanolic extract of *Barleria lupulina* Lindl) 300 and 600 mg/Kg. Arthritis was induced in all the groups (except normal control group) by the injection of 0.1 ml of Freund’s Complete Adjuvant in the subplantar region of the left hind paw [3]. Arthritis developed 14 days after the adenular injection and then treatment was continued for another 14 days according to the treatment protocol. On 28th day, animals were sacrificed and antioxidant status and myeloperoxidase activity changes in control and experimental animal were analyzed. MEBL at the both doses significantly regulated the inflammation in the arthritic joints by reducing the paw volume and myeloperoxidase activity and by increasing the antioxidant levels. The effect might be attributed to the combined effect of phytoconstituents like flavonoids and glycosides present in the extract. Acknowledgements: All India Council for Technical Education, New Delhi, India for scholarship to the presenting author. References: [1] Suba, V. et al. (2005) Phytother. Res. 19:965 – 969. [2] Wankiat, P. et al. (2008).J. Ethnopharmacol. 116:234 – 244. [3] Bendele, A.M. (2001.). Musculoskel. Neuron. Interact. 1:377 – 385.
New caulindoles from *Raputia simulans* Kallunki
Vougogiannopoulou K, Fokialakis N, Aligiannis N, Cantrell C, Skaltsounis AL

1Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece; 2Natural Products Utilization Research Unit, USDA/ARS, National Center for Natural Products Research, University, Mississippi 38677 USA

Genus *Raputia* Aubl. comprises 10 species of neotropical Rutaceae in the subtribe Cuspariinae. *R. simulans* Kallunki occurs in the upper Amazon basin of Brazil, Colombia and Peru [1]. Due to the rarity of the genus and the complicated taxonomy amongst similar genera (*Raputia* and *Neora*putia), no actual phytochemical study of the genus *Raputia* has been reported to date. In continuation of our previous studies concerning the phytochemical investigation of the dichloromethane root extract of *Raputia simulans* Kallunki [2], we report herein the isolation and characterization of new caulindole-type bisindole alkaloids (1–3). The isolation procedure was performed using Counter Current Chromatography techniques while the structure determination was based on 1D and 2D NMR experiments. The caulindoles is a relatively new class of natural products and the only representatives reported so far were isolated from an Annonaceae species [3].

Pinobatol – a novel spirodienone sesquioleigian

1Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland; 2Laboratory of Organic Chemistry, Åbo Akademi University, Pispäkkatu 8, 20500, Åbo, Finland

This poster reports the structural elucidation of a novel sesquioleigian with a spirodienone structure (Figure), which we have named as pinobatol [1]. Pinobatol has been isolated from the bioactive fraction from pine bark extract. The structure of it was identified by MS and NMR experiments. The assignment of all 1H and 13C NMR signals was achieved by the combination of techniques DQF-COSY, CH2-edited HSQC, HMBC, NOESY and selective 1D-TOCSY. Spiro lignan structures are rare and only very few sesquioleignans with spiro skeleton have been described in literature. Interestingly, the spirodienone structure has been proposed as an intermediate formed by β-1-cross-coupling mechanism in the lignin (bio)synthesis. However, the monomeric structure has not been previously found.

Phenolic compounds and antioxidative properties of buckwheat grain, hull and flours

1Institute for Medicinal Plant Research “Dr. Josif Pančić”, 11000 Belgrade, Serbia; 2University of Novi Sad, Institute for Organic Chemistry, Piispankatu 8, 20050, Åbo, Finland

The cultivation of pseudocereal buckwheat (Fagopyrum esculentum Moench, Polygonaceae) has gained raising attention, due to many positive physiological effects. Buckwheat grain contains large amount of proteins, starch, vitamins and does not contain gluten, which classify buckwheat products as functional ones. Also buckwheat grain is reach in phenolic compounds [1,2]. Distribution of phenolic compounds and antioxidative activity of ethanol extracts of buckwheat whole grain (1), dehulled grain (2), hull (3) and two types of flours (wholegrain (4) and light (5)) were investigated. For the purpose of extracts antioxidant properties investigation iron (III) reduction and DPPH assays were applied. Total phenol and flavonoid contents of each extract were also determined. The extracts were analysed by HPLC as well and showed to contain significant quantities of plant phenolics (Table). Hull extract contained 14.3% of phenolics, which is almost ten times more then in other extracts. Furthermore, hull extract exhibited the best antioxidant properties in both tests applied (IC50=0.37 mg/ml). Significant correlation was obtained for the results of these tests (0.97, p<0.05). These results strongly correlate with the total phenol and flavonoid contents in the samples, as well. Regarding the obtained results hulls could be potentially used as a source of natural antioxidants.

Topic B: Conservation and biodiversity issues

PB1

Bulked AFLP analysis for assessing genetic diversity in Echinacea species

Yariwake JH 1, Choi YH 2, Kim HK 2, Verpoorte R 2, Figueiredo AC 5

1Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China

Echinacea is an allogamous genus, thus its cultivars or populations are heterogeneous. Using amplified fragment length polymorphism (AFLP) to estimate the genetic diversity of *Echinacea* may be limited by the large number of individual plants that need to be processed. In the present study, effectiveness of several bulkings (10, 15, 20, 25 and 30 individuals) with 20, 35 and 55 primer pairs was assessed using AFLP in determining genetic diversity of eight *Echinacea* species/varieties/cultivars. The results indicated that the use of bulked DNA-based AFLP analysis is capable of detecting genetic diversity among *Echinacea* species/varieties/cultivars. The assessments showed that a bulk of 15 individuals could detect AFLP variations at most genomic sites. Additionally, 20 primer pairs could generate sufficient polymorphic fragments to achieve high resolving power of AFLP for the tested *Echinacea* genus. 1. Chen, C.L. et al. (2008) Exp. Agric. 44:497 – 507. 2. Kim, D.H. et al. (2004) Genome 47:102 – 111.

PB2

Allelopathic potential of phenolic constituents from Polygonum cuspidatum Sieb. & Zucc (Polygonaceae)

Fang PH 1, Hay AE 2, Marston A1, Hostettmann K 1

1Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, EPFL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland; 2Department of Natural Products Chemistry, School of Pharmaceutical Sciences, EPGL, University of Geneva, Geneva 4, Switzerland

Polygonum cuspidatum Sieb. & Zucc (Polygonaceae), originating from China and used in traditional Chinese medicine, has gained much notoriety in Europe and North America as a pernicious weed by reducing the diversity of plant species and significantly altering natural habitats [1]. Analysis of different crude extracts of *P. cuspidatum* from China and Switzerland by HPLC-DAD-ESI/MS revealed that the main phytochemicals were stilbenes, procyanidin monomers and catechin (IC50 3.80 mM). The concentrations of these two compounds respectively for the invasive variety; 70.5, 92.0% respectively for the native variety). Among 17 compounds including anthraquinones, protonanthocyanidins, stilbenes, flavonoids, phenylpropanoids and aromatic acid, rhein, stilbenes, procyanidin monomers demonstrated potential activity. Especially, rhein and resveratrol with IC50 0.04, 0.41 mM respectively were much stronger than the known allelochemicals (+)-catechin (IC50 3.80 mM). The concentrations of these two compounds in root exudates and field soil, and their effect on the surrounding plant species are necessary to be further studied to support the novel weapon hypothesis which may contribute to the aggressiveness of *P. cuspidatum*. References: [1] The Nature Conservancy of Vermont (1998) Invasive exotic fact sheet: Japanese knotweed. Montpelier USA. [2] Inderjit et al. (2006) Trends Plant. Sci. 11:574 – 580. [3] Inoue, M. et al. (1992) J. Chem. Ecol. 18:1833 – 1840.

PB3

Metabolomic study of transgenic and non-transgenic sugarcane leaves based on NMR profile

Lira T 1, Yariwake JH 1, Choi YH 2, Kim HK 2, Verpoorte R 2

1Universidade de São Paulo, Instituto de Química de São Carlos, Caixa Postal 780, 13560 – 970, São Carlos, SP, Brazil; 2Leiden University, Institute of Biology, Division of Pharmacognosy, Section Metabolomics, Einsteinweg 55, 2300RA Leiden, The Netherlands

Metabolomics represents a holistic approach complementary to genomics and proteomics for studying a complex biological system’s response to chemical, physical and genetic variations [1]. The aim of this work was to establish metabolic fingerprints of sugarcane (*Saccharum officinarum*) to identify differences between leaves of two varieties of transgenic sugarcane modified with proteinase inhibitors Bowman-Birk (BB) and Kunzit (K) from soybean and their respective controls. Principal Component Analyses (PCA) and ANOVA-test were required to recognize and evaluate the significance of possible discriminating metabolites. 42 samples of sugarcane leaves were analyzed through 1H NMR (25°C, Bruker AV-400 spectrometer, proton frequency of 400.13 MHz). The samples were submitted on 2 ways of extraction: direct extraction to general analyses and undirected extraction to precipitate sugars and concentrate polyphenols compounds which are often affected by genetic transformation [2, 4]. Some compounds were identified by 1D (1H and 13C) resolved and 2D NMR experiments ((COSY 1H-1H and HMBC 1H-13C) as isomers of 3’ and 5’-chlorogenic acid, syringic acid, glucose, sucrose, threonine, alanine, aspartic acid, proline, fumaric acid, succinic acid, choline, glycin, asparagine and some unidentified polyphenols. PCA scores analyses from total bucket files exhibit no significant difference between the most transgenic plants and controls in both kind of extractions for BB and K varieties. According to the procedure followed the transgenic plants and wild type apparently have the same phenotype. Therefore, these results indicate that these transgenic varieties of sugarcane should not represent health risk for humans. The improved resistance of the sugarcane transgenic for the proteinase inhibitor genes is due to these proteins as no significant changes were observed in the metabolome [5]. Acknowledgements: FAPESP, CAPES, CNPq. References: [1] Lindon, J.C. et al. (2001) Prog. Nucl. Mag. Reson. Spectrosc. 39:1 – 40. [2] Kim, H.K. et al. (2006) Biotechnology in Agriculture and Forestry, v. 57. Plant Metabolomics. Springer. Berlin. [3] Choi, Y.H. et al. (2004) Plant Physiol. 135:2398 – 2410. [4] Choi, H-K. et al. (2004) Phytochemistry 65:857 – 864. [5] Falco, M.C. and Silva-Filho, M.C. (2003) Plant Physiol. Bioch. 41:761 – 766.

PB4

Evaluation of the essential oil composition of fruits of three endemic species of Tornabenea from Cape Verde Islands

Grosso C 1, Teixeira G 2, Comes P 1, Martins ES 3, Barroso JG 5, Pedro LG 6, Figuereido AC 5

Tornabenea Parl. ex Webb is an endemic Cape Verdean genus of Apiaceae subfamily Apiidoideae tribe Lasekiinae [1]. The medicinal plants in *Tornabenea* is still a matter of controversy [2]. Being fruit characters regarded as crucial in Apiaceae taxonomy and given the identification difficulties within the members of this genus, the aim of this study was to characterize the essential oil profile of the fruits of three *Tornabenea* species, to ascertain whether volatile compounds could serve as chemico-markers and help in the species delimitation. The essential oils of *T. annua*, *T. insularis* and *T. tenuissima* herbarium and in vivo fruits, collected in five Islands from Cape Verde archipelago, and from plants grown in Portugal, were isolated by hydrodistillation and analysed by GC and GC-MS. The yellowish oils were obtained in variable average yields, lower in herbarium samples [0.05% (v/w)] and higher from in vivo samples [1.3% (v/w)]. Whereas *T. annua* fruits oils were all dominated by myristicin (92 – 100%), most of the *T. insularis* fruits oils were elemicin rich (82 – 90%). No clear information could be obtained for *T.
Volatile characterization and molecular polymorphism evaluation among Azorean Laurus azorica

Lima AS, Trindade H, Figueiredo AC, Barroso JG, Pedro LG

A combined analysis of Laurus azorica (Seub.) Franco volatile oils, RAPDs and ISSRs data, was performed to evaluate the relationship between both data sets. Volatiles from individual samples were isolated by distillation-extraction and analyzed by GC and GC-MS, as in [1]. DNA fingerprinting was performed using 51 RAPD primers and 25 ISSR primers, according to [2, 3]. NTSSY software [in [1] and was used for DNA and volatile oils data cluster analysis. The oils consisted mainly of α-pinene (4 – 48%), 1,8-cineole (4 – 36%) and β-pinene (3 – 23%), in accordance with previous studies in populations [1]. Cluster analysis of chemical data showed a high correlation among all samples (Scorr= 0.86), with exception of three individuals: one from S. Miguel (Scorr= 0.63) and two from Graciosa (Scorr= 0.44). The smaller correlation of the latter samples was due to the higher relative amounts of 1,8-cineole (24 – 36%) and their amount has been reported to increase during storage [1].

Population structure and gene flow among wild populations of the Saussurea involucrata based on chloroplast DNA sequences

Xue C Y1, Xu J X2

1Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, People’s Republic of China; 2People’s Liberation Army General Hospital, Beijing 100853, People’s Republic of China

Saussurea involucrata (Kar. et Kir.) Sch.-Bip. (Compositae) has been used as a traditional Chinese medicine [1]. To assess the population structure and gene flow among the extant populations, we sequenced psbA-trnH (442 bp) and rps16-trnQ (1116 bp) of the Chloroplast DNA sequence for 62 samples collected from its current three large populations (Bogeda-feng, Heshuo, Tianchi). A total of 17 unique haplotypes were defined based on 23 polymorphic sites. Phylogenetic analyses suggested the Chloroplastic DNA sequence haplotypes were split into two well divergent clades. Interestingly, the two distinct haplotype clades were found to coexist in Tianchi area. The nested cladogram revealed a significant phylogeographic structure among the S. involucrata populations (total cladogram: χ²=32.75; P < 0.001), which was inferred from past fragmentation followed by range expansion. The population expansion was supported by the analysis of mismatch distribution and the tests of neutrality. In the end, we suggest, actions should be taken to conserve populations like Tianchi, in which a high level of population genetic diversity was observed. Acknowledgements: This research was supported by the National Science Foundation of China (NSFC 30770513). References: [1] The state Pharmacopoeia Commission of the PRC. (2005) Pharmacopoeia of the People’s Republic of China. Chemical Industry Press. Beijing.

Differential expression of microsatellites in leaves and rhizomes of Turmeric (Curcuma longa Linn.)

Ince AG, Karaca M, Onus AN

Akdeniz University, Faculty of Agriculture, Antalya 07059, Turkey

Curcuma longa Linn. commonly known as turmeric or Indian saffron belongs to the family Zingiberaceae. Turmeric is a perennial herb with simple and large leaves. Tubers, rhizomes and essential oil of turmeric have great importance in medicine and food [1]. Although essential oil contents of turmeric have been extensively studied, genome analysis of this plant falls behind the other crop species. A total of 12,593 rhizome and young leaf expressed sequence tags (ESTs) were analyzed using two bioinformatic programs to identify microsatellites [2, 3] and a statistical approach [4] was used to investigate whether microsatellite densities between rhizome and young leaves differed. Results indicated that the level of microsatellite densities in leaf and rhizome ESTs were not statistically different (P = 0.05). On the other hand, densities of tri-nucleotide and tetra-nucleotide microsatellites were statistically different between tissues, which could also be used in tissue fingerprinting studies. Also our initial studies indicated that there are microsatellite density differences between Curcuma species. In the present study we also identified a total of 22 new set of microsatellite primer pairs. These generic (EST-based) microsatellite primer pairs could be used in generic studies in turmeric improvement. Acknowledgements: This research is supported by the Scientific Research Projects Administration Unit of Akdeniz University. References: [1] Jain, S. et al. (2007) Phcog Rev. 1:119 – 128. [2] Ince, A.G. et al. (2008) Plant Cell Tiss. Org. 94:281 – 290. [3] Bilgen, M. et al. (2004) Bioinformatics 20:3379 – 3386. [4] Lawson, M.J. and Zhang, L. (2008) Bioinformatics 24:3379 – 3386.
Development of microsatellite primer pairs for Cynara cardunculus var. scolymus (L.) Fiori

Ince AG, Karaca M, Onus AN
Akdeniz University, Faculty of Agriculture, Antalya 07059 Turkey

Globe artichoke [Cynara cardunculus var. scolymus (L.) Fiori] is a diploid (2n = 2x = 34) out-crossing species, originating in the Mediterranean Basin. It is poly-anual crop and mostly cultivated for its edible immature flower heads. Most commercial production of globe artichoke is based on vegetative propagation of selected clones. Differentiation of distinct clones under cultivation is difficult to determine with accuracy based on morphological observations. On the other hand molecular analyses using DNA fingerprinting techniques such as DNA markers have number of advantages. Among the DNA fingerprinting techniques, the multiplex AFLP (amplified fragment length polymorphism) and the single locus microsatellite (simple sequence repeats) markers have been used in many crops species for identification of closely related plant species and genetic mapping. AFLP technique in comparison to microsatellites has several disadvantages. Microsatellites, on the other hand, produce robust and reliable markers in every organism studied so far. However the number of microsatellite primer pairs flanking the microsatellites is limited in globe artichoke. Expressed sequence tags (ESTs) have been used to obtain microsatellite primer pairs in many organisms [1]. In the present study utilizing globe artichoke ESTs we obtained 50 microsatellite primer pairs. EST-microsatellites were identified using ExactTandem Repeat Analysis program [2] and primer pairs flanking these microsatellites were designed using Primer3 software [3]. Acknowledgements: This research is supported by the Scientific Research Projects Administration Unit of Akdeniz University. References: [1] Ince, A.G. et al. (2008) Plant Cell. Tiss. Org. 94: 281 – 290. [2] Karaca, M. et al. (2005). Genet. 84:40 – 54. [3] Rozen, S., Skaletsky, H.J. (2000) Methods in Molecular Biology, vol. 132, Bioinformatics Methods and Protocols, Humana Press, Totowa, USA.

Essential oil profile of Thymus jankae Celak. from Bosnia

Cever S1,2, Vidic D1, Maksimovic M2
1University of Sarajevo, Faculty of Science, Department of Chemistry, Zmaja od Bosne 33 – 35, 71000 Sarajevo, Bosnia and Herzegovina; 2University of Ljubljana, Faculty of Chemistry and Chemical Technology, Alkercéva 5, 1000 Ljubljana, Slovenia

Among the aromatic plants belonging to the Lamiaceae family, the genus Thymus is noteworthy for the numerous wild species and cultivated plants. It is well known for different medicinal purposes such as antispasmodic and antimicrobial activity. A widespread chemical polymorphism is an important characteristic of this genus [1]. The qualitative composition and relative proportions of the volatiles are widely influenced by the genotype, the ontogeny, and the environmental conditions [2,3]. Volatile profile of odorous parts of Thymus jankae Celak., collected from natural habitat, was analyzed by capillary GC-MS. This work presents the first investigation of hydrodistilled essential oil and headspace composition of this species from Bosnia and Herzegovina. Forty-eight components were identified in both samples, representing 96.4% and 96.2% in total, for hydrodistilled essential oil and headspace, respectively. The major compounds in essential oil belong to the oxygenated monoterpenes (57.5%), with linalyl acetate (28.7%) and linalool (14.4%). Headspace sample also showed richness in linalyl acetate (32.4%), but second the most abundant compound was α-pinene (14.5%), a monoterpene hydrocarbon. Investigated essential oil and headspace from Bosnian population of T. jankae significantly differs from volatile profile of T. serpyllum from the same region [2]. To the best of our knowledge, there is no published data on medicinal properties of T. jankae. This issue will be subject to our future research. References: [1] Stahl-Biskup, E., Saez, F. (2002) Thyme: The Genus Thymus, CRC Press. [2] Čevar, S. et al. (2000) Nat. Prod. Comm. 4:415 – 420. [3] Karuza-Stojaković, L. et al. (1989) Arh. Farm. 39:105 – 111.

Testing candidate plant barcode regions in the Dendrobium species

Yoo H1, Chen SL2, Song JY1, Liu C1, Ma XY1, Luo K1, Han JP1, Duan LS2
1Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, P. R. China; 2Molecular Chinese Medicine Laboratory, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, P. R. China

There are 74 species and 2 varieties of Dendrobium found in China and more than half of them are used as Herba Dendrobii in China and other Asian countries. Because of its high market demand, Herba Dendrobii has a relatively high market price compared to other medicinal plants. Moreover, medicinal Dendrobium is listed in Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). This has led to substantial adulterations with other Dendrobium species or other orchid species. Dendrobium is difficult to identify and is an ideal model group to test DNA barcoding technique [1]. In our previous study, the candidate DNA barcoding sequence, psbA-trnH intergenic spacer region, could be used as a barcode to distinguish various Dendrobium species and to differentiate Dendrobium species from other adulterating species [2]. In this study, more samples were used to test the utility of six coding ((matK, rpoC1, rpsB, rbcL, accD, ycf5) and two non-coding (atpF-atpH, psbK-psbI) plastid markers as potential plant barcoding regions. The results showed that six of the regions we tested were slightly variant across species (rpoB, rpoC 1, accD, rbcL, ycf5, atpF-atpH), and psbK-psbI had significant variation and show promise for barcoding in Dendrobium species. Acknowledgements: This research was supported by the International Cooperation Program of Science and Technology (No.20070906030900) and the Special Founding for Healthy Food (No. 2008020403). References: [1] Rohde, R. et al. (2008) Proc. Natl. Acad. Sci. USA 105:2923 – 2928. [2] Yoo, H. et al. (2009) Planta Med. 75: DOI: 10.1055/s-0029 – 1185385.

Contribution to the comparative studies of natural populations of Veronica from the Romanian Eastern Carpathians

Danila D1, Necula R1, Hancianu M2, Chita G1, Gile E1, Stanescu L2
1National Institute of R&D for Biological Sciences/”Stefan” Biological Research Centre, Piatra Neamt, Alexandra cel Bun 6, 610004, Romania; 2Faculty of Pharmacy, ”A. Popa” University, Universitati 16, 700115 Iasi, Romania

In the study regarding the chemical composition of 5 Veronica species, originating from habitats with reduced anthropization from the area surrounding the Moldavian Subcarpathians, we achieved a general phytochemical analysis to identify the big groups of active principles. By means of TLC and HPLC we analyzed the polyphenolic components, spectrophotometrically dosing the flavonoids, iridoids and polyphenolic acids.

<table>
<thead>
<tr>
<th>Caffeic acid equivalents (mg/g d.w.)</th>
<th>Samples</th>
<th>No. of derivatives</th>
<th>Cumulative quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td>10.58</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td>2.12</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td>3.05</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
<td>3.52</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td></td>
<td>2.64</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td></td>
<td>3.80</td>
</tr>
</tbody>
</table>

Total polyphenolic acids (caffeic acid) and flavonoids (rutinoside) V. arcticifolia (1; 2), V. austriaca (3), V. officinalis (4; 5), V. chaemedyss (6; 7), V. bezcebabunga (8; 9)
With the Veronica populations, we noticed the qualitative and quantitative variability of the polyphenolic acids and flavonoids, dependent on the analyzed species and the original habitat. The HPLC analysis confirmed the presence in some extracts of the derivatives of apiGENine, luTEoline as well as caffeic acid [1]. Similarly, we noticed the existence of an inter- and intra-specific variability of the iridoids and polyholosides. Acknowledgements: The work is sustained in the PNCDI-2 program financed by the Romanian Government – National Rd Agency. References: [1] Dabosić, J. et al. (2006) Vrška Review, Mlad. Hrvatsk. 1/2006 169 – 175.

PB13

Seven natural populations of Ajuga reptans L. and eight of A. genevensis L., harvested in June 2008, from four counties situated in the north-eastern part of Romania, were investigated to determine their content of flavonoids, polyphenolic acids and iridoids in order to appreciate the inter- and intraspecific chemical variability. Using the TLC qualitative investigation technique, we resorted to spectrophotometry for the quantitative determination and completed with a better appreciation of the spectrum similarities and differences from the polyphenolic compounds group. The study showed the existence of an intraspecific variability for the populations belonging to the same genus, which is, probably, linked to the pedoclimatic offer of the original location. In the same time, we noticed that the flavonoidic fraction is constituted, in the case of both species, of aglycones, a fact already known. In this respect, in the north-west part of the Balkan Peninsula, we noticed the qualitative and quantitative variation [5]. In this study, 80 accessions were analyzed by means of HPLC/DAD, LC-MS/MS and NMR experiments: 46 accessions from Ajuga reptans and 34 accessions from A. genevensis. The contents of pigments and other phenolic compounds could be identified as chemospecific. On this basis, a statistical study using Principal Component Analysis allowed a clear distinction between both species and subspecies. Besides, different biological activities are already described as exhibiting anti-diabetic [1], lipid lowering and anti-oxidative [2], anti-allergic [3] and antimarial activities [4]. Management of the collection requires botanical, genetic and biochemical studies allowing good, reliable characterization of species, subspecies and varieties. In this context, the biochemical characterization of the inflorescences was undertaken to evaluate the intra and inter-specific diversities of pigments and other phenolic compounds. Infloroescences of A. reptans are white, except for three species: H. macrophylla, H. involucrata and H. aspera which exhibit rose or blue flowers. Among them only H. macrophylla was previously studied for sepal color variation [5]. In this study, 80 accessions were analyzed by means of HPLC/DAD, LC-MS/MS and NMR experiments: 46 H. macrophylla, 13 H. aspera, 6 H. involucrata, 5 H. paniculata, 3 H. quercifolia, 2 H. arboreaens, 2 H. anomala, 2 H. heteromall, 1 H. scandens, 1 H. seemannii and 1 H. integrifolia. About 50 phenolic derivatives – essentially phenolic acids and flavonols (quercetin and kaempferol) – and 20 anthocyanins could be identified. The contents of pigments and other phenolic compounds appeared as very diverse both qualitatively and quantitatively and some compounds could be identified as chemospecific. On this basis, a statistical study using Principal Component Analysis allowed a clear distinction between both species and subspecies. Besides, different biological evaluations of crude extracts and secondary metabolites isolated from Hydrangea sp will also be discussed. Acknowledgements: This research is founded by the Region Pays de la Loire + References: [1] Matsuda, et al. (2007) 2nd Symposium on Pharmaceutical Food Science OCT 18 – 19, Shizuoka, JAPAN. [2] Kim, H.K. et al. (2009) Biol. Pharm. Bull. 32:153 – 156. [3] Kurume, A. et al. (2008) Chem. Pharm. Bull. 56:1264 – 1269. [4] Ishih, A. et al. (2007). Nat. Prod. 61:213 – 216. [5] Yoshida, K. et al. (2008) Phytochemistry 69:3159 – 3165.

Chemical variability of some natural populations of Ajuga sp. from the north-eastern part of Romania

Hemiscuts Al, Gille E2, Necula R2, Danila D2, Trifan A2, Stanescu U2

1Facility of Pharmacy, “Gr. T. Popa” University, Universitatii 16, 700151 Iaşi, Romania; 2National Institute of Res for Biological Sciences/Stejariu Biological Research Centre, Piatra Neamt, Alexandru cel Bun 6, 610004, Romania

PB14

Chemodiversity and conservation of Santalum insulare of French Polynesia

Butaud JF1, Bianchini JP1, Gaydou EM2

1Université de la Polynésie Française, BP 6570 Faaa, 98702 Faaa, Tahiti, French Polynesia; 2Université Paul Cézanne, Av. Escadrille Normandie-Niemen, Marseille Cedex 20, France

Overexploited for its fragrant heartwood during the 19th century, the Polynesian sandalwood (Santalum insulare) is now an endangered tree scattered among the islands of Eastern Polynesia where several botanicaI varities are recognized [1]. In order to sustainably manage this natural resource, chemodiversity approach was carried out to highlight the restauuration and conservation program monitoring. So, sesquiterpenoid composition of heartwood extracts and leaf-flavonoid composition of samples from all its distribution area were analyzed. Multivariate statistical methods of the obtained data were performed to establish the diversity patterns. Regarding the essential oil quality from sesquiterpenoid diversity, two main chemotypes appeared: santalol chemotype as the major one and a (Z)-nuciferol chemotype restricted to few stands in Marquesas islands [2]. Investigations on leaf-flavonoid diversity put in evidence a remarkable coherence between chemotaxonomy and botanical taxonomy. Sandalwood varieties of each archipelago were scattered among the islands of Eastern Polynesia where several botanical and secondly for replantation by the government but also by the inhabitants. References: [1] Renk, C.F. et al. (1983) Candollea 40:459 – 470. [2] Butaud, J.F. et al. (2003). Essent. Oil Res. 15:323 – 326. [3] Butaud, J.F. et al. (2006) Nat. Prod. Comm. 1:909 – 972.

The most important collection of Hydrangea in Europe is located in Angers (France). It consists of over 700 germplasm accessions distributed in 13 species. Originating from Asia and America, they were introduced in Europe in the 18th and 19th centuries. Experiments with their commercial forest but medicinal properties may also be found in this genus since extracts from H. macrophylla are already described as exhibiting anti-diabetic [1], lipid lowering and anti-oxidative [2], anti-allergic [3] and antimarial activities [4]. Management of the collection requires botanical, genetic and biochemical studies allowing good, reliable characterization of species, subspecies and varieties. In this context, the biochemical characterization of the inflorescences was undertaken to evaluate the intra and inter-specific diversities of pigments and other phenolic compounds. Infloroescences of H. macrophylla, H. involucrata and H. aspera which exhibit rose or blue flowers. Among them only H. macrophylla was previously studied for sepal color variation [5]. In this study, 80 accessions were analyzed by means of HPLC/DAD, LC-MS/MS and NMR experiments: 46 H. macrophylla, 13 H. aspera, 6 H. involucrata, 5 H. paniculata, 3 H. quercifolia, 2 H. arboreaens, 2 H. anomala, 2 H. heteromall, 1 H. scandens, 1 H. seemannii and 1 H. integrifolia. About 50 phenolic derivatives – essentially phenolic acids and flavonols (quercetin and kaempferol) – and 20 anthocyanins could be identified. The contents of pigments and other phenolic compounds appeared as very diverse both qualitatively and quantitatively and some compounds could be identified as chemospecific. On this basis, a statistical study using Principal Component Analysis allowed a clear distinction between both species and subspecies. Besides, different biological evaluations of crude extracts and secondary metabolites isolated from Hydrangea sp will also be discussed. Acknowledgements: This research is founded by the Region Pays de la Loire + References: [1] Matsuda, et al. (2007) 2nd Symposium on Pharmaceutical Food Science OCT 18 – 19, Shizuoka, JAPAN. [2] Kim, H.K. et al. (2009) Biol. Pharm. Bull. 32:153 – 156. [3] Kurume, A. et al. (2008) Chem. Pharm. Bull. 56:1264 – 1269. [4] Ishih, A. et al. (2007). Nat. Prod. 61:213 – 216. [5] Yoshida, K. et al. (2008) Phytochemistry 69:3159 – 3165.

Chemodiversity and conservation of Santalum insulare of French Polynesia

Butaud JF1, Bianchini JP1, Gaydou EM2

1Université de la Polynésie Française, BP 6570 Faaa, 98702 Faaa, Tahiti, French Polynesia; 2Université Paul Cézanne, Av. Escadrille Normandie-Niemen, Marseille Cedex 20, France

Status, utilization and diversity of medicinal plants of pachmarhi biosphere reserve, India

Patial P

Govt. M.L.B. Girls P.G. (Autonomous) College, Bhopal (M.P.), India

Pachmarhi Biosphere Reserve situated in Satpura Ranges of Madhya Pradesh is rightly known as Satpura Ki Rani (Queen of Satpura), being reservoir of biodiversity in Central India. The Reserve encompasses forest eco-region and is an important transition zone between the forest of western and eastern India. The dominant species are Teak (Festuma grandis) and Sal (Shorea robusta). It is home to a large number of rare and endemic species of algae, bryophytes, fern, gymnosperms, Orchids and angiosperms including a treasure-trove of medicinal plants. To understand the value of biodiversity, medicinal plants utilization and conservation in the area, phytosociological, systematic and ethno-medico-botanical studies have been carried out with the help of tribal and local people. About 265 species of wild medicinal plants have been identified including 109 tree species, 51 shrubs species, 78 species are herbs, 27 species are climbers and three species of grasses. Of these 265 species 29 species are highly threatened in which 14 species are endangered, 11 species vulnerable and 04 species are at a low risk. With the increasing harnessing of medicinal plants due to commercialization and globalization of herbal wealth, their availability in nature is subsequently declining. Therefore, in the study an attempt has been made to elucidate the wood seed orchards were implemented firstly for conservation purposes and secondly for replantation by the government but also by the inhabitants. References: [1] Fosberg, R.F. et al. (1985) Candollea 40:459 – 470. [2] Butaud, J.F. et al. (2003). Essent. Oil Res. 15:323 – 326. [3] Butaud, J.F. et al. (2006) Nat. Prod. Comm. 1:909 – 972.
number of medicinal plants to leverage immediate attention required for their conservation and propagation in the region.

Achillea distans Waldst. et Kit. from the Rodnei Mountains (Eastern Carpathians) – Romania

Tamas M, Popovici M, Oniga I, Opran F, Coldea G
Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", I. Creanga Str. 12, Cluj-Napoca, 400010, Romania; *Institute of Chemistry "Raluca Ripan" Cluj-Napoca, Pantelele Str. 30, 400294, Romania; **Institute of Biological Research, Republicii Str. 48, Cluj-Napoca, 400015, Romania

Identification of genotypes with high essential oil contents in Origanum, Thymus and Sideritis Elmasulu SY, Cinar A, Ince AG, Karaca M, Onus AN, Turgut K
Akdeniz University, Faculty of Agriculture, Antalya 07059 Turkey

A large number of medicinal and aromatic plant species naturally grown in the Mediterranean Basin of Turkey contain secondary metabolites such as alkaloids, flavonoids, phenols, polysaccharides, terpenes, and quinones that are used in the food, pharmaceutical, cosmetic, and pesticide industries. Many of these plant species are undergoing domestication and cultivar development. Unfortunately some of these plant species are among the most endangered species which need to be protected to ensure their sustainable use in the region. In the present study several species in Origanum, Thymus and Sideritis were collected from several locations in the Mediterranean Basin of Turkey, and essential oil contents and DNA fingerprinting analyses of each genotype collected from a location and other locations were studied. Preliminary studies indicated that there exist great variations in essential oil and genetic content of plant genotypes of each genus collected within and between the locations. Some of the genotypes within a location showed extremely high essential oil contents while the other genotypes possess limited contents of essential oil. Using simple sequence repeat (SSR), minisatellite, chloroplast and mitochondrial DNA markers we obtained barnc-specific DNA markers for some species. Upon completion of this study we will be able to define genotypes and locations from Origanum, Thymus and Sideritis with higher essential oil contents and define DNA marker specific to species in each the three genera [1,2]. Since we recorded positions of the each genotype using a global positioning system, we can re-collect those genotypes containing superior essential oil contents and use them in cultivar development studies. Acknowledgements: This research is supported by the Scientific Research Projects Administration Unit of Akdeniz University. References: [1] Karaca, M. et al. (2008). J. Sci. Food Agric. 88: 2508 – 2516. [2] Ince, A.G. et al. (2009) Genet. Resour. Crop. Ev. 56:211 – 221.

Identification of genotypes with high essential oil contents in Origanum, Thymus and Sideritis

PB17

Infracpecific chemical taxay of Achillea distans

PB19

Achillea distans Waldst et Kit (Asteraceae) is an alpino-carpatho-balkan type species that vegetates on the upper limit of mountain forests and in subalpine shrubs. According to the length of ligulate florets and to their color, 2 subspecies are recognized: Achillea distans ssp. distans (I), with white flowers and 2 mm length of ligucae and Achillea distans ssp. alpina (Rochel) Soo (II), with pink flowers and 3 mm length of ligucae. [1,2,3]

Both subspecies were harvested from the Rodnei Mt., in the north of the Eastern Carpathians (Romania), near lezer Lake, at 1700 – 1750 m altitude, in August 2006 and 2007, in the blossom period. The extraction and quantification of the essential oil from dried inflorescences was made in a Neo-Clevenger apparatus, and was analyzed by TLC and GS-MS. The Wiley Library was used as reference database [4]. The content of the essential oil was 0.40 ml/100 g dried material (I) and 0.25 ml/100 g (II). Both oils were efficient and the EP test showed that the TLC assay for azulenes were negative. By GC-MS analyses, 18 compounds were separated in (I), the most important being α-thujone (33.31%), β-thujone (25.52%), sabine (15.60%), and 36 compounds in (II), among them being eucalyptol (20.97%), sabine (6.37%), camphor (4.94%), but thujones were missing. We consider that the 2 subspecies are significantly different concerning the chemical composition of the essential oils and they may be considered as infraspecific chemical taxa or chemovarieties of Achillea distans. References: [1] Anon (1964) Flora RPR, Ed. Academiei, Bucuresti. [2] Tutin, T. et al. (1976) Flora Europea vol. IV, Cambridge Univ. Press, Cambridge. [3] Coldea, G. (1990) Muntii Rodnei – Studiu geobotanic. Ed. Academiei Romane, Bucuresti. [4] Opran, R. et al. (2001).J. Pharm. Biomed. Anal. 24:1163 – 1168.

PCR based minisatellites are useful in Origanum, Thymus, Sideritis and Salvia genetic studies

PB18

Ince AG, Karaca M, Turgut K
Akdeniz University, Faculty of Agriculture, Antalya 07059 Turkey

The Mediterranean Basin of Turkey houses many plant taxa. Among these taxa Origanum, Thymus, Salvia and Sideritis have attracted researchers and commercial producers in the region due to medicinal and aromatic properties of these plant species. In general, identification of taxon or species of medicinal and aromatic plants in a genus can basically be accomplished using three main approaches such as conventional taxonomic studies based on morphological and anatomical characteristics of individuals, chemotyping studies based on chemical and constituent differences between individuals and DNA-based genotyping studies based on DNA sequence differences between the individual genotypes. Species or taxon identification based on morphological characteristics in Thymus is very difficult. Morphological characterization of Origanum, Salvia and Sideritis has problems in some taxa. Random amplified polymorphic DNA (RAPD) offer several advantages in species or taxon identification; however, recent studies showed that the RAPD technique has several limitation. In our previous studies [1,2,3] we found that primers flanking the minisatellite regions using polymerase chain reactions (PCRs) could be used in plant genetic studies. Minisatel-lites are tandemly repeated DNA with a longer motif, up to several dozen bases in length in comparison to microsatellites which consist of short repeat motifs. In the present study we report a total of 22 minisatellite flanking primers which generate reproducible polymerase chain reaction amplified products in touch-down PCR amplification profile. These primers are valuable in taxon identification and genetic relationship studies in Origanum, Thymus, Salvia and Sideritis. Acknowledgements: This research is supported by the Scientific Research Projects Administration Unit of Akdeniz University. References: [1] Karaca, M., Ince, A.G. (2008). J. Genet. 87:83 – 86. [2] Karaca, M. et al. (2008). J. Sci. Food Pharmacognomy and antimicrobial action against Helicobacter pylori were also evaluated. Our project has shown that the apparent incompatibility between chem-
Astragalus possesses important medicinal efficacy in Fabaceae, with a large number of medicinal plants and poisonous plants. However, it is arduous to identify some of the species in this family because of morphological similarity and frequent variation. In this study, the DNA barcode, a short DNA sequence originating from the genome, was firstly investigated for the plants in Astragalus. We compared sequences of six potential barcodes, four coding (rmt1-psbA, rpoC1, rbcL, matK) chloroplast regions and two noncoding (ITS, ITS2) nuclear ribosomal DNA among 319 different species of Astragalus. The results were as follows: 1. The amplification efficiency for six candidate DNA barcodes decreased successively, rpoC1 > rmt1-psbA > ITS2 > matK > ITS > rbcL. 2. The interspecies and interspecific variation of six promising markers showed that rmt1-psbA, ITS2 and ITS were the more discriminatory regions. While other three plastid regions were of lower divergences. 3. In the studies, DNA barcodes had a high level of accuracy and could be used to identify different species in this family. It is particularly highly recommended by the majority of the informants as being beneficial for all ailments. The most frequent indications were urinary-genital ailments (18.8%), gastrointestinal tract disorders (17.3%), cardio-vascular (15.9%) and respiratory tract problems (15.7%). Not so frequent were indications like disorders of nervous system (12.8%), skin ailments (6.4%) and rheumatism (6%). References: [1] Foreign Trade Chamber of Bosnia and Herzegovina (2006) Medicinal and Aromatic Plants, Mushrooms, Wild Forests Products. MAG Plus, Sarajevo. [2] Saukel, J. et al. (2006) Pflanzen in der österreichischen Volksmedizin. Die „VOLKSMED-DATENBAUER“ Vortrag bei der 57. International Congress and Annual Meeting of the GA | August 16 – 20, 2009, Geneva, Switzerland
We evaluated the antinociceptive action of a methanolic extract from *R. elaeocarpum* (MeOH) and its mechanisms of action in rodent experimental models. The antinociceptive effect was evaluated by formalin method where male Swiss mice (n = 5 – 8) received by oral route saline, piroxicam (30 mg/kg) or ME (250 mg/kg). After 1 hour all animals received 20 μL of formalin solution (2.5% IBA) at their hind right paw. After injection of formalin, mice were observed during 5 min (neurogenic phase) and between 15 – 30 min after infection (inflammatory phase). The time spent of licking the injected paw was recorded with a chronometer and considered as indicative of nociception index. The evaluation of involvement of nitric oxide or serotonin in the antinociceptive mechanism of ME, mice were pre-treated with L-arginine (500 mg/kg, i.p, 30 min before ME administration) or PCPA-p-chlorophenylalanine (100 mg/kg, i.p, once a day for 4 consecutive days). The theoretical significance of differences between groups was detected by ANOVA followed by Dunnett test (p < 0.05). The group of animals that received MeOH showed significant reductions in time of reaction during the inflammatory phase comparing to animals treated with vehicle. The antinociceptive action of extract did not reverse by L-arginine (NO precursor). But MeOH antinociceptive property was significantly reversed by PCPA (an inhibitor of serotonin synthesis). Thus, methanolic extract from *Rhamnidium elaeocarpum* exerts antinociceptive action by serotoninergic system. Acknowledgements: Biota/FAPESP, CNPq, FAPESP proc. No 07/57377 – 8 Reference: [1] Hunskaar, S., Hole, K. (1987) Pain 30:103 – 104.

Assessment of somaclonal variation in purple coneflower (Echinacea purpurea (L.) Moench) by RAPD (Random Amplification of Polymeric DNA) fingerprinting analyses

Muntean L, Muntean S, Dudo MM, Vărbăn DI

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3 – 5 Manastur Str., 400372 Cluj-Napoca, Romania

In order to induce somaclonal variation in purple coneflower (*Echinacea purpurea* (L.) Moench), the selected material from five elite plants was cultured in vitro. Optimum callus formation was observed on Murashige and Skoog’s (MS) medium supplemented with 10 mg/l of 2,4-D. The best shoot regeneration was achieved upon transferring the callus to MS medium containing 2.5 mg/l IBA and 0.5 mg/l IAA. Complete plantlets were obtained upon transfer of the regenerated shoot to MS medium containing 1 mg/l IBA. A number of 13 plants regenerated from callus were successfully transferred to the greenhouse, following previously standardized hardening procedures. DNA was extracted from the parental plants and from the callus regenerated plants. RAPD (Random Amplification of Polymeric DNA) analyses were carried out to detect somaclonal variation. Two, out of 13 regenerated plants exhibited somaclonal variation. These four somaclones were different from the parental plants by at least one polymorphic amplification product. The two somaclones had common origin (the same elite plant) but they displayed non-maternal bands for two different primers, OPB 09 and OPX 03. The conclusion that can be drawn from here is that the somaclones are genotypically, and maybe even phenotypically different. The remaining regenerants were genetically stable as compared to the elite donor plants. RAPD markers were an efficient tool for the early detection of somaclonal variants in purple coneflower tissue culture.

Evaluation of Biodiversity among some of the Salvia L. species in Iran

Kharazian N, Shiran B, Sajadi S

1Department of Botany, Faculty of Sciences, University of Shahrekord, Shahrekord, 115, Iran; 2Department of Plant Breeding, Faculty of Agriculture, University of Shahrekord, Shahrekord, 115, Iran

Salvia L. genus is one of the most important medicinal plants of Lamia-ceae [1]. In this context, the purpose of the present study was to display the biodiversity among six species as *S. Reutera*, *S. macropithyon*, *S. macroploid*, *S. Moorcraftina Wall. ex Benth.*, *S. Sharififii Reich. F. ex Esfand, S. multicaulis Vahl.*, *S. hydrangea Dc.* and 62 accessions of *Salvia* collected from natural habitats of Iran using 46 quantitative morphological characters as vegetative and reproductive, and molecular markers as Amplified Fragment Length Polymorphism. The influence of the nutritional space upon the raw material and volatile oil yields in Valeriana officinalis L., under the ecological conditions of Cluj-Napoca, Romania

Muntean S, Muntean L, Muntean LS, Duda MM, Vărbăn DI

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3 – 5 Manastur Str., 400372 Cluj-Napoca, Romania

Our research determined the optimum nutritional space for *Valeriana officinalis* L. (the Magurele 100 cultivar), as an ecological crop created through seedling transplants in the second decade of April, using the following densities: $V_1 = 200$ thousand of plants/ha, $V_2 = 120$ thousand of plants/ha, $V_3 = 100$ thousand of plants/ha, $V_4 = 80$ thousand of plants/ha, $V_5 = 60$ thousand of plants/ha. Some of our results are presented below: the number of harvested plants/m² was lower than the number of the transplanted ones (differences of 4 – 8%); the decrease was minimal with lower densities. The raw material yield (roots and rhizomes) in *Valeriana* is much influenced by the number of plants per surface unit. The planting variants V_2 and V_3 proved to be the optimal ones, with three-year mean yields of 1.7 – 1.8 t/ha of dry roots and rhizomes. The three-year mean yield of volatile oil/ha was of 10.8 – 15.5 l/ha, with the highest values for V_2 and V_3. Considering the number of plants in V_2 and V_3, any increase or decrease of it causes a significant cut down in the raw material and volatile oil yields. The economic calculations (profit, profitability rate, production unitary cost) revealed superior values when the planting was done with densities between 100 – 133 thousand plants/ha (with 50 cm spacing between rows and 15 – 20 cm between plants in a row).

Inventory of anti diabetic plants in selected districts of Lagos State, Nigeria

Gbolade AA

Department of Pharmacognosy, Faculty of Pharmacy, Olabisi Onabanjo University, Sagamu campus, Ogun State, Nigeria

Diabetics’ population in Nigeria is about 10 million and about half of this number is in Lagos State because of its very cosmopolitan nature [1]. An ethnomedical survey was conducted into the herbal anti diabetic reme-
dies in the traditional pharmacopoeia in five districts of Lagos State, Nigeria by means of semi-structured questionnaire and oral interview. 100 respondents from the predominantly Yoruba tribe mostly males (76%) were knowledgeable in traditional treatment of diabetes. About half of the respondents with 20 – 30 years experience in treating dia-
betes used mainly herbs (96%), and diagnostic methods included poly-
uria, polyphagia, polydipsia, and attraction of ants to urine as diagnostic
methods. 92% of diabetic patients were usually out-patients aged 21 – 60 years. Diabetes traders-specialists (80%) rarely referred their patients but usually treated referred cases (96%). Treatment was usually with
liquid formulations on a weekly (39%) or monthly (23%) basis, and lasted for 12 and 16 weeks (39%) with minimal side effects. A total of forty
nine different plant species belonged to 48 genera in 33 families were used in formulating the fifty recipes documented, each containing at
least three plant s. The principal antidiabetic plants included Vernonia
amygdalina, Bidens pilosa, Carica papaya, Citrus aurantifolia, Ocimum grattissimum, Monarda charantia and Aframomum melegueta. Of these, the antidiabetic activity of all except A. melegueta has been investigated

PB30

Traditional antifever phytotherapies in Sagamu and Remo North districts of Ogun State, Nigeria Adeyemi AA1, Gbolade AA2, Moody JO1, Ogbole OO1
1Department of Pharmacognosy, Faculty of Pharmacy, Obasishii Obasanjo University, Sagamu campus, Ogun State, Nigeria; 2Department of Pharmacognosy, Faculty of Pharmacy, University of Iludan, Iludan, Oyo State, Nigeria

Febrile illnesses are common ailments in various parts of the world which has benefited from orthodox medicine and herbs. Since no doc-
umentation is available on herbal therapy of such ailments in south western Nigeria, we therefore conducted an ethno-botanical study in both an urban settlement in Sagamu Local Government Area (LGA) and a rural settlement in the Remo North LGA of Ogun State in south western Nigeria, implicated in the treatment of various types of fever. Method-
ology involved administration of semi-structured questionnaire to
traditional medical practitioners, her sellers, herbalists and villagers in the LGAs, as well as oral interviews using trained interviewers. Seventy respondents mostly aged 31 – 50 covered in this survey were drawn from among the herbalists (20), herb sellers (15), traditional medical and practitioners (35) that are mostly educated. Four types of fever including malaria, yellow fever, typhoid and cold were identified, with malaria and yellow fever being very common. Majority of the respon-
dents were quite knowledgeable in the aetiology, symptoms, and sea-
sonality of all fevers except cold. 116 antifever herbal recipes document-
ed were also centered as oral decoction cure-for and preventive purposes. Malaria and yellow fever were treated by at
least equal number (35 – 39) of recipes. Treatment is usually devoid of
known side effects. Cymbopogon citratus, Citrus aurantifolia, Enantia
cardamomum, Carica papaya, Morinda lucida and Lawsonia inermis were frequently included in antifever herbal recipes, typhoid and yellow fevers. Survey has therefore lent credence to various herbs used for
the prevention and treatment of febrile illnesses in south western Nigeria.

PB31

HPLC-DAD fingerprinting and chemical characteristics of unifloral Croatian honeys Tuberosa CIG1, Jerkovic V2, Bijufo E2, Marijanovic Z2
1Department of Toxicology, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy; 2Department of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

Monofloral honeys are products connected with defined botanic species and geographical areas. Croatia, due to its peculiar climate and specific botanical species, produces several unifloral honeys. The aim of this work was to develop a direct and accurate HPLC-DAD method to study the non volatile components of honeys in order to use the chromato-
graphic profile as a marker of the monofloral origin of the Croatian honeys. Moreover, CIE L* a* b* (lightness, chroma, hue) chromatic coordi-
mates, total phenols, diastase activity and 5-(hydroxymethyl) furfural (HMF) were determined. The antioxidant and antiradical activities of

PB32

Headspace volatile profiles of willow (Salix spp.) nectar and honeydew honeys: identification of chemical biomarkers Jerkovic V1, Marijanovic Z2, Tuberoso CIG3
1Department of Organic Chemistry, Faculty of Chemistry & Technology, University of Split, N. Tesle 10/V, 21000 Split, Croatia; 2Department of Food Technology, Marko Marulic Polytechnic in Knin, P. Kresimira IV 30, 23200 Knin, Croatia; 3Department of Toxicology, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy

Honey is an excellent nutritional food with health benefits. It has been used for the treatment of flu and common cold, healing of wounds and burns, as an anti-microbial agent as well as the source of antioxidants [1,2]. Consumer preference, and hence the price of the honey, mainly depends on its botanical origin and organoleptic characteristics. Willow (Salix spp.) nectar and honeydew honey samples from Croatia are for the first time at the focus of this research and were characterized according to the National and EU regulations [3]. The assessment of the botanical origin (besides melissopalynological analysis) now days is oriented to-
ward finding marker compounds. Aroma profile is one of the most typi-
cal authenticity feature of the honey and therefore volatile component analyses of the samples were performed by means of headspace solid
phase microextraction (HS-SPME) followed by gas chromatography and
mass spectrometry (GC, GC-MS). PDMs/VDB fiber coating was used and > 50 compounds were identified. Willow nectar honey contained 3-
methylbutanonic and 3-methylpentanonic acids that may be considered as biomarkers as well as relatively high percentage of phenylacetonitrile and α-damascenone. Potential biomarkers for willow honeydew honey were 3-methylbutanonic and 2-methylbutanonic acids while found methyl salicylate was specific marker. Ubiquitous honey volatiles were also identified in all the samples such as hotrienol, benzaldehyde, cis- and trans-furalool oxides, lilac aldehydes and others. Acknowledgements: UKF grant 25/08, PIP, API-HERBA, KONCEPT MEDIA and GODAX-

PB33

Anti-inflammatory activity of the methanol extract of Kaempferia galanga Linn. in experimental animals Ridhidri W1, Sae-wong C2, Beawongkol W3, Wongvanta M3
1Department of Pharmacology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; 2Department of Clinical Pharmacy, Faculty of
Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

Kaempferia galanga Linn. (Zingiberaceae) has been reported for the treatment of various disorders in folk medicine including muscle pain and rheumatism. The analgesic activity of this plant extract has been reported but its anti-inflammatory effect is not investigated [1]. Thus,
the aim of this study is to assess anti-inflammatory activity of the methanol extract of *Kaempferia galanga* in rats. The in vivo models used for evaluation of anti-inflammatory activity in rats were carrageenan-induced hind paw edema and cotton pellet-induced granuloma. The results showed that only the methanol extract of *Kaempferia galanga* at doses of 100 and 200 mg/kg demonstrated anti-inflammatory activity. This activity seemed to be dose- and time-dependent. The anti-inflammatory activity of the extract was markedly observed at the dose of 200 mg/kg with its inhibition was observed at the 2nd h by 42.68%, however, the inhibition of inflammation was efficiently maintained for the duration of the experiment (5 h). This activity seemed to be dose- and time-dependent, but less potent than aspirin (100 mg/kg). In summary, the results demonstrated that the methanol extract of *Kaempferia galanga* markedly exhibits the anti-inflammatory activity which supports the local people use of this plant in the treatment of many inflammatory conditions. References: [1] Rüdtrit, W. et al. (2008). Ethnopharmacol. 118:225 – 230.

HPLC analysis of flavonoids of *Astragalus gossypinus* (Fabaceae), as a medicinal plant in the West of Iran

Atri M, Asgari Nematin M, Tanami E

1Department of Biology, Faculty of Science, Bu-ali sina University, Hamedan, Iran; 2Department of Biology, Faculty of Science, Payam Noor University, Asad Abad, Hamedan, Iran; 3Department of Chemistry, Faculty of Science, Payam Noor University, Asad Abad, Hamedan, Iran

Most of *Astragalus* genus use for the production of the economically important gum, tragacanth. The roots of several *Astragalus* species present a very old and well-known drug in traditional medicine for its usage in the treatment of nephritis, diabetes, leukemia, uterine cancer and as an antiperspirant diuretic and tonic [1]. The purpose of this investigation was the study of the flavonic patterns in 29 plant populations in the west of Iran. Flavonoids were extracted from air-dried leaves, under reflux twice with a MeOH-H2O (7:3) mixture. Pooled extracts of each plant were concentrated at a reduced pressure and the final extract was taken up in a small volume of 80% MeOH [2]. The flavonoids were separated by HPLC using (Auto sampler 360, pump 322, and Diode array detector) and ultra-base C-18 column (5 μm, 4.6 mm/250 mm) [3]. Cluster and discriminate analysis by SPSS (Statistical Package for the Social Sciences) and MVSP (Multivariate Statistical package) with Ward and UPGMA (Unweighted Pair Group Method With Arithmetic Mean) methods showed 7 chemotypes of *Astragalus gossypinus* in different populations from west of Iran. These chemotypes determined on the base of different quality and quantity of four standards quercetin, flavon, rutin and catechin with other derivatives. A discriminate analysis showed the chemotaxonomic value of the 7 chemical polymorphisms. References: [1] Ozipek, M., Calis, I. (2003) Journal of the faculty of pharmacy: 23(2):85 – 94. [2] Semmar, N. et al. (2005) Biochem. Syst. Ecol. 33:187 – 200. [3] Grayer, R.J. et al. (2004) Biochem. Syst. Ecol. 32:901 – 913.

Root constituents of *Taraxacum udum*

Michalska K, Marcinuk J, Kisiel W

1Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, L. Sienkiewicza Str., 31 – 343 Krakow, Poland; 2Department of Botany, University of Podlasie, 12 Prusa Str., 80 – 110 Siedlce, Poland

Plants of the genus *Taraxacum* (Asteraceae) have long been used as medicinal herbs. Various studies of *Taraxacum* extracts and their constituents have demonstrated anti-inflammatory, antinociceptive, antioxidative and anticarcinogenic activities, among others. These diverse effects have mainly been attributed to the presence of phenolic compounds and sesquiterpene lactones, including taraxinic acid and its derivatives [1]. In continuation of our chemical studies of plants from the genus *Taraxacum* [2,3], we have investigated roots of *kiberto* not studied *Taraxacum udum* Jord., a species of the section Palustria endemic in Poland. The dried plant material was extracted with ethanol, and the extract, after sequential fractionation on silica gel followed by semipreparative HPLC, gave a total of five lactones and five known phenolic compounds. The sesquiterpene lactones were identified as the germacraneolides taraxic acid and its 11β,13-dihydro-derivative, their β-glucopyranosyl esters, and the guaianolid macrocyclic. The phenolics were identified as syringin, dihydroxyisyringin, methyl p-hydroxyphenyl acetate, dihydroxycrotonic acid ester 9-O-β-glucopyranoside, and syringaresinol-4′-O-β-glucopyranoside, the latter being reported from *Taraxacum* species for the first time. In addition, a new natural product was isolated and characterized as taraxinic acid 6-acetyl-β-glucopyranosyl ester on the basis of spectroscopic data. Esters of taraxinic acids with glucose appeared to be major constituents and their content in the roots (0.14% dry wt.) was about ten times that found in roots of other *Taraxacum* species investigated so far. References: [1] Schwatrz, E., Schütz, K. et al. (2006). Ethnopharmacol. 107:313 – 323. [2] Michalska, K., Kisiel, W. (2003) Planta Med. 69:181 – 183. [3] Kisiel, W., Michalska, K. (2005) Fitoterapia 76:520 – 524.

Using DNA barcoding to authentication of Cistanches and its fakements

Han JP, Song YJ, Shi LC, Chen J, Qian J, Zhu YJ, Liu C, Yao H, Chen SI

1Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100093, P.R. China; 2Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, P.R. China; 3Molecular Chinese Medicine Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China

DNA barcoding has been designed as a system to facilitate species identification and recognition. One of the challenges in barcoding, however, is discrimination of closely related species. The dried succulent stems of Cistanches (Cistanchae deserticae and Cistanchae tubulosae) are one of the most widely used traditional Chinese medicines. However, it is often confused and substituted with the roots of Orobanchae pycnostachya var. pycnostachya, *Boschniakia rossica*, *Cistanche salsa*, and *Cistanche sinensis*. The results showed that the region of psbA-trnH had significant variation and showed promise for barcoding in cistanches. Additionally, the genetic distance of psbA-trnH sequences was found to be significantly different from those of other species, with percentages of variation ranging from 0.050 to 1.238%. In contrast, the intraspecific variation among cistanches species studied ranged from 0 to 0.033%. The sequence difference between the psbA-trnH sequences of cistanches species and one *Orobanchae pycnostachya* var. *pycnostachya* ranged from 0.381 to 1.308%. The monophyletic branches of the phylogenetic tree reveal that the psbA-trnH intergenic region is suitable for discrimination between these species. References: [1] Miller, S.E. (2007) P. Natl. Acad. Sci. USA 104:4775 – 4776. [2] Lahaye, R. et al. (2008) P. Natl. Acad. Sci. USA 105: 2923 – 2928.

Towards biomolecular aided agriculture: metabolic fingerprint of wild and cultivated Sicilian medicinal plants belonging to the folk tradition

Siracusa L, Ruberto G

Istituto di Chimica Biomolecolare – Consiglio Nazionale delle Ricerche, Via P. Gaibani 18, 95126 Catania, Italy

For chemotaxonomic and agro-technological purposes, extracts of wild thyme (Thymus vulgaris L., 30 samples), oregano (Origanum vulgare L., 61 samples) and rosemary (Rosmarinus officinalis L., 57 samples) collected in different areas of the Sicilian region, as well as cultivated sage (Salvia officinalis L., 7 samples), were screened for their phenolic compound content. All these plants belong to Sicilian culinary tradition and folk remedies. In order to have as many details as possible on the composition of these plants and their variation, extracts of different polarity (lipidic and alcoholic) for each cultivar were obtained and analysed. Several groups of selected molecules, typical of the different species and a part of their secondary metabolism (chemotaxonomical markers), were chosen, containing flavonoids, terpenoids, and organic acids as more representative chemical classes. The markers were firstly identified in the extracts through exhaustive analyses using the LC/UV-DAD/MS technique and then processed with high-throughput HPLC to obtain qualitative and quantitative compositional data. These data, together with the yield of extractions from the vegetable material, provided enough information to build up an analytical matrix from which the best extract in terms of presence and percentage of polyphenols could be selected. These results together, with the agronomical features (climatic conditions, quality of soil, etc.), helped in the identification of the best plant population and the most favourable area for every species to be cultivated.
Conservation status, present threats and their causes, grieving the medicinal plant species of the genus *Sempervivum* s.l. (*S. mormo-rum* and *S. heuffelii*), characteristic carpato-balcanic perennial monocar-pic *Crassulaceae*, distributed throughout the Romanian *S*-Carpathian Mountains, inhabit mainly arid, rocky habitats [1,2]. They are an enjoyed food ingredient in some Romanian regions [3]. Traditionally planted on tile-roofs, they are still highly prized ornamental plants. We report here-on by the conservation status, current threats and their direct/indirect causes, grieving the medicinal plant species of the genus *Sempervivum* s.l. in their natural sites in the Romanian *S*-Carpathians. Data were gathered by direct personal observation throughout the investigated area during the past 20 years, complemented by literature search and interviews with local workers and sheep herders — when a semi-structured questionnaire was used— assessing the occurrence, uses, abund-ance, threats and conservation measures envisaged/applied for the *Sempervivum* spp. at any given location. Major threats identified: Illegal harvest for decorative and medicinal uses, grazing by both domestic and wild herbivores, especially goats; Habitat destruction for residential development and for stone exploitation. Population decreased in 7 sites studied by more than 60%. Direct and indirect causes: Weak and poorly enforced laws — any harvest within National Parks and Natural Reserves is illegal, elsewhere individual non-commercial harvest for personal use is not prohibited —ignorance and no interest amongst locals for conserva-tion in general and for *Sempervivum* in particular —Proliferation of "traditionalist" and naturistic healers with no taxonomic knowledge nor interest for conservation, who have depleted many accessible sites. References: [1] Barca, V., Niculae, M. (2006) Contrib. Bot. Cluj. XLI:2 23 – 33. [3] Ravarut, M. (1953) Flora RPR, Crassulaceae, Edit. Acad RPR, Bucharest.

PB38

Structural characteristics of *Chrysanthemum morifolium* Ramat. (*Romica* cultivar) regenerated in vitro

Vantu S, Gales RC¹

¹*Al I. Cuza* University, Carol I Bd., no. 11A, 700506, Iasi, Romania

The micropropagation of *Chrysanthemum morifolium* Ramat. (*Romica* cultivar), belonging to the collection of "Anastasie Fătu" Botanical Gar-den from Iasi (Romania) was achieved through tissue culture technique and involved callus induction followed by shoot multiplication, rooting and establishment of plantlets in soil [1]. The purpose of this study was to determine the range of variation in certain structural characteristics of the vegetative organs of in vitro regenerated plants at *Chrysanthemum morifolium* Ramat. (*Romica* cultivar). The material subjected to the compara-tive anatomical analyses was represented by vegetative organs of the parent plant (PP) and regenerated plant (RP), on mature stage [2]. The density of glandular and non-glandular hair (mm-2) on both leaf sur-faces was statistical analysed using “t” test at 0.05 confidence level. Despite the great opportunity of genetic variation in callus cultures, the regenerated plants did not differ in their structural appearance from the normal plants [3]. References: [1] Vantu, S. (2006) An. șt. Univ. "Al I. Cuza" Iași, s. Ia (Biol. veget.) 51:71 – 77. [2] Toma, C. et al. (1985) An șt. Univ. "Al. I. Cuza" Iași, s. Ia (Biol.) 31:45 – 48. [3] Bandyopadhyay, T. et al. (2004) Plant Cell Tiss. Org. Cult. 78:113 – 121.

PB39

Yield components and oil content of safflower in Eastern Algeria

Bouhouhou M¹, Mohamed SM², Omer EA², Bensari M³

¹Genetics, Biochemistry and Plant Biotechnologies Laboratory – University Mentouri, Constantine, 25000 Algeria; ²Department of Cultivation and Production of Medicinal and Aromatic Plants, NRC, Dokki, Cairo, Egypt; ³Department of Biology, Faculty of Science, Payam Noor University, Asad Abad, Hamadan, Iran;

Safflower (*Carthamus tinctorius* L.) is a member of the family Asteraceae, cultivated mainly for its seed, which is used as edible oil and as bird-seed. Traditionally, the crop was grown for its flowers, used for coloring, flavoring foods, making dyes (carthamin and carthamin), and in med-i-cine. Since safflower is a drought tolerant crop, the objective of this research was the investigation of the seed yield and oil content of safe-flow-er under semi-arid conditions in eastern Algeria. The results showed that SYPRUS variety gave the highest seeds number per plant (800.17) and yield of seeds (420.53 g/m²). While OT-455 variety gave the highest weight of one hundred seeds (4.45 g). Considering the yield of the fixed oil (% of seed), GILA variety produced the highest percentage (36.47%). The research revealed that the most suitable safflower variety, under semi-arid conditions of eastern Algeria was SYPRUS variety which’s pro-viding from ICARDA (International Center for Agricultural Research in Dry Areas, Syria). Analyses of variance (ANOVA) showed highly signifi-cant differences among the varieties for yield components and oil con-tent. Correlation coefficients between variables (5 traits) are calculated, and the cluster analysis of observations (varieties) is also used to clarify the clustering pattern of genotypes tested.

PB40

Ex situ conservation of *Plumbago indica* using biotechnology

Gangopadhyay M, Bhattacharyya R, Bhattacharya S

¹Department of Biology, Faculty of Science, Bu-ali sina University, Hamedan, Iran; ²Department of Biology, Faculty of Science, Payam Noor University, Asad Abad, Hamedan, Iran;

Plumbago indica, roots of which are used as medicine. A naphthoquinone compound, ‘plumbagin’, synthesized in roots, acts in low doses, as gastro stimulant and appetizer and as deterrent against syphilis and leprosy. The plant has been categorized as rare and therefore its conservation is of national importance. In the first phase of the work, an effective protocol of in vitro regeneration has been standardized. Culture of nodal explants in Murashige and Skoog’s medium supplemented with 2x10⁻³ gl⁻¹ BAP resulted in sprouting of buds into shoots at nodal axils and induction of new shoot buds at high frequency. Shoots in presence of 1x10⁻³ gl⁻¹ putrescine developed roots. In the second phase of experiment, shoot tips of these in vitro plants were used for conservation. The study re-vealed that (1) synthetic seeds, made up of small shoot tips, coarsad with sodium alginate-polymerized MS medium could be preserved in ab-sence of light at 22 ± 2°C for a period of 4 months and (2) shoot tip cultures in MS medium containing 3 percent mannitol and 2x10⁻³ gl⁻¹ BAP were maintained by ‘reduced growth storage technique’ over a per
iod of one year without periodic transfer. Growth recovery was possible in both forms of germplasm when those were brought back to normal culture condition. Conserved plants as checked by PCR based genetic marker were all genetically stable. The finding of our study ensures feasibility of in vitro conservation of this plant.

Introduction of 2 Topodemes, 2 Pedodemes and 1 Basodeme of Artemisia scoparia as a medicinal plant from west of Iran

Atri M, Aebleyuh Z, Mostajer Haghighy A, Kalvandy R Department of Biology, Faculty of Sciences, BU-All Sina University, Hamedan, Iran

Artemisia L (Asteraceae) is the largest genus in Tribe Anthemideae and one of the largest in the family [1]. Artemisia species are reported as an herbal medicine for treatment of diabetes, high blood pressure, anti-migraine, anti-fungal, antihelminthic, anti-bacterial, digestive, lipolytic, mucolytic, vermifuge [2]. Artemisia scoparia Waldst & Kit is an important source of chemicals of immense medicinal and pharmaceutical importance which are effective as immunosuppressants, hepatoprotective, anti-spasmodyc, hypotensive and anti-inflammatory agents [3]. This study was carried out to determine Artemisia scoparia intraspecific diversity by D.S.S (Determination of Special Station) method [4], in the west of Iran, from 2006 to 2008. At first, in this method by using the sources (different flora and some books) were determined the distribution localities of Artemisia scoparia. Then with referring to the determined localities, on the base of present of individual species under study and by using minimal area method, the special stations were determined and necessary data (Floristic-Ecologic) were collected from each one of the special stations. Data analyzes were carried out by Anaphyto software with A.F.C and C.A.H methods and MVSP software with C.C.A method. The results of this analysis showed the existence of intraspecific diversity for this plant in the west of Iran. MVSP software with UPGMA cluster analysis, P.C.A and P.C.O methods were used for determination of kind and level of intraspecific diversity. Between obtained results of this study, we present 2 Topodemes, 2 Pedodemes and 1 Basodeme for Artemisia scoparia as a medicinal plant from west of Iran. It is necessary to mention that these 2 Topodemes, 2 Pedodemes and 1 Basodeme from view point of chemical components are different. References: [1] Watson, L.E. et al. (2002), BMC Evolutionary Biology 2:17. [2] Nezhadali, A. et al. (2008), E-Journal of chemistry 5:557 – 561. [3] Sing, D. et al. (2006), Phcog Mag. 2: [4] Atri, M. (2007) First Botanical Systematic in Iran Sep: 6.

Chemical composition and antibacterial activity of essential oils from different populations of Artemisia incana (Asteraceae) from Iran

Atri M, Chehragani A, Yousefi S, Jalal F Department of Biology, Faculty of Sciences, Bu-All Sina University, Hamedan, Iran

Artemisia L is the largest genus of the Anthemideae-Asteraceae and comprises more than 500 taxa growing worldwide [1]. The composition, structure, as well as functional groups of the oils play an important role in determining their antimicrobial activity [2]. Many essential oils possess antibacterial activity to both Gram negative and Gram positive bacteria [3]. The essential oils of six populations of Artemisia incana obtained by hydrodistillation and were analyzed by gas chromatography-mass spectrometry (GC-MS). Results showed that the different studied populations have different essential oil components, from view point of quality and quantity. The antibacterial effects of these 6 populations were studied against 8 bacterial strains (4 Gram positive and 4 Gram-negative bacteria). The obtained results showed strong antibacterial activity of their essential oils. The highest zones of inhibition were ranging from 4 to 30 mm. In spite of high antibacterial effects of essential oils of A. incana components, antibacterial ability of different populations of this taxon was very different. It is necessary to mention that each one of these 6 populations occur in particular ecological conditions and therefore have the particular components. References: [1] Kubitzki, K. (2007). The families and genera of vascular plants, Springer-Verlag, Berlin. [2] Celikel, N., Kavas G. (2008) Czech J. Food Sci. 26:174 – 181. [3] Oyedemi, S.O. et al. (2008) Afr. J. Biotechnol. 7:4140 – 4146.

Some models of sustainable use of medical plants in Dinaric Alpes (SE Europe)

Baradanovic S, Redzic S, Basic H

'Centre of Ecology & Natural Resources, Fac. of Sci. Univ. Sarajevo, 33 – 35 Zmaja od Bosne St., 71 000 Sarajevo, Bosnia & Herzegovina;'Academy of Sciences and Arts of Bosnia and Herzegovina, 71 000 Sarajevo, Bosnia & Herzegovina;'Department of Biology, Fac. of Mechanical Engineering, 5 Vlisonovo setaliste St., 71 000 Sarajevo, Bosnia & Herzegovina

Many medicinal plants appeared on “red lists of endangered flora”. In order to preserve natural gene-pool of medicinal plants, it is necessary to set models that would result in sustainable models for their use [1]. Sustainability implies such exploitation of biomass from natural habitats that would respect biological and ecological characteristics of given plant species and if possible market requirements. This approach includes determination of variables that could be used as basis for developments of mathematical – statistical models in order to reach “function of sustainability”. Sustainability function implies resultant between two key variables – production of biomass of given medical plant and amount of biomass that is used or is exploited in natural populations. Graphic model of that function is very diversified and it largely depends on plant species, used part of plant, vegetation season, ecological conditions in which given plant is developed, form of picking, total anthropogenic pressure – cutter, pasture, wood cutting, global changes. This ecological – statistical approach is applied to several species of medicinal plants that are intensively used from western Balkan [2,3]. In Mediterranean belt, that is Salvia officinalis, in sub – Mediterranean belt it is Helichrysum italicum, Satureja montana and Satureja subspicata, in sub alpine belt those are species Gentiana lutea and Arcostaphylos uva-ursi, and in belt of deciduous forests, that is species Atropa belladonna and Origanum vulgare. Researches show that gradient of sustainable use is different in each belts. In Mediterranean belt, that is in belt of oak forest, it is about 50 – 60%, in mountain belt it is 30 – 40%, while in belt of forests it is up to 70% (per km²). That means it is necessary to leave about 50 – 60% of units of sage in free habitats, approximately same number of units of gentian Satureja, about 70% of units of gentian, or about 80% of biomass of species of Atropa belladonna and Origanum vulgare. This research has to reach effect of sustainability. References: [1] Redzic, S. (2006) Proc 1st IFOAM Intern Conf Organic Wild Production, 117 – 141. [2] Redzic, S.S. (2007) Collegium Antropol. 31:869 – 890. [3] Redzic, S.J. (2006) Ecol. Food Nutr. 45:189 – 232.

Analysis of secondary metabolites in selected Penstemon species – preliminary chemotaxonomic investigations

Hajnos MJ, Zajdel SM, Chmielak K

Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University of Lublin, Chodzki 1, 20 – 093 Lublin, Poland

Species from the Penstemon genus (Scrophulariaceae family) are perennial, herbaceous plants with decorative flowers, often used in horticulture. They come from North and Central America. Genus Penstemon Sch. includes about 250 species and plenty of horticultural varieties and forms. Their characteristic feature is the presence of iridoid compounds, widely described in numerous papers. There are also other groups of compounds present in Genus Penstemon which practically have not been examined yet. Therefore, an attempt to analyze flavonoids, phenolics, as well as iridoids in the herbs of selected Penstemon species has been undertaken. At first, the spectrophotometric analysis of total phenolics, flavonoids and iridoids in the selected herbs of Penstemon species has been made. All these experiments showed huge differences between the examined species. The next step of our investigations was qualitative chromatographic analysis of iridoids and other polar compounds in the examined plant materials. With this end in view, we have prepared purified extracts containing an iridoid fraction. The obtained fractions from 10 Penstemon species or varieties were examined using the TLC method in the system: SiO₂ plate/acetone:chloroform:water (16:4:1) + visualization with the vanillin reagent. We compared the results with those obtained by the HPLC method in reversed – phase system. Chromatographic analyses showed qualitative and quantitative differences between the investigated samples, which can lead to more general conclusions: the Penstemon genus demonstrates chemical differences even between morphologically similar species; the applied analytical
method can be utilized in chemotaxonomic investigations of Penstemon species on a large scale.

Ethnopharmaceutical survey of medicinal herbs used by rural and tribal community in Betul district of Madhya Pradesh, India
Patil UK, Bhargava CS, Yudav SK
Department of Pharmacognosy, VNS Institute of Pharmacy, Bhopal (M.P.) 462044 India

The study of local knowledge about traditional herbal medicine is becoming increasingly important in defining strategies and actions for conservation of medicinal plants. This study therefore considered worthwhile to collect information from local rural and tribal population living in Betul district of Madhya Pradesh (India) concerning the use of medicinal plants; identify the most important species used; determine the relative importance of the species surveyed and calculate the informant consensus factor (ICF) in relation to medicinal plant use. Data collection relied predominantly on qualitative tools to record the interviewee’s personal information and topics related to the medicinal use of specific plants. The present study revealed that 119 plant species grown in the study region are in use by rural and tribal community in traditional medicine for the treatment of various diseases. Most of the locally interviewed dealt with well-known safe medicinal plants such as Allium sativum, Acacia arabica, Emblica officinalis, Momordica charantia and Ocimum sanctum with use value of 0.62, 0.54, 0.52, 0.51 and 0.50 respectively. Dental, inflammation-pain and female problems scored the highest ICF of 0.85, 0.78 and 0.77, respectively. The literature from different Indian traditional systems of medicine evidenced some concordance with the solicited plant uses mentioned by the rural and tribal informants. Acknowledgements: CDACR, Bhopal, India for financial assistance.

Antioxidant profiling of new chemical entities from synthetic and rural origin
Crossend D, Reist M, Carrupt PA
School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland

Antioxidant compounds have become essential to prevent diseases partly induced by oxidative stress, such as cancer or neurodegenerative diseases (e.g. Alzheimer, Parkinson). To further understand and characterize their antioxidant properties, the radical scavenging activity of a large set of reference antioxidants and synthetic compounds was tested against three different radicals by four 96-well microplate assays. The antioxidant activities were ranked by cluster analysis in order to define the antioxidant profile of each compound. The first assay was realised with a protein, the alkaline phosphatase (ALP) hydrolyzing the 4-methylumbelliferyl phosphate (MUP) to a fluorescent substrate, the 4-methylumbelliferone (MU). The marker of oxidative damages was monitored by decrease of ALP’s catalytic activity induced by peroxyl radicals generated by the 2,2'-azobis-(2-methylpropionamide) dihydrochloride (AAPH). The marker of oxidative damages was monitored by the decrease of ALP’s catalytic activity induced by peroxyl radicals generated by the 2,2'-azobis-(2-methylpropionamide) dihydrochloride (AAPH). The second assay, based on the oxygen radical absorbance capacity (ORAC) was still carried out with peroxyl radicals, generated by AAPH. The marker of oxidative damages was monitored by the decrease of ALP’s catalytic activity induced by peroxyl radicals generated by the 2,2'-azobis-(2-methylpropionamide) dihydrochloride (AAPH). The next assay was performed on a fluorescent substrate, the 4-methylumbelliferone (MU). The marker of oxidative damages was monitored by decrease of fluorescence. The two last assays were spectrophotometric, the effectiveness of scavenging activity being monitored by, respectively, the absorbance decrease at 755 nm for 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS ·-) and at 515 nm for 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS ·-) and at 515 nm for 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS ·-).

Optimization of field cultivation of Baptisia tinctoria (L.) R. Br. by fertilizer, mulch and mycorrhiza treatments
Schneider C1, Hutter J1, Teigtmeyer M1,3
1Institut fuer Pflanzenkultur e. K., Soltau 2, 29465 Schneega, Germany; 2Schaper & Bruemmer GmbH & Co. KG, Bahnhofstrasse 35, 38259 Salzgitter, Germany; 3Institut fuer experimentelle und klinische Pharmakologie und Toxikologie, Universitat Luebeck, Ratzeburger Allee 160, 23338 Luebeck, Germany

Baptisia tinctoriae radix (L.) R. Br. is used as phytomedicinal compound in immunostimulating Esberitox®. Since 1992 field cultivation has led to guaranteed quality of the drug regarding purity, hygiene and stability of compounds. To increase yield, different trials concerning mulching, fertilization and application of mycorrhiza were carried out to enhance survival of plants as well as fresh weight of roots. Mulching with tea and oak leaves is known to increase survival of plants due to their content of tannins. Mineral fertilization should lead to higher yield of fresh weight and was carried out in two different concentrations. Application of mycorrhiza to establish a beneficial symbiosis is known to cause a better adaptation of plants to stresses like nutrient deficiency, drought and pests and diseases. The trial was carried out in three successive plantations for the 3-year cycle. All treatments were carried out each year at the beginning of the vegetation period. Fresh weight and survival rates were investigated every year at the end of the season and yield calculated by multiplication of fresh weight and survival rates. Results show that application of tea and oak leaves show positive effects but with a decrease over the years. Fertilization leads to negative yields especially when doubled. Only mycorrhiza application leads to a stable increase over the 3-year cultivation. We conclude that all applications except mycorrhiza show a decreasing effect over the years when applied every year. Further trials will be carried out to investigate whether an increase could be achieved if a treatment was carried out only in the first year or if a combination of treatments would lead to better results.

Phenolic constituents of Crithmum maritimum and their radical scavenging activity
Ngom S1,2, Brentz L1,3, Antheneau C2, Minker C1, Leick A1,2, Muller J1,3, Mekideche N3, Lobstein A1
1Laboratory of Pharmacognosy, UMR-CNRS 7200, Faculty of Pharmacy, 67400 Illkirch, France; 2SCA-NMR, University of Strasbourg, Faculty of Pharmacy, 67400 Illkirch, France; 3Biotechnologie Marine Z.I. BP 72, 22250 Pontsieux, France

Crithmum maritimum L. (Apiaceae) is a perennial aromatic plant of the European littoral, traditionally used as a tonic and spice herb [1]. The aim of this present study was to measure radical scavenging activity (RSA) of C. maritimum extracts obtained with different polarity solvents and then to isolate by bioguided fractionation the antioxidant compounds, using three different free radicals: 2,2-diphenyl-1-picryl-1-picolrylhydrazyl radical (DPPH), hydroxyl (HO·) and superoxide anion (O2·−). Thirteen phenolic compounds were isolated and identified using HPLC-UV combined with TLC and spectroscopic methods (NMR, MS). In addition to 5-O-cafeoylquinic acid (1), rutin (2) and hyperoside (3) also described in this species5, ten additional compounds were isolated and identified for the first time in aerial parts of this halophyte: 4-O-cafeoylquinic acid (4), 4,5-O-dicafeoylquinic acid (5), 3,5-O-dicafeoylquinic acid (6), 3,4-O-dicafeoylquinic acid (7), caffeic acid (8), isoquercitrin (9), diosmetin (10), quercitrin (11), quercetin (12) and luteolin (13). All these isolated polyphenols exhibited potent RSA against DPPH radical (2 μM < IC50 < 6 μM), O2·− radical (1 μM < IC50 < 10 μM) and HO· radical (0.6 μM < IC50 < 1 μM), for the most actives. References: [1] Ozcan, M. et al. (2001) Nahrung 45:353–356. [2] Katsouri, E. et al. J. Ess. Oil Res. 13:303–308.

Proliferation enhancing effect of rice extracts on neuronal PC12 cells
Tappayuruganj P 1, Bharat A 1, Soelmi S 2, Utama S 3
1Applied Thai Traditional Medicine; 2Research Center; 3Graduate Program, Faculty of Medicine, Thammasart University, Bangkok, Thailand

Rice is well-known as source of vitamin E, beta-glucan and gamma-oryzanol which may be useful for the treatment of Alzheimer’s disease [1,2,3]. Two varieties of rice, white red and red rice, were extracted by different methods to obtain 9 extracts as followed: S1 and S2-liphophyzed rice-ester from red and white rice, S3-lipophyzed white rice, S4 from white rice, S5 and S5 - alcohol extract from white and red rice, S6 and S7- cold-express extract from white and red rice, S8 and S9 – supercritical fluid extract from white and red rice. All extracts were tested proliferation activity on neuronal cell (PC12) by MTT assay at dosage of 50 and 100 μg/mL [4]. The results showed that all extracts had no cytotoxic activity against PC12. At dose of 50 μg/mL the S1, S2, S3 and S4 extracts exhibited high proliferative effect with significant level at p < 0.05 by 4 independence experiments. The S1 extract showed the highest proliferative effect at dose of 100 μg/mL by 3 independence experiments. These results were shown below and they were concluded that water extracts can enhance growth of neuronal cells more than the ethanolic extracts of both types of rice. Table: Percentage of PC12 cell growth (mean ± SEM) by MTT assay after treated with rice extracts exposure time 48 hours by independent experiment (N = 4)

<table>
<thead>
<tr>
<th>Dose</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 μg/mL</td>
<td>119.21 ± 0.027***</td>
<td>119.42 ± 0.031***</td>
<td>120.05 ± 0.031***</td>
<td>121.75 ± 0.035*</td>
</tr>
<tr>
<td>100 μg/mL</td>
<td>128.37 ± 0.016*</td>
<td>129.85 ± 0.042</td>
<td>117.61 ± 0.027</td>
<td>118.75 ± 0.018</td>
</tr>
</tbody>
</table>

Significant difference with control **p < 0.001 ***p < 0.001 **p < 0.01 **p < 0.05

Identification of natural compounds that promote proteasome activation and confer lifespan extension
Chentongkarn N 1, Vasilatou K 3, Gonos ES 3, 1National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, 48 Vas. Constantinou Av., 11635, Athens, Greece; 2Division of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Campus of Zografou, 157 71 Athens, Greece; 3Korres S.A. Natural Products, 57th Athens-Lamia National Road, 32011, Inofyta, Greece

The proteasome is the major cellular proteolytic machinery responsible for the degradation of both normal and damaged proteins shown to be down-regulated during senescence. On the contrary, its activation confers lifespan extension and maintenance of the young morphology for longer in human primary fibroblasts. Furthermore, it represents one of the main secondary antioxidant mechanisms. In this study, extracts derived from plants of the Greek flora (such as Punica granatum, Rosa damascena, Quercus, Hedera helix, Origanum dictamnus, Liquiritiae glabra, Myrtus communis) were used in order to identify natural compounds that promote proteasome activation. We have identified 3 compounds (Ravonol and triterpenic type) that promote the following characteristics to cultures of HFL-1 primary human fibroblasts: a) proteasome activation up to 2-folds accompanied by increased amounts of functional proteasome, b) increased resistance and survival to oxidative challenges, c) decreased intracellular oxidative load and levels of reactive oxygen species (ROS) and, d) as a natural consequence of the above mentioned characteristics, delay of the appearance of the senescent morphology and lifespan extension. Moreover, when these compounds were supplemented to senescent fibroblasts, a rejuvenating effect was observed. Besides, since tyrosinase, a known proteasome substrate, plays a pivotal role in the melanin pigment biosynthetic pathway which is mainly responsible for the age spots, the whitening properties of these compounds were tested and revealed. These data demonstrate the beneficial effect of natural compounds in human fibroblasts undergoing replicative senescence, while, this study provides new insights towards enhancement of cellular antioxidant mechanisms by natural compounds.

Evaluation of in vitro antioxidant activity of selected Peruvian medicinal plants
Vadlejch J 1, Kokoska L 1
1Department of Crop Science and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, Kamycka 129, Prague 6-Sochdel 165 21, Czech Republic; 2Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 6-Sochdel 165 21, Czech Republic; 3Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 6-Sochdel 165 21, Czech Republic

The increasing evidence that oxidative stress is involved in several serious inflammatory and degenerative human diseases has escalated interest in the research of antioxidant activity of naturally occurring molecules in food and biological systems [1]. It has been proved that a great number of aromatic, spicy and medicinal plants contain chemical compounds exhibiting antioxidant activity [2]. In this study we investigated the antioxidant properties of 18 Peruvian medicinal plants selected by their traditional medicinal uses in Coronel Portillo Province of Ucayali Department, Peru. The in vitro antioxidant capacity of medicinal plants was evaluated by the oxygen radical absorbance capacity (ORAC) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity assays. Total phenolic compounds and total flavonoids were also determined for all plant species studied, in order to evaluate their contribution to antioxidant activity. Considering results of ORAC and DPPH tests, Caesalpinia spinosa (7362 μmol TE/g extract, EC₅₀ 3.54 μg/mL), Caesalpinia spinosa (7362 μmol TE/g extract, EC₅₀ 3.54 μg/mL) and Nucleocapsa glabr (8310 μmol TE/g extract, EC₅₀ 5.45 μg/mL) performed the strongest antioxidant properties from all species tested. The total phenolic content has a significant correlation with the antioxidant activity of investigated plant extracts; nevertheless flavonoids seem not to be the main group of metabolites responsible for the effect. The results of
our study indicate that *Calycophyllum spruceanum*, *Caesalpinia spinosa* and *Naucleopsis glabera* are the most perspective species for further phytochemical research focused on determination of compounds responsible for their antioxidative properties. Acknowledgments: This research was supported by Czech University of Life Sciences Prague (CIGA 20085001) and MSM 6046070901. References: [1] Macdonald-Wicks, L.K. et al. (2006), Sci. Food Agric. 86:2046–2056. [2] Miilaukas, G. et al. (2004) Food Chem. 85:231–237.

PC8
Saffron extract and trans-crocetin inhibit the glutamatergic synaptic transmission on rat cortical neurones
Berger F1, Henzel A1, Leichenteg M2, Nieber K1
1University Leipzig, Institute of Pharmacy, Tastr. 33, 04103 Leipzig, Germany; 2University Münster, Institute for Pharmaceutical Biology and Phytochemistry, Hitzofstr. 56, 48149 Münster, Germany

Crocus sativus L. is a small perennial plant from the Iridaceae family. The stigma, commonly known as saffron, were used over centuries as a spice and dye but also as a medicinal plant. It has been shown that an ethanolic (80 vol.-%) saffron extract and trans-crocetin, a carotinoid from saffron, interact with the phencyclidine binding site of the NMDA receptor. The aim of the present study was to examine the influence of the ethanolic saffron extract CSE and trans-crocetin on the glutamatergic synaptic transmission in rat cortical brain slices. Postsynaptic potentials (PSPs) were elicited by electrical field stimulation in pyramidal cells of the cingulate cortex and recorded using intracellularly filled microelectrodes. PSPs are induced by glutamate released from presynaptic terminals which activates postsynaptic NMDA and non-NMDA receptors. Additionally, glutamate induces a membrane depolarisation when applied directly to the brain slices. CSE (10 – 100 μg/ml) decreased the glutamate-induced membrane depolarisation and inhibited the evoked PSPs. In further experiments, the non-NMDA component of the PSPs was separated by application of the NMDA receptor antagonist APV (10 μM) and the NMDA component by application of the non-NMDA receptor antagonist CNQX (10 μM). CSE (100 μg/ml) isolated the NMDA component of the KA-induced membrane depolarisation, whereas the AMPA (1 μM) induced membrane depolarisation was not affected. Our results indicate that CSE has an antagonistic effect on NMDA and kainate receptors. AMPA receptors seem to be not involved. Trans-crocetin (1 – 50 μM) investigated under the same conditions as CSE induced inhibitory effects on the membrane depolarisation and evoked PSPs comparable to CSE. The inhibition of the glutamatergic synaptic transmission in rat cingulate cortex by CSE and trans-crocetin represents a possible new pathway by which Crocus sativus L. acts within the CNS.

PC9
Adaptogenic and nootropic activities of aqueous extract of *Carum carvi* Linn. (Caraway) fruit: An experimental study in Wistar rats
Shradha K. Sandandar RX, Sattyaranayana S
University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam – 531 003, Andhra Pradesh, India

Stress has been involved in the etio-pathogenesis of a diverse variety of diseases, varying from cognitive dysfunction, diabetes, hypertension and aging [1]. In the present study, the aqueous extract of *Carum carvi* (CA) was evaluated for adaptogenic and nootropic activities in rats. Furthermore, the extract was studied for in vitro antioxidant potential to correlate its antistress activity. For the evaluation of antioxidant activity in both normal and stress induced rats, Urinary vanillylmandelic acid (VMA) [2] and ascorbic acid (AA) were selected as non-invasive biomarkers. Daily administration of CA at doses of 100, 200 and 300 mg/kg body weight one hour prior to induction of stress inhibited the stress induced urinary biochemical changes in a dose dependent manner. Nootropic activity was evaluated by conditioned avoidance response (CAR) using Cook's pole climbing apparatus in rats [3]. The cognition, as determined by the acquisition, retention and retrieval was observed to be significant and dose dependent. Further more the extract was also studied for their in vitro lipidperoxidation inhibition (antioxidant) [4] activity in brain and liver homogenates and compared to known antioxidant ascorbic acid. The present study provides scientific support for the antistress (adaptogenic), antioxidant and nootropic activities of *Carum carvi* extract and substantiate its traditional use as a culinary spice in foods is beneficial and scientific in combating stress induced disorders. References: [1] Chrousos, G.P., Gold, P.W. (1992) J. Am. Med. Assoc. 267:1244 – 1252. [2] Pisano, J.J. et al. (1962) Clin. Chem. Acta 7:277 – 284. [3] Cook, L, Weidley, E. (1957) Ann. NY. Acad. Sci. 66:740 – 752. [4] Ohkawa, H. et al. (1979) Anal. Biochem. 55:51 – 58.

PC10
Discovering the mechanisms of plant longevity to fight human aging and age related diseases
Olgun A
ErciZin Mil. Hospital, Biochemistry Lab.24000 Ercizin Turkey

Aging is one of the most complex and challenging problems in biology. Therefore, many models from yeast to mammals are widely used to discover the mechanisms of human aging in order to postpone it and prevent age related diseases. According to the evolutionary theory of aging [1], natural selection only affected early life traits like fitness and reproduction, due to predation and accidents that prevent the becoming old of animals in the wild. But it likely failed to prevent late life phenotypes like aging and even contributed or caused them by antagonistic pleiotropy. In contrast to animals, plants, especially trees, live in a protected environment and are not subject to predation. This should have allowed natural selection to prevent late life’s deleterious effects in at least some plants. The presence of very long living tree species like *Pinus longaeva* that lives up to 5000 years [2] and 9550 years old spruce which is the oldest living tree [3], suggest that natural selection has found a way to prevent aging. In this study, the present literature on plant longevity was scrutinized and a working frame including leaf senescence [4] and seed longevity [5] was described for further studies. The wide range health benefits of pycnogenol [6], a bark extract of pine that is also a long living tree, gives the hope to discover other phytochemicals ensuring plant longevity from especially oldest living plants that have the potential to be weapons in our war against aging and age associated diseases. References: [1] Ljubuncic, P., Reznick, A.Z. (2009) Gerontology 55:205 – 216. [2] Lanner, R.M. and Connor, K.F. (2001) Exp. Gerontol. 36:675 – 685. [3] Umehr University (2008, April 16). World’s Oldest Living Tree – 9550 years old – Discovered In Sweden. [4] Lim, P.O. et al. (2007) Antioxid. and Redox. Reg. Plant Biol. 58:115 – 136. [5] Rajou, L, Debeaujon, I. (2008) C. R. Biol. 331:796 – 805. [6] Rohdewald, P. (2002) Int. J. Clin. Pharmacol. Ther. 40:158 – 168.

PC11
Inhibitory effect of *Lavandula viridis* methanol extract on acetylcholinesterase and butyrylcholinesterase enzymes
Gonçalves S, Costa P, Romano A
Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Ed. 8, 8005 – 139 Faro, Portugal and IBB/CGB – UTAD, 5001 – 801 Vila Real, Portugal

The brain is an organ particularly vulnerable to oxidative stress, and the hypothesis that this process is involved in neurodegenerative events, neuronal cell death and progression of Alzheimer’s disease (AD) has emerged [1]. Thus, the interest in naturally-occurring antioxidants, which can be used to protect human beings from oxidative stress damage, has increased [2]. In addition, the continuing search for novel anticholinesterases from plants as therapeutic agents for central nervous system disorders is based on the need for agents targeted to the brain areas affected, with reduced toxicity and side-effects. The aim of this work was to evaluate the antioxidant potential and, the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory capacity of methanol extracts from *Lavandula viridis* L. Hetr. (Lamiaceae), an aromatic species endemic to the south western Iberian Peninsula. The tested extract showed a strong antioxidant potential in all the three assays conducted, Folin-Ciocâlteau (F-C), trolox equivalent antioxidant capacity (TEAC) and oxygen radical antioxidant capacity (ORAC). The inhibition of AChE and BChE was assessed by using a 96-well microplate reader based on in vitro Ellman’s method [3]. Results showed that the *L. viridis* extract displayed remarkable inhibitory activity of both enzymes, although slightly more active against AChE (IC50=244.90 € 13.44 μg ml⁻¹) than BChE (IC50=285.28 ± 15.97 μg ml⁻¹). These results are in accordance with previous results obtained by our group for *L. viridis* essential oil [4]. The present work showed the simultaneous antioxidant and cholinesterase inhibitory potential of *L. viridis* extract, both relevant for the treatment of AD. S. Gonçalves acknowledges a grant from Portuguese Science and Technology Foundation (FCT, Grant SFRH/BPD/31534/2006).
Juglans spp. (Juglandaceae) have been used in folk medicine for thousands of years to treat a wide range of health disorders. Recently, a correlation between phenolic contents and antioxidant activity was established for J. regia L. leaves [1]. The present work evaluates the antioxidant properties of J. regia L. and J. nigra L. husks and assesses the biological and chemical potential of the Juglans nigra L., which is economically less valued. Green husks from both species were extracted with 70% aqueous ethanol using an Ultra-Turrax homogeniser. Total phenols were evaluated by the Folin-Ciocalteu method. Antioxidant assessment was carried out with DPPH and the assay based on the superoxide-driven reduction of NBT by photochemically reduced riboflavin. Phenolic profiles were established by HPLC-PDA-ESI/tandem MS, in negative ion mode. A higher phenolic content was verified for J. nigra (83.1 ± 0.16 mg of gallic acid equivalents/g dry plant) relatively to J. regia (15.7 ± 0.03 mg/g). In addition, reactivity for DPPH and superoxide anion was also higher for J. nigra extract (Table 1). Different phenolic profiles were observed and significant quantities of ellagic acid and its derivatives were detected in J. nigra extract. Table 1: Free radicals scavenging activity of the Juglans spp. green husk extracts.

Inhibition of LPS-induced nuclear factor NF-κB activation by Cymbopogon citratus leaves in macrophages: a strategy to develop new anti-inflammatory drugs. Francisco V.1,2, Cruz V.1,3, Figueirinha A.2,4, Neves B.1,3, Lopes C.1,3, Batista T.2,4
1Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000 – 548 Coimbra, Portugal; 2Centro de Estudos Farmaeuticos, Universidade de Coimbra, Pólo Ciências da Saúde, Azinhaga de Santa Comba, 3000 – 548 Coimbra, Portugal; 3Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004 – 517 Coimbra, Portugal; 4Departamento de Ambiente, Instituto Politécnico de Viseu, Campus Politécnico de Repesé-3504 – 510 Viseu, Portugal

Inflammation is the cause of a large number of diseases like cancer, rheumatoid arthritis, diabesity, psoriasis, multiple sclerosis and cardiovascular diseases. Actually, the lack of responsiveness to the current anti-inflammatory drugs, their side effects, delivery problems and cost of manufacture, reinforced the development of new and safe anti-inflammatory agents. The nuclear factor (NF)-κB transcriptional system regulates the expression of many genes involved in inflammatory response [1]. Therefore, inhibition of NF-κB activation is now widely recognized as a valid strategy to combat diseases with a strong inflammatory component. Natural occurring products have been providing an important source of many pharmaceutical drugs currently available. Previously, significant antioxidant properties were verified for a lipid- and essential oil-free infusion from Cymbopogon citratus (Gramineae) leaves [2]. In this study was analyzed the inhibitory potential of that extract on lipopolysaccharide (LPS)-induced NF-κB activation in a murine macrophage cell line, Raw264.7. Our results demonstrated, by western blot analysis using specific antibodies, that C. citratus extract inhibited LPS-mediated IkB kinase (Iκk) phosphorylation, inhibitory κB (IκB) degradation and consequently prevented p65 protein translocation into the nucleus. The present data support both the use of C. citratus as source of new anti-inflammatory drugs as well as its traditional use for inflammation treatment. Acknowledgements: FCT and POCI/FEDER for financial support. Research supported by a FCT PhD fellowship (SFRH/BD/46281/2008) References: [1] Cruz, M.T. et al. (2001) Nitric Oxide 5:53 – 61. [2] Figueirinha, A. et al. (2008) Food Chem. 110:718 – 728.

Acetylcholinesterase inhibitory activity of selected plants used in TCM to improve cognitive function.
Bian BL.1, Song JF.1, Brantner AH2
1China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, No. 16 Nanxinxiao, Dongzhimen Ne Ave, Beijing 100700, China; 2Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4/1, A-8010 Graz, Austria

As people are becoming older, mental degeneration in the form of Alzheimer’s disease, Parkinson’s disease and different types of dementia is a major public health concern. Alzheimer’s disease is the most common form of dementia diagnosed after the age of 60 worldwide. It is a chronic and progressive process and a multifaceted neurodegenerative disorder affecting different brain areas. Currently, acetylcholinesterase (AChE) inhibitors are the main class of drugs prescribed for symptomatic treatment of Alzheimer’s disease. However, these only slow down the disease progression. A cure for Alzheimer’s disease has yet to be found. Plants from all over the world are being investigated intensively for compounds with AChE inhibiting activity. In the context of a recent study, 31 plants used in Traditional Chinese Medicine for the improvement of memory and cognition in old age were tested for their acetylcholinesterase inhibitory properties (in vitro) using a modified version of the colorimetric method of Ellman [1]. The final product was detected photometrically at 412 nm. The plant material was extracted with water in the traditional Chinese way. Significant inhibition of the enzyme expressed by the IC50 values was observed for the aqueous extracts from Rhiz. Coptidis (huáng lǎn; IC50 = 4.68 μg/mL), Rad. Angelicae sinensis (dāng guì; IC50 = 0.13 μg/mL), Rad. Paeoniae alba (bái shāo; IC50 = 0.59 μg/mL), and Fr. Viticis (màn jìng zi; IC50 = 0.53 μg/mL). These results substantiate the traditional use of the investigated plant parts for improvement of cognition. Reference: [1] Ellman, G.L. et al. (1961) Biochem. Pharmacol 7:88 – 95.

Purification and antioxidant activities of a water-soluble polysaccharide isolated from Cordyceps guurnii (berk.) Berk. mycelium
Zhu ZY.1,2,3, Li CL.1,2, Zhang YM4
1Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China; 2Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100019, P.R. China; 3Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P.R. China; 4Université Pierre et Marie Curie-Paris 6, Laboratoire de Chimie Organique (UMR CNRS 7614). Tour 4/45, C. 181, 4 place Jussieu, 75005 Paris, France

Cordyceps sinensis is a well known tonic food or invigorant with broad-spectrum medicinal properties that is widely used in China [1,2]. Cordyceps guurnii (berk.) Berk is also widely known as the Chinese rare caterpillar fungus and has similar pharmacological activities to C. sinensis. The water-soluble polysaccharide CPS50-I was extracted from the mycelia of C. guurnii and further purified by DEAE-Sephadex A-25 and Sephadex G-75. Its characteristics were determined by chemical analysis, gas chromatography, HPSEC and IR spectroscopy. The results show that CPS50-I is a white powder containing 94.57% carbohydrate and four kinds of monosaccharides including xylose, mannose, glucose and galactose with a molar ratio of 0.13: 0.89:0.54: 1. CPS 50-I has a molecular weight of ~9874 Da and [α]D20 = +85 (c 0.5, H2O). The protective effect of

Elevated VEGF expression in 48-week-old rats and more intense cell proliferation in 8-week-old rats treated with EO. But the 48-week-old rats expressed VEGF more intensely than 8-week-old rats after 14 consecutive days of EO treatment. But the 48-week-old rats expressed COX2 more intensely than 8-week-old rats treated with EO. Elevated VEGF expression in 48-week-old rats and more intense cell proliferation and COX2 expression in 8-week-old rats treated with essential oil from Citrus aurantium (EO) to protect the gastric mucosa against injuries caused by different necrotizing agents. However, the confirmation of gastroprotective action of EO does not imply that this same preparation also presents a healing effect on injured gastric mucosa in animals at different ages.

Aging causes drastic gastrointestinal functional changes in gastric mucosa. Defensive factors have been reported to show an age-related decrease in humans and other animals. The NSAIDs commonly used in elderly persons triple the risk of gastrointestinal complications such as gastric ulcer. Previous studies have reported gastroprotective effects of essential oil from Citrus aurantium (EO) to protect the gastric mucosa against injuries caused by different necrotizing agents. However, the confirmation of gastroprotective action of EO does not imply that this same preparation also presents a healing effect on injured gastric mucosa in animals at different ages.

The study aimed to evaluate the healing effect of EO from Citrus aurantium in chronic ulcers induced by acetic acid in 8- and 48-week-old rats. The EO healing action was evaluated in acetic-acid-induced gastric ulcer in male Wistar rats (n = 10). We analyzed the effective healing action on chronic gastric ulcer after 14 days (OE = 250 mg/kg, p.o.) by evaluating morphometry and immunohistochemistry (PCNA-cell proliferation), COX2 (cyclooxygenase-2), and VEGF (vascular endothelial growth factor). Macroscopic analysis showed that 8- and 48-week-old rats presented healing proportions of 44% and 99%, respectively in relation to the control group. The morphometric analysis demonstrated that both groups increased the epithelial height of regenerates by 355% and 272%, respectively when compared to the control group. Results of immunohistochemical analyses from PCNA presented more intense cell proliferation in 8-week-old rats treated with EO than 48-week-old rats. The 8-week-old rats also increased COX2 expression after 14 consecutive days of EO treatment. But the 48-week-old rats expressed VEGF more intensely than 8-week-old rats treated with EO. Elevated VEGF expression in 48-week-old rats and more intense cell proliferation and COX2 expression in 8-week-old rats treated with essential oil from Citrus aurantium were the factors that exerted a protective effect against the severe harmful agents. Acknowledgments: CNPq, FAPESP

PC17 Butyrylcholinesterase inhibitors from Angelica archangelica L. roots

Kiss AK1, Wszelaki N1, Paradowska K2

1Department of Pharmacochemistry and Molecular Basis of Phytotherapy; 2Department of Pharmaceutical Chemistry, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland

Acetylcholinesterase (AChE) inhibitors are widely used as a drug for the symptomatic treatment of Alzheimer’s disease (AD). BuChE appears to be a very important new therapeutic target. Especially as the activity of BuChE increases with the higher stage of the AD, while the activity of AChE decreases [1]. Herbal extracts are a significant source of new potential AChE and butyrylcholinesterase (BuChE) inhibitors, like galantamine isolated from the bulbs of daffodils. Recent data have shown that Angelica sp. and coumarins are able to inhibit the activity of acetylcholinesterase, but their potency was not very strong. On the other hand, there is no much information about the effects of those groups of compounds on butyrylcholinesterase activity. In the present study we reported the identification and isolation of inhibitors from extracts obtained from roots of Angelica archangelica on two cholinesterase AChE and BuChE. Our results confirm the weak effect of Angelica roots on AChE activity. The BuChE inhibition was much more pronounced and achieved the rate higher than 50% at the concentration of 100 μg/ml for hexane extract. The HPLC-DAD profile of hexane extract showed the presence of considerable amount of xanthotoxin, bergapten, imperatorin, isoirmorat per and osthole. Between identified compounds only imperatorin have demonstrated inhibition of BuChE with IC50 = 14.3 μM. The TLC bioautography guided fractionation and spectroscopic analysis led to the isolation and identification of compound 1 [2-methyl-2-butenolic acid-2-hydroxy-2-methyl-1{[(7-oxo-7H-furo][3,2-g][1]benzopyran-9-yl]oxy[methyl]propyl ester} which showed significant BuChE inhibition activity with IC50 = 7.5 μM. Only 8-Ch substituted furanooxycoumarins were BuChE inhibitors.

PC18 Influence of winemaking conditions on phenolic content and antioxidant potential of red wines

Cvejic J1, Atanackovic M1, Jovic S2, Petrovic A, Gokjovic-Bukarica L1

1Department of Pharmacy, Faculty of Medicine, Hajduk Veljkova 3, 21000, Novi Sad, Serbia; 2Faculty of Agriculture, Nemanjina 6, 11080 Zemun, Serbia; 3Department of Pharmacology and Toxicology and Clinical Pharmacology, Faculty of Medicine, P.O.Box 840, 11129, Belgrade, Serbia

Moderate consumption of red wine is linked to the reduced mortality from cardiovascular disease. These health benefits of red wine have been attributed to its phenolic compounds [1]. The object of this study was to investigate the effect of temperature in winemaking technologies on phenolics in wine in order to increase their content. Wines from three different cultivars were used in experiment. Musts were subjected to different treatments: Experiment (1) 60 °C for 1 hour, Experiment (2) 80 °C for 5 minutes. Total phenolic content was determined according to the Folin-Ciocalteu method. Radical-scavenging capacity (RSC) was measured by evaluating the quenching of the stable DPPH and calculation of mean scavenging concentration (RSC50).

<table>
<thead>
<tr>
<th>Cabernet Sauvignon</th>
<th>C</th>
<th>T</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSC50 (μg/ml)</td>
<td>1.22</td>
<td>0.68</td>
<td>0.97</td>
</tr>
<tr>
<td>TPC (mg/l GAE)</td>
<td>911.55</td>
<td>1410.39</td>
<td>1098.97</td>
</tr>
<tr>
<td>Prokupac</td>
<td>C</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RSC50 (μg/ml)</td>
<td>1.81</td>
<td>0.79</td>
<td>1.25</td>
</tr>
<tr>
<td>TPC (mg/l GAE)</td>
<td>584.43</td>
<td>1159.37</td>
<td>870.57</td>
</tr>
<tr>
<td>Burgundy</td>
<td>C</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RSC50 (μg/ml)</td>
<td>1.79</td>
<td>1.26</td>
<td>0.58</td>
</tr>
<tr>
<td>TPC (mg/l GAE)</td>
<td>731.06</td>
<td>1018.37</td>
<td>1196.66</td>
</tr>
</tbody>
</table>

Results showed that thermic treatment increased phenolic content and radical scavenging properties of all analyzed samples. Obviously, higher temperature increased extraction of phenolic compounds from grape skins. Also, samples treated at 80 °C mainly showed smaller phenolic content than those treated at 60 °C, due to the decomposition of phenolic compounds with increase of temperature. 1. Cimino, F. et al. (2007) Food Chem. 103,75 – 81.

PC19 Antioxidant flavonoids from bark of Elaeagnus angustifolia

Si CL1, Xu J1, Wu L1, Hui LP1, Liu PT1, Liu Z1

1Tianjin Key Lab of Pulp and Paper, Tianjin University of Science and Technology, 300457 Tianjin, China; 2State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640 Guangzhou, China

Elaeagnus angustifolia L. (Elaeagnaceae), a plant distributed widely from the northern regions of Asia to the Himalayas and Europe, has been extensively used in traditional medicine to treat ulcer, relax muscle, ease fever, kill pains and cure inflammation [1,2]. However, to date, little has been reported on the chemical composition of E. angustifolia. In this study, 95% EOH extraction of the title plant bark led to the isolation of different classes of flavonoids, including 4 flavan-3-ols, [(-)-catechin (1), (-)-epicatechin (2), (+)-gallocatechin (3) and (-)-epigallocatechin (4)], 2 flavonols [kaempferol (5) and quercetin (6), as well as a flavone [luteolin (7)], and their structures were elucidated on the basis of phy-
sichochemical and spectroscopical evidence (NMR and MS) [3]. Among the flavonoids 1, 2, 3, 5 and 7 were isolated from E. angustifolia for the first time. The antioxidant activities of the flavonoids were evaluated by DPPH free radical-scavenging assay. Results suggested that compounds 1, 2, 3, 4, 5, 6 and 7 showed significant antioxidant potential (DPPH IC50 values of 5.32, 5.42, 6.81, 5.37, 5.41, 5.30 and 6.68 μM, respectively) compared with α-tocopherol and BHT (DPPH IC50 values of 6.86 and 6.91 μM, respectively), which were used as controls. Acknowledgements: Financial support from Natural Science Foundation of Tianjin City (09JCYBJC15800, 09JCJDD124000) and China Postdoctoral Science Foundation is gratefully acknowledged. Reference: [1] Hosseinzadeh, H. et al. (2003). J. Ethnopharmacol. 84:275 – 278. 2. Ahmadian, A. et al. (2000) J. Ethnopharmacol. 72:287 – 292. 3. Agrawal, P.K. (1989) Carbon-13 NMR of Flavonoids. Elsevier, New York.

References:

Investigation of South African Amaryllidaceae for inhibitors of acetylcholinesterase
Marston A1, van der Westhuizen M2
1Chemistry Department, University of the Free State, Bloemfontein 9300, South Africa; 2National Museum, Bloemfontein 9300, South Africa

South Africa has a rich diversity of plant species which contain various classes of bioactive compounds [1]. It is known that the Amaryllidaceae provide a number of alkaloids and other compounds [2,3] which are inhibitors of the enzyme acetylcholinesterase and thus may have some application in management of Alzheimer’s disease (AD). They furnish, for example, the benzazepine alkaloid galanthamine, which is a competitive and reversible inhibitor of cholinesterase and is currently administered in many countries to patients with AD. The fresh bulbs of a series of Amaryllidaceae belonging to the genera Crinum, Nerine, Strumaria and Ammocharis were extracted with 90% ethanol and tested for the inhibition of acetylcholinesterase in a rapid TLC benchtop bioassay [4]. The extracts showed varying degrees of inhibition in the bioassay, with activities being attributed to polar and apolar constituents and both alka
doidal and non-alkaloidal components. Several species contained gal
anthamine. The same species of plant (Nerine latica

PC20

Tehranolide, A sesquiterpene lactone with an endoperoxide group that probably has the same effect as the antimalarial agent Artemisinin
Rustaiyan A1, Nahrevanian H2, Kazemi M3
1Department of Chemistry, Science and Research Campus, Islamic Azad University, P.O.BOX 14515 – 775, Tehran, Iran; 2The Malaria Research Group, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran; 3Department of Applied Chemistry, Qom Branch, Islamic Azad University, Qom, Iran

The malaria situation is aggravated by the appearance of strains of Plas
modium falciparum resistant to antimalarial drugs as well as by the resistance of vector Anopheles mosquitoes to DDT and other insecticides. Nearly 300 – 500 million people are infected by malaria and the inci
dence of this disease is dramatically increasing, since many strains of Plasmodium falciparum, the parasite responsible for the majority of fatal malaria infections, have become resistant to chloroquine and other tra
ditional antimalarial drugs. Fortunately, these strains are still susceptile to the artemisinin derivatives. All of the artemisinin compounds contain stable endoperoxide bridges. The extract of the aerial parts of A. diffusa collected in the Province of Khorassan (Iran) afforded, in addi
tion to several eudesmanoids, a new type of sesquiterpene lactone (Tehranolide) with an endoperoxide group. Previously, we reported anti
malarial effect of extract of A. diffusa against P. berghei. Since the endoperoxide group is an essential requirement for the antimalarial activ
ity of artemisinin, we have presumed the antimalarial properties of the crude extract are attributed to Tehranolide. We report here the in vivo laboratory evaluation of anti-malarial effects of Tehranolide, was done on P. berghei infected NMRI mice. The antimalarial effects of Tehranolide in 27 mg/ml concentration (high dose) were injected s.c. every day for 12 days after infection in malaria mice. Three groups of mice (n = 5) were investigated for antimalarial efficacy, the degree of para
taemia, assessment of pathology including body weight, physiological activities, hepatomegaly and splenomegaly. Para
taemia was measured every other day by counting Giemsa-stained blood smears which were taken from end tail cutting.

PD2

Aloes. Homonalolain and aloenin are important bioactive compounds in use in cosmetic and medicinal industries
Chau-ser-Volfson (Wolfson) E, Cuttermen Y Ben-Gurion University, Desert Research Institutes, Campus Sede-Boker, 84900 Israel

Aloes provide a fascinating subject for research from a chemical, bio
chemical, pharmaceutical, taxonomic, medical and economic point of view. The genus Aloes contains about 420 species [1]. The majority of these plant species are desert plants which inhabit in the Desert of South Africa. Some of these species are tall trees in size of 0.5 m or more, while the majority is shrubs 0.5 to 1.5 m tall. Some plants species are very small, measuring only a few cm [2]. Aloes plant contains many biological activities compounds, such as anthrones and anthraquinones, chromones, phenolic compounds, alkaloids, polysaccharides and other components. As a continuation of our investigation (1991 – 2009) we have studied the content and distribution of aloenol and homonalolain in the leaves from 67 Aloes species, originated from South Africa and introduced during the 25 the last years in the Botanical Garden in the Negev Desert of Israel. It was found that 28% of this Aloes species contain homonalolain and only 5% contain aloenol. Aloen vortex (barbadensis) does not contain aloenol. Aloenin could be useful as cancer chemopreventive agent against tumor promotion [3]. Aloenin is a major constituent which has significantly promoted hair growth. Aloenin also has demonstrated rejuvenative effects on human skin [4]. Homonalolain, which possessed antimalarial activity, inhibited the chloroquine-resistant Plasmodium falciparum [5]. Aloes species containing aloenol and homonalolain (besides Alo vera and Alo ferox) are suitable as commercial sources of Aloes gel for use in the cosmetic and medicinal industries. References: [1] Department, T. (2004) Aloes: The genus Aloes. CRC Press. [2] Van Wyk, B.E. et al. (1996) Guide to the Aloes of South Africa. Briza Publications, Pretoria. [3] Shimp, K. et al. (2002) Phytother. Res.16:491 – 493. [4] Yamamoto, M. (1993) Jap. J. Tox. Env. Health 39:409 – 414. [5] Van Zyl, R. et al. (2002) S. Afr. J. Bot. 68:106 – 110.

PD3

Antioxidant property of a Thai traditional formula for longevity
Wongtragan J1,2, Temsiririkul R1, Peungvicha P1,2, Kerkachorn S1,2, Luanchay S1,2, Thongkul S1
1Department of Physiology, Faculty of Pharmacy, Mahidol university, 447 Sri-Ayudhya, Rajthewi, Bangkok, 10400, Thailand; 2Department of Pharmacology, Faculty of Pharmacy, Mahidol university, 447 Sri-Ayudhya, Rajthewi, Bangkok, 10400, Thailand

Antioxidant properties of a Thai traditional formula for longevity, which is composed of 6 herbs as follows: Albizia procera, Diospyros rhodolyc, Tinospora crispa, Cyperus rotundus, Stirleus usper and Piper nigrum were studied. Each herb including the formula was extracted by 95% ethanol and concentrated by using vacuum evaporator. The antioxidant properties were detected by DPPH method. Vitamin C and Trolox were used as

PD4

Trypanocidal activity of pterogynidine and nitensidine E using two distinct Trypanosoma cruzi strains

Siqueira MC1, Silva MTA1, Regasini LO2, Silva DHS2, Cicerei RMB2

1Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista – UNESP, R. São Paulo, São Paulo, SP, Brasil; 2Núcleo de Bioensaios, Biossintese e Ecologia de Produtos Naturais – NuBBE, Instituto de Química – Universidade Estadual Paulista – UNESP, R. Francisco Degni, s/n, CP 355, 14801 – 970, Araquara, SP, Brasil.

Pterogynidine (1) and Nitensidine E (2) were isolated from different parts of *Pterogynium nitens*, which is a native tree common in South America [1,2]. Recently, Regasini et al. [3] demonstrated that nitensidine E was the most active compound against different tumor cell lines, while pterogynidine was inactive. The structure of nitensidine E is the first report of natural occurrence of a cyclic monoterpene derivative on a guanidine moiety [3].

![pterogynidine](1)

nitensidine E (2)

PD5

In vitro shistosomicidal activity of (-)-6,6-dinitrohinokinin: a semi-synthetic lignan derivative obtained from (-)-hinokinin

Silva MLA1, Rodrigues V2, Albuquerque S1, Bastos JK2, Silva R1, Pereira Junior OS1, Bianco TN1, Cunha WR1, Santos FF1, Donate PM2, Magalhães LC2, Pereira AC1, Da Silva Filho AA1

1Universidade de Franca, Av. Dr. Armando Salles de Oliveira, 201, 14404 – 600, Franca-SP, Brazil; 2Universidade de São Paulo, Av do Café s/n, 14004 – 903, Ribeirão Preto-SP, Brazil.

Schistosomiasis is one of the most significant neglected tropical diseases in the world, affecting more than 200 million people. Frazilquinetal (PZQ) is currently the only effective drug available for the treatment of this infection caused by *Schistosoma* species [1,2]. Therefore, the aim of this work was to evaluate the in vitro shistosomicidal activity of (-)-6,6-dinitrohinokinin (DiNI), obtained by partial synthesis of (-)-hinokinin, a semi-synthetic derivative of (-)-cubebin [3]. Coupled adult worms of *S. mansoni* L strain were removed from mesenteric veins of the infected mice and cultured in 24-well plates at 37°C in RPMI1640 media. Coupled adult worms were kept for 5 days and the viability, pairing, egg production, and egg development were monitored every 24h by incubation in the presence of DiNI at concentrations of 31.5, 16.9 and 7.9µM [1]. As negative control group it was used adult worms treated with 10% of DMSO. DiNI (31.5 and 16.9µM) caused the death of all *S. mansoni* adult worms after 24h of incubation. Also, DiNI (7.9µM) induced a significant reduction in the motor activity after 24h, as well as the death of all *S. mansoni* adult worms after 120h of incubation. DiNI (31.5, 16.9 and 7.9µM) significantly decreased the egg production by 47%, 86% and 90%, respectively, after 48h of incubation. DiNI (at 31.5, 16.9 and 7.9µM) was able to separate the adult worm pairs (into male and female) and to cause significant tegumental alterations in the worms after 120h. This result shows the possibility of starting a promising work, with possibilities for an effective drug to combat schistosomiasis, which has patent deposited in Brazil (PI 0503951 – 7; EUA (US 11995,789), Europe (EP 06761026.1) and Japan (JP 2008 – 508031). Acknowledgements: FAPESP (1998/14956 – 7, 2004/08784 – 1 and 2006/60132 – 4) and CNPq for financial support.

PD6

Evaluation of the in vitro trypanocidal activity of plant extracts from the Brazilian Cerrado

Cunha WR1, Dos Santos FM1, Peixoto JA2, Veneziani RCS1, Crott AEM1, Silva MLA1, Da Silva Filho AA1, Turatti ICC1, Bastos JK2, Albuquerque S1

1Universidade de Franca, Av. Dr. Armando Salles de Oliveira, 201, 14404 – 600, Franca-SP, Brazil; 2Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café s/n, 14004 – 903, Ribeirão Preto-SP, Brazil.

Chagas’ disease is endemic in Latin America and affects 16 – 18 million people, while other 100 million are exposed to the risk of infection. *Trypanosoma cruzi*, the etiological agent of this disease, causes a pathology which features depend on both the inherent characteristics of the host and the virulence of the parasite. In this study we report the in vitro trypanocidal activity of twenty extracts obtained from ten different plant species growing in the Brazilian Cerrado: *Aspidosperma macrocarpum* Mart. (Apocynaceae), *Aegiphila selowiana* Cham. (Verbenaceae), *Byronisia intermedia* Juss. (Malpighiaceae), *Cyperus rotundus* L. (Cyperaceae), *Leandra laciniosa* Cogn. (Melastomataceae), *Miconia ligustroides* (DC) Naudin. (Melastomataceae), *Miconia selowiana* Naudin. (Melastomataceae), *Myrcia variabilis* Mart. ex DC. (Myrtaceae), *Solanum lycocarpum* St. Hil. (Solanaceae) and *Tibouchina stenocarpa* Cogn. (Melastomataceae). The most active extracts were submitted to phytochemical analyses. The high-resolution gas chromatography analysis of the h-hexane extract of *T. stenocarpa* (IC50 = 23.6µg/ml), the most active extract among all tested samples, allowed the identification of β-amyrin, α-amyrin, lupeol, friedelin, β-friedenol, campes- terol, stigmastanol and β-sitosterol. Oleandonic and usnic acids were isolated from the methylene chloride extract of *T. stenocarpa* (IC50 = 51.5µg/ml), while usnic acid was isolated from the methylene chloride extract of *M. variabilis* (IC50 = 38.4µg/ml). Solasonine and solamar- gine were identified as major compounds by mass spectrometry analysis in the hydroalcoholic extract of the fruits of *S. lycocarpum* (IC50 = 57.1µg/ml).
Antimycobacterial activity of medicinal plants from Mozambique
Da Silva G1, Macedo A2, Famba I3, Tanica M4, Serrano R5, Maluleque M6, Agustinho A7, Gomes ET8, Pereira E9, Silva O2
1MedULL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649 – 019 Lisbon, Portugal; 2Public Health Laboratory Mycobacterium/Tuberculosis (ILSPM), R. Pedro Calmon, 25, 1300 – 455 Lisbon, Portugal; 3National Health Institute – Dep of Medical Plant Studies and Traditional Medicine, Av. Eduordo Mondlane 1008, 264, Maputo, Mozambique

Lannea stuhlmanni, Maytenus heterophylla, Maytenus senegalensis, Sarcostemma vinimale and Tabernaemontana elegans are medicinal plants used in Mozambique to alleviate symptoms and treat pulmonary diseases, including tuberculosis [1]. Hereby we present results from an ethnopharmacological study conducted in order to validate the traditional use of these species against mycobacteria strains, specifically drug-sensitive and drug-resistant ones. Therefore in vitro antimycobacterial activity of nine hydroethanol extracts from different plant parts were screened through a rapid radiometric method. All extracts were tested in triplicate and the minimum inhibitory concentrations (MIC) refers to the mean arithmetic value. Five extracts have shown activity against the drug-sensitive Mycobacterium tuberculosis ATCC 700457. L. stuhlmanni root, M. senegalensis leaf, S. vinimale root, and T. elegans leaf and root extracts were the most active extracts, demonstrating MIC ranged from 150 – 175 µg/mL. T. elegans root extract was the most active. Concerning the drug-resistant strains (M. tuberculosis ATCC 35822 – iso-niazide resistant; M. tuberculosis ATCC 35838 – rifampin resistant), T. elegans root extract, T. elegans leaf extract and M. heterophylla root extract have shown the lowest MIC values, ranging from 150 – 175 µg/mL. In order to localise the biological activity some active extracts were partitioned between ether-liquid extraction. These ether fractions exhibited the most promising results against the drug-sensitive mycobacterium strain (MIC = 150 µg/mL). Prospective studies include the establishment of the chemical profile of the active extracts and fractions and identification of the active compounds. Results confirm the medicinal value of these plants. References: [1] Jansen, P., Mendes, O. (1991) Plantas Medicinais – Seu Uso Tradicional em Moçambique. Imprensa do Partido, Maputo.

Optimization of the medicinal mushroom Ganoderma australe biomass production using Response Surface Methodology
Papapostolou YM1, Katopodis P1, Conou-Zagour Z2, Kapsanaki-Gotsi E3, Christokoulopoulos P1
1Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, 4 Iroon Politechniou str, Zografou Campus, 15770, Athens, Greece; 2Department of Ecology & Systematics, Faculty of Biology, National & Kapodistrian University of Athens, Panepistimioupoli, 15784, Athens, Greece

Mushrooms or fruiting bodies of many Basidiomycetes used in traditional therapies presenting medicinal effects are commonly produced in solid-state fermentation, generally after 20 – 60 days of growth. Recently, a number of substances of mushroom origin have been isolated, identified and shown to have physiological activities, such as antitumor, immunomodulating, cardiovascular, antibacterial, antiviral, antiparasitic, hepatoprotective and antidiabetic activities. Submerged fermentation of the mycelial form of mushroom-producing fungi has received much attention as a promising alternative for efficient and faster production of the biomass of medicinal mushrooms and their active metabolites [1]. The aim of this work was to study the effect of the composition of the nutrient media on the growth of vegetative mycelium in submerged cultures of the Basidiomycetes Ganoderma australe, which is a species of pharmaceutical interest [2]. Initially 55 different carbon sources were screened with the Biolog MicroPlate Analysis and then 9 of them were tested in shake flasks cultures [3]. The effect of various organic and complex nitrogen sources on biomass production was also examined and response surface methodology based on central com-
with N-methylisatoic anhydride (2) under strong basic conditions gave evocarpin and its trans isomer (2:1) [3], which was subjected to preparative HPLC to give evocarpin (3).

Poly saccharides from Sutherlandia frutescens leaves have immunomodulating properties

Paulsen BS1, Leung WR2, Gildy P1, Ingjerdingen M3, Michelsen TE1, Mabusela W3, Johnson Q1

1School of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316 Oslo, Norway; 2Institute of Immunology (IMMI), Rikshospitalet, Sognsvannsveien 20, N-0027 Oslo, Norway; 3South African Herbal Science and Medicine Institute, Modderdam Road, Bellville, Cape Town, 7535, South Africa

Sutherlandia frutescens, syn. Lessertia frutescens, is a plant of long traditional use in South Africa, and over the last years it has obtained great interest as a plant that has positive effects in relation to the treatment of HIV/AIDS. Patients having HIV/AIDS have often a low immune response. If this can be stimulated the wellbeing of the person will increase. As polysaccharides have been shown to have immunomodulating properties [1,2,3] it was of interest for us to study polysaccharides from the leaves of Sutherlandia frutescens and focus on their structure and effect in immunosassays related to the immune system. Traditionally, water extracts have been the choice of preparation of remedies used. For this reason we prepared water extracts, and from these purified polysaccharides both of the xylan type and of the pectin type were prepared. Determination of their monosaccharide compositions as well as their linkages showed that the xylan mainly was 1,4 linked, while the pectins contained typical rhamnogalacturunan type I regions as well as side-chains containing arabinogalactan type II structures. The polysaccharides had a marked effect in the complement system and did also show proliferation of B cells and maturation of dendritic cells, all effects indicating immunomodulating properties. References: [1] Paulsen, B.S., Barsett, H. (2005) Advances in Polymer Science. Bioactive pectic polysaccharides (Polysaccharides I) Springer Berlin/Heidelberg, Germany, pp69 – 101. [2] Ingjerdingen, K.T. et al. (2007) Glycobiochemistry 17:12;1299 – 1310. [3] Ingjerdingen, M. (2008) Glycobiochemistry 18:12;1074 – 1084.

In vitro anti-yeast effect of Nigella sativa seed quinones

Halamova K1, Flesar J2, Malic J3, Koskoska L1

1Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6, Czech Republic; 2Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6, Czech Republic

N. sativa L. seeds (Ranunculaceae), commonly known as black seed or black cumin, have been traditionally used as a curative remedy for numerous disorders as well as spice and food preservative. Several pharmacological activities of the seeds have been attributed to the quinone constituents of its volatile oil, particularly to thymoquinone (TQ). Thymohydroquinone (THQ) and dithymoquinone (DTQ). Although many of the biological effects, e.g. antibacterial, antiparasitic and anti-inflammatory have been widely investigated in the past [1], antifungal activity of the plant has been rarely assessed [2]. In this study we describe the in vitro inhibitory effect of N. sativa quinones on growth of pathogenic and food spoilage yeasts, namely on Candida albicans, Debaryomyces Hansenii, Klyuyveromyces marxianus, Pichia membranaefaciens, Saccharomyces cerevisiae, and Yarrowia lipolytica using the broth microdilution method [3]. For the tests purposes TQ was purchased from Sigma-Alrich (CZ), whereas DTQ and THQ were synthesized from TQ according to the previously described methods [4,5]. The results showed that TQ and THQ possessed inhibitory effect against all yeasts tested in this study at concentrations of 64 µg/ml and below, except THQ, which inhibited the growth of C. albicans strains with MICs value 256 µg/ml. The strongest antimicrobial effect showed TQ and THQ, inhibiting the growth of P. membranaefaciens with minimum inhibitory concentration 8 µg/ml. DTQ possessed no inhibitory activity. Regarding to our results, we suggest TQ and THQ as a perspective anti-yeast agents for possible applications in pharmaceutical or food industry. Acknowledgements: This research was supported by Czech Science Foundation (Project No. 525/08/08080). References: [1] Ghosheh, O.A. et al. (1999). Pharm. Biomed. Anal. 19:757 – 762. [2] Aljabre, S.H.M. et al. (2005). Ethnopharmacol. 101:116 – 119. [3] Jorgensen, J.H. et al. (1999). In: Murray P.R. (ed.) Manual of Clinical Microbiology. ASM Press. Washington, DC. [4] Smith, L.L. et al. (1944). Am. Chem. Soc. 66:1323. [5] El-Dakhakhny, M. (1963) Planta Med. 11:465.

A protocol for HPLC based activity profiling of plant and fungal extracts against tropical parasites

Adams M1, Zimmermann S2, Kaiser M1, Brun R3, Hamburger M1

1Institute of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; 2Swiss Tropical Institute, Socinistrasse 57, CH-4002 Basel, Switzerland

A protocol for HPLC based activity profiling of plant and fungal extracts against tropical parasites

HPLC-profiling for antiplasmodial compounds – 3-methoxycarpachromene from *Pistacia atlantica*

Adams M, Pitzko I, Kaiser M, Brun R, Hamburger M

1Institute of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland; 2Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, CH-4002 Basel, Switzerland

In the course of a medium throughput screen of 640 plant extracts for antimalarial activity [1] an ethyl acetate extract of *Pistacia atlantica DC.* (Anacardiaceae) was active. With analytical scale time-based HPLC separation and testing for antimalarial activity in combination with hyphenated methods (HPLC-PDA, -MS, HS-MS, off line microprobe NMR) the active substance was identified. After isolation, assignment of the 1H and 13C NMR resonances were carried out by extensive analysis of its NMR spectra and the spectra of its acetylated derivative. The new antimalarial flavonoid 3-methoxy carpachromene had an IC50 of 3.4μM towards *Plasmodium falciparum* K1 strain was identified. In a cytotoxicity assay using rat skeletal myoblasts (L6 cells) it had an IC50 of 21.9μM. This compound is amongst the most potent antimalarial flavonoids reported so far and is chemotaxonomically quite unusual for the Anacardiaceae family.

HPLC based activity profiling of *Ganoderma lucidum* extract for antimalarial activity and isolation of new active lanostane triterpenoids

Christen M, Adams M, Zimmermann S, Brun R, Hamburger M

1Institute of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; 2Swiss Tropical Institute, Socinstrasse 57, CH-4002 Basel, Switzerland

Ganoderma lucidum mushroom (Curtis) P. Karst (*Ganodermaaceae*) is known as lingzhi in Chinese and reishi or manentake in Japanese. It has been used medicinally for thousands of years and is apraised as one of the most powerful remedies in traditional Chinese medicine [1]. Over 200 substances from this source have been isolated and structurally identified, mostly polysaccharides and lanostane triterpenes. In a medium throughput screen of plant and fungal extracts for antimalarial activity [2] an ethyl acetate extract from lingzhi mushroom was active with a 79% inhibition at 4.9μg/ml. With analytical scale time-based HPLC separation and testing of one-minute fractions for their antimalarial activity in combination with hyphenated methods (HPLC-PDA, -MS, HS-MS, off line microprobe NMR) the active substances were identified. The substances were isolated using normal phase medium pressure column chromatography and semi-preparative HPLC, and structure elucidation was achieved by extensive 1H and 13C NMR analysis. HPLC based activity profiling is an efficient tool to identify active minor compounds in complex extract matrices [3]. This way we could identify new active compounds from lingzhi mushroom despite the fact that it has already been studied extensively. This is the first report of antimalarial activity of this triterpenoid class. References: [1] Patterson R.R. et al. (2006) Phytochemistry 67:1985 – 2001. [2] Kunert, O. et al. (2008) Phytochem. Lett. 1:171 – 174. [3] Potterat, O. et al. (2006) Curr. Org. Chem. 10:899 – 920.

The biological activity of piperoxatine and piperlonguminine isolated from *Piper ovatum* Vahl on epimastigote form of *Trypanosoma cruzi*

Veiga-Santos P, Rocha KJP, Silva DR, Ueda-Nakamura T, Dias Filho BP, Silva SO, Cortez DAG, Nakamura CV

Trypanosoma cruzi is the etiological agent of Chagas disease, a debilitating disease that affects about 18 million people [1], causing the deaths of 45,000 patients annually [2]. The current treatment for this infection is very limited, and available drugs (Nifurtimox and Benznidazole) have many side effects [3]. Several studies of crude plant extracts have identified potential compounds to treat this disease. In this study we evaluated the effect of piperoxatine and piperlonguminine isolated from *Piper ovatum* Vahl on epimastigote form of *T. cruzi*, in UT medium during 5 days. Ultrastructural and morphological alterations were observed by electron microscopy. The piperoxatine and piperlonguminine concentration which inhibit 50% of growth (IC50) of epimastigotes were 11.5μg/ml and 170μg/ml, respectively. Epimastigotes treated with piperoxatine were fixed with 2.5% glutaraldehyde. For transmission electron microscopy, cells were post-fixed in osmium tetroxide, dehydrated in acetone, and embedded in Epon. Ultrathin sections were observed in Zeiss 900 TEM. For scanning electron microscopy, parasites were placed on a specimen support with poly-L-lysine, dehydrated in ethanol, critical-point
The in vitro antidiarrhoeal activity of Holarrhena antidysenterica (bark) wall extracts
Joshi PV¹, Meheshwari Vi², Sarana Si³, Mandan Ss 1
1K.C.Patel college of pharmacy, Kharad naka, Shirpur (MS)-425405, India; 2Department of Biochemistry, School of Life Sciences, North Maharashtra University, Jalgaon (MS), 425001

The in vitro antidiarrhoeal activity of ethanolic (by maceration) & aqueous (by soxhlet) extracts of the bark of Holarrhena antidysenterica and its comparison with that of standard drugs was evaluated. It showed significant activity against Shigella boydii, Shigella sonnei and Shigella flexneri whereas the activity of both extracts was found to be moderate against Shigella dysenteriae. The minimum inhibitory concentration by (micro dilution) against the strains of Shigella was recorded between 250 to 500μg/mL. Viable cell count method was also used to decipher bacteridial or bacteriostatic action of each extract. All the extracts were bacteridial within 2 h. The extract was found to be more effective than the standards at lower end of the concentrations tested (0.5 mg/ml and 1.0 mg/ml). The antimicrobial activity of the extract is comparable to standard antibiotic ciprofloxacin. The results support the efficacy of ethanolic and aqueous extracts of bark of Holarrhena antidysenterica as bacteriocidal and antidiarrhoeal agent. Our present work suggests that preclinical and clinical trials of both aqueous and alcoholic extracts of the stem bark of Holarrhena antidysenterica can be carried out against different enteric pathogens, causative agents of diarrhoea in population.

Constituents of Baccharis dracunculifolia DC (Asteraceae) with in vitro antileishmanial, antiplasmodial and cytotoxic activities
Da Silva Filho AA¹, Resende DO², Fukui MJ³, Parreira NA⁴, Morais DR⁵, Santos FP⁶, Poulter PM⁷, Cunha WR⁸, Silva MLA⁹, Gregório LE¹⁰, Bastos JFk¹¹, Nanayakkara NPO¹²
1Laboratório de Produtos Naturais, Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Bragança, Av. Dr. Armando Sales de Oliveira, 201, CEP 44404 – 600, Franca, SP, Brazil; 2Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14400 – 903, Brazil; 3National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi 38677

Baccharis dracunculifolia D.C. (Asteraceae) is the most important plant source of the Brazilian green propolis. The aim of this work was to evaluate the antileishmanial and antiplasmodial activities of B. dracunculifolia and its isolated compounds. The leave rinse extract of B. dracunculifolia (Bd) showed in vitro antileishmanial activity against Leishmania donovani, displaying an IC₅₀ value of 45.4μg/mL, while green propolis hydroalcoholic extract (GPE) showed an IC₅₀ value of 49.2μg/mL. Among the isolated compounds, ursoic acid and hautriwaic acid lactone, showed the highest antileishmanial activities, displaying IC₅₀ values: cytotoxic, and 7.0μg/mL, respectively. The pentacyclic triterpenic uvaol, as well as the flavonoids acetatin and ermanin showed IC₅₀ values of 15.0μg/mL, 18.0μg/mL and 40.0μg/mL, respectively. Regarding the antiplasmodial assay against Plasmodium falciparum, Bd and GPE showed similar IC₅₀ values (about 20μg/mL). Hautriwaic acid lactone displayed moderate antiplasmodial activity, while uvaol values of 0.8μg/mL (D6 clone) and 2.2μg/mL (W2 clone). In order to compare the effect on the parasites with toxicity with mammalian cells, the cytotoxic activity of the samples were evaluated against the Vero cells, showing that all evaluated compounds exhibited no cytotoxicity in the maximum dose tested. Acknowledgments: J.R.A. Andrade, F. de Souza e Silva e E. Pavao for (FAPESP) 101475 – 4 and FAPESP (2007/03974-4) and CAPES (PPDE/BEQ 038/04 – 5) and CNPq (119831/2007 – 4) for fellowships.

In vitro antischistosomal activities of phenylpropanoids and lignans against Schistosoma mansoni adult worms
Da Silva Filho AA¹, Magalhães LG², Morais AGC², Gonçalves UO², Santos FP², Moreno Júnior MA², Cunha WR², Silva MLA², Rodrigues V³
1Universidade de Brasilia, Av. Dr. Armando Sales de Oliveira 201, 14404 – 600, Franca, SP, Brazil; 2Faculdade de Medicina de Ribeirão Preto-USP, Av. do Café S/N, 14049 – 900, Ribeirão Preto, SP, Brazil

Phenylpropanoids (isoeugenol, α-arsonone, coumaric acid, ferulic acid, caffeic acid, sinapic acid) and lignans 1 and 2 obtained by oxidative coupling of caffeic and sinapic acids, respectively, were evaluated in vitro against Schistosoma mansoni adult worms. Couple adult worms of S. mansoni LE strain were recovered from mesenteric veins of the infected mice and cultured in 24-well plates at 37 C in RPMI 1640 media. Samples were dissolved in 10% DMSO and diluted into the medium to give 10, 25, 50 and 100μM. Coupled adult worms were kept for 5 days and the viability, pairing, egg production, and egg development were monitored every 24h. As negative control (NCG) was used adult worms treated with 10% DMSO. Praziquncantel (PZQ, 10μM) was used as positive control. Regarding the viability, neither phenylpropanoids nor lignans caused the death of the S. mansoni. Lignans 1 and 2 (10, 25, 50 and 100μM) reduced motor activity of the adult worms and significantly decreased daily egg production. Also, 1 and 2 (50 and 100μM) was able to separate the adult worm pairs into male and female after 120h of incubation. All tested phenylpropanoids were inactive against S. mansoni adult worms, while PZQ (10μM) caused death of worms and tegumental alterations. Acknowledgements: To FAPESP for financial support (2006/60142 – 4) and fellowships (2006/00723 – 1; 2008/01744 – 4).
PD22

Bioguided fractionation of the antimalarial plant *Argemone mexicana*: isolation and quantification of active compounds from effective clinical batches.

Simões-Pires CA¹, Diop EA¹, Joset JR², Falquet F², Mathiessen A³, Maes L⁴, Hostettmann K²

¹Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, EGPL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland; ²Antenna Technologies, 29 rue de Neuchâtel 1201 Geneva, Switzerland; ³Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Groenenborgerlaan 171, B-2020 Wilrijk, Antwerp.

Despite major scientific advances and considerable health related efforts, malaria remains one of the world’s leading killers in endemic countries, with an estimated 250 million cases every year, giving rise to an estimated 800,000 deaths, mostly among African children. For various reasons the access to safe and effective medicines such as artemisinin-based combined therapies is a major issue for a large proportion of the patients, especially those living in rural areas who use traditional medicinal plants for their primary healthcare. Based on the promising clinical results of an *Argemone mexicana* L. (Papaveraceae) traditional preparation used to treat malaria in southern Mali [2], a bioguided fractionation of the decoction prepared with the clinical batch of the plant was performed in order to identify its active ingredients. Fractions were obtained by a combination of liquid-solid extraction and liquid-liquid partitioning. From the active fraction three alkaloids were isolated by semi-preparative HPLC and tested against *P. falciparum* in vitro: allocryptopine, berberine and protopine. A QNMR method was developed to quantify these three alkaloids within a mixture. The H² NMR signal of the methane dioxide group of each alkaloid was used for integration, and methylation was used as the internal standard. Allocryptopine was found to be the most concentrated alkaloid in the traditional decoction, with an antiplasmodial IC₅₀ value of 1.46 μg/mL. Qualitative and quantitative results are critically discussed in regard of the clinical efficacy of this traditional preparation. The outcome of the quantitative NMR measurements are compared to results obtained using other analytical methods. References: [1] Bourdy, G. et al. (2008) Int. J. Parasitol. 38:33–41. [2] Willcox, M.L. et al. (2007) Trans. R. Soc. Trop. Med. Hyg. 101:1190–1198.

PD24

The antimicrobial activity of medicinal plants to treat sexually transmitted infections (STI’s)

van Vuuren SF

Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa

There are numerous ethnobotanical reports of plants used for the treatment of sexually transmitted infections, yet few studies have been undertaken to validate the use against pathogens infecting the urogenital tract. For this study, twenty plants were assessed for antimicrobial activity against STI pathogens i.e. *Trichomonas vaginalis*, *Candida albicans*, *Oligella ureolytica*, *Ureaplasma urealyticum*, *Neisseria gonorrhoeae* and *Gardnerella vaginalis*. Plant selection was based on the ethnobotanical literature [1,2,3]. Extracts were prepared by submerging the dried macerated plant material in a mixture of methanol and dichloromethane (1:1) for 24h. Antimicrobial activity was assessed using the micro-well minimum inhibitory concentration assay with specific alterations to facilitate fastidious growth of pathogens [4]. *Tarchonanthus camphoratus* (leaf extract) showed the most significant broad spectrum activity with MIC values ranging between 0.5–0.7 mg/mL against five of the six pathogens tested. Other noteworthy activity was found for *Hypoxis latio la* showing sensitivity towards *T. vaginalis* at 0.8 mg/mL. *Tarchonanthus camphoratus* (leaf extract) showed notable sensitivity when tested against *C. albicans* (0.5 mg/mL). The highest activity noted for *N. gonorrhoeae* was for *Hypericum aethiopicum* (root) at 0.3 mg/mL. Polygala frutcosa and the root extract of Hypericum aethiopicum showed highest sensitivities towards *C. vulgaris* at 0.2 mg/mL. Efficacy of the plant extracts against the pathogens *O. ureolytica* showed MIC values below ≤0.1 mg/mL for nine plant species. The highest activity noted against *U. urealyticum* was for *Psidium guajava* at 0.8 mg/mL. This in vitro evaluation validates the ethnobotanical use as an anti-infective to treat sexually transmitted diseases. References: [1] Hutchings, A. et al. (1996) Zulu Medicinal Plants – An Inventory. University of Natal Press, Pietermaritzburg, South Africa. [2] Watt, J.M., Breyer-Brandwijk, M.G. (1962) The Medicinal and Poisonous Plants of Southern and Eastern Africa. 2nd Edition, Livingstone, London, UK. [3] Neuwinger, H.D.et al. (2000) African Traditional Medicine: A Dictionary of Plant Use and Applications. Medpharm, Stuttgart, Germany. [4] NCCLS (2003) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria. 6th Edition, USA.

PD23

Rhinacanthin production by four hairy root lines of Rhinacanthus nasutus (L.) Kurz

Hom-utai S, Panichayupakaranant P, Wungsintaweekul J, Tansakul P

Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

Rhinacanthus nasutus (L.) Kurz is a medicinal plant used in Southeast Asia for treatment of several skin diseases [1]. The plant extract possessed several pharmacological activities such as anti-inflammatory and antiviral activities [2]. The naphthoquinone compounds, namely rhinacanthins, are major chemical constituents in this plant. In this study, technique of hairy roots induction by *Agrobacterium rhizogenes* was used for isolation and quantification. In this study, four hairy root lines of *R. nasutus*, including HR13332, HR13333, HR13334 and HR15834, were induced on the leaf explants by *A. rhizogenes* strains ATCC 13125, 13332, 13333 and 15834, respectively. Transformation percentages were 55%, 25%, 70% and 60%, respectively. The fragments of rOb and rObC genes were observed in all hairy root lines using PCR technique indicating the successful integration of the T-DNA fragment of Ri plasmid of *A. rhizogenes* to the genome of the hairy roots. Rhinacanthin production from these hairy roots was determined using HPLC technique. HR11332 produced rhinacanthin-C as a major compound together with rhinacanthin-D, and -N with the yields of 2.163, 0.042 and 0.006%, respectively. In contrast, HR13332, HR13333 and HR15834 contained only rhinacanthin-C and -D. The amount of rhinacanthin-C in these three hairy roots were 0.843, 0.824, and 1.148% w/w, while those of rhinacanthin-D were 0.039, 0.012 and 0.017% w/w, respectively. Acknowledgements: National Research Council of Thailand (NRCT) and Prince of Songkla University Reference: [1] Farnsworth, N.R. et al. (1992) Thai Medicinal Plants: Recommended for Primary Health Care System. Prachachon. Bangkok.

PD25

Antibacterial Activity of Rhinacanthin Rich Rhinacanthus nasutus Extract

Panichayupakaranant P, Pattarak P

Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Hai, Songkhla 90112, Thailand

Rhinacanthin rich *Rhinacanthus nasutus* (RRn) extract was prepared using the method described by Panichayupakaranant et al. [1]. In a recent study we have shown that the RRn extract possessed antifungal activity against *Trichophyton rubrum*, *T. mentagrophytes* and *Microsporum gypseum* with the MIC values equal to that of rhinacanthin-C, the most antifungal active constituent of *R. nasutus* leaf extract [1]. In this study, antibacterial activity of the RRn extract as well as rhinacanthin-C against *Streptococcus mutans*, *Propionibacterium acnes*, *Staphylococcus aureus* and *S. epidermidis* was evaluated by microdilution assay [2]. The RRn extract used in this study was purifiled by the HPLC method [1] to contain total rhinacanthin content not less than 70% w/w. It was found that the RRn extract exhibited potent antibacterial activity against *S. mutans*, and moderate antibacterial activity against *P. acnes*, *S. aureus* and *S. epidermidis* with the MIC and MBC values as shown in Table 1. The antibacterial activity of the RRn extract was almost equal to that of rhinacanthin-C.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>S. mutans</th>
<th>P. acnes</th>
<th>S. aureus</th>
<th>S. epidermidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC (μg/mL)</td>
<td>MIC (μg/mL)</td>
<td>MIC (μg/mL)</td>
<td>MIC (μg/mL)</td>
<td>MIC (μg/mL)</td>
</tr>
<tr>
<td>RRn extract</td>
<td>4</td>
<td>16</td>
<td>>128</td>
<td>8</td>
</tr>
<tr>
<td>Rhinacanthin-C</td>
<td>2</td>
<td>8</td>
<td>>128</td>
<td>2</td>
</tr>
<tr>
<td>Tetraacycline</td>
<td>1</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 1 Antibacterial activity of rhinacanthin rich *Rhinacanthus nasutus* (RRn) extract and rhinacanthin-C
Leishmaniasis is a disease resulting from infection by protozoan parasites of the genus *Leishmania*. Pentavalent antimonials, used clinically for more than 50 years, are still the first-choice drugs for the treatment of leishmaniasis, but they are toxic, require long-term treatment, and are prone to stimulate drug resistance [1]. Marine brown algae (Phaeophyceae) belonging to the order Dictyotales have emerged as an exceptionally rich source of diterpenoids, which form part of a defensive strategy against herbivores in the marine environment [2]. We have investigated the activity of crude extracts, a fraction, and an isolated compound (4R, 9S, 14S)-4-acetoxy-9,14a-dihydroxydolast-1(15),7-diene of the brown alga *Canistrocarpus cervicornis* against promastigote forms of *Leishmania amazonensis*. The antiproliferative assays showed a dose-dependent effect against promastigotes with IC_{50} values in the range between 20.0 and 80.0 μg/ml for crude extracts, 5.0 μg/ml for the fraction and 2.0 μg/ml for the isolated compound from *C. cervicornis*. We also investigated targets in the parasite by means of electron microscopy. Ultrastructural alterations were mainly observed in the mitochondria of parasites treated with the isolated compound. Based on the current study, compounds from *C. cervicornis* appear to be an alternative for the development of new antiparasitic chemotherapies. However, further in vitro and in vivo studies are necessary to elucidate the mechanism of action of this compound. **Acknowledgements:** CNpq, FINEP, PRONEX/Fundação Araucária. **References:** [1] Croft, S.L. et al. (2006) Indian J. Med. Res. 123:399 – 410. [2] Garcia, D.G. et al. (2009) Phytother. Res., in press.

Effect of the marine brown alga *Canistrocarpus cervicornis* on promastigote forms of *Leishmania* (*L.* amazonensis)

PD26

Santos AO^1^, Britta EA^2^, Ueda-Nakamura T^2^, Dias Filho BP^2^, Bianco EM^2^, Teixeira VC^2^, Perreira RC^2^, Nakamura CV^2^, Ts.

**Pôs Graduação em Microbiologia, Universidade Estadual de Londrina, 86055 – 990, Londrina – PR, Brazil; 3Pôs Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, 87020 – 900, Maringá – PR, Brazil; 4Programa de Pôs-graduação em Química Orgânica, Universidade Federal Fluminense, Niterói, RJ, Brazil; 5Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, RJ, Brazil.

The chemotherapeutic effectiveness of five Nigerian plants used in treating malaria *Malaria PE^1^, Campbell WE^1^, Etusim PE^2^, Nduka FO^2^, Smith RP^2^.

**Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa; 2Parasitology Unit, Department of Animal and Environmental Biology, Abia State University, Uturu P.M.B 0000, Nigeria.

Malaria continues to be one of the greatest health challenges in Africa especially in Nigeria. Resistance of parasites to already existing drugs is leading to unacceptable levels of therapeutic failures globally. There is a growing realization that combination therapy is vital to the optimal control of malaria in developing countries [1]. It has great advantages and latent potentials to be explored over monotherapy. WHO 2001 recommendations of the Artemisinin combination therapy (ACTs) is a proven example. The present work focused on the antiplasmodial and cytotoxic effects of five plants commonly used in Nigerian folk medicine either singly (monotherapy) or combined to treat malaria. Ethyl acetate and dichloromethane extracts of two plants exhibited significant activity against chloroquine sensitive and chloroquine resistant strains of *Plasmodium falciparum* and no significant toxicity against Chinese Hamster Ovarian cell lines. A combination of the extracts of two plants showed a significant enhancement of the activity. A bioassay guided fractionation using solid phase extraction and high performance liquid chromatography revealed three compounds. Two known compounds, linoleic and linolenic acid have been structurally elucidated and characterized using NMR and GC-MS spectrometry methods. These compounds exhibited a good selectivity index against the sensitive and resistant strains of the *Plasmodium falciparum* parasite. No significant in vitro toxicity was observed with the compounds. The extract tested in vivo at 800 mg/kg was not toxic. Further in vivo work of the most active extract and the bioavailability studies of the compounds are in progress.

**The medicinal plant *P. ovatum* is used popularly as an anesthetic [1] and anti-inflammatory [2]. We assessed the biological activity of a crude extract, a mixture of several fractions, and a pure compound obtained from *Piper ovatum* Vahl against promastigote and amastigote forms of *Leishmania amazonensis*. This study included the extraction process and bioassay-guided fractionation by the adsorption chromatography and Sephadex LH-20 method. A progressive increase in the antileishmanial effect was observed in the course of fractionation. The 50% inhibitory concentration (IC_{50}) for dichloromethane-ethyl acetate (1:1 v/v) fraction was 2.1 μg/ml; mixture of piperovatine: piperlonguminine (2.3:0.9 μg/ml and 24.0 μg/ml; mixture of piperovatine (1.0 μg/ml and 10.0 μg/ml; and piperlonguminine (2.5 μg/ml and 9.0 μg/ml for promastigote and amastigote forms, respectively. Cytotoxicity analysis indicated that these toxic concentrations were much higher for *F. gramineus* macrophages and Vero cells than for the protozoans. The mixture of piperovatine:piperlonguminine (2:3) showed important antiprotozoal activity against the amastigote and promastigote forms of *L. amazonensis*, and it produced morphological changes in promastigotes and amastigotes at 0.9 μg/ml and 24 μg/ml (50% growth inhibition concentration), respectively, including intense cytoplasmic vacuolization, mitochondrial swelling, and mitochondrial damage, as revealed by transmission electron microscopy.

In vitro antileishmanial activity of hydroalcoholic extract, fractions, and compounds isolated from leaves of *Piper ovatum* Vahl against *Leishmania amazonensis*

PD29

Rodrigues Silva D^1^, Nakamura CV^2^, Dias Filho BP^2^, Ueda-Nakamura T^1^, Banierti Costa LE^1^, Cortez DAC^1,3^ 1Programa de Pós-graduação em Ciências Farmacêuticas; 2Departamento de Análises Clínicas; 3Departamento de Farmácia e Farmacologia, Universidade Estadual de Maringá; 4CESUMAR, Maringá, Paraná, Brazil.
PD30

Inhibition of lipid peroxidation as prognostic biomarkers of wound healing
Odukoya OA, Sofidiya MO, Ajose Ol, Onalo MU, Shuib S
Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Nigeria

Molecular oxygen plays a central role in the pathogenesis and therapy of wounds. Ethanol extracts of six wound healing medicinal plants (Anthocephalas, Nauclea latifolia (Rubiaceae), Petiveria alliacea (Phytolaccaceae), Treculia africana Dec’ne (Moraceae) and Uvaria chamæ P. Beauv. (Annonaceae) were identified in an ethobotanical survey that were investigated for free radical scavenging activities and also lipid peroxidation. Free radical scavenging activity was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals and inhibition of lipid peroxidation was accessed with thiobarbituric acid (TBA) method in a poly unsaturated fatty acid (PUFA) model of Scinder japonicum fish homogenate calculated as MDA equivalent/g of tissue. Total phenol and flavonoid contents were determined spectrophotometrically as gallic acid and rutin equivalents, respectively.

<table>
<thead>
<tr>
<th>Plant Samples</th>
<th>Thioarbituric Acid Reactive Substances (TBARS) Values (mg/tissue) in fish homogenates</th>
<th>Total Phenols</th>
<th>Total Flavonoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. nobilis</td>
<td>0.009±0.006</td>
<td>0.007±0.006</td>
<td>10.020±0.016</td>
</tr>
<tr>
<td>E. utile</td>
<td>0.010±0.001</td>
<td>0.005±0.002</td>
<td>30.101±0.089</td>
</tr>
<tr>
<td>H. latifolia</td>
<td>0.008±0.002</td>
<td>0.002±0.000</td>
<td>10.411±0.153</td>
</tr>
<tr>
<td>P. alliacea</td>
<td>0.005±0.001</td>
<td>0.002±0.000</td>
<td>3.133±0.040</td>
</tr>
<tr>
<td>T. africana</td>
<td>0.006±0.002</td>
<td>0.004±0.000</td>
<td>3.620±0.020</td>
</tr>
<tr>
<td>G. chance</td>
<td>0.017±0.001</td>
<td>0.007±0.000</td>
<td>11.093±0.030</td>
</tr>
</tbody>
</table>

Flavonoid content correlated positively with activity. Flavonoids reduce lipid peroxidation by preventing or slowing the onset of cell necrosis and also by improving vascularity. Hence, any extract that inhibits lipid peroxidation will increase the viability of collagen fibres by increasing the strength of collagen fibres, circulation, prevent cell damage and hasten the process of wound healing by inhibition of lipid peroxidation as prognostic biomarkers.

PD31

UPLC/TOF-MS methodology for the on-line identification of secondary metabolites in four Scleria species (Cyperaceae): S. striatonux, S. verrucosa, S. boivinii and S. naumaniana
1Pharmacognosy Research Group, Departement of Pharmacy, University of Buea, P.O.Box 63, Buea, Cameroon; 2Laboratory of Pharmaceutical and Phytochemistry, School of Pharmaceutical Sciences, EPFL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland; 3Swiss Tropical Institute, Socinastre 57, CH-4002 Basel, Switzerland; 4Department of Chemistry, University of Minnesota, 207 Pleasant St., SE, Minneapolis, MN, 55455 USA; 5Medicinal Foods & Plants, Bamenda, Cameroon

The DCM extract of the rhizome of S. striatonux exhibited IC50 values of 0.664 μg/mL/1.043 μg/mL (chloroquine sensitive strain D6) and 0.671 μg/mL/1.147 μg/mL (chloroquine resistant strain W2) of Plasmodium falciparum. Bioassay guided fractionation afforded 4 new sesquiterpenes [1]. The activity was related to one endoperoxyl derivative. Three other species of Scleria, S. boivinii, S. verrucosa and S. naumaniana were tested for their antimalarial activity on P. falciparum. Results revealed activity of Scleria boivinii IC50 4.25 μg/mL (chloroquine sensitive, NF54). Combining the separation efficiency of UPLC and high resolution of TOF-MS detector, an analytical method was optimized in order to compare the metabolite profiles of crude extracts from the four Scleria species and to track compounds presenting sesquiterpene base structures.

PD32

Phytochemical and antibacterial studies of Indigofera secundiflora
Ahmadu AA1, Onanuga A2, Agunu A3
1Department of Pharm. & Medicinal Chemistry, Niger-Delta University Wilberforce Island, Bayelsa state-Nigeria; 2Department of Pharmaceutical Microbiology and Biotechnology, Niger-Delta University, Wilberforce Island, Bayelsa state-Nigeria; 3Department of Pharmacognosy and Drug Development, Ahmadu Bello University, Zaria-Nigeria

The genus Indigofera comprises about 700 species that are distributed geographically in tropical regions including Nigeria, Burkina Faso and India [1]. Various species of Indigofera have been used in folkloric medicine, which include antibacterial, antifungal, antiseptic and antiseptic venom properties and for tumors in particular the decoction of the aerial parts of Indigofera secundiflora is used against bacterial infections, diarrhoea and as a cough remedy [2]. In continuation of our phytochemical work into Indigofera species of Nigeria flora, the aerial parts of Indigofera secundiflora were investigated. The acetone extract was screened for anti-bacterial activity against E. coli, B. subtilis, P. aeruginosa and S. aureus at concentrations of 5 and 10 mg/ml. The extract inhibits all the test organisms with zones of inhibition ranging from 13 to 23 mm comparable to standard antibiotics gentamycin 10 μg/ml and ciprofloxacin 10 μg/ml. Fractionation of this extract over silica gel open column chromatography, gel filtration over Sephadex LH-20 and preparative TLC gave quercetin, quercetin-3-methyl ether, quercetin 3,4-dimethyl ether and kaempferol-3-methyl ether. The structures were elucidated using NMR techniques and compared with those reported in literature [3,4]. The anti-bacterial activity of the isolated flavonoids is discussed. References: [1] Dalziel, J.M. (1965) The useful plants of West tropical Africa. A Crown agent for overseas publication. [2] Bakasso, S. et al. (2008)
Artemisinin, a sesquiterpene lactone extracted from the leaves of *Artemisia annua*, is now under the aegis of WHO, the pharaoh of the global fight against malaria. This molecule isolated and characterized in the early seventies, is present only in this Asteraceae and so far not synthetizable.

The sudden and very strong growth in demand for artemisinin since 2005 caused a great interest in developing large-scale cultures. Security of supply and lowering the cost of production are the key objectives for this new crop. With the benefit of more than fifteen years of experience in breeding and cultivation of the species, Mediplant was in "pole position" to meet these challenges. This presentation has the objective to give an overview of the research and development activities of Mediplant with *Artemisia annua*. In the recent years, research work is mainly oriented towards the breeding for high levels of artemisinin in the leaves. The cultivars of Mediplant actually contents of 1.5% to 2.0% of artemisinin in the leaves, compared to 0.5% 15 years ago. The development of this new field crop in countries of Africa and South America, interested for producing *Artemisia annua*, allows a direct transfer of knowledge and a very instructive feedback for updating the cultivation problems and research topics.

Synergistic antimalarial activity of artemisinin and olive leaf decoction: the role of the constituents of the phytocomplex

Sannella AR, **Karioti A** 1, **Ieri F** 2, **Romani A** 2, **Vincieri FF** 2, **Messori L** 1, **Maior C** 1, **Severini C** 1, **Bilia AR** 3

1*Department of Infectious, Parasitic and Immunomediated Diseases, Vector-Borne Diseases and International Health Section, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy; 2Department of Pharmaceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; 3Mediplant, Centre de recherche, CH-1964 Conthey; 4Agrascopio Changins Wädenswil Research Station ACW, CH-1964 Conthey, Switzerland

Artemisia annua is a herbal drug with profound antimalarial activity, which is ascribed to the unique sesquiterpene lactone artemisinin. Recently, artemisinin has been reported to show efficacy against other parasitic protozoan sp., such as *Trypanosoma* and *Leishmania*, how-ever trypanocidal and leishmanicidal effects of *A. annua* extracts have remained unstudied. In the current study, we evaluated the in vitro growth inhibitory activity of a number of organic and aqueous extracts of a selected high-yield Brazilian cultivar of *A. annua* against three infectious parasitic protozoa, *T. brucei rhodesiense*, *T. cruzi* and *L. donovani*. Artemisinin was also evaluated for its antiparasitic activity for comparison. Artemisinin content of these extracts (obtained by evaporation of the organic solvent or freeze-dried aqueous solutions) was determined by HPLC/DAD/MS. The hexane extract was found to be the richest in artemisinin (3.68%), whereas the toluene extract was the poorest (0.57%) [3]. Among the tested extracts, the acetone- and the n-hexane-solubles of *A. annua* were the most potent against *T. b. rhodesiense* with *IC₅₀* values of 0.30 and 0.455 µg/ml, respectively, whereas the other extracts were ten- to fifty-fold less potent. None of the extracts or artemisinin had trypanocidal activity against *T. cruzi* (*IC₅₀* > 30 µg/ml). Only the organic extracts of *A. annua* arrested the growth of *L. donovani* with modest *IC₅₀* values (5.1 to 9.0 µg/ml) comparable to that of artemisinin (*IC₅₀* 8.8 µg/ml). This study highlights significant variations in the artemisinin content of *A. annua* extracts and underlines the potential of *A. annua* extracts and artemisinin in the treatment of trypanosomal and leishmanial infections. Notes: Percentages are given on the dried extracts obtained by evaporation of the organic solvent or freeze-dried aqueous solutions, and do not reflect the content of artemisinin in the dried herbal drug, which is about 0.52%. References: [1] Mishina, Y.V. et al. (2007) Antimicrob. Agents Chemother. 51:1852 – 1854. [2] Sen, R. et al. (2007) J. Med. Microbiol. 56:1213 – 1218.
Antiplasmodial activity of papaya leaf decoction and its synergistic effects in combination with artemisinin

Sannella AR, Iariot A2, Vicinieri FP3, Messori L1, Maiori G1, Severini C1, Bilka AR1
1Department of Infectious, Parasitic and Immunomodulated Diseases, Vector-Borne Diseases and International Health Section, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy; 2Department of Pharmaceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; 3Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy

Within the framework of a larger research project [1] aiming at evaluating the possible synergistic effects in malaria treatment between artemisinins—one of the most potent antimalarial agents—and a variety of plant extracts and isolated natural constituents, the antiplasmodial properties of a dried decoction of papaya leaf is reported. The antimalarial activity of papaya is mostly anecdotal but in literature there is a report on the efficacy of a crude aqueous extract of papaya leaf on mice infested with malaria parasite in vivo [2]. A decoction was prepared with 10 g of “mature” papaya leaf (leaf collected already dried in the plant) from Burundi, according to the traditional preparation described by local healers (boiling for several hours until concentration to half volume). After cooling the solution, leaves were filtered and the decoction was biologically dried. The dried extract (2.6 g) was submitted to the HPLC analysis to evaluate the content of polyphenols. 1.6% of total flavonoids expressed as rutin were characterised being trisaccharides of kaempferol and quercetin. The extract of papaya inhibited 3D7 P. falciparum of 0.11 μg/ml. Isobologram analysis showed that the extract of papaya, 100 or 150 μg/ml, used in combination with artemisinin, at subtoxic doses, ranging from 0.625 to 40 μM, exert a strong synergistic effect. The crude extract was submitted to a fractionation with Sephadex LH-20 to obtain, among others, three fractions (CPC, CPD and CPE) having strong activity and containing the polyphenol constituents. Acknowledgments: The Ente Cassa di Risparmio di Firenze supports. References: [1] Sannella, A.R. et al. (2007) Biochem. Biophys. Res. Commun. 353:177 – 181. [2] Berkelar, D. (2002) Echo Tech. Notes

Leucorrhea denotes a thick, whitish vaginal discharge, which can result from inflammation of the vaginal mucosa or can arise due to various diseases, including sexually-transmitted diseases. Leucorrhea can be highly prevalent amongst the rural women of Bangladesh. They usually rely on traditional medicinal practitioners (Kavirajes), who administer various decoctions prepared from medicinal plants to treat this ailment. The objective of this study was to conduct an ethnomedical survey amongst the Kavirajes of several regions of Bogra district, Bangladesh to collect information on medicinal plants used to treat leucorrhea. Plant specimens as collected from the Kavirajes were identified at the Bangla National Herbarium. A total of 23 plant species was found to be used by the Kavirajes for treatment. These plant species (with family name given in parenthesis) included Dacus carota (Apiaceae), Monordica charantia (Cucurbitaceae), Morinda tinica (Euphorbiaceae), Zingiber officinalis (Asteraceae), Hypis suaveolens (Lamiaceae), Drynaria quercifolia (Polypodiaceae), Helminthostachys zeylanica (Ophioglossaceae), Calotropsis procera (Amaranthaceae), Camellia sinensis (Theaceae), Swietenia mahagoni (Melaceae), Eucalyptus globules (Myrtaceae), Bixa orellana (Bixaceae), Delonix regia (Leguminaceae), Tectona grandis (Lamiaceae), Alstonia scholaris (Apocynaceae), and Piper nigrum (Piperaceae). Taken together, the plants can prove to be potentially important for isolation of components, which are active against drug-resistant forms of malaria.

Malaria is widely prevalent in many countries of the world, including Bangladesh. In recent years, scientific attention has focused on traditional methods for treatment of malaria because of the emergence of drug-resistant forms of this disease. In Bangladesh, malaria is often treated by traditional medicinal practitioners (Kavirajes) who use plant decoctions to treat this disease. The objective of the present study was to collect information amongst the Kavirajes of several regions of Bogra district, Bangladesh on medicinal plants used to treat malaria. Kavirajes were interviewed and plant specimens as pointed out by them were collected and identified at the Bangladesh National Herbarium. A total of 23 plant species was found to be used by the Kavirajes for treatment. These plant species (with family name given in parenthesis) included Dacus carota (Apiaceae), Monordica charantia (Cucurbitaceae), Morinda tinica (Euphorbiaceae), Zingiber officinalis (Asteraceae), Hypis suaveolens (Lamiaceae), Drynaria quercifolia (Polypodiaceae), Helminthostachys zeylanica (Ophioglossaceae), Calotropsis procera (Amaranthaceae), Camellia sinensis (Theaceae), Swietenia mahagoni (Melaceae), Eucalyptus globules (Myrtaceae), Bixa orellana (Bixaceae), Delonix regia (Leguminaceae), Tectona grandis (Lamiaceae), Alstonia scholaris (Apocynaceae), and Piper nigrum (Piperaceae). Taken together, the plants can prove to be potentially important for isolation of components, which are active against drug-resistant forms of malaria.

In this study, isolation and structure elucidation of the high antioxidant and antiglycation compound(s) from Teucrium polium was performed. Based on our results, rutin (quercetin-3-rutinoside), a flavonol glycoside isolated from T. polium exhibited high antioxidant activity compared to the other isolated compounds from T. polium.

The protein glycation inhibitory activity of rutin was also evaluated in vivo using various models [1, 2, 3]. In the early stage of protein glycation rutin showed a moderate inhibitory activity on HbA1c formation, which were similar to that of aminoguanidine, a well-known inhibitor for advanced glycation end products (AGEs). For the middle stage, rutin developed a more significant inhibitory effect on methylglyoxal-mediated protein modification, and in the last stage of glycation, rutin was
found to be potent inhibitor of both the AGEs formation and the subsequent cross-linking of proteins. Furthermore, the effect of rutin on preventing oxidative protein damages including effect on protein carbonyl (PCO) formation and thiol oxidation which are believed to form under the glycoxidation process was achieved. Rutin inhibited high glucose induced oxidative damages to protein by decreasing PCO formation and preventing thiols group from oxidation. In addition, the structural changes of human serum albumin with glucose, in the presence of rutin were evaluated by circular dichroism and fluorescence techniques. Regarding enhancing the helicity of the protein and prevents helix decrement in the secondary structure of human serum albumin in the presence of glucose, it can be concluded that rutin may be act as an anti-glycation agent for human serum albumin. Acknowledgements: This research work was supported by the Research Council of Shahid Beheshti University (Tehran, Iran). We also extend our thanks to Mrs. M. Abeer zadeh for her instrumental assistance. References: [1] Rahbar, S. et al. (2000) Mol. Cell. Biol. Res. Commun. 3:360 – 366. [2] Lee, C. et al. (1998)]. Biol. Chem. 273:25272 – 25278. [3] Nagarai, R.H. et al. (1996). Biol. Chem. 271:19338 – 19345. PD41 Antioxidant capacity against peroxyx free radicals of various edible fruits from Bosnia Tahirovic I, Toromanovic J, Sapcanin A, Hrnat A, Sofic E University of Sarajevo, Faculty of Science, Zmaja od Bosne 35, Sarajevo, Bosnia and Herzegovina The aim of this study was to determine the antioxidant capacity (AC) of various edible fruits from Bosnia. AC measurements were performed on the fruits of bilberry, cranberry, cherry and wild cherry, strawberry, black and white mulberry, black and red currant, and raspberry. The AC was determined using modified Oxygen Radical Absorbance Capacity (ORAC) assay, previously described by Cao et al. [1]. The ORAC assay is based on the propensity of the fluorescence emitted by fluorescein to be quenched when exposed to free radical action. The AC of the analysed fruits was in the following order (expressed in mmol trolox equivalents): bilberry 12.61, cranberry 10.54, wild fruits was in the following order (expressed in mmol trolox equivalents: bilberry 12.61, cranberry 10.54, wild fruits 5.5 mg/g. Conclusion: The antioxidant capacity against peroxyx free radicals of various edible fruits from Bosnia. PD42 High performance liquid chromatographic analysis of rutin in Tarragon extracts Duric K1, Kovac-Besovic E1, Salihovic M1, Dzudzevic-Cancar H1, Sofic E2 1University of Sarajevo, Faculty of Pharmacy, Cekalusa 90, 71000 Sarajevo, Bosnia and Herzegovina; 2University of Sarajevo, Faculty of Science, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina Preparations from tarragon (Artemisia dracuncul L., Asteraceae) are widely used as prophylactics and as treatments for various diseases. The most important classes of biologically active substances present in the herbage and leaves of tarragon are the essential oil, coumarins, flavonoids and phenolic acids. Some studies of cultivated tarragon show the herbage contains up to 4.9% of flavonoids, included quercetin, luteolin, campesterol, isorhamnetin and their glycosides of wild-growing plants were also found to have flavonoid contents varying from 0.5 to 1.9%. Objectives: In this study, using HPLC-ED system, quantitative analysis of rutin was carried out in different extracts of tarragon. Hot, cold and ultrasonic types of water extracts of tarragon leaf were prepared. The drug (1 g) was powdered and extracted with HPLC water (10 ml). Afterward 1 ml of that extract was decanted and centrifuged, obtaining supernatant which was used for further analysis. The standard solution was rutin (Merck, Germany), dissolved in isopropyl alcohol. HPLC conditions were following: Mobip phase methanol-acetonitrile- H2O: 0.5 acetic acid (20:10:70+11; electro-chemical detector with range 50nA, potential +0.840 V, filter 0.02 Hz; flow rate 0.8 ml/min; temperature 25°C. Results: Determination of rutin was based on a comparison of retention-times obtained from different extracts of tarragon by the ED detector. The highest amount of rutin was obtained with ultrasonic extraction, 6.5 mg/g. Applying cold extraction of tarragon leaves, the amount of calculated rutin was 6 mg/g and the lesser amount of rutin was obtained with hot extraction, 5.5 mg/g. Conclusion: The presence of rutin, the rheinoglucoside of the flavonoid quercetin, give more importance to tarragon as potential medicinal plant to improve microcirculation. References: [1] Aglarova, A.M. et al. (2008) Pharm. Chem. J. 42:81 – 86. [2] Shahriary, L. et al. (2007)]. Ethnopharmacol. 114:194 – 198. [3] Lopes-Lutz, D. et al. (2008) Phytochemistry 69:1732 – 1738. PD43 Comparative analysis of total phenols and sulfur content in some plant organs of ramsoms and two garlic species Mlakartová O 1, Mucjí E 2, Toromanovic J 1, Mustovic F 3, Muradic S 4, Huseinović S 5, Sofic E 6 1University of Sarajevo, Faculty of Science, Zmaja od Bosne 35, Bosnia and Herzegovina; 2Public Enterprise “Vodno područje sliva rijeke Save”; Sarajevo Laboratory, Bosnia and Herzegovina; 3University of Sarajevo, Pedagogical Academy, Skenderija 72, Bosnia and Herzegovina; 4Karl-Franzens University, Universitätsplatz 1, A-8010 GRAZ, Austria Preparations from tarragon (Artemisia dracuncul L., Asteraceae) are widely used as prophylactics and as treatments for various diseases. The aim of this study was to compare total phenols and sulfur content in ramsoms and two garlic species, autumn- and spring-garlic. Harvesting time for ramsoms was May and for garlics was June. Total phenol content was determined by theSingleton-Rossi method, which is based on phenol oxidation using Folin-Ciocalteu reagent and spectrophotometric quantitative results. In our analysis, all sulfur molecular species were oxidised to the stable sulfate form, which was quantified by ion chromatography (HPIC). The quantity of phenolic compounds (mg phenols/g fresh sample) was found to be the highest for the leaves of autumn-garlic (1.97 mg/g), followed by leaves of spring-garlic (1.49 mg/g) and ramsoms (1.28 mg/g). A lower phenol content was found in the bulbs: spring-garlic bulb (0.80 mg/g), autumn-garlic bulb (0.48 mg/g) and ramson bulb (0.46 mg/g). The highest sulfur level (mg sulfur/g fresh sample) was found in spring-garlic leaf (1.10 mg/g) while the quantity of sulfur for other samples were: ramsoms bulb (0.93 mg/g), ramsoms leaf (0.74 mg/g), spring-garlic bulb (0.70 mg/g), autumn-garlic leaf (0.66 mg/g) and autumn-garlic bulb (0.63 mg/g). Levels of sulfur compounds and total phenol content in the bulbs and leaves correlated with the age of the plant. Garlic leaves can be used as a significant source of organosulfur compounds for middle to late spring. References: [1] Cao, G. et al. (1995) Clin. Chem. 41:1738 – 1744. [2] Toromanovic, J. et al. (2008) Planta Medica. 74:1181. PD44 Effect of strawberry dietary supplement over IL-10 and IL-12 in TNBS model of rat ulcerative colitis Socco EAB 1, Luz-Ferreira A 1, Almeida ACA 1, Albuquerque CL 2, de-Faria FM 2, Dunder RJ 3, Souza-Brito ARM 4 1Department of Physiology and Biophysics, University of Campinas, Campinas, Brazil; 2Department of Pharmacology, University of Campinas, Campinas, Brazil In the last few years the study of the IBDs has shown an interaction between the immune response and the intestinal flora. In the ulcerative colitis we note a dysregulation in the immune response, and this is one of the causes of the evolution of the inflammatory process [1]. A group of molecules has been reported in the participation of this inflammatory process, such as the pro-inflammatory interleukin 12 (IL-12) and anti-inflammatory interleukin 10 (IL-10). Strawberry already has been reported as a source of some molecules groups with anti-inflammatory and antioxidant activity, such as hydrolysable tannins and flavan-3,4-diol, and others [2]. The aim of this study was to evaluate the effect of strawberry on the diet of TNBS model of rat colitis. Three groups of rats were used (n = 8); non-colitic (NC) and control groups (C) did not receive treatment, and the treated groups were given a diet with lyophilized strawberry (PRD41) powder. The treatment groups were divided into two: control group (C) and treatment group (T), which was introduced before the administration of TNBS (30 mg/kg). After two weeks, colitis was induced by intracolononic administration of TNBS (30 mg), and fed for one more week. Biochemical parameters (IL-10 and IL-12) were evaluated. The administration of the strawberry diet has shown an intestinal immunoregulatory activity. This diet significantly increased production of IL-10 (136 ± 19.8 versus 93.8 ± 4 pg/g tissue; p < 0.01) when compared with TNBS group. But there’s no alteration on IL-12 levels. Acknowledgements: CNPQ and Capes.
The contents of therapeutically effective compounds of cowslip (*Primula veris* L.) from various stands of Levoceske Mountains in eastern Slovakia

Poracova J, Zahatanská M, Blasacakova M
Presov University, Faculty of Humanities and Natural Sciences, 1, 17. November Street, Presov, 08116, Slovakia

Evaluation of dissolution rates of physical mixtures of rutin with β-cyclodextrin
Uzunovic A1, Vranic E2, Sapcanin A3, Tahirovic I, Toromanovic J, Duric K, Sofic E3
1Institute for Quality Control of Medicines, Titova 9, Sarajevo, Bosnia and Herzegovina; *Faculty of Pharmacy, University of Sarajevo, Cekalusa 90, Sarajevo, Bosnia and Herzegovina; *Faculty of Science, University of Sarajevo, Umeja od Bosne 35, Sarajevo, Bosnia and Herzegovina

Rutin have been reported to exert numerous biochemical and pharmacological activities. Oral administration of rutin has been limited by its poor water solubility. Cyclodextrins have been recognized as potential candidates to overcome the poor solubility of rutin. Formulation with a physical mixture rather than a complex was desirable from a manufacturing viewpoint [1,2]. The aim of this study was to compare the dissolution profiles of rutin, alone or in the combination with β-cyclodextrin (β-CD). The samples used for the dissolution study were rutin alone or in the combination with β-cyclodextrin (rutin: β-CD molar ratio: 1:20, 1:4, 1:2, 1:1, 1:5, 1:1). The inclusion complexes of rutin with β-cyclodextrin were prepared by direct mixing in dissolution vessel (in-situ complexation). Fixed volumes of the dissolution medium were withdrawn at 0.5, 1, 4, 8 and 14 hours. Dissolution tests were performed on the USP Apparatus 2 (Dissolution tester ERWEKA DT 800; rotating speed 100 rpm at 37 ± 0.5°C, 500 ml distilled water). Quantification of rutin in solutions was performed by UV/VIS spectrophotometric method at the absorption maximum around 258 nm. The dissolved amount of both alone or complexed rutin rapidly increases within 1 h, followed by a slower dissolution until it reaches a plateau after about 4 h. The dissolved amounts of rutin in combination with β-cyclodextrin at the end of testing were increased in range of 11.48 to 58.69%. The in-situ complexation of rutin with β-cyclodextrin in all cases led to an increased dissolution rate and can be used to modify release rates of rutin in controlled-release vehicles. References: [1] Calabro, M.L. et al. (2005).] Pharmacuet. Biomed. 36:1019 – 1027. [2] Carrier, R.L. et al. (2007)). Control. Release 123:78 – 99.

Cysteine sulphonates, amino acids and alliinase activity of *Allium nigrum*
Jedelská-Keusgen J, Keusgen M
Institut für Pharmazeutische Chemie, Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany

Allium nigrum L. belongs to the subgenus Melanocrommyum of the genus *Allium*. This subgenus is widely distributed in Southwest and Central Asia. However, *A. nigrum* is a typical plant of east Mediterranean islands.

Many species of this subgenus were traditionally used. *A. nigrum* is reported to be active against helmintiasis. Typical for the genus *Allium* is a rather high content of cysteine sulphonates. Most abundant is the cysteine sulphoxide methiin (1). Recently, an unusual cysteine sulphoxide containing a pyrrole ring system (2) could be reported [1]. Both compounds were also present in *A. nigrum*. Amino acid derivatives were analysed as corresponding o-thiolaldehydes by means of HPLC-MS/MS. For methiin (1) and the pyrrole derivative (2), average concentrations of 0.04% and 0.01%, respectively, were found (concentrations related to the fresh weight of bulbs). If these cysteine sulphonates would be incubated with the enzyme alliinase, a number of thiosulphonates can be expected. Enzymatic incubations were also performed for the low molecular weight extract of *A. nigrum* and resulting compounds were analyzed by HPLC-MS/MS. Interestingly, only the pyrrole derivative (3) could be detected. It is completely unclear in which manner methiin (1) reacts with the alliinase of *A. nigrum*. It can be supposed that this alliinase acts different from the well described alliinase of *A. sativum* (garlic).

Anti-allergic activity of Thai medicinal plants
Makchuchit S1, Itharat A2, Tewtrakul S3
1Faculty of Medicine, Thamasarat University, Klongluang, Pathumthani 12120, Thailand; 2Applied Thai Traditional Medicine Centre, Faculty of Medicine, Thamasarat University, Rungsit Campus, Klongluang, Pathumthani, 12120 Thailand; 3Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Voi, Songkhla 90112, Thailand

Nineteen Thai medicinal plants which were used in Thai traditional medicine preparation for treat a cold, asthma and as antipyretic drug. They are *Amomum testaceum*, *Anethum gravelonse*, *Angelica dahurica*, *Angelica sinensis*, *Artemisia annua*, *Atractylodes lancea*, *Cuminum cyminum*, *Draecaena louerei*, *Foeniculum vulgare*, *Kaempferia galanga*, *Lepidium sativum*, *Ligusticum sinense*, *Mammea siamensis*, *Mesua ferrea*, *Mimusops elengi*, *Myristica fragrans*, *Nelumbo nucifera*, *Nigella sativa* and *Syzygium aromaticum* [1]. The objective of this research is to investigate on anti-allergic activity of these plants. They were extracted by ethanol, ethanol-water and water which imitated the use in Thai traditional book [1]. These extracts were examined for antiallergic activity by determination of inhibitory activities on the release of β-hexosaminidase from RBL-2H3 cells [2]. The results were found that the ethanolic (EtOH) extract of *Mammea siamensis* exhibited the most potent anti-allergic effect against antigen-induced β-hexosaminidase release as a marker of degranulation in RBL-2H3 cells, with an IC50 value of 8.476 μM, followed by the ethanolic extract of *Draecaena louerei* and *Myristica fragrans* (Mace) (IC50 = 9.912 and 11.205 μg/ml, respectively). The water and ethanol-water extracts of all plants were apparently inactive (IC50 > 100 μg/ml). These results can support using Thai traditional plants for cold and asthma. References: [1] Foundation of resuscitate and encourage Thai Traditional Medicine (2005) Thai Pharmaceutical Book Pikanate Printing Center Corporation 225 – 226. [2] Tewtrakul, S., Subhadhirasakul, S. (2007)]. Ethnopharmacol. 109:535 – 538.

Primary preventive effects of Kinginka tea on metabolic syndrome (Part 2)
Oka H1, Ogasawara Y2, Iwaoa E3, Yamaguchi Y4, Kunitomo M5, Tachibana K1
1School of Pharmacy and Pharmacological Sciences, Mukogawa Women’s University, Koshien Kyuban-cho Nishinomiya, 663 – 8179, Japan;
2Faculty of Pharmaceutical Sciences, Doshasha Women’s University, Kōdo Kyoanabe Kyoto, 601 – 0955, Japan;
3Department of Pharmacology, Hyogo University of Health Sciences, Minato-shima Chou-kō Kobe, 650 – 8530, Japan; 4Kaken-shoyaka Co., Ltd, Asahi-ku, Osaka, 535 – 0005, Japan

Metabolic syndrome, which has been increasing rapidly, complicates lifestyle related disease such as obesity, hypertension, hyperlipidemia and diabetes. We previously developed an in vivo assay method to search for primary preventive substances of the metabolic syndrome, monitors the decrease of peripheral blood flow due to the onset of the metabolic syndrome in SHR/NDmcr-cp/cp (SHR/cp) rats of a model [1]. Using this method, we previously found that Kinginka tea (the buds of Lonicera japonica L.) may reduce the risk factors of metabolic syndrome by preventing and improving the circulatory system (peripheral blood flow and blood pressure) if consumed daily [1]. In this study, we re-reported active mechanisms and compounds of Kinginka tea. Kinginka tea significantly inhibited elevated serum level of lipid peroxide (LPO) and 8-hydroxydeoxyguanosine (8-OHdG), such as oxidative stress markers, 3-nitrotyrosine (3-NT) and 3-chlorotyrosine (3-Cl), such as inflammatory markers in SHR/cp rats. The increase of 3-NT and 3-Cl are caused by the activation of the macrophage and neutrophilic leukocyte by the oxidation stress. Thus, one active mechanism of Kinginka tea may be preventive effects on vascular damage induced oxidative stress. Furthermore, by bioassay-directed fractionation of Kinginka tea, chlorogenic acid (1), luteolin (2), luteolin 7-glucoside (3), loganin (4), swerside (5) and secologanin (6) were isolated. Compound 1, a major constituent of this tea significantly improved the decrease of peripheral blood flow in SHR/cp rats. Some various bioactivities of compound 1 on lifestyle-related disease, such as antioxidant action [2,3] have been reported. However, to our knowledge, this is the first report of the primary preventive activity of compound 1 on metabolic syndrome in SHR/cp rats. References: [1] Oka, H. et al. (2007) Clin. Exp. Pharmacol. Physiol. 34:540 – 42. [2] Sakamoto, W. et al. (2003) Toxicology 183:255 – 263. [3] Nakajima, Y. et al. (2007) Life Sci. 80:370 – 377.

Ex vivo absorption of STW 5 and some of its components, using a new HPLC method
Hase S1, Michael S 1, Weisser D2, Kelber O3, Nieder K1
1University Leipzig, Institute of Pharmacy, Tästbr. 33, D-40143 Leipzig, Germany; 2Steigerwald Arzneimittelwerk GmbH, D-64295 Darmstadt, Germany

STW 5 (Iberogast®) is a combination of nine herbal drugs. The fresh whole plant extract of STW 6, a characteristic component of STW 5, contains flavonoids, glucosinolates and low amounts of cucurbitacins. STW 5 and STW 6 as well as cucurbitacin E and I were able to affect protectively inflammatory processes in an in-vitro model. STW 6 (24.1 μM) as well as cucurbitacin E (10 μM) increased the gene expression of the anti-inflammatory agent cytokine IL-10. As they therefore may contribute to the pharmacological properties, there is of relevance to analyze the absorption of these cucurbitacins in the gastrointestinal tract. Therefore, an absorption chamber and a refined HPLC method for quantification of cucurbitacins were developed. For the HPLC an isocratic eluent was used to detect the two cucurbitacins into the same sample. The experiments were done with untreated and inflamed (0.01 M TNBS, 30 min) intestinal preparations from rats. The test substance was placed into the donor compartment. The concentrations of the cucurbitacins in the donor and acceptor compartments in tissue preparations were analysed using solid phase extraction columns followed by HPLC. Fluorescein was used as negative control. Using untreated tissue preparations, no cucurbitacins were detected neither in the acceptor compartment nor in the intestinal preparation after application of commercially available cucurbitacin E and I (0.01 – 10 μM). Low amount of cucurbitacin E and I penetrated into the acceptor compartment after application of STW 5 and STW 6. Comparable results were found when the experiments were conducted with preparations pretreated with TNBS. Our results indicate that cardiovascular system from STW 5 and STW 6 do not penetrate the gastrointestinal wall under normal or inflamed conditions in relevant concentrations. Analysis of the tissue preparations focuses on the assumption that cucurbitacins might be metabolized rapidly in the intestine. Therefore further studies are needed to characterize their potential pharmacological relevance.

Impact of extraction methodology on microbiological screening of Coptis chinensis Franch for antimicrobial activity
Kerr C, Ngwoke W, Wong S, Situ C
Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, IAFUL, David Keir Building, Belfast BT9 5AG, United Kingdom

Coptis chinensis Franch (CCF) is commonly used in herbal remedies in Traditional Chinese Medicine (TCM) owing to its observed antimicrobial and anticancer effects in clinical medicine [1]. As an individual herb, CCF has exhibited potent inhibition on a number of bacteria including Escherichia coli in vitro conditions. The alkaloid components in CCF have been suggested to be the bioactive ingredients. The aim of our study was to investigate: 1) if there is any inhibitory effect on food and animal pathogens such as E. coli, Listeria and Mycobacterium smegmatis, 2) the efficiency of our routine extraction procedures for removal of the known marker alkaloids from CCF. Coptis chinensis Franch (10 g) were extracted using a successive Soxhlet procedure (a) with a series of solvents (Hexane, Dichloromethane, Methanol and Water) or a successive solvent and water procedure (b) in a beaker at room temperature. Crude extracts were tested by microbiological procedure (broth or plate), for possible antimicrobial effect on the three selected microorganisms and their growth inhibition effects were compared with the conventional antibiotics. No inhibitory effect on E. coli was observed from extracts of Soxhlet procedure except the methanol extract showed weak effect. The hexane extract (Soxhlet) and acetone extract from procedure (b) also exhibited weak effect on Staphylococcus sp. Interestingly, no antimicrobial effect from two procedures demonstrated inhibition on neither E. coli nor Listeria monocytogenes. However, the water extract of Soxhlet was found to partially inhibit the growth of M. smegmatis. These results suggest that synergistic effect of different components of Coptis chinen-
Bioactive compounds, antimicrobial and antioxidant activities of endemic Origanum hypericifolium O.Schwarz & P.H. Davis in Turkey Celik A1, Herken EN2, Ozel MZ2, Mercan N1, Arslan I1, Kaygusuz O1, Yilmaz S4
1Pamukkale University, Faculty of Arts and Science, Department of Biology Denizli, Turkey; 2Pamukkale University, Faculty of Engineering, Department of Food Engineering, Denizli, Turkey; 3Pamukkale University, Faculty of Arts and Science, Department of Chemistry, Denizli, Turkey

The chemical composition, total phenolic content, antioxidant and anti-microbial activities with oxidant status of the essential oils from Turkish endemic species, Origanum hypericifolium, were investigated. Steam distillation was used to isolate the essential oils, and the chemical analyses were performed by GC-MS. The antimicrobial activity was tested by agar disc diffusion method against Morganella morganii, Micrococcus flavus, Micrococcus luteus NRL 8-4375, Proteus vulgaris RSJK 96026, Escherichia coli ATCC 11230, Escherichia coli ATCC 25922, Yersinia enteroxocolitica RSJK 1501, Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 25933, Staphylococcus aureus ATCC 12598, Staphylococcus aureus (clinic isolate), MRSA 1 (clinic isolate), MRSA 2 (clinic isolate), MRSA 3 (clinic isolate), and MRSA 4 (clinic isolate). The major compounds found in volatiles of O. hypericifolium were p-cymene, carvacrol and γ-terpinene. Results showed that O. hypericifolium had a potential of being used in food and medicine because of its antioxidant and antibacterial activity. Reference: [1] Skergot, M. et al. (2005) Food Chem. 89:191–198.

A survey of medicinal plants used to treat cattle diseases in satkhira district, Bangladesh Mollik AH, Azam NK, Ferdousi D, Jahan R, Rahmatullah M Department of Biotechnology & Genetic Engineering, University of Development Alternative, House No. 78, Road No. 11A, Dhanmondi R/A, Dhaka-1205, Bangladesh

Cattle are primarily owned by small-scale farmers in Bangladesh. Most households have one or two cows, which are used either for plowing or to obtain milk. Since these farmers cannot afford to visit modern veterinarians, they rely mostly on traditional medicinal practitioners, who administer various medicinal plants for treatment of cattle ailments. We conducted an ethnobotanical survey amongst the traditional medical practitioners to learn more about the plants used to treat cattle diseases. All plant specimens were identified at the Bangladesh National Herbarium. Some of the medicinal plants used (with ailments treated given in parentheses) included Triticum aestivum (to aid cattle birth), Coriandrum sativum (to aid cattle birth), Allium sativum (stomach ache), Acorus calamus (coughs), Smilax china (weakness), Piper cubeba (whistling discharge in urine), Phoenix sylvestris (helminthiasis), Allium sativum (wounds), Fagales patula (to stop bleeding), Euphorbia tirucalli (to increase lactation), Mangifera indica (to increase strength, antidote to poisoning), Cynodon dactylon (to stop bleeding, swelling of throat), Crataeva religiosa (helminthiasis), Ficus religiosa (tongue lesions), Solanum tuberosum (burns), Syzygium aromaticum (abscesses), Citrus grandis (stomach ache), Bambusa arundinacea (diarrhea), Strybus asper (fever, coughs), Trigonella foenue-gracum (to increase strength, to fatten cattle), Oxalis lobata (stomachache), Stachys officinalis (antimicrobial activity). The aerial parts of Valeriana officinalis, representing 97.11% of the oil, of which borneol acetate (18.47), valerenal (15.77%), logifolene aldehyde (13.04), β- gurjunene (9.99) and 8S,14-cedran-diol were found to be the major components. Acknowledgements: The authors acknowledge the financial contribution from the Research and Technology Deputy of ACECR (Academic Centre for Education Culture & Research) for supporting this research. References: [1] Houghton, P.J. (1986) Br. J. Pharmacol. 66:505 – 512. [2] Blumethal, M. (2005) HerbalGram 66:63. [3] Adams, R.P. (2001) Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured Publishing Corp. Carol stream, IL.

Investigation of Valeriana officinalis L. from Iran Nazari F1, Shabani S1, Nejad Ebrahimii S1
1Department of Phytochemistry, Academic Centre for Education Culture & Research, Shahid Beheshti Branch, Shahid Beheshti University, Evin, Tehran, P.O. Box 19615–1171, Iran; 2Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran, P.O. Box 19839 – 63113, Iran; 3Department of Phytochemistry, Medicinal Plants & Drug Research Institute, Shahid Beheshti University, Evin, Tehran, P.O. Box 19839 – 63113, Iran

Valeriana officinalis L. is a member of the Valerianaceae family. It is a perennial plant native to Europe, North and South America as well as parts of Northern Asia. Valerian bushes reach from 1 to 1.5 m height, growing in humid woods and coasts of streams and rivers. The root and rhizome of the valerian plant is used medicinally for its sedative properties with indications including nervous tension, insomnia, anxiety and stress. Nowadays, valerian ranks at the 12th place among the top-selling herbal dietary supplements. It is cultivated in different regions of the world [1,2]. The aerial parts of Valeriana officinalis, grown at Karaj in the north-west part of Iran were hydrodistilled for 3 hours, using a Cleven-ger-type apparatus to yield 0.7% (w/w) of green yellow oil. The essential oil was dried over anhydrous sodium sulphate and stored in a sealed vial at -4°C until analysis. The oil was analyzed by GC and GC-MS. The constituents of the essential oil were identified by comparison of their mass spectra and retention indices (RI) with those given in the literature and authentic samples [3]. Twenty six compounds were characterized in the essential oil of Valeriana officinalis, representing 97.11% of the oil, of which borneol acetate (18.47), valerenal (15.77%), logifolene aldehyde (13.04), β-gurjunene (9.99) and 8S,14-cedran-diol were found to be the major components.

Antioxidant and hepatoprotective activities of terpenoids isolated from Salvia microcalis Vahl Abd El-Mohsen M1, Spencer M8, Ehsan N2, Hussein A1, Hammouda F1, Hifnawy M4, Ismail S1
1Department of Pharmacy, Pharmaceutical, National Research Center, Cairo, Egypt; 2University of Reading, Reading, UK; 3National Liver Institute, Monfia, Egypt; 4Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Egypt

Medicinal plants used against gastrointestinal tract disorders by traditional medicinal practitioners of Bangladesh Mollik AH, Islam T, Khatoon A, Nasrin D, Jahan R, Rahmatullah M Department of Biotechnology & Genetic Engineering, University of Development Alternative, House No. 78, Road No. 11A, Dhanmondi R/A, Dhaka-1205, Bangladesh

Gastrointestinal (GI) -tract disorders like diarrhea and dysentery are endemic throughout Bangladesh because of periodic floods and the poor sanitary conditions of the predominantly rural population. Since the rural population relies mainly on traditional medicinal practitioners
Phytochemical analysis of essential oil from *Lavandula angustifolia* L. of Iran

Nazari F, Shabanani Sh

1Department of Phytochemistry, Academic Centre for Education Culture & Research, Shahid Beheshti Branch, Shahid Beheshti University, Evin, Tehran, P.O. Box 19615-1171, Iran

The genus *Lavandula* is an important member of Lamiaceae family, comprising about 20 species and over 100 varieties in the world. *Lavandula angustifolia* is the most commercially important aromatic plants. *L. angustifolia* is used in aromatherapy as a holistic relaxant and is said to have carminative, sedative, spasmolytic, antiflatulence, antiptic, antiviral and antibacterial properties [1,2]. Since *L. angustifolia* was grown at Shiraz in the south of Iran, were hydrodistilled for 4 hours, using a Clevenger-type apparatus to yield 1.14% (w/w) of pale yellow oil. The essential oil was dried over anhydrous sodium sulphate and stored in a sealed vial at +4°C until analysis. The oil was analyzed by Phytochemical analysis of essential oil from *Ballota aucheri* Boiss. of Iran

Mollah A.H., Hossain S, Islam T, Jahan R, Rahmatullah M

Department of Biotechnology & Genetic Engineering, University of Development Alternative, House No. 78, Road No. 11A, Dhanmondi R/A, Dhaka-1205, Bangladesh

Rheumatoid arthritis is a chronic, systemic autoimmune disorder that causes the immune system to attack the joints, which can be disabling and painful. The disease has a worldwide distribution with an estimated prevalence of 1 to 2%. This prevalence increases with age and can approach 5% in women over age 55. Since this disorder is also present in Bangladesh, we conducted an ethnomedicinal survey amongst the traditional medicinal practitioners (Kavirajes) of Bangladesh to gather information on medicinal plants used by them to treat this disorder. The rural populations of Bangladesh, often lacking access to modern medical facilities rely on Kavirajes, who possess in them an incredible knowledge of medicinal properties of plants and often use such plants in success in treating various ailments. Plant samples were collected from the Kavirajes and identified at the Bangladesh National Herbarium. The plants mostly used to treat rheumatoid arthritis (with family name given in parenthesis) include *Conophora odorata* (Amarilidae), *Scindapsus officinalis* (Araliaceae), *Zingiber officinale* (Zingiberaceae), *Cinnamomum iners* (Lauraceae), *Crinum lantolium* (Liliaceae), *Michelia champaca* (Magnoliaceae), *Spaghottis pilata* (Orchidaceae), *Piper cubeba* (Piperaceae), *Zanthoxylum simulans* (Rutaceae), *Spathoglottis plicata* (Orchidaceae) and *K. galanga* (Sapotaceae), used for the treatment of disorders like pain, the above plants can be of potential importance for further scientific studies leading to complete cure of this debilitating disease.

Phychotherapeutic effects of ligustilide, a natural product from *Aaugellica sinensis* (Oliv.) Diels, in a rabbit model of LPS-induced endotoxic shock

Shao M, Li J, Zhu H, Liu K

1College of life Science, Jinlin University, Jinlin, China;
2Shandong Target-drug Research Co., Ltd., Shandong, China;
3Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China

Tumor necrosis factor-α (TNF-α) is one of the biological mediators that play a critical role in endotoxic shock [1]. Ligustilide, isolated from the rhizome of *Aaugellica sinensis* (Oliv.) Diels, has been shown to inhibit lipopolysaccharide (LPS)-induced TNF-α production in the monocytes [2]. In this study, we investigated the effects of Ligustilide in the rabbit model of LPS-induced endotoxicity. We randomly separated 42 New Zealand rabbits into 6 groups: normal group, model group, dexamethasone group (5 mg/kg), and ligustilide groups (10 mg/kg, 20 mg/kg, and 50 mg/kg). The results showed that ligustilide significantly reduced the changes of body temperature, heart rate, mean arterial pressure (MAP), and blood lactate level in the model group. In addition, ligustilide also reduced the changes of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in the model group. These results suggest that ligustilide has potential therapeutic effects in endotoxic shock.
40 mg/kg). The LPS infusion (0.3 mg/kg) was administered to the rabbits, and the abovementioned doses of dexamethasone and ligustilide were intravenously injected into the rabbits of the respective groups. The respiratory rate, heart rate, mean arterial pressure (MAP), and rectal temperature (RT) were recorded throughout the experiment. The TNF-α and IL-1β levels were measured by radioimmunoassay every 30 minutes during the first hour, and then every 60 minutes till the end of experiment. The levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), creatine kinase (CK), blood urea nitrogen (BUN), and serum creatinine (Scr) were measured at 0, 120, and 300 minutes. The administration of LPS caused a significant increase in the serum levels of TNF-α, IL-1, ALT, AST, ALP, GGT, LDH, CK, BUN, and Scr and a marked decrease in MAP and RT. Treatment with ligustilide (20 mg/kg and 40 mg/kg) significantly attenuated the reduction in MAP and RT, suppressed the release of the proinflammatory cytokines (TNF-α, IL-1), and decreased the levels of the above mentioned markers of organ injury. These results show that ligustilide affords protection against LPS-induced shock in rabbits. References: [1] Karima, R. et al. (1999) Mol. Med. Today 5: 123 – 128. [2] Liu, L. et al. (2005) Planta Med. 71: 808 – 813.

Tuberculosis is an age-old contagious disease, which often leads to fatality if not treated properly. Recently, there has been increasing concerns because the organism causing this disease has become multi-drug resistant. As a result, searches are underway throughout the world for discovery of novel compounds, which can be used successfully to treat multi-drug resistant tuberculosis. Since this disease is prevalent in Bangladesh and is often treated with herbal medicines by the traditional medicinal practitioners (Kavirajes), we undertook an etnopharmacological survey of Kavirajes in Bogra district, Bangladesh to gather information on medicinal plants used to treat this disease. Plants were collected from the Kavirajes and identified at the Bangladesh National Herbarium. The collected information indicates that the following plants (with family name in parenthesis) are used to treat tuberculosis: Adhatoda vasicina (Acanthaceae), Andrographis paniculata (Acanthaceae), Centella asiatica (Apiaceae), Catharanthus roseus (Apocynaceae), Holarrhena antidysenterica (Apocynaceae), Colocynthis esculenta (Araceae), Pista striutes (Araceae), Aloe vera (Asphodelaceae), Calendula officinalis (Asteraceae), Shorea robusta (Dipterocarpaceae), Ricinus communis (Euphorbiaceae), Swertia chirata (Gentianaceae), Ocinum sanctum (Lamiaceae), Allium sativum (Liliaceae), Hibiscus rosa sinensis (Malvaceae), Swietenia mahagoni (Melaceae), Tinospora cordifolia (Menispermaceae), Eucalyptus globules (Myrtaceae), Piper longum (Piperaceae), Cymbopogon citratus (Poaceae), Zizyphus mauritiana (Rhamnaceae), Morinda citrifolia (Rubaceae), and Vitis vinifera (Vitaceae). The anti-tuberuclous effect of Adhatoda vasicina (mediated through chemical components of the plant like vasicine and auscinone, and their semi-synthetic derivatives like bronhexine and amidroxol) has already been studied. It is important that modern scientific studies be conducted on other plants towards isolation and identification of compounds through which multi-drug resistant tuberculosis can be effectively treated.
a larger percentage of the urban population of Bangladesh suffers from this disease, which over the years can lead to hypertension, cardiovascular disorders and diabetic nephropathy, to mention only a few. Modern allopathic medicine has no known cure for DM. On the other hand, traditional medicinal practitioners (TMPs) are known in Bangladesh to treat DM with concoctions made from medicinal plants. It is also claimed by the TMPs that their treatment can completely cure DM. We accordingly conducted an ethnopharmacological survey of TMPs in two northern districts of Bangladesh, namely Dinajpur and Panchagarh to find out about medicinal plants used by them to treat DM. Interviews were conducted with the help of a semi-structured questionnaire and plant species pointed out by them were collected and identified at the Bangladesh National Herbarium. The names of 14 plant species were obtained. These plant species (with family name given in parenthesis) included Catharanthus roseus (Apocynaceae), Costus speciosus (Costaceae), Cryphaea glomerata (Gramineae), Hyptis suaveolens (Lamiaceae), and Tinospora cordifolia (Menispermaceae). Plants like Catharanthus roseus, Psidium guajava, and Coccinia cordifolia have already been reported in scientific studies to have considerable hypoglycemic potential. It is expected that more studies on the other plants can lead to identification of novel compounds to treat DM.

Welwitschia mirabilis is an endangered and unique gymnosperm of Namib Desert of South West Africa. It is a monotypic member of the Genus Welwitschia. In our previous work we have reported the isolated and identification of several stilbenoids from a cultivated W. Mirabilis. In the present study we report the isolation and structure elucidation of five new stilbene derivatives including the first incidence of a stilbene pentamer from the family. The structures of the new compounds were assigned by spectroscopic analysis. The apoptotic activities of the stilbenoids were also investigated.

Laevifonol, a dimerstilbene from *Vatica odorata* was isolated for the second time from Vatica sp. This compound is a unique oligostilbene formed from a condensation between e-viniferin [1] and ascorbic acid, and was first isolated from *Shorea laevisfina* [2] and recently from *Vatica umbonata* [3]. In this work the structure of laevifonol was established on the basis of its spectral data, including UV, IR and NMR spectra and also in comparison with the previously reported data. Cytotoxic properties of laevifonol were evaluated against murine leukemia P-388 cells and *Artemia salina*. The results showed that laevifonol moderately inhibited P-388 cell line with *IC*$_50$ value of 4.996 µM and appeared inactive towards *Artemia salina* (*IC*$_50$ > 796.2 µM). Antibacterial activity of this dimerstilbene was screened against two gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and one gram negative bacteria (E.coli). The antibacterial testing was carried out by using the disc diffusion method. Blank disc of 6 mm diameter were loaded with 1000 µg/ml of the laevifonol and applied to the inoculate plate. The compound showed moderate activity against all the bacteria with inhibition zones of 0.5 cm against *E.coli* and *Bacillus subtilis* and 0.1 cm against *Staphylococcus aureus* compared to positive control (erythromycin 60 µg). The present investigation is apart of our ongoing studies on the oligostilbenoids of Malaysian Dipterocarpaceae in which no phytochemical data is reported on *Vatica odorata*. References: [1] Sotheeswaran, S. and Pasupathy, V. (1993) Phytochemistry 32:1083 – 1092. [2] Hirano, Y. et al. (2001). Journal of Wood Sci. 47:308 – 312. [3] Atun, S. et al. (2005) Biochem. Syst. Ecol. 32:1051 – 1053.

PD69

**Chemical constituents and in vitro antistaphylococcal activities of endemic *Salvia cedronella* and *S. fruticosa* naturally distributed in Denizli (Turkey)

Arslan I, Celik A, Mercan N

Pamukkale University, Science and Arts Faculty, Biology Department, Denizli, Turkey, 2007, Turkey, TR

The genus Salvia (sage) is an important genus of the Lamiaceae family and comprises about 900 species, widespread throughout the world. Some members of this genus are also cultivated to be used as flavouring agents in perfumery, cosmetics as well as food. There are about 90 species of Salvia in the Turkish flora, of which 45 are endemic [1]. The species of Salvia, known as “adacayi” in Anatolia, are used as antiseptics, stimulants, diuretics and for wound healing in Turkish folk medicine and for herbal teas and food flavoring [2]. The essential oils isolated from *S. cedronella* and *S. fruticosa* were determined by GC/MS and 28 and 27 constituents were identified, respectively. The results show that major constituents of *S. cedronella* and *S. fruticosa* oils were α-pinene (16.1 and 18.9%), eucalyptol (15.3 and 20.1%), camphor (6.6 and 10.0%), α-thujene (8.7 and 6.8%) and borneol (5.2 and 8.3%), respectively. In vitro antibacterial activities of crude extracts were tested against *Staphylococcus aureus* ATCC 25923 and *Cowan lipoferi* by broth microdilution method. *S. aureus* was found more sensitive microorganism than *C. lipoferi* to essential oil of *S. cedronella* and *S. fruticosa* having MIC values from 80 to 120 µg/ml. In conclusion, the results indicate that the oils of *S. cedronella* and *S. fruticosa* have the capacity to inhibit the growth of pathogenic microorganisms. Therefore they could be suitable for using as antimicrobial agents in the food industry. References: [1] Gunerç, A. et al. (2000) Flora of Turkey and the East Aegean Islands (Vol. 11). [2] Newall, C.A. et al. (1996) Herbal Medicines: A Guide for Health Care Professionals. London: The Pharmaceutical Press.
PD71 Ethno medicinal approach to drug development: present status and future prospects
Shukla AC1, Shukla N2, Dikshit A3, LalramminghINGVA H4
1Department of Horticulture, Aromatic & Medicinal Plants, Mizoram University, Aizawl-796 009, India; 2Eka Institute of Child health, Raipur- 492 001, India; 3Biological Product Laboratory, Department of Botany, University of Allahabad, Allahabad- 211 002, India; 4School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl-796 009, India

The genera Homalomena belongs to the family Araceae of the group Monocotyledon. There are about 140 species in tropical Asia and South America; two species in India; one in Mizoram, i.e., Homalomena aromatica Schott. The plant is very popular among the Mez-tribal communities. The boiled petiole is used as vegetable, rhizome as aromatic stimulant, powdered rhizome as gun-powder, burnt smoke of rhizome as mosquito repellant and infusion of the plant for easy labor. The juice of whole plant is used in skin diseases. Besides these, the plant contains strong antimicrobial activity. The minimum cidal concentration (MCC) of the oil against some common human pathogenic fungi was found to be 1.2 to 1.8 µl/ml, which contains heavy inoculums density. The oils toxicity persists up to 80 C and also autoclavable, with a broad fungicide spectrum. The pure oil kills the test pathogenic fungi just within a minute; however, its MCC takes 5.30 to 6.30 hrs to kill all the test fungi. Besides this, while comparing the MECs of the oil with some oil within a minute; however, its MCC takes 5.30 to 6.30 hrs to kill all the test fungi. Based on these findings as well as after detailed in vitro, in vivo, clinical as well as multi-central clinical investigations, formulations can be transferred to the pharmaceutical companies. Acknowledgements: 1. All India Institute of Medical Sciences, Microbiology Div. New Delhi, Dr. Uma Banerjee. 2. MLN Medical College, Allahabad, India.

PD72 Free radical scavenging and antibacterial activities of medicinal plants used in Eastern Botswana
Mothsanka DM
Botswana College of Agriculture, Medicinal plants Research Laboratories, Basic Sciences Department, Private Bag 0027, Gaborone, Botswana

Roots and leaves of Ozoroa paniculosa are being extensively used to treat a number of diseases including hypertension, asthma and backache [1,2,3]. Powdered root deccotions of DMT1* are used by rural dwellers in Eastern Botswana to alleviate painful menstruations, treat vaginal superficial infections, penile sores (lesions), gastrointestinal infections and diabetes mellitus related neuropathy. DMT1 root powder in petrol- eum jelly is known to alleviate chronic chest pains and asthma. This study is part of an ongoing project to search for health benefitting agents from natural sources. Methods: The free radical scavenging potency of the methanolic and dichloromethane extracts of DMT1 and water ex- tract of Ozoroa paniculosa were evaluated using the DPPH (Di- phenylpicrylhydrazyl) free radical scavenging assay. The antibacterial activities of the extracts were assessed against five Gram positive and four Gram negative typed cultures (WARD’S) of bacteria using the Agar Well Diffusion assay. Results: At 25 µg/ml the scavenging potencies of the extracts were as follows: DMT1 methanolic (89%), O. paniculosa leaves water (73%), DMT1 organic extract (56%). The scavenging powers of polar extracts of DMT1 and O. paniculosa were comparable to controls ascorbic acid and epicatechin (89 and 90%), respectively. None of the tested plant extracts showed any antibacterial activity. Conclusions: The results of this study suggest that the presence of antioxidant compounds can account for their health benefitting properties as advocated in traditional medicine. *DMT1: Voucher specimen code for the studied plant) Acknowledgements: Traditional Healers for supplying the plants. References: [1] Motlhanka, D.M. et al. (2008) Planta Med. 74:928. [2] Mothsanka, D.M. (2008) Pakistan J. Biol. Sci. 11:805 – 808. [3] Mothsanka, D.M. et al. (2005)J. Pharmacol. 57:57.

PD73 Bioactive constituents from Bergia suffruticosa
Elegami AA1, Gray AF1, Weigh RD2, Khalid HE3
1Medicinal and Aromatic Plants Research Institute; National Center for Research, Khartoum, Sudan; 2Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow UK

In vitro antibacterial investigation of the various extracts of Bergia suffruticosa leaf belonging to the family Elatinaceae: a plant used in Sudanese folk medicine to treat skin wounds [1] was evaluated against 72 strains of standard and clinical isolates of Gram positive and Gram neg- ative bacteria. Six known compounds were isolated from methanolic extract. The isolated compounds were Gallic acid methyl ester; Daucosterol; 1:2,3,6-Tetra-O-galloyl - β-glucose; 12:3,4,6-Penta-O-galloyl - β-glucose; Kaemferol-3-O-thmaNose- side and Quercetin-3-O-rhamnoside. Their identification were based on their spectroscopic data (UV, IR, 1H & 13CNMR and MS). Gallic acid methyl ester was found to have MIC 25 µg/ml against Staphylococcus aureus and Escherichia coli, whereas 1,2,3,6-Tetra-O-galloyl – β-glucose and 1,2,3,4,6-Penta-O-galloyl-β-glucose were found to be 10 µg/ml against S. aureus and 100 µg/ml against E. coli. The results suggested that the antibacterial effect of these two compounds is due to the presence of galloyl group. The MIC of other three compounds displayed no antibac- terial activity, they gainst both organisms at 200 µg/ml. Ampicillin and Gentamicin were used as reference antibacterial activity. In an early study, conducted the antibacterial activity of B. suffruticosa whole plant re- ported that, its methanolic extract showed significant inhibition of the four tested micro-organisms [2]. There is no phytochemical report en- countered on the plant species undertaken in this study. This result justifies the traditional therapeutic use of the plant. References: [1] El Ghazali, G. et al. (1997) Medicinal Plants of Northern Kordofan. Sudan. [2] Farouk, A. et al. (1983) Fitoterapia 54:103.

PD74 Garlic Biochemistry in Mushrooms
Kusterer J, Reusgen M
Institut für Pharmazeutische Chemie, Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany

The genus of onions (Allium) has a diverse pattern of distinct sulphur compounds, which are responsible for the remarkable aroma profiles of garlic (A. sativum L.) and related species. Cysteine sulphoxides of these plants are converted by the enzyme alliinase into the corresponding thialiphilanes, e.g., the thiosulphinates. The thiosulphinates are responsible for the remarkable aroma profiles of garlic. Besides onions, also some mushrooms of the class Basidio mycetes exhibit a strong garlic-like smell and taste. garoscule mushroom [Lentinus edodes (Berkeley) Pegler] and the garlic parachute Marasmius alliaceus Jacq, Fr. The cysteine sulphoxide lentinic acid could be already isolated from Lentinus edodes [1]. Similar compounds were found to be 50 µg/ml against S. aureus and 100 µg/ml against E. coli. Other investigations, alliaceus species show no reaction with substrates of Marasmius alliaceus. Consequently, alliaceus of Marasmius alliaceus must have unique kinetic properties, which enables the observed rapid cleavage into volatile sulphur compounds. These will be subjects of the ongoing research.

Chemical and Biological Evaluation of Myoporum laetum

Hassan EM1, Mohamed SM1, Shafeek KH2

1Medicinal and Aromatic Plants Dept., National Research Centre, Tahrir St., 12311 Dokki, Cairo, Egypt; 2Phytochemistry Dept., National Research Centre, Tahrir St., 12311 Dokki, Cairo, Egypt

Myoporum laetum (Myoporaceae) is an evergreen ornamental shrub. Fractionation and isolation of the butanol extract yielded five major flavonoids, luteolin 4-O-rhamnosid, 5-methoxy-lutelin 7-O-arabinoside, 5'-hydroxy-luteolin 7-O-glucoside, luteolin and apigenin. Their structures were determined by spectroscopic methods. The hepatoprotective and antioxidant activities of the butanol extract against liver injury induced by repeated doses of the hepatotoxicant, profenofos, were investigated. Hepatotoxicity of liver tissues was indicated by abnormal liver functions as shown by elevated levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and bilirubin with concomitant decrease in albumin level in relation to normal group. The pesticide induced oxidative hepatopathy ensured by a pronounced decrease in the activities of hepatic antioxidant enzymes namely, catalase (CAT), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G-6-PDH) accompanied by an increase in the oxidative stress marker, malondialdehyde (MDA, index of lipid peroxidation) versus normal ones. Oral supplementation of butanol extract to profenofos treated animals successfully modulated the hepatotoxicant induces deviation in the liver function markers, liver oxidative and antioxidant markers, indicating its potential hepatoprotective and antioxidant abilities.

Bioactive phenolic compound from Hymenocrater calycinus

Malmir M1, Gohari AR1, Saedinia S1, Moradi-Afrapoli F2, Vassar N3, Tooni AR3, Hadijakoobondi A1,2

1Medicinal Plants Research Center, Faculty of Pharmacy, Medical Sciences/University of Tehran, PO Box 14155 – 6451, Tehran, Iran; 2Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Medical Sciences/University of Tehran, Tehran, Iran; 3Department of Pharmaceutical Biotechnology and Pharmaceutical Biotechnology Research Center, Faculty of Pharmacy, Medical Sciences/University of Tehran, Tehran, Iran

Four compounds were isolated from ethyl acetate and methanol extracts of the flowered aerial parts of Hymenocrater calycinus (Lamiaceae) using chromatographic methods and identified by spectroscopic data (MS, 1H- and 13C-NMR, HMBC, HMQC and 1H-1H COSY). Antifungal and antibacterial effects of rosmanic acid, the main component, were determined against Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus niger within the broth dilution method. Isolated compounds were identified as β-sitosterol (1), ursolic acid (2), rosmanic acid (3) and quercetin 3–O-rutinoside (4) for the first time in Hymenocrater genus. The results of our assay against bacteria and fungi represent that rosmanic acid has an antifungal property against Candida albicans (MIC, 250 µg/ml).

Response of Grindelia camporum Greene vegetative growth, flowering and resin content to the growing media variation

Toama N1, Mahmoud SM1, El Goharey A2

1Horticulture Department, Faculty of Agriculture, Al Azhar Univ., Naser City, Cairo, Egypt; 2Department of medicinal and aromatic plants, The National of research Center, Dokki, Cairo, Egypt

Gum weed or gum plant (Grindelia camporum Greene, family Asteraceae) is a conspicuously resinous, herbaceous perennial medicinal plant native to the arid regions [1]. Flowers were used clinically for the treatment of asthma, bronchitis, and poison ivy rash [2]. Its resin content is similar to the resin acid (abietic acid) that constitutes rosin (pine resin) and would have the same uses as a principal product in industry. Furthermore, gum weed is an arid adapted plant that grows well under harsh desert condition in low level of irrigation, thus it appears to satisfy the requirements established for new crops in arid environment [3].

Series groups of arranged pots were separately filled by equal and homogeneous quantities from the growing media separately or in combinations as follow: Loam soil – Loam: sand at rate of 1:1 -Loam: sand: Beat moss at rate of 1:1:1 – Sand. The loam soil seems to be the best medium for producing the tallest plants and the heaviest weight of herb.

PD78

Antioxidant activity of *Geranium robertianum* concentrated extracts by ultrafiltration process

Paun Roman C, Neagu E, Moroceanu V, Nechifor G

1National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl.Independentei, PO Box 17 – 16, Bucharest 6, 060031, Romania; 2Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 313 Spl.Independentei, Bucharest, Romania

This paper describes the efficiency the integrated membrane process for obtain of concentrated medicinal plant extract as alternative to the traditional vacuum evaporation. The attention focused on the vegetal extracts obtained from *Geranium robertianum L.* herb Robert, (*Geraniaceae*) is justified by their use in the traditional medicine for the treatment of human and animal diseases [1]. *Geranium robertianum* concentrated extract by ultrafiltration process was examined for antioxidant properties. The antioxidant capacities and total polyphenols contents of the extracts were evaluated using ABTS and DPHH scavenging methods [2,3] and the total polyphenolic content was determined using the Folin-Ciocalteu method [4]. The air-dried ground aerial parts of the *Geranium robertianum* were extracted with two solvents: distilled water (8% w/v). After filtration, the extract was processed by microfiltration (MF) through Millipore membrane with 0.45 μm pores, followed by concentration using the ultrafiltration process (UF). The ultrafiltration process was performed using two types of membranes with a cut-off 10,000Da: UF1 with cellulose regenerated membrane and UF2 with polysuphone membrane. The results show that even low molecular mass compounds like polyphenols pass through membranes, the content of polyphenols in retentate (4.22 mg/L – UF1 and 4.68 mg/L – UF2) was higher than all the permeates (3.15 mg/L – UF1 and 3.52 mg/L – UF2). The data were sustained by TEAC values obtained for retentates (1372.5 μmol Trolox equivalent – UF1 and 1372.5 μmol Trolox equivalent – UF2). The values obtained by the DPPH assay varied from 77.6% DPPH inhibition for the *G. robertianum* aqueous extract to 95.3% DPPH inhibition for the UF1 concentrated extract and 92.5% DPPH inhibition for the UF1 concentrated extract. The results of this study show the performance of ultrafiltration membranes for the medicinal plants concentration and that the aqueous of *Geranium robertianum* extracts have a high antioxidant activity and can be considered as a good source for further medicinal applications. Acknowledgements: This work was financially supported by the Romanian National Center for Program Management – PN620/76/2008 and PN71025/2007. References: [1] Chevallier, A. (1996) The Encyclopedia of Medicinal Plants, Tropical Institute, 4002 Basel, Switzerland; 3Centre for Applied Chemistry and Materials Science, Politehnica University of Bucharest, 313 Spl.Independentei, Bucharest, Romania

PD79

Trypanocidal, leishmanicidal and cytotoxic effects of anthecotulide type linear sesquiterpene lactones from *Anthemis auriculata* (Karioti A, Skaltsa H, Kaiser M, Tsademir D)

Trypanosomiasis and leishmaniasis pose major public health threats for many tropical countries. We recently reported the antiprotozoal activity of *Anthemis auriculata* (1), a minor sesquiterpene lactone (SL) with a novel ring system from Greek *Anthemis auriculata* [1]. In the current study, we evaluated the in vitro antiprotozoal and cytotoxic potential of anthecotulide (2), 4-hydroxyanthecotulide (3) and 4-acetoxanthecotulide (4), irregular, linear SLs biosynthetically related to anthecularin, also obtained from the same plant [2]. Trypanostigote forms of *Trypanosoma brucei rhodesiense* and *T. cruzi* and axenic amastigotes of *Leishmania donovani* were used for testing. Cytotoxic potential of the compounds was also assessed against mammalian (rat) skeletal myoblasts (L6 cells). All compounds showed potent trypanocidal and leishmanicidal activity, which enabled us to draw some valuable SARs. Notably, 4-hydroxyanthecotulide (3) appeared to be the most active compound against all parasites, particularly towards *T. b. rhodesiense* (IC50 0.56 μg/ml) whereas 4-acetoxanthecotulide (4) was the least active. However, the compounds possessed toxicity (IC50 5.14 – 38.3 μg/ml), which might limit their use as antiprotozoal agents.

PD80

Antimicrobial activity of pentacyclic triterpenes isolated from *Berkheya bergiana* (Karioti A, Odeleye OM, Oyedeji AO)

1Department of Chemistry, University of Zululand, Private Bag x1001, Kwa-Dlangezwa, South Africa

The use of medicinal plants in the world and especially in South Africa, contributes significantly to Primary Health Care [1]. The genus *Berkheya* belongs to the family Asteraceae [2]. *B. bergiana* leaves and stem are used as traditional medicine. Decotion of leaves and roots are used for the treatment of coughs, gonorrhea, rheumatism and abdominal disorders especially for pains after eating. It is also used as anti-emetics [3]. Unusual sesquiterpenoids and thiopeine derivatives have been isolated from *Berkheya* species [4]. The aim of the study was to provide scientific rationale for the use of the plant in traditional medicine through bioassay-guided fractionation of *B. bergiana* leaves. Bioactivity testing was done against selected microbes using disc diffusion technique as outlined in Clinical Laboratory Standard Institute (CLSI). Structure elucidation of the isolated compounds was based primarily on 1D and 2D NMR analyses, including HMQC, HMBC and NOESY correlations. Fractionation yielded some triterpenoids: 20(29)–Lupene-1,3-diol, 3–Methoxy-20(29)–lupene and 17–Epilupenyl acetate. The compounds were active against 25 bacterial strains both standard and isolates and were active against *P. aeruginosa* ATCC 7700, *P. vulgaris* ATCC 6830, *S. marcescens* ATCC 9068, *E. coli* ATCC 8739 *S. epididymitis*, *Salmonella spp.*. *J. falcis.* etc. These results explain the support the use of *B. Bergiana* leaves for the treatment of infectious diseases in traditional South Africa medicine. It also shows that the antimicrobial activity is concentrated in the triterpenoid fractions. Acknowledgements: The authors are gratefully to the NRF, South Africa

PDB1

Determination of total anthocyanins and anthocyanin glycosides in of various edible fruits from Bosnia
Toromanovic J 1, Uzunovic A 2, Tahirovic I 1, Hravta A 1, Sofic E 1
1University of Sarajevo, Faculty of Science, Zmaja od Bosne 33, 71000 Sarajevo, Bosnia and Herzegovina; 2Institute for Quality Control of Medicines, Sarajevo, Bosnia and Herzegovina

The aim of this study was to determine total anthocyanins and anthocyanin glycosides in various fruits of different species and cultivars of sweet cherry Prunus avium L. (Rosaceae), and sour cherry Prunus cerasus L. (Rosaceae). Total anthocyanins were estimated with a spectrophotometric PH differential method. Cyanidin 3-galactoside served as a standard. Anthocyanins were measured by High Pressure Liquid Chromatography with diode array detection (HPLC-DAD). HPLC-DAD was performed with a Zorbax StableBond-C18 column (250 x 4.6 mm, 5 µm), mobile phase was A: acetonitrile 100% and B: 10% (v/v) acetic acid and 1% phosphoric acid in water. Supernatants of fresh fruits were hydrolysed with 2 M HCl. As standards for HPLC-DAD were used pelargonidin chloride (C15H11O7Cl), cyanidin-3-galactoside chloride (C16H13O6Cl), peonidin-3-o-galactoside chloride (C22H23ClO11), petunidin chloride (C17H15ClO7), delphinidin chloride (C15H11O5Cl), malvidine chloride (C17H15O7), delphinidin. In sweet and sour cherry only two aglucone, peonidin and pelargonidin were found. Malvidin, pelargonidin, delphinidin and petunidin were found. Next, using HPLC-DAD in wild cherry the following aglucone were found: malvidin, peonidin, pelargonidin, delphinidin and petunidin. In sweet and sour cherry only two aglucone, peonidin and pelargonidin were found.

PDB2

HPLC determination of certain flavonoids in Ginkgo biloba L.
Ibrulj A 1, Sofic E 1, Tahirovic I 1, Kovacevic Bosovic E 1
1Institute for Quality Control of Medicines, M. Tita 9, 71000 Sarajevo, Bosnia and Herzegovina; 2Faculty of Science, University of Sarajevo, Zmaja od Bosne 33, 71000 Sarajevo, Bosnia and Herzegovina; 3Institute for Pharmacy, University of Sarajevo, Cekalusa 90, 71000 Sarajevo, Bosnia and Herzegovina

Ginkgo Ginkgo biloba L. (Ginkgoaceae, Ginkgoales), is probably the only living tree one earth (190 – 200 million years) and is commonly referred to as a living fossil. The herbal material was gathered from two different locations in Sarajevo in the period from April until November 2008 (location A – Park at City centre and Location B – Botanical Gardens at National Museum of Bosnia and Herzegovina). It was air-dried and pulverized in a grinder for drugs just before the analysis. This study investigated the flavonoids, which include three main aglycone (isorhamnetin, kaempferol, quercetin) derivatives. Flavonoids are the major active constituents in G. biloba. The specific concentrations of these substances in the leaves vary by season. The aim of this work was separation and assay flavonoids by HPLC method of Ginkgo biloba extracts. Reversed-phase liquid chromatography method with ODS column, and mobile phases 0.3 H3PO4 pH 2.0 (A solvent) and methanol (B solvent) were recommended to separate this kind of substances. At a flow rate of 1 ml/min, a column temperature 30 °C and UV detector was set at λ = 370 nm. At the location A in period from April until November the highest content of flavonoids was 0.50%, and at location B, in the same period, it was 0.17%. Conclusion: HPLC method, carried out for determination of various flavonoids in Ginkgo biloba, is very precise and suitable. References:1. Hasler, A., Sticher, O. (1992) J. Chromatogr. 573:41 – 48. 2. European Pharmacopoeia, 6th ed. Monograph 01/ 2008:1828.

PE1

New compounds from Metaxaya rostrata (Kunth C. Preiss)
Kainz KP 1, Virtbauer J 1, Marian B 2, Koehlig H 1, Donath O 2, Reznicek C 1, Krenn L 1
1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; 2Department of Medicine 1, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria; 3Institute of Organic Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria

Two new compounds were isolated from the tree fern Metaxaya rostrata. Metaxayaeaceae, a Costa Rican traditional herbal remedy against intestinal diseases. Until now only two polyphenols (cinnamantannin B-1 and ascultannin B), two glycosides of phenolic acids (4-O-8-D-glucopyrano-sy-caffeic-acid and 4-O-8-D-glucopyranosyl-p-trans-coumaric-acid), sugars and common sterols have been isolated from this plant [12]. Dried rhizomes were extracted by sonification with hot water and methanol. The lyophilisate was extracted sequentially with ethylacetate, butanol and methanol. The fractions were subjected to vacuum liquid chromatography (VLC) on silica gel using EtOAc/MeOH/H2O mixtures of increasing polarity as mobile phases to obtain 15 fractions [1]. Fraction 12, cytotoxic to SW 480 colorectal carcinoma cells, was subjected to gel permeation chromatography on Sephadex LH-20. From the resulting fraction A compounds KK1 (58 mg) and KK5 (3 mg) were isolated. By detailed NMR and MS experiments the compounds were identified as 2E,4E-(6-hydroxyxyliden)-cyclopropyl-β-glucopyranoside (KK1) and 6E,6E-(6-[β-glucopyranosyloxy]-cyclopropyliden)hexanoyc acid (KK5). The substances did not show cytotoxic activity. Thus, the cytotoxic activity of fraction 12 obviously is due to other compounds.

PE2

In vivo cancer chemopreventive activity of umbelliprenin
Inashahi M 1, Takasaki M 2, Konoshima T 2, Tokuda H 3
1Department of Pharmacognosy, Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; 2Department of Pharmacology, Chiba Institute of Science, Chiba, Japan; 3Department of Molecular Biochemistry, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan

Umbelliprenin is a prenylated compound which belongs to the class of sesquiterpene coumarins. In continuation of our previous in vitro finding [1], we determined to assess the cancer chemopreventive activity of umbelliprenin in vivo by using a two-stage carcinogenesis assay of mouse skin tumors induced by peroxynitrite as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. In this assay, treatment with umbelliprenin along with peroxynitrite/TPA inhibited papilloma formation up to week 9 and the percentage of papilloma...
bears was approximately 86.6% at week 20. The average number of papillomas formed per mouse was only 3.9 even at week 20 which was significantly reduced compared to the control group (p < 0.05). The results of the in vivo two-stage mouse skin carcinogenesis test revealed that umbelliprein possessed a pronounced chemopreventive activity and its activity was comparable to that of curcumin, a well-known chemopreventor. Therefore, umbelliprein might be valuable as a cancer chemopreventive agent.

Isolation and cytotoxic activity of buchariol from Salvia leriifolia Benth.

1Department of Pharmaceutical Science, Faculty of Pharmacy and Nutrition and Health Sciences, University of Calabria, I-87030 Rende (CS) Italy; 2Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Tehran, Iran; 3Department of Plant Biology, Faculty of Pharmacy, University “La Sapienza”, P.le Aldo Moro, 5, 00185 Rome, Italy

The search of natural products for cancer therapy represents an area of great interest in which plants have been the most important source. In the continuing search for cytotoxic compounds from plants in the present investigation we reported the cytotoxic activity of sesquiterpenoid 4,10-epoxy-6alpha-hydroxyguaiane, named buchariol, isolated from S. leriifolia Benth. The genus Salvia (Lamiaceae) comprises about 700 herbs and shrubs, growing in the temperate and warmer zones of the world [1]. Plants belonging to this genus show high diversity in their second- and tertiary metabolites [2] as well as in pharmacological effects. Salvia leriifolia aerial parts collected in Sabzewan (Iran) were extracted with MeOH at room temperature. The extract was dissolved in H2O and partitioned with n-hexane, dichloromethane, ethyl acetate and n-butanol. Fractionation of dichloromethane extract led the isolation of buchariol (20.06 mg). The cytotoxicity was evaluated using the sulforosamine B (SRB) assay [3]. The test is based on the estimation of cell number indirectly by providing a sensitive index of total cellular protein content which is linear to cell density. Buchariol exhibited a strong cytotoxic activity against COR-l23 and C32 cell lines with IC50 value of 0.5 and 0.6 ìg/mL, respectively. Moreover, the sesquiterpenoid buchariol inhibited the proliferation of A549 cell line with an IC50 value of 46 ìg/mL. References: [1] Chadeauf, M., Emberger, L. (1960) Traité de Botanique Systematique, Masson, Paris [2] Lu, Y. et al. (2002) Phytochemistry 59:117 [3] Monks, A. et al. (1991). Nat. Cancer Institute, 83:757 – 66.

Pitfalls in testing saponins for their anti-angiogenic activity: comparison of test systems

Foubert K, Theunis M, De meyer G, Vlieghe E, Pieters L

1Laboratory of Pharmacognosy and Pharmaceutical Analysis, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; 2Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium

Angiogenesis is a major component in the progression of various diseases such as cancer, psoriasis and rheumatoid arthritis. Besides their virucidal, haemolytic and molluscidal activity, the saponins of M. lanceolata displayed anti-angiogenic activity in the chick chorioallantoic membrane (CAM) assay [12]. This latter activity was further investigated in an ex-vivo test. The growth of the microvessels in the rat aorta ring assay was compared with the sprouting in the human placental vein assay during 20 days, while different concentrations of serum were added to the test. In both ex-vivo assays suramin was tested as positive control. A mixture of maesasaponins and several individual saponins were tested in the rat aorta ring assay (10 – 100 ìg/mL). Based on the growth curves, the tests with suramin in both ex-vivo assays and literature the rat aorta ring assay was chosen as most preferable ex-vivo test for angiogenesis. Although the tested maesasaponins showed anti-angiogenic activity in the CAM assay at a concentration of 1 – 10 ìg/mL, assay activity was only found at 25 – 50 ìg/mL in the rat aorta ring assay. This could be due to the concentration locally obtained with the pellets used in the CAM assay or the influence of a non specific inflammatory reaction in the ex-vivo test which is not present in the ex-vivo test. References: [1] Apers, S. et al. (1998). J. Nat. Prod. 61:585 – 590. [2] Apers, S. et al. (2002). J. Pharm. Belg. 57:47 – 49.

New jaspamide derivatives from the marine sponge Jaspis sp.

Ebada S1, Lin W2, Deng Z1, de Voogd N3, Proksch P1

1Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstraasse 1, D-40225 Duesseldorf, Germany; 2State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, People’s Republic of China; 3Analytical and Testing Center, Beijing Normal University, Beijing 100875, People’s Republic of China; 4National Museum of Natural History, PO Box 9517 2300 RA Leiden, Netherlands

Jaspamide (jasplakinolide, 1), a cyclodepsipeptide isolated from marine sponges of the genus Jaspis, is known for its pronounced biological activities which include antifungal, insecticidal, and cytotoxic activity against 36 human solid tumor cell cultures. The biological properties and structural features of jaspamide stimulated numerous efforts aiming at a total synthesis and structural modification. As a part of our ongoing studies on bioactive natural products from marine sponges we investigated a specimen of Jaspis sp. collected at Kalimantan (Indonesia). The crude methanolic extract exhibited considerable in vitro cytotoxic activity against mouse lymphoma L5178Y cells. Chromatographic separation of the methanolic extract yielded jaspamide (1) as the major constituent. The crude methanolic extract exhibited considerable in vitro cytotoxic activity against mouse lymphoma L5178Y cells. Chromatographic separation of the methanolic extract yielded jaspamide (1) as the major constituent. The small crude methanolic extract exhibited considerable in vitro cytotoxic activity against mouse lymphoma L5178Y cells. Chromatographic separation of the methanolic extract yielded jaspamide (1) as the major constituent.
Anthriscus sylvestris (L.) Hoffm. (Apiaceae) is a common wild plant in Northwest Europe that accumulates considerable amounts of lignans. Deoxypodophyllotoxin as the main attractive constituent can be used as a precursor for the production of podophyllotoxin. Podophyllotoxin is currently receiving great attention as one of the most important aryltetralin-lignans in relation to human health. It is used as a semisynthetic precursor for anticancer drugs: Etoposide, Teniposide, and Etopophos to treat various types of neoplasms [1]. To date, podophyllotoxin is obtained by isolation from the plant. In the future, the availability of podophyllotoxin from this source is likely to become a major bottleneck. Podophyllum species have now been listed on the endanger species list, proving that the increasing demand of podophyllotoxin is a serious threat for the plant [2]. An alternative source of podophyllotoxin may be obtained by (biotechnological) hydroxylation of deoxypodophyllotoxin at the C7 position. Deoxypodophyllotoxin is much more abundant in the plant kingdom than podophyllotoxin. A better insight in the occurrence of deoxypodophyllotoxin combined with profound knowledge of its biosynthetic pathway(s) will help to develop alternative sources for the desired lignans. We found several lignans in Anthriscus sylvestris that may be involved in the biosynthetic pathway of deoxypodophyllotoxin using HPLC and Electrospray tandem mass spectra techniques. Podophyllotoxone, α-peltatin, and β-peltatin that have not been previously reported to be present in A. sylvestris could be identified based on the mass spectra, UV spectra and retention times compared with pure reference compounds. Deoxypodophyllotoxin, yatein, and anhydropodophyholizol were also present in the extracts. The presence of these compounds in A. sylvestris has been reported earlier. Podophyllotoxone, anhydropodophyholizol and deoxypodophyholizol were the major compounds, while α-peltatin and β-peltatin were present in lower concentration. Yatein is an earlier precursor leading to deoxypodophyllotoxin formation, while β-peltatin is the product of the metabolization of deoxypodophyllotoxin according to the hypothetical biosynthetic pathway of lignans as reported [3].

New cucurbitacin derivatives from Bryonia aspera Stev. ex Ledeb
Sahranvand S*, Naghibi F*, Jeneti-Siems K
*Institut für Pharmazie (Pharmazeutische Biologie), FU Berlin, Koenigin-Luise-Str, 2-4, 14195 Berlin, Germany;
Pharmakognosy Department, School of Pharmacy, Shahed Beheshti University of Medical Sciences, Tehran, Iran

Bryonia aspera Stev. ex Ledeb from the Cucurbitaceae family is native to Iran. This plant has been described in an ethnobotanical study as being used as a treatment of dental wounds, cancer and digestive disorders [1], whereas no phytochemical investigations have been reported up to now. The isolation of bioactive compounds from this plant seemed to be of interest because a chloroform extract showed cytotoxic activity. Therefore a phytochemical investigation of the root extract has been undertaken and yielded 11 compounds. Their structures were elucidated by spectroscopic means (1D- and 2D-NMR spectroscopy, ESI-MS). The majority of the compounds turned out to be 23,24-dihydro-cucurbitacin derivatives.

A petal ether extract of Onosma paniculata Bur. & Franch. shows strong anti-proliferative activity and induces apoptosis in human cancer cell lines
Kretschmer N*, Rimner B*, Krausz H*, Effert K*, Boechelt H*, Schaider H*, Bauer R*
*Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens University, Universitatsplatz 4, 8010 Graz, Austria; Medical University of Graz, Center for Medical Research, Core Facility of Flow Cytometry, Stifteringstasse 24, 8010 Graz, Austria; German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Joanneum Research Forschunganstalt mbh, Steyrergasse 17 – 19, 8010 Graz, Austria; Medical University of Graz, Cancer Biology Unit, Department of Dermatology and Center for Medical Research, Auenbruggerplatz 8, 8010 Graz, Austria

In Chinese medicine, the roots of Onosma paniculatum Bur. & Franch. are traditionally used for cancer treatment. For initial investigations, the dried roots have been successively extracted with petrol ether (PE) and methanol (MeOH). In a pharmacological screening, the extracts were tested against human CCRF-CEM leukaemia cells, human MDA-MB-231 breast cancer cells, human HCT 116 colon cancer cells and human U251 glioblastoma cells at a final concentration of 10 µg/ml. For quantification of cell proliferation and viability, a XTT based colorimetric assay was used. Whereas the MeOH extract showed no activity against these cell lines, the PE extract strongly inhibited cell proliferation and reduced cell viability. To further investigate the active extract, we determined the effect on four different melanoma cell lines, primarily isolated from different stages of melanoma progression: SBc2, WM35, WM9 and WM 114. After exposure for 48 h, more melanoma cells were detached and less cell density was observed in comparison to un-exposed cells. In addition, changes in cell cycle regulation and caspase-3 activity were determined by flow cytometry. At 10 µg/ml, significant alterations in cell cycle and cleaved caspase-3 could be detected. These results indicate that the PE extract of Onosma paniculatum induces apoptosis in human melanoma cell lines in a caspase dependent manner and changes cell cycle. In further experiments, the active compounds of the extract will be isolated and identified and their growth inhibitory and apoptosis-inducing properties investigated in more detail. Acknowledgements: This work was supported by the "Fonds zur Forderung der Wissenschaftlichen Forschung" P21114.

Extracts of the medicinal plant Andrographis paniculata Nees (Acanthaceae) are described in literature as showing anticancer properties in leukemic cell lines [1,2]. The aim of this study was to isolate the main constituents of a commercially available phytotherapeutic preparation of A. paniculata and to determine their chemosensitizing potential using the Nicoletti assay [3]. Chromatographic separation steps resulted in the isolation of the diterpenes andrographolide (1), 14-deoxy-11,12-didehydandrographolide (2) and the diterpene glucose neoandrographolide (3). Whereas the individual effects of suboptimal concentrations of the chemotherapeutic etoposide (500 nM) and 20.8 µM of 3 showed only weak effects in S-Jurkat cells (15% and 8% apoptotic cells [AC], respectively), their combination strongly induced cell death (64% AC). In contrast, 1 and 2 showed no increase of AC. In order to specify the chemosensitizing effect, we tested the compounds also in X-linked inhibitor of apoptosis proteins (XIAP)-overexpressing Jurkat cells. XIAP overexpression protects Jurkat cells from etoposide-induced apoptosis. Although the combination of etoposide and 2 showed no synergism in S-Jurkat cells, an increased percentage of AC was observed in XIAP-overexpressing cells. For 3 (20.8 µM, 3% AC), the chemosensitizing effect could be confirmed (37% AC). We enzymatically cleaved the glucos- moiety of 3 obtaining the diterpene andrographanin (4). When used in combination with etoposide, a distinct loss of activity was observed, which indicates a major impact of the sugar-moiety on the bioactivity. As expected from a XIAP inhibitor, we found that 3 potentiates the caspase-3 like activity. In conclusion, this study enriches the pharmacological profile of the medicinal plant A. paniculata and elucidates compound 3 as potent, naturally derived small-molecule chemosensitizer in a leukemic cell line. References: [1] Matsuda, T. et al. (1994) Chem. Pharm. Bull. 42:1216 – 1225. [2] Cheng, H.Y. et al. Planta Med. (2005) 71:1106 – 1111. [3] Nicoletti, l. et al. (1991). Immunol. Methods 139:271 – 279.

Anthraquinones and naphthopyrones from the marine echinoderm Comanthus sp.
Ebada S*, Wray V*, Edrada R*, Proksh P*
*Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany; Helmholtz Zentrum für Infektionsforschung, Ihrenssee, D-38124 Braunschweig, Germany; Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, The John Arbluthnot Building, 27 Taylor Street, Glasgow G4 0NR, United Kingdom

A detailed analysis of a Philippine specimen of the marine echinoderm Comanthus sp. yielded fifteen compounds including four anthraquinones identified as 1’-deoxyrhodoptilometrin (1) along with its 6-O-sulfate derivative (2), and rhodoptilometrin (2) with its 6-O-sulfate derivative (4). In addition five naphthopyrones including comaparvin (5), 6-methoxycomaparvin (6), 6-methoxycomaparvin5-methylether (7), 6-methoxycomaparvin5-methylether-8-O-sulfate (8), and 6-hydroxycomaparvin-8-O-sulfate (9) were likewise isolated and identified. Further compounds include steroids and a nucleoside derivative. The structures of the isolated compounds were unambiguously elucidated based on HRE SIMS analysis, 1D and 2D NMR, and by comparison with the literature. For compounds 2 and 4 the absolute configurations were identified for the first time using the Mosher reaction. Both compounds are (S)-(−) enantiomers. All isolated compounds were evaluated for their cytotoxic
activities against cancer cells using the (MTT) assay and compared to the well known marine cancer drug candidate kalahalide F (EC_{50}=6.3 µg/mL). 1'-Deoxyrhodoptilometrine (1) and an unseparable mixture of comaparvin (5) and 6-methoxycomaparvin (6) exhibited pronounced cytotoxicity against mouse lymphoma L5178Y cells with EC_{50} values of 2.3 and 5.2 µg/mL respectively.

PE12

Novel insights into the mechanism of action of grayanotoxin III

Andreea Popenescu1, Krupita G2, Kopp B1

1Department of Pharmacognosy, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria; 2Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18 – 20, A-1090 Vienna, Austria

Grayanotoxins are natural products that occur in species belonging to the Ericaceae family and contribute to plant toxicity [1]. They bind to ion channels and cause membrane depolarization [2]. Ion channels are implicated in the progression of cancer [3,4,5]. Therefore, we investigated the effect of grayanotoxin III (GTX III) on cell viability and induction of apoptosis, as well as the underlying mechanisms of GTX III triggered cell death in the HL-60 leukemia cell line. Cell viability decreased as evaluated by WST-1 assay and Western blot analyses indicated caspase cleavage after GTX III exposure. In addition, p38 MAP kinase was phosphorylated to a p38 regulated apoptosis pathway. Preincubation with BAPTA AM (cell permeable calcium chelator), Ruthenium Red (blocker of Ca^{2+} uptake and release from mitochondria), MDL 28170 (calpain inhibitor) and dibucaine (voltage-gated sodium channel blocker) before GTXIII treatment decreased the cleavage of caspase-9 to its active form.

PE13

A new type of phytotherapeutic approach with angiosperms from arid zones of northern Mexico in patients with malignant and benign tumors

López-Moreno CA1, Quintanilla LR2, Serrano GLB1, Rosales QF3, Pérez FAA1, Saldaña RL1

1Autonomous University of Coahuila. University General Hospital "Dr. Joaquín del Valle Sánchez" – Department of Phytotherapy, Av. Juárez No. 951 Ote. C.P. 2700 Torreón, Coahuila, México; 2Autonomous University of Nuevo León – Biological Sciences Faculty. Laboratory of Phytochemistry. Calle Pedro de Alba S/N (Unidad B), Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, Nuevo León, México

Certain angiosperms from the arid regions of northern Mexico have shown antineoplastic activity [1,2]. We enrolled a cohort of patients with malignant and benign tumors seen from 2005 to 2009. They received phytotherapy as only causal treatment. Cases: 42-year-old woman with papillary thyroid carcinoma and cervical nodal metastases, evolved without evidence of malignant growths. Two female patients with meningioma of the brain 71 and 72 years of age developed calcified meningioma. A female, 38 years of age, with invasive squamous cell carcinoma with metastases in abdominal cavity, her condition was getting better. 44-year-old male, with tumor of clear cells in the right kidney with lung metastases are diminishing. 96-year-old male with bladder transitional cell carcinoma, evolved with no signs of tumor. This therapeutic approach has demonstrated no adverse reactions or clinical and laboratory events, improving quality of life and survival. References: [1] López, M.C.A. et al. (2000) International Symposium: Oncology. Schliersee, Deutschland. [2] Arizawa, M. et al. Planta med. (1985) 6:544 – 545.

PE14

Cell death and impairment of mitochondrial functions induced by Phyllanthus virgatus: a comparison study

Chudapongse N, Kamkhunthod M, Poompachee K

Dept Biology, Inst Science, Suranaree Univ Technology, Nakhon Ratchasima, 30000 Thailand

The genus Phyllanthus consists of several species in the family Euphorbiaceae [1]. In Thailand, Phyllanthus virgatus and other two species, P. amarus and P. urinaria, are closely related in appearance, phytochemical structure and have the same common local name. Several activities of P. amarus and P. urinaria, such as anti-inflammatory and hepatoprotective effects, have been reported [2,3]. However, information on biological activities of P. virgatus is very limited. In this study, the pharmacological activities of the extract of three Phyllanthus species were compared. We found that the methanolic extract of P. virgatus, containing more phenolic compounds than that of the other species, showed the highest free radical scavenging activity and highest inhibition of peroxidation in linoleic acid system. Furthermore, P. virgatus extract showed the strongest cytotoxic effect to human hepatoma HepG2 cells. All of the extracts caused morphology changes and stimulated oxygen consumption of HepG2. With isolated rat liver mitochondria it was found that P. virgatus extract was the most active in stimulating mitochondrial state 4 respiration, in consonant with its effect on HepG2 cells. In addition, the extract also depressed state 3 respiration and respiratory control ratio. Thus, the extract impairs hepatic energy metabolism by acting as mitochondrial uncoupler and inhibitor of oxidative phosphorylation. These mitochondrial effects may intimately involve in the cytotoxic action of P. virgatus extract on HepG2 cells. References: [1] Jain, N. et al. (2008) Planta Med. 74:296 – 301. [2] Harish, R., Shivananda, T. (2006) Food Chem. 95:180 – 185. [3] Lee, C.Y. et al. (2006) Am. J. Clin. Med. 34:471 – 482.
Search for new natural compounds of the antiapoptotic protein Bcl-xL from Malaysian plants

Leverrier A, Litaudon M, Ouazzani J, Awang K, Castet JM

1. Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; 2. Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia

Bcl-xL is an antiapoptotic protein of the Bcl-2 family located in the membrane of the mitochondria of eukaryote cells. Its involvement in the programmed cell death through the activation of caspase pathway was widely studied and discussed [1,2]. The overexpression of Bcl-xL in cancer cells was reported to have an antiapoptotic effect on tumour and to confer a multidrug resistance [3]. Therefore, the study of the interaction between Bcl-xL and some new ligands appeared to be a very good strategy in the search for new anticancer drugs. Consequently, a biological screening was carried out on 14/66 ethyl acetate extracts from various parts of 670 Malaysian plants. The binding activity against Bcl-xL was evaluated using an affinity displacement assay based on Bcl-xL/Bak (BH3 domain) interaction (fluorescence polarization assay). Only 18 extracts revealed a noticeable activity. Among them, the bark extract of Xylopia sp. (Annonaceae) exhibited a significant binding activity: 31% at 10 μg/mL. The phytochemical study of the plant was undertaken and bioguided fractionation using silica gel chromatography and HPLC led to the isolation of several ent-trachylobane terpenoids (1), identified by spectroscopic and crystallographic methods. Access to chemodiversity that might be good candidates for further studies in the oncological domain.

Thai medicinal plants and the search for new anti-inflammatory and anticancer agents Siriwatanametanon N, Feichal Bl, Prieto JM, Effert FH, Heinrich M

1. Centre for Pharmacognosy and Phytotherapy, School of Pharmacy, University of London, WC 1N 1AX, United Kingdom; 2. Neurochemistry Research Group, Department of Pharmacology and Biopharmacy, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary

Nine plant species with anti-inflammatory effects were selected from Thai textbooks. It is expected that long history of their uses might offer opportunities for the discovery of novel anti-inflammatory and/or anticancer agents. In this study, anti-inflammatory NF-κB inhibitory activities were determined by luciferase assay and effects on LPSh-stimulated pro-inflammatory cytokines PGE2, IL-6, IL-1α, and TNFα were assessed by ELISA [1]. Cytotoxicity activities were examined by the MTT test in HeLa cells, and the XTT test in leukemia CCRF-CEM cells including their multidrug-resistant CEM-ADR5000 subline [2]. Among the tested extracts, Gymnura pseudochina (L) DC. var. hispida Thv. (Asteraeaceae) (ME) and Oroxylum indicum (L) Kurz. (Bignoniaceae) (EA) showed the greatest NF-κB inhibitory effects with the lowest IC50 values (41.96 μg/ml and 47.45 μg/ml, respectively). While G. pseudochina var. hispida (ME) inhibited the release of IL-18 (IC50 = 2.46 μg/ml), O. indicum (EA) also inhibited the release of PGE2 (IC50 = 26.98 μg/ml). Muehlenbeckia platyclada F., Meuell., Meiss. (Polygonaceae) (EA and ME) did not inhibit NF-κB activation but inhibited the release of IL-6, IL-18 and TNFα with the lowest IC50 values ranged from 0.28 – 8.67 μg/mL. Pouzolzia indica (L.) Gaudich. (Urticaceae) (PE) showed the strongest anti-inflammatory effects on both CCRF-CEM cells and the multidrug resistant subline at 10 μg/ml (90.25% ± 0.29% and 89.52 ± 0.12% cell dead, respectively). The active compounds isolated from G. pseudochina var. hispida (ME), the strongest NF-κB inhibitory extract, were identified as the known compounds querctin-3-rutinoside (IC50 = 24.78 μg/mL) and quinic acid (IC50 = 49.18 μg/mL).

Diterpenoids with antitumor activity from Euphorbia esula L.

1. Department of Pharmacognosy, University of Szeged, Szeged, Eötvös str. 6, H-6720 Hungary; 2. Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Eötvös str. 6, Hungary; 3. Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary

Euphorbia is the largest genus in the family Euphorbiaceae, comprising about 2000 species. Hitherto many secondary metabolites with specific types of diterpene skeletons were isolated from these plants. Euphorbia diterpenes possess a number of interesting biological activities, such as antiproliferative, antiviral, multidrug resistance (MDR) reversing activities [1,2,3]. E. esula can be regarded as a promising source of diterpenes, since ingenane, lathyrane and jatrophane polyesters were isolated previously from the root, seed and herb, including compounds with cytotoxic, MDR modifying, and anti-herpes simplex activities [4,5,6]. In continuing our search for biologically active compounds from E. esula, a new jatrophane diterpene (1) was isolated from the CH2Cl2 extract of the aerial part by means of multistep chromatographic purification. The compound was identified as a jatrophane tetraester acylated with acetic and isobutanoic acids. The structure elucidation was carried out by extensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS experiments. The isolated compound was tested for its MDR-reversing activity on mouse lymphoma cells using the standard functional assay with Rhodamine 123, and found to be effective in modulating the efflux-pump activity. Furthermore, compound 1, together with twelve jatrophane diterpenes obtained in our earlier experiment, were tested for their cytotoxic activity on human tumor cell lines (HeLa, Ishikawa and MCF7). In the assay, the highest effect was demonstrated by 1, but moderate or weak activities were detected for some other compounds, too.

Antiproliferative sesquiterpenes and flavonoids from Anthemis ruthenica L.

Hajdić Z, Zapka I, Réthy B, Forgo P, Holhman J

1. Department of Pharmacognosy, University of Szeged, Eötvös ut. 6, H-6720 Szeged, Hungary; 2. Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös ut. 6, H-6720 Szeged, Hungary

As a part of a continuing search aimed at the discovery of novel compounds with antiproliferative activity from Hungarian plants belonging to the Asteraceae family, it was found that the herbs of Anthemis ruthenica M. Bieb. exert high antiproliferative activity against cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF7) and skin epidermoid carcinoma (A431) cells using the MTT assay [1]. Previous publications dealing with this species reported only the composition of the volatile oil obtained from the plant [2]. The present paper reports the isolation of a new eudesmanolide sesquiterpene, sivasinolide-6-O-angelate, and the known compounds chrysanin, tanacin, eupatolide, centauridin, and
Cytotoxicity, antioxidant and composition of the essential oil of *D. surmandinum* From. Rech. from Iran

PE19

Soboli A, Gholipour A1,2, Esmaeili MA1, Kanani MR1
1Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, 1938639133, Tehran, Iran, 2Department of Plant Sciences, Faculty of Biological Sciences, Shahid Beheshti University, G.C. Evin, 1938639133, Tehran, Iran; Payame Noor University (PNU)

The chemical composition of hydrodistilled essential oil from the aerial flowering parts of *D. surmandinum* was analyzed for the first time by GC and GC-MS. Monoterpenoids including oxygenated and hydrocarbons comprising 63.4 and 33.5% were the principal compound groups of the essential oil, respectively. In total, 25 constituents accounting for 97.8% of the oil were identified [1]. Perilla aldehyde (54.3%) and limonene (30.1%) were characterized as the main components. In addition, our results indicated that the essential oil of *D. surmandinum* (5 – 100 μg/ml) possesses a potent antioxidant and cytotoxic activity using different model systems including Trolox equivalent antioxidant capacity, β-carotene-linoleic acid bleaching and 1,1-diphenyl-2-pycryl-hydrazyl radical (DPPH) assays [2]. The cytotoxic activity was also carried out using the MTT assay [3]. Results showed that the essential oil of *D. surmandinum* has a good cytotoxic activity against Human breast adenocarcinoma cell line (MCF-7) and Human erythromyeloblastoid leukemia cell line (K562) with an IC50 value of 14 and 16 μg/ml, respectively. However, the cytotoxic potential of *D. surmandinum* essential oil against Rat adrenal pheochromocytoma cells (PC 12) was weak (IC50 of > 100 μg/ml). The authors thank Dr. P/C181l Szab/C243 (Chemical Research Centre, Hungarian Academy of Sciences, Budapest) for the mass spectral measurements.

Elastase inhibitors and cancer preventive potential agents from *Calophyllum inophyllum* (L.) grown in French Polynesia

PE20

Laboratoire “Biodiversité Terrestre et Marine”, Université de la Polynésie française, BP 65700 Paea, 98742 Polynésie française; 1Spectrope de Marseille, Université Paul Cézanne, Faculté des Sciences de Saint-Jérôme, 13397 Marseille, cedex 20, France; 2Station Biologique de Roscoff, CNRS-USR 3151, Place Georges TESSIER, BP 74, 29682 Roscoff, cedex, France

Elastase is a well-known serine-endopeptidase responsible for extracellular matrix degradation and inflammation processes. It is also linked to COPD and cystic fibrosis [1]. Furthermore, overactivation of elastase and down-regulation of its natural inhibitor elafin are associated with increased levels in constitutively active low molecular weight form cyclin E. This correlates with poor diagnosis and morbidity increase in certain types of breast cancer [2]. *Calophyllum inophyllum* (Clusiaceae) is a pantropical species considered as a sacred tree by traditional Polynesians. Nowadays, *C. inophyllum* oil is still widely used for skin treatments, wound healing and included in cosmetic formulations. Previous studies have shown the presence of pyranocoumarin derivatives in this oil. Some of these compounds, like calophyllolide, have been reported to have interesting bioactive properties such as anti-HIV1 and cancer chemopreventive effects [3]. Results presented herein show promising activity of fractions from *C. inophyllum* oil in an enzymatic screening assay for elastase inhibitory compounds. Therefore, phytochemical studies led to the isolation and characterization of dipyranocoumarin compounds from *C. inophyllum* oil grown in French Polynesia. Thus, these compounds should provide an interesting scaffold for the design of new potential anticancer agents. To the best of our knowledge, this is the first report showing elastase inhibitory activity of compounds extracted from *C. inophyllum* grown in French Polynesia. References: [1] Barnes, P.J.; Hansel, T.T. (2004) The Essential Oils, 3rd edn., 905 – 996, [2] Akil, S., Keyomarsi, K. (2004) Br. Cancer Res. 6:188 – 191. [3] Laure, F. et al. (2008) Anal. Chim. Acta 624:147 – 153.

Mangifera pajang kernel crude extract induced apoptosis in MCF-7 and MDA-MB-231 breast cancer cell lines

PE21

Abu Bakar ME1,2, Mohamed M2, Rahmat A2, Fry J2
1School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham, NG7 2UH, UK; 2Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Locked Bag No. 2073, 88999, Kota Kinabalu, Sabah, Malaysia; 3Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia

Ingestion of fruits and their products have been associated with a decreased cancer risk. Phytochemicals present in fruits and their products (i.e. polyphenols, anthocyanins, carotenoids) have been linked to the anticancer activity. *M. pajang* kernel extract has been found to contain high polyphenol and flavonoid content and displayed superior antioxidant properties compared to the peel and flesh extracts of the fruit [1]. This research was conducted to evaluate the radical scavenging and induction of caspase activities of the kernel extract of *M. pajang*. The results showed that the crude kernel crude extract induced cytotoxicity in MCF-7 (hormone-dependent breast cancer) cells and MDA-MB-231 (non-hormone dependent breast cancer) cells with IC50 values of 23 and 30.5 μg/ml, respectively. The kernel extract induced cell cycle arrest in MCF-7 cells at Sub-G1 (apoptosis) in a time-dependent manner. Interestingly, for MDA-MB-231, the kernel extract induced strong G2-M arrest in cell cycle progression at 24 hours, resulting in the high Sub-G1 (apoptosis) arrest after 48 and 72 hours of incubation. This apoptosis appears to be caspase-2 and caspase-3 dependent in MCF-7, and caspase-2 and -3 and -9 dependent in MDA-MB-231 as studied using ELISA method. These findings suggest *M. pajang* kernel extract has potential as a potent cytotoxic agent in both hormone and non-hormone dependent breast cancer cell lines. The mechanisms for the cytotoxic effects might be associated with caspases activation and G2-M cell cycle arrest leading to the induction of apoptosis. Acknowledgements: Universiti Malaysia Sabah, Universiti Putra Malaysia, University of Nottingham, UK and Ministry of Science, Technology and Innovation of Malaysia (MOSTI). Reference: [1] Abu Bakar, M.F. et al. (2009) Food Chem. 113:479 – 483.

Chemical constituents of Croton ensifolius leaves

PE22

Damato R1, Ikrum MS2
1Faculty of Pharmacy, Universiti Teknologi MARA Malaysia, 40450 Shah Alam, Selangor, Malaysia; 2School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

A phytochemical study was carried out on the leaves of *Croton ensifolius* (Euphorbiaceae) which showed cytotoxic activity against HL-60 cell lines (IC50 28.17 μg/ml). Five compounds have been successfully isolated from its active fraction (90% MeOH fraction, IC50 17.27 μg/ml) including (+)-selin-11-en-4-ox-ol (1), ent-13-epimanoil (2) and 13-episcaredol (3) and two other triterpenoids. This recent study was the first report of chemical constituents of this plant.
The aim of this study was to assess the antioxidant, antiproliferative, cytotoxic and apoptotic effects of aqueous and methanol extracts from the Western Mediterranean species *Cistus albidus* L. (Cistaceae). Antioxidant activity was evaluated by three different assays: Folin–Ciocalteau, trolox equivalent antioxidant capacity and oxygen radical antioxidant capacity. Antiproliferative activity and cytotoxicity were evaluated on HeLa cells by the crystal violet and WST-1 assays, respectively. The distribution of normal and apoptotic cells in the various phases of cell cycle was analysed by flow cytometry. The data showed that both *C. albidus* extracts exhibit interesting antioxidant properties, although slightly higher in methanol. Extracts inhibited cell proliferation and reduced cell viability in a time and concentration dependent manner. Methanol extract at 136 μg ml⁻¹ and aqueous extract at 169 μg ml⁻¹ reduced 50% of cell proliferation after 72 h. In the cytotoxicity assay, IC₅₀ values increase to 353 and 389 μg ml⁻¹, respectively for methanol and aqueous extracts. The sub-G₁ population significantly increased in cells treated with 389 μg ml⁻¹ of methanol and aqueous extract, indicating apoptotic-associated chromatin degradation. Moreover, in the non-apoptotic population the HeLa cells treated with methanol extract seem to accumulate in the G₀/M phase and, on the other hand, the aqueous extract seems to cause the accumulation of cells in the G₀/G₁ phase. In conclusion, this study demonstrates the strong antioxidant potential and anticancer activity, through the inhibition of cell proliferation and induction of apoptosis on cancer cells, of methanol and aqueous extracts from *C. albidus*.

S. Gonçalves acknowledges a grant from Portuguese Science and Technology Foundation (FCT, Grant SFRH/BPD/31534/2006).
Anticancer activities of Thai medicinal plant recipes
Phanurangreang A 1, Mansoroi A 2, Mansoroi F 3
1Sirindhorn College of Public Health, Phitsanulok, 65130 Thailand; 2Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand

Some Thai traditional recipes for anticancer treatment are still found in the markets and used for remedies in household when the modern medicines are not effective. The objective of this study was to investigate the anticancer activity of the anti-cancer recipes which were surveyed and collected during June 2007 to December 2008 from one hundred Thai traditional healers in 4 regions of Thailand (North, Northeast, Central and South) with 25 healers in each region. The total of 201 recipes were collected with 46, 43, 61, 51 recipes from the North, the Northeast, the Central and the South respectively. The five highest frequency plants found were Smilax glabra Wall.ex Roxb, Smylax pegauna, Rhincanthus nasutus Kurz, Stemona tuberosa Loud and Surredaga multiformulum Bail. which had the frequency of 96, 95, 39, 39 and 33 respectively. Twenty four recipes with high evidences for anticancer treatment were selected to test for the growth inhibitory activity on human mouth epidermal carcinoma (KB) cell lines by Sulforhodamine B (SRB) method. The recipe numbers 1, 2, 7, 8, and 9 exhibited growth inhibit activity against KB cell lines with the GI_50 values of 10.92, 7.66, 14.97, 13.78, and 3.60. More than doxorubicin (GI_50 = 0.02 mg/ml)) of 546, 383, 748.5, 689 and 238.5 times respectively. The results from this study have indicated the benefits of the Thai folklore wisdom in cancer therapy. Acknowledgements: Department for Development of Thai Traditional and Alternative Medicine, Ministry of Public Health for funding and folk doctors for data. References: [1] Saetung, A. et al. (2005) Songklanakarin J. Sci. Technol. 27(Suppl. 2):469 – 478. [2] Wattanapiromsaksu, C. et al. (2005) Songklanakarin J. Sci. Technol. 27(Suppl. 2):479 – 487. [3] Skehan, P. et al. (1990) J. Natl. Cancer Inst. Jul. 82:1107 – 1112.

Chemical composition of some Sargassum species and their cytotoxic and antimicrobial activities
Matlob AA, Awad NE
Pharmacognosy Department, National Research Center, Dokki, Cairo, Egypt

Cytotoxic activities of different extracts of Euphorbia boissieriana (Woron.) Prokh. Zolfaghari B 1, Jafarian A 2, Toghiani MH 3
1Department of Pharmacology, Isfahan University of Medical Sciences, Hezar Jerib Avenue 73461 Isfahan, Iran; 2Department of Pharmacology & Toxicology, Isfahan University of Medical Sciences, Hezar Jerib Avenue 73461 Isfahan, Iran; 3Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, 73461 Isfahan

Introduction: Euphorbia is the main genus of Euphorbiaceae family which includes more than 2000 species. Of about 82 species of this genus grown in Iran some have been used to treat arthritis and wart in Iranian traditional medicine. This genus also has attracted much of interest for its cytotoxic characteristic. Therefore, we aimed to study the cytotoxic activity of the aerial parts of an endemic Euphorbia species, Euphorbia boissieriana (Woron.) Prokh. Methods: Wild samples of E. boissieriana were collected in Semirom area, Isfahan Province, Iran, in June 2007. Aerial parts of plant were ground, powdered and extracted by different solvents including: Methanol-water (70 – 30), methanol, ethylacetate, acetone, dichloromethane and hexane. The cytotoxicity of various concentrations of each extract was studied on Hela cells using the colorometric MTT assay in vitro. Results: The acetone, ethylacetate, dichloromethane, methanolic and hexanoic extracts of E. boissieriana exhibited cytotoxic activities in a decrease manner, respectively. However the hydroalcoholic extract possessed no cytotoxic activity at all concentrations tested. Discussion: Exhibition of higher cytotoxic activities of acetone, ethylacetate, dichloromethane extracts where compared with methanolic or hydroalcoholic extracts (both being more polar than other solvents) and hexanoic extract (being the most non polar solvent of the group) may indicate that major cytotoxic compounds of this plant have low to moderate polarity. Further phytochemical studies are being conducted to isolate and elucidate the individual compounds responsible for this activity. Acknowledgements: This work was supported by Research council of the Isfahan University of Medical Sciences, Isfahan, Iran. (Research project No. 386252).

Mutagenic and antimutagenic effects of the traditional phytoestrogen-rich herbs, Pueraria mirifica and Pueraria lobata
Cherdhewsawat W 1, Sujit W 2, Pulchareno K 2, Chulasiiri M 3
1Department of Biology, Faculty of Science, Chulalongkorn University, Phyaathi Road, Bangkok 10330, Thailand; 2Biotechnology Program, Faculty of Science, Chulalongkorn University, Phyaathi Road, Bangkok 10330, Thailand; 3Department of Microbiology, Faculty of Pharmacy, Mahidol University, Siriyudhya Road, Bangkok 10400, Thailand

This study aimed to evaluate the mutagenic and antimutagenic potentials of Pueraria mirifica and Pueraria lobata by the Ames test preincubation method in the presence and absence of rat liver S9 mixture for metabolic activation in Salmonella typhimurium strains TA98 and TA100. The cytotoxicity of the two plant extracts to the two S. typhimurium indicator was evaluated. Both plant extracts at a final concentration of 2.5, 5, 10 or 20 mg/plate exhibited only mild cytotoxic effects. At a final concentration of 2.5, 5, or 10 mg/plate in the presence and absence of S9 mixture, both were negative in the mutagenic Ames test. Both plant extracts were positive in the antimutagenic Ames test towards either one or both of the tested mutagen: 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and benzo(a)pyrene. Both the absence of mutagenic and the presence of antimutagenic activities of the two plant extracts were confirmed in rec-assays. Micronucleus test of both plant extracts exhibited no significant micronucleus formation in the tested rats. The overall tests confirmed the non-mutagenic but reasonably anti-mutagenic activities of the two plant extracts thus supporting their current prescribed as safe dietary supplements and cosmetics.

Thi medicinal plant recipes were surveyed and divided into two groups including the books of Thai traditional medicine and Thai traditional healers. 12 recipes were found from the books of Thai traditional medicine and 28 recipes from 14 questionnaires. 10 recipes were selected from 40 recipes of the books and questionnaires to test the anti-proliferation activity on human mouth epithelial carcinoma (KB) cells lines by Sulfurodhodamine B (SBK) assay. The anti-proliferation activity and phytochemical screening of 9 herbs in recipe 9 was investigated. The results found that *Hydnophyllum formicarum* exhibited growth inhibit activity against KB cell lines with GI50 value 5.54 µg/ml, which were about 1/277 times of doxorubicin (GI50=0.02 µg/ml). *Hydnophyllum formicarum* contain tannin, alkaloid, flavonone and xanthone. The results from this study will be beneficial for further research and development of cancer drug.

References:

Cationic nanoliposomes enhance cytotoxicity activity of curcumin

Costa Rocha J, Taylor K, Moghaddam B, Somavaranpatra S,
Prieto JM*
*Center for Pharmacognosy and Phytotherapy, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, 29 – 39 Brunswick Square, London WC1N 1AX, United Kingdom; **Department of Pharmacoeconomics, School of Pharmacy, University of London, 29 – 39 Brunswick Square, London WC1N 1AX, United Kingdom

Curcumin (diferuloylmethane) is a promising natural product with pleiotropic pharmacological activities. Among these, potential anticancer properties are stirring up the research interest all around the world [1]. Therapeutic applications of curcumin would imply its proper formulation into a suitable pharmaceutical form which ideally would enhance its activity by maximising delivery to the cancer cells. We here report the effects of several nanoliposomal formulations loaded with curcumin using a modified ethanolic proliposome method [2]. Cationic nanoliposomes were produced from ethanol-dimethyl sulfoxide-based egg phosphatidylcholine with cationic surfactant dimethyl dioctadecyl ammonium bromide (DDA) containing curcumin by addition of an isotonic egg phosphatidylcholine solution. The cationic nanoliposomes containing curcumin exhibited an LC50 of 90 µM whilst two different nano liposomes bearing a positive net charge in their surface were able to dramatically lower the LC50 down to 2 – 1.5 µM. The other nanoliposomal formulations exhibited the same LC50 as free curcumin. The results indicate that positively charged nanoliposomes formulations enhanced the *in vitro* cytotoxicity activity of curcumin in cervical cancer cells and therefore they could be a promising delivery system for this potent natural product. References: [1] Anand, P. et al. (2008) Planta Med. 74: 1560-1569. [2] Taylor, K.M. et al. (2006) J. Pharm. Pharmacol. 58: 887-894. [3] Mosmann, T. (1983) J. Immunol. Methods 65: 55-63

Monoterpene indole alkaloids from the leaves of *Tabernaemontana elegans* induce apoptosis activity in human hepatoma cells

Mansoor TA1, Ramalho C1, Molnár F2, Mulhovo S3, Ferreira MJU1
1Med-UL, Faculdade de Farmácia, Universidade de Lisboa, Av. D. Forças Armadas, 1600 – 083 Lisboa, Portugal
2Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Hungary
3Instituto Superior Politécnico de Gáza (ISPG), Chokwe, Mozambique

Apoptosis (programmed cell death) is a natural mechanism to eliminate unwanted or cancerous cells and virtually all the anticancer drugs currently utilized can induce apoptosis in susceptible cells [1]. Morphologically, this process is characterized by plasma membrane blebbing, cell shrinkage, and chromatin condensation followed by disassembly of the cell into multiple membrane-enclosed fragments, which are then engulfed by neighbouring cells or professional phagocytes. In our search for molecules with apoptosis inducing activity from medicinal plants, we have isolated three known and a new corynanthe type monoterpene indole alkaloids from the methanol extract of leaves of *Tabernaemontana elegans*. The structures of these compounds were elucidated by a series of spectroscopic experiments. The identification of the known alkaloids tabernaemontanin, vobasine, and dregamine, was corroborated by comparison of their spectroscopic data with those reported in literature [2]. The isolated monoterpene indole alkaloids were studied for their apoptosis induction activity in human hepatoma (HuH-7) cells. Methodology for apoptosis detection included cell viability assays, nuclear morphology evaluation, and general caspase-3-like activity assessments. Tabernaemontana elegans showed the most promising apoptotic induction profile in HuH-7 cells, inducing 41 and 44% of apoptosis, respectively, after 24 h of exposure. Caspase activity assays confirmed these results. Our data suggest that monoterpine indole alkaloids from the leaves of *Tabernaemontana elegans* may be considered as significant apoptosis inducers and should be further studied in other cell lines. Acknowledgements: This study was supported by a fellowship from FCT, Portugal (reference number BPD/3092/2006). References: [1] Kaufmann, S.H. et al. (2000) Exp. Cell Res. 256:42 – 49. [2] Bombardelli, E. et al. (1976) J.C.S. Perkin I:1432 – 1438.

Novel β-carboline indole alkaloids from the leaves of *Tabernaemontana elegans* (Apocynaceae) has a wide distribution and plants belonging to this genus are used in traditional medicine to treat cancer [1]. These plants are characterized to produce indole alkaloids of unusual structures as well as novel bioactivity. We have isolated three β-carboline indole alkaloids (1-3) from the MeOH extract of the leaves of *Tabernaemontana elegans*. The chemical structures of these novel entities were established by means of spectroscopic techniques including 2D NMR spectroscopic experiments.
The new skeletal features of compounds 1 and 2 were the presence of a two-carbon unit, attached to a structurally related β-carboline skeleton [2], resulting in the formation of additional six and seven-membered rings in 1 and 2, respectively. To the best of our knowledge, it appears to be the first report on the isolation of β-carboline indole alkaloids from the genus Tabernaemontana. Compounds 1–3 were evaluated for their potential P-glycoprotein (P-gp) reversal activity using the rhodamine-123 assay, in both MDR1-gene transfected and parental mouse lymphoma cell lines. Compounds 1 and 3 exhibited a weak activity. Acknowledgements: This study was supported by a fellowship from FCT, Portugal (reference number BPD/30492/2006). References: [1] Grajek, J. et al. (2000). Z. Naturforsch. 55c: 167 – 171. [2] Sandler, J.S. et al. (2002). J. Nat. Prod. 65: 1258 – 1261.

PE34

Determination of rosmarinic acid and rutin in *Hymenocroter bituminosus* by using TLC

Ebrahimi SN1,2, Fakhari AR2, Khajoie M2

1Department of Phytochemistry, Medicinal plants and Drugs Research Institute, Shahid Beheshti University, G.C., Tehran, Iran; 2Department of Chemistry, Faculty of Science, Shahid Beheshti University, G.C., Tehran, Iran; 3Institut für Pharmazeutische Biologie, Universität Basel, Klingelbergstrasse 50, CH-4056 Basel

A simple, rapid, precise, accurate and repeatable thin-layer chromatography (TLC) method has been established for the determination of rosmarinic acid and rutin in whole plant powder of *Hymenocrotater bituminosus* Fisch. and C.A. Mey. Rosmarinic acid and rutin have been reported to have strong antioxidant properties and also anti-diabetic, anti-thrombogenic and anti-inflammatory activities and anticarcinogenic activities [1]. The aqueous methanolic extract of aerial parts of plant powder was prepared using Sonication Extraction Method (SEM). The concentration of rosmarinic acid and rutin in the whole plant powder were found to be 1.37 and 0.5% (w/w) respectively. Separation was performed on TLC aluminum sheets silica gel 60 F254 plates with ethyl acetate-methanol-distilled water-formic acid (7:2:0.8:1:3:0:7) for rutin and acetone-toluene-formic acid (4:5:1) for rosmarinic acid as mobile phase. Sample solutions for TLC analyses were applied by means of a CAMAG Linomat 5 automated spray-on band applicator. The determination was carried out using the densitometry absorbance mode at 366 nm using a CAMAG TLC Scanner 3. The linear range for rutin and rosmarinic acid were 50–450 ng with correlation coefficient (r-value) of 0.991 and 150–600 ng with correlation coefficient 0.991 respectively. The variability of the method was expressed as intra-day and inter-day precision. References: [1] Petersen, M., Simmonds M.S.J. (2003) Phytochemistry 62: 121 – 125. [2] Lacopini, P. et al. (2008). Food Comp. Anal. 21: 589 – 598.

PE35

Antiproliferative activity: Extract versus isolated active constituent

Hostanska K1, Reichling J1, Nahrstedt A1, Saller R1

1University Hospital Zurich, Dept. of Internal Medicine, Institute for Complementary Medicine, Rämistrasse 100, 8091 Zurich, Switzerland; 2Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; 3WWU Münster, Institute for Pharmaceutical Biology and Phytochemistry, Hofstraßstrasse 50, 48149 Münster, Germany

Recently, there have been extensive efforts to evaluate the chemopreventive role of substances present in natural products. We compared the antiproliferative potency (measured by WST-1 assay) of four plant extracts from the gum resin of *Boswellia serrata* Roxb., *Hypericum perforatum* L., *Cimicifuga racemosa* Land Salix sp. to their biologically active compounds boswellic acid (AKBA), hypericin (HY), hyperforin (HP), triterpene glycosides (TTG), cinnamic acid esters (CAE) and salicin (SAI) using different cancer cells. Substances were compared by their GI50 values. In three leukaemia cell lines (K562, U937 and MOLT4) the effect of the crude extract of *B. serrata* was 2.3–3.3 times more potent than AKBA [1]. The antiproliferative effect of *H. perforatum* extract depends on light activation of HY. However, in the dark, the effect of *H. perforatum* extract on K562 and U937 cells was found 10-times more potent than HY, but 2–times less potent than HP [2]. Furthermore, HY and HP acted synergistically on cell growth inhibition in the dark [3]. The effect of two main classes of compounds, TTG and CAE on breast ER+ MCF-7 and ER- MDA MB231 cancer cells was 2.2–3. times and 4–6 times less potent in comparison to their parent isopropenol C. racemosa extract [4]. Effect of willow bark extract, its fraction of salicylic alcohol derivatives F1 [5] and SAI was investigated on the cell growth of COX-2 deficient HT-29 and COX-2-deficient HCT 116 colon cancer cells. There were differences of about two decades of logarithmic scale for favour of extract in comparison to the single compound SAI and the parent extract was 3-times more potent than the isolated fraction F1. Natural products as multiple compounds mixtures possess the potential for synergistic drug interactions effectively than their single active constituents. References: [1] Hostanska, K. et al. (2002) Anticancer Res. 22: 2853 – 2862. [2] Hostanska, K. et al. (2003). J. Pharm. Pharmacol. 55: 973 – 980. [3] Hostanska, K. et al. (2003). Eur. J. Pharm. Biopharm. 56: 121 – 132. [4] Hostanska, K. et al. (2004) Biol. Pharm. Bull. 27:1970 – 1975. [5] Hostanska, K. et al. (2007) Cancer Detect. Prev. 31:129 – 139.

PE36

Inhibition of P-glycoprotein activity by curcubitane-type triterpenes and their interaction with doxorubicine on resistant cancer cells

Ramalhethe C1, Duarte N1, Capucha V1, Mohdrj2, Mulhovo S1, Rosdrio V1, Ferreira MHL1

1iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. das Forças Armadas, 1600 – 083 Lisbon, Portugal; 2Department of Medical Microbiology, University of Szeged, Szeged, Hungary; 3Polytechnic Institute of Gaza (ISPG), Chokwe, Mambicante; 4MDTILA, Institute of Hydrological and Tropical Medicine, UNL, R. da Junqueira 96, 1349 – 008 Lisbon, Portugal

The overexpression of P-glycoprotein (P-gp) is one of the mechanisms of multidrug resistance (MDR), responsible for the failure of cancer treatment. One strategy to reduce the cytotoxicity of the anti-cancer drugs is to co-administer compounds that are not toxic themselves, but inhibit these efflux pumps. These compounds have been called MDR inhibitors, MDR modulators, MDR reversal agents or chemosensitizers. In recent years, several compounds have been reported as MDR modulators, obtained either from natural origin or by synthesis. However, in spite of the great number of MDR inhibitors known, no effective modulator without side effects is still available for the clinical practice [1]. In our search for biologically active compounds from *Momordica balsamina* L., a climber extensively cultivated and used in tropical and sub-tropical countries to treat various diseases [2], we have isolated three new curcubitane-type triterpenes, named balsaminagenin A and B, and balsaminoside A, together with the known curcubitane karavelagenin C. Moreover, karavelagenin C was derivatized using several reagents, to afford five new mono- and diacetylated compounds. All the structures were deduced from their physical and spectroscopic data, including 2D NMR experiments (COSY, HMQC, HMBC and NOESY). The ability of these curcubitane-type triterpenes to inhibit P-gp activity was investigated by flow cytometry, in a rhodamine-123 exclusion test using human MDR1 gene-transfected mouse lymphoma cells. Verapamil was used as positive control. Some of the tested triterpenes have shown to enhance strongly drug retention by inhibiting the efflux pump activity mediated by P-gp. Furthermore, in the model of combination chemotherapy, the interaction between doxorubicin and the most active compounds was studied in vitro. All of them synergistically enhance the effect of the antitumour drug in combination. Acknowledgements: The authors wish to thank the Science and Technology Foundation, (FCT, grant SFRH/BD/2232/2005). References: [1] Szakacs, G. et al. (2006) Nat. Rev. Drug Discov. 5: 219 – 234. [2] Flymen, M.V., Afolayan, A.J. (2007) Int. J. Food Sci. Nutr. 58: 419 – 423.
Dioscoreanone-induced growth arrest and apoptosis in lung carcinoma cells

Hansakul P., Itharat A., Pananto W.

Division of Clinical Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Klong Loung, Pathum Thani, 12120 Thailand; Division of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Rangsit Campus, Klong Loung, Pathum Thani, 12120 Thailand; Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Klong Loung, Pathum Thani, 12120 Thailand

Dioscoreanone is a new member of the 1,4-phenanthraquinone derived from the ethanolic extract of Dioscorea membranacea Pierre (or “Hua-Kho-Yen” in Thai) rhizome that has long been used as a common ingredient in Thai traditional anticancer medicines [1,2]. In this study, we have found that Dioscoreanone mediated strong and selective antiproliferative activity against two human non-small cell lung cancer (NSCLC) cell lines: A549 (adenocarcinoma) and COR-L23 (large cell carcinoma) (IC_{50} 3.03 and 6.19 μM, respectively). This effect occurred in a dose-dependent manner in both cancer cell lines. By contrast, in the human small cell lung cancer (SCLC) cell line NCI-H1688, this compound showed weak cytotoxicity (IC_{50} 16.68 μM) indicating that its cytotoxicity was specific to only NSCLC subtype. Similarly, it exerted moderate cytotoxicity against non-tumorigenic human lung fibroblast MRC-5 cells with a significant difference in the IC_{50} of 14.70 ± 3.75 μM compared to A549 and COR-L23 cells. Moreover, at doses of 7, 14, 35 and 18 μM, Dioscoreanone caused 90% cell death in COR-L23, A549, NCI-H1688 cancer cells and fibroblast MRC-5 cells, respectively, which suggested its cytotoxic effect. The molecular mechanisms underlying this effect were studied in COR-L23, due to its high sensitivity to Dioscoreanone. DNA fragmentation assay detected ladder pattern characteristic of apoptosis in Dioscoreanone-treated COR-L23 cells in a dose- and time-dependent manner. Taken together, our study showed that Dioscoreanone could exhibit potent as well as selective antiproliferation and cytotoxicity against COR-L23 cells through apoptotic induction. Consequently, its potential as a chemotherapeutic agent for certain cancer types is worthy of further investigation. Acknowledgments: We thank Dr. Thomas Weiss, Center for Liver Cell Research, Department of Surgery, University of Regensburg, Germany, for providing primary hepatocytes.

Oleanolic acid rich solubilized triterpene extracts from mistletoe induce apoptotic and necrotic cell death of murine B16, F10 melanoma cells

Strub CM^1,^2, Jäger S^1,^2, Schamp CM^1,^2, Jakob T^1,^2, Scheffler A^3, Martin S^1^1Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Hauptstraße 7, D-79104 Freiburg, Germany; 2Competence Center SkinTargeT, Department of Dermatology, University Medical Center Freiburg, Hauptstraße 7, D-79104 Freiburg, Germany; 3Carl Gustav Carus-Institute, Am Eichfeld 30, D-75223 Neuen-Oschelbronn, Germany; 4University of Freiburg, Faculty of Biology, Schänzlestraße 1, D-79104 Freiburg, Germany

Oleanolic acid (OA) is an almost water insoluble (< 0.02 μg/ml) [1], naturally occurring pentacyclic triterpenoid, which has a variety of biological effects (e.g. anti-cancer and anti-inflammatory, reviewed in [2]). OA is the main component (~80%) of triterpene extracts from European mistletoe, which does not contain mistletoe lectins and viscotoxins. The toxic solvent DMSO is normally used for in vitro administration of OA. This restricts the use of OA due to limited solubility of OA in DMSO and toxicity of DMSO itself. By using 2-hydroxypropyl-beta-cyclodextrin as a cosolvent, we successfully prepared OA-DMSO solutions. OA-DMSO (60:40, w/w) is a stable solution in DMSO for up to 3 months at 4°C. The solubility of OA was up to 30 μg/ml. Higher OA concentrations (>30 μg/ml) induce a shift from apoptotic to necrotic cell death. In summary we demonstrated that OA rich in hydroxypropyl-beta-cyclodextrin, is able to induce apoptotic and necrotic cell death of B16, F10 mouse melanoma cells. Maximum apoptosis induction was detected with OA concentrations from 15 to 20 μg/ml. Higher OA concentrations (>30 μg/ml) induce a shift from apoptotic to necrotic cell death. In summary we demonstrated that OA rich in hydroxypropyl-beta-cyclodextrin, is able to induce apoptotic and necrotic cell death of B16, F10 mouse melanoma cells. Acknowledgements: Software AG Stiftung, Darmstadt, Germany; Rudolf Steiner Fonds für Wissenschaftliche Forschung, Nürnberg, Germany. References: [1] Jäger, S. et al. (2007) Planta Med. 73:157–162. [2] Liu, J. (1995) J. Ethnopharmacol. 49:57–68. [3] Martin, R. et al. (2007) Cancer Res. 67:3741–3751.
In case of thymol and carvacrol as substrates thymoquinone is formed by biotransformation of p-cymene with thymol and carvacrol as intermediates.

The title of the paper is "Synthesis and Cytotoxicity Evaluation of New Aryloxymethylfurane Derivatives" and the authors are Tahani A. H. and colleagues. The paper discusses the synthesis of new aryloxymethylfurane derivatives and their evaluation for cytotoxic activity. The compounds were synthesized and evaluated for their potential as anti-tumor agents.
Antiproliferative effects of Zanthoxylum rhoffolium
Weber AD1, Stükler CZ2, Zannon C1, Ilha V1, Dalcol BI, Carvalho JF2, Mocel A3
1Departamento de Química (NPPN), Universidade Federal de Santa Maria, CP, Santa Maria, RS, Brazil; 2Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas de Campinas, CP 6154, 13084 – 971 Campinas, SP, Brazil

The present study was designed to evaluate the antiproliferative effects from the stem bark of Zanthoxylum rhoffolium. The basic fractions that were obtained after acid-basic extraction from the methanolic extract, and pure compounds isolated from these fractions, were investigated in vitro toward nine cultured human tumor cell lines, namely, PCO 3 (prostate), UACC 62 (melanoma), MCF-7 (breast), NC 460 (lung), K-562 (leukemia), OV-CAR (ovarian), HT-29 (colon), 786 – 0 (renal), NCI-ADR (breast expressing phenotype multiple drugs resistance). From the chloroform basic fraction, were isolated eleven compounds, the benzophenanthridine alkaloids 6-acetonylhydroavicine (1), 6-acetonylhydrodronitidine (2), 6-acetonylhydrodihydrochelerritine (3), carbboximethyldihydrochelerritine (4), dihydrodihydrochelerritine (5), chelerritine (6), dihydroavicine (7), rhoifoline (8), rhoifolol (9), boconoline (10) and zanthoxylpine (11). From the ether acid fraction, the lignanes sesamin (12), gadain (13) and kaerophyll (14) were also isolated. From them, alkaloids 1, 5, 6, 7, 10, 11, and the lignanes 13 and 14 were selected for this study. The Et2O acid fraction displayed a moderate antiproliferative activity (IC50=25.0 m), against the cell lines tested (except for PCO-3, with IC50 > 100.0 µg/mL). For MCF7, K-562, OVCAR, PCO-3, and HT29, the basic fraction exhibited the most potent antiproliferative effect, with IC50 values of 2.50 µg/mL, and a moderate potency for NC-460, 786.0 and NCI-ADR, with IC50 values of 25.0 µg/mL. From the isolated metabolites, 6-acetonylhydrodronitidine (1) (diidrocheleritrine (5), and boconoline (10), were the more promising compounds, 6-acetonylhydroavicine (1), except for K-562, displayed antiproliferative activity against PCO-3, 786 – 0 and HT 29, with IC50 value of 2.50 µg/mL, and against NCI-ADR, UACC 62, MCF 7, NCI 460 and OVCAR with IC50 value of 25.0 µg/mL. Diaidrocheleritrine (5) was selected for antiproliferative action against UACC-62, MCF-7, N-562, HT 29 and NCLADR with IC50 value of 25.0 µg/mL and cytotoxicity (cell death) against NCL460, OVCAR, PCO-3 and 786 – 0 at the concentration of 25.0 µg/mL Boconoline (10), except for PCO-3 and 786.0 (IC50> 100.0 µg/mL), showed a moderate antiproliferative activity against NCI460, OVCAR, UACC62 and PCO-3 with IC50 value of 25.0 µg/mL. From the isolated compounds will be discussed. The authors thanks CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support. References: [1] Gonzaga, W.A. et al. (2003) Planta Med. 69:371.
In vivo pharmacological evaluations for betulinic acid and ramified cyclodextrins applied on experimental melanoma models

Dehelean CA 1, Peery C 2, Soica C 2, Cinta-Pinzaru S 2, Aigner Z 3
1University of Medicine and Pharmacy Victor Babes Timisoara, Faculty of Pharmacy, Eftimie Murgu Square no.2, RO-300041, Timisoara, Romania; 2University Babes-Bolyai Cluj-Napoca, Faculty of Physics, Mihail Kogalniceanu no.1, RO-400084, Cluj-Napoca, Romania; 3University of Szeged, Faculty of Pharmacy, Institute of Pharmaceutical Technology, Zrínyi u.9, H-6720, Szeged, Hungary

The preclinical development of bioactive natural products such as betulinic acid is a major objective of anticancer research programs and their biological applications are very important. Pentacyclic triterpenes with lupan skeleton such as betulinic acid (BA), betulin and lupeol are effective and selective antitumor agents [1,2]. The pharmacokinetic data of BA a structure close to betulin in CD-1 mice had been described by a standard two compartment first-order model applicable also in other in vivo evaluations [1,3]. Branched cyclodextrins are important co-participants to formulations that are increasing the hydrosolubility [2]. The complexes with oktakis-2,6-di-O-pentyl-gamma cyclodextrin were prepared by kneading procedures in 1:2 ratios. In vivo models were on C57Bl/6 mice by a photochemical and inoculation method. The photochemical method used 7,12 dimethylbenzanthracene and TPA as skin promoter and the UVB exposure 5 min/day. The inoculation consists in application of 10^5 x 0,1 ml A2058 (metastatic melanoma) cells and the same UVB exposure [2]. The skin damages were appreciated by FT-Raman with nanosilver particles and histology techniques. Betulinic acid, an antimelanoma compound lead to important results at 300 mg/kg and increasing of its hydrosolubility accentuate the antitumor activity. The tests were confirmed by vibrational spectroscopy and histopathological evaluation. Skin evolution after the treatment lead to important signal and peak changes and these aspects could be correlated with HE histological evaluation. Betulinic acid is an antimelanoma agent that determines the regression of tumor proliferation in most of cases and malignisation to organs like lungs and changes in the spectral bands for skin between 1100 and 1600 cm^-1. Acknowledgements for financial support: This research was supported by the Cyprus Research Promotion Foundation (KY-ROY/0407/03) and the Romanian Ministry of Education and Research. References: [1] Burdette, J.E. et al. (2002). Agric. Food Chem. 50:7022 – 7028. [2] Wangensteen, H. et al. (2004) Food Chem. 88:293 – 297.

In a continuing program to discover new anticancer agents from plants, especially naphthoquinones from Alkanna genus, Alkanna cappadocica Boiss.& Bal was investigated [1]. Bioassay-guided fractionation of di-chloromethane: methanol (1:1) extract of the roots led to the isolation of four new and four known naphthoquinones. Known compounds deoxyalkannin (1), 8-β-dimethylacylalkannin (2), acetylalkannin (3) and alkan (4) [2,3], and new compounds, 5-methoxydeoxyalkannin (5), 8-methoxydeoxyalkannin (6), 5-methoxycetylalkannin (7), 3-methoxy-β,β- dimethylacylalkannin (8) were fully characterized by spectroscopic analyses (LC-ESI-MS, 1D- and 2D-NMR), Cytotoxicity of the isolated compounds was evaluated versus four human cancer cell lines HT-29, MDA-MB-231, PC-3, LNCaP, together with a normal cell line 3T3 by using MTT assay. Compounds 1, 2, 4, 7 and 8 showed remarkable cytotoxic activity against HT-29, MDA-MB-231 and PC-3 cell lines, comparable or stronger than the other compounds and positive control CPT-11 (CAMTOSTAR®), irinotecan) with IC_{50} values in between 0.1 μM and 1 μM. In order to confirm mechanism of action through DNA topoisomerase I inhibition which is a common feature for naphthoquinones, the compounds were incubated with topoisomerase I (topo I) and supercoiled DNA. These studies revealed that β,β-dimethylacylalkannin (2) and acetylalkannin (3) have great potential as topo I inhibitors compared to other compounds and CPT-11, with 2 – 3 μM inhibition value. Acknowledgement: This study was supported by Turkish Scientific and Technological Research Council of Turkey (Project No: 556E01-1099). References: [1] Davis, P.H. (1978) “Flora of Turkey and East Aegean Islands” Vol.3, University Press: Edinburgh. [2] Papageorgiou, V.P. et al. (1999) Angew. Chem. Int. Ed. 38:270 – 300. [3] Kourounakis, A.P. et al. (2002) Arch. Pharm. 335:262 – 266.

The antioxidantative activity of the essential oil of *D. ammoniacum*, grown wild in Pakistan has been reported without identifying any compounds [3]. However, the activity of the essential oil of *D. ammoniacum* is less than that of the standard antioxidants like tocopherol, BHA and BHT [3]. The aerial parts of *D. ammoniacum* were collected at the full flowering stage and the essential oil was isolated by hydrodistillation and analyzed by a combination of capillary GC and GC-MS. 29 components were identified, representing 95.17% of the total oil. 2-ocimene (22.31%) and E-ocimene (16.13%) were the main components. The *in vitro* antimicrobial activity of the essential oil of *D. ammoniacum* was studied against seven Gram-positive and Gram-negative bacteria (Bacillus subtilis, Enterococcus faecalis, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The result of antimicrobial testing of the essential oil by the disc diffusion method and MIC values indicated that the oil exhibited moderate to high antimicrobial activity. Reference: [1] Reehunger, K.H. (1980) In: Flora Iranica, Umbelliferae, vol 162. 2. Mozaffarian, V.A. (1996) Dictionary of Iranian Plant Names. 3. Rahman, U. et al. (1991) Chem. Soc. Pak. 131:56 – 59.

PE53

Toxicological evaluations for betulinic acid in cyclodextrins complexes on in vitro and in vivo melanoma models

Dehelean CA1, Soica C1, Muresan A2, Tatu C2, Aigner Z2

1Faculty of Pharmacy, University of Medicine and Pharmacy Victor Babes Timisoara, Eftimie Murgu Square no.2, RO-300041, Timisoara, Romania; 2Faculty of Pharmacy, Institute of Pharmaceutical Technology, University of Szeged, Szeged u.9, H-6720, Szeged, Hungary

Vegetal compounds such as pentacyclic triterpenes with lupan skeleton proved and important antitumor activity. From that group betulinic acid (BA) is an effective antitumor agent with an anti-inflammatory effect [12]. These aspect lead to the obtaining of new bioavailable formulations for biological administration that could capacitate their properties and solve their low solubility including cyclodextrin complexation [12]. The complexes with gamma cyclodextrins, were prepared by kneading method procedure in 1:2 ratios. In vivo models used C 57Bl/6 J mice, The complexes with gamma cyclodextrins, were prepared by kneading method procedure in 1:2 ratios. In vivo models used C 57Bl/6 J mice, were collected at the full flowering stage and the essential oil was isolated by hydrodistillation and analyzed by a combination of capillary GC and GC-MS. 29 components were identified, representing 95.17% of the total oil. 2-ocimene (22.31%) and E-ocimene (16.13%) were the main components. The *in vitro* antimicrobial activity of the essential oil of *D. ammoniacum* was studied against seven Gram-positive and Gram-negative bacteria (Bacillus subtilis, Enterococcus faecalis, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The result of antimicrobial testing of the essential oil by the disc diffusion method and MIC values indicated that the oil exhibited moderate to high antimicrobial activity. Reference: [1] Reehunger, K.H. (1980) In: Flora Iranica, Umbelliferae, vol 162. 2. Mozaffarian, V.A. (1996) Dictionary of Iranian Plant Names. 3. Rahman, U. et al. (1991) Chem. Soc. Pak. 131:56 – 59.

PE54

Cytoxic activity of mammea type coumarins from *Mammea siamensis* flowers

Noyangs C2,3, Kretscher N2, Kunert O3, Effert F1, Dehnenmann O1, Bauer R1

1Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, 12130 Pathumthani, Thailand; 2Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-University, Universitaetsplatz 4, 8010 Graz, Austria; 3Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Karl-Franzens-University, 8010 Graz, Austria; 4German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; 5Faculty of Pharmacy, Department of Pharmacognosy, Mahidol University, 10400 Bangkok, Thailand

Mammea siamensis (Mich.) T. Anderson (local name: sarapi) is a Thai medicinal plant in the family Clusiaceae and used in indigenous medicine as a heart tonic. The n-hexane fraction from *M. siamensis* flowers CH2Cl2-CH3OH (1:1) crude extract yielded coumarins of the mammea type: mammea A/AA, mammea A/AA cyclo d, mammea A/AB cyclo D, mammea A/AC cyclo D, deacetylmammea E/BA and deacetylmammea E/BB. The isolated compounds were examined in an *in vitro* XTT assay against human MD-MB-231 (breast adenocarcinoma), U-251 (central nervous system), HCT-116 (colon cancer), as well as the CCRF-CEM (leukemia) cancer cell lines. Only mammea A/AA and the mixture of deacetylmammea E/BA and deacetylmammea E/BB were found to possess significant cytotoxic activities, at 10 μg/mL in CCRF-CEM with values of 71.2 ± 0.8% and 95.9 ± 1.1% in MDA-MB-231 with values of 58.9 ± 0.8% and 82.4 ± 0.9% in U-251 with values of 27.7 ± 3.2% and 78.8 ± 1.6%; and in HCT-116 with inhibition values of 73.5 ± 4.9% and 97.6 ± 0.6% in the four human cancer cell lines, respectively, comparable to vinblastine at 0.01 μg/mL, with values of 44.2 ± 8.5%, 51.5 ± 12.9%, 71.0 ± 2.5%, and 54.8 ± 9.4%, respectively. Mammea A/AA and the mixture of deacetylmammea E/BA and deacetylmammea E/BB showed significant cytotoxic activities against the human MDA-MB-231, U-251, and HCT-116 as well as the CCRF-CEM cancer cell lines with IC50 values of 7.2 ± 1.0, 5.2 ± 1.0; or et 1.0; 16.6 ± 1.1, 6.5 ± 1.0; and or 20.9 ± 1.4, 4.9 ± 1.0 μM, respectively.

PE55

Protein Kinase Inhibitors from the Endophytic Fungus Alternaria sp. isolated from Polygonum senegalense Growing on P. munroanus Aly AH1,2, Ebel R1, Edrada RA4, Wray V1, Kabbatut M4, Proksch P4

1Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; 2Department of Pharmaceutical Biotechnology, Institut f/ür Pharmazeutische Biologie und Biotechnologie, Khartoum Sq. Azarita, Alexandria, Egypt; 3Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE, Old Aberdeen, Scotland, UK; 4Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR, Scotland, UK; 5Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany; 6ProQinase GmbH, 79106 Freiburg, Germany

Protein kinases, which function as components of signal transduction pathways, play a central role in diverse biological processes, such as control of cell growth, metabolism, differentiation, and apoptosis [1]. Identification of the key roles of protein kinases in cancer has led to extensive efforts to develop kinase inhibitors for the treatment of a wide range of cancers [2]. In continuation of our efforts to discover natural protein kinase inhibitors we studied extracts of liquid and rice cultures of the fungal endophyte Alternaria sp. isolated from the Egyptian medicinal plant Polygonum senegalense. Chromatographic separation of the extracts yielded the known compounds alternariol (1), alternariol 5-O-methyl ether (2), altenuin (3), 2,5-dimethyl-7-hydroxyxocromone (4), tenuazonic acid (5), altenuin 1 (6), talaroflavone (7), and altenuene (8), in addition to several new metabolites (9 – 15). The structures of the compounds were unambiguously established on the basis of NMR spectroscopic and mass spectrometric data. Compounds 1 – 3, 9, and 12 showed cytotoxic activity toward LS174T mouse lymphoma cell line with EC50 values ranging from 1.7 to 7.8 μg/mL. When analyzed in vitro for their inhibitory potential against 24 different protein kinases, compounds 1 – 3, 6, 9, and 11 – 13 inhibited several of these enzymes (IC50).
A new phenolic glycoside from the stems of Clematis parviloba
Yan LH,2 Brantner AH,3 Wang ZM,4 Zhang QW,5 Xu LZ,6 Yong SL,1
1Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, North Malan Road, Beijing 100004, P. R. China; 2Institute of Chinese Materia Medica, China Academy of Medical Sciences, No. 16, Nanxiaoqiao, Dongzhimennei, Beijing 100700, P. R. China; 3National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, No. 36, Yangming Road, Nanchang 330006, P. R. China; 4Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens University Graz, Universitaetsplatz 4/1, 8010 Graz, Austria

A new phenolic glycoside, clemaparviloside A (1) together with three known megastigmane glycosides, linarionoside A (2), linarionoside C (3) and staphylionoside K (4) were isolated from the stems of Clematis parviloba [2]. Their structures were determined on the basis of spectroscopic analysis and chemical evidence. The megastigmane glycoside compounds are reported for the first time to be obtained from Clematis genus. In addition, compound 1 was examined its inhibitory activity against murine fibrosarcoma L929 cells in vitro.

Rosmarinus officinalis L. extract inhibits human melanoma cell growth
Russo A1, Lombardo L2, Troncco N3, Garbarino J4, Cardile V5
1Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; 2Dept. of Physiological Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; 3Lo Vicuña & CIA., Santiago, Chile; 4Dept. of Chemistry, University T.F. Santa Maria, Casilla 110-V, Valparaiso, Chile

Many studies highlighted the high concentration of beta caroten and vitamin C in carrot root which is a reach source of antioxidants and other substances (iron, calcium, potassium, sodium vitamin C). To measure the mercury concentration in particular parts of the carrot (Daucus carota) in some areas of Slovakia was the main aim. We monitored mercury existence in carrot (n = 20) and the soil. The results were evaluated according to existing domestic norms [1]. To find the concentration of mercury in some commodities the analytic method for stating the concentration of Hg in underground parts of carrot was surprisingly low. This fact is in contradiction with the statement that mercury is concentrated in roots. Concentration of Hg is even lower than 0.010 mg.kg\(^{-1}\) according to the standard norms [2]. The lowest concentration was in root (0.01039 mg.kg\(^{-1}\)). The concentration of Hg in underground parts of carrot was surprisingly low. This fact is in contradiction with the statement that mercury is concentrated in roots. Concentration of Hg is even lower than 0.010 mg.kg\(^{-1}\); a value expected by the standard norms [1].

Products able to inhibit reactive oxygen species (ROS) and reactive nitrogen species (RNS) production by UV-R could be used in the prevention of skin cancer [1]. Rosmarinus officinalis L. (rosemary) is used as a folk medicine around the world, as well as in cosmetics. In medicine, the extract is receiving increasing attention due to its anti-inflammatory and antioxidative constituents [2]. The antioxidant properties of rosem-
ary have been well documented, and there are several reports that have established carnosic acid as the major phenolic diterpenoid present in rosemary leaves with antioxidant activity [2]. Recently, this phenolic compound has attracted wide interest as a potential therapeutic agent against several diseases, and researches showed that it has chemopreventive, anti-neoplastic and antimutagenic effects [2]. Our recent studies evidenced that R. officinalis extract, containing 31.7% of carnosic acid, was able to contrast deleterious effects of UV-K, protecting plasmid DNA by hydroxyl radical generated by UV-A [2]. In this work, we evaluated the effect of this extract on pBR322 DNA cleavage induced by nitric oxide, and the growth inhibitory activity against two human melanoma cell lines (M14 and A375). The results obtained indicate that our sample at 200 – 800 μg/ml concentrations, like carboxy-PTIO (1 mM), an NO trapping agent, was able to reduce the NO-induced plasmid DNA damage, and at non toxic concentrations (20 – 80 μg/ml) for normal human fibroblast cells, was able to reduce significantly (p < 0.001) the growth (MTT assay) of both melanoma cell lines. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in M14 and A375 cells. In fact, no statistically significant increase in LDH release was observed in melanoma cells, whereas SFE condition (50 °C, 80 bar, 200 ml) gave the lowest yield. The highest extraction yield was obtained under the Super-CO2 temperature and pressure conditions (50 °C, 300 bar, and 200 ml) has promising anti-cancer activity of MTT cytotoxicity assay show that the clove extract obtained at SFE condition (50 °C, 300 bar, and 200 ml) has promising anti-cancer activity on various cancer cell lines: the human cervical carcinoma (HeLa), the T24 cell line (Jurkat), the human leukemia (HL-60), and the human neuroblastoma (SH-SYSY). The clove extract showed over 80% reduction in cell viability. Moreover, FACS analysis of the treated cells confirmed that the cytotoxic effect of clove is due to the induction of apoptosis. In addition, the clove extract was shown to inhibit histone deacetylation as measured by a reduction in the expression of certain HDACs. References: [1] Zheng, S. et al. (1997)J. Cell Biochem. Suppl. 27: 106 – 112. [2] Lin, J. et al. (2003) World J. Gastroenterol. 9(4):670 – 673. [3] Lee, S.M. et al. (2002) Life Sci. 71(19):2267 – 2277. [4] Harris, C. et al. (1991) Mol. Biother. 3(4):207 – 213. [5] Takeya-ma, H. et al. (1993) Oncology 50(1):63 – 69. [6] Jarred, R.A. et al. (2002) Cancer Epidemiol. Biomarkers Prev. 11(12):1689 – 1696. [7] Iizuka, N. et al. (2002) Int J Cancer 99(2):286 – 291. [8] Hibi, S. et al. (1991) J. Mol. Biol. 235(1):26 – 30. [9] Hibi, S. et al. (1991) Int J. Oncol. 25(4):857 – 866. [10] Munoz, S.E. et al. (1999) Nutrition 15(3):206 – 212. [11] Hernandez-Ceruelos, A. et al. (2002) Toxicol. Lett. 135(1 – 2):103 – 110. [12] Rubnov, S. et al. (2001) J. Nat. Prod. 64(7):993 – 996. The genus Lippia (Verbenaceae) includes approximately 200 species of herbs, shrubs and small trees. Most of them are traditionally utilized as remedies for gastrointestinal and respiratory problems. Some species have shown antimarial, antiviral and cytostatic properties. It is believed that their essential oils and phenolic compounds (flavonoids) are responsible for these properties. One of these species Lippia citrirodo H.B.K. mainly used as a spice and medicinal plant. It grows spontaneously in South America and is cultivated in different regions of the world [1, 2, 3]. The aerial parts of L. citrirodo grown at Karaj in the north-west part of Iran were hydrodistilled for 3 hours, using a Clevenger-type apparatus to yield 0.8% (w/w) of orange yellow oil. The essential oil was dried over anhydrous sodium sulphate and stored in a sealed vial at +4 °C until analysis. The oil was analyzed by GC and GC-MS. The constituents of the essential oil were identified by comparison of their mass spectra and retention indices (RI) with those given in the literature and authentic samples [4]. Forty compounds were characterized in the essential oil of L. citrirodo, representing 96.17% of the oil, of which carophyene oxide (13.6%), 1,8-cineole (12.5%), neral (5.54) were found to be the major components. Acknowledgement: The authors acknowledge the financial contribution from the Research and Technology Deputy of ACECR (Academic Centre for Education Culture & Research) for supporting this research. References: [1] Argyropoulou, C., et al. (2007) Biochem. Syst. Ecol. 35:831 – 837. [2] Valentín, P., et al. (2001). J. Agric. Food Chem. 49:4579 – 4582. [3] Pascual, E., et al. (1999). J. Ethnopharmacol. 76:201 – 214. [4] Adams, R.P. (2001) Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass spectrosopy. Allured Publishing Crop. Carol stream, IL.

Levisticum officinale-Koch (lovage) plant is a member of family Apiaceae "Umibellea" used as expectorant and stomach stimulant. Essential oil of control plants was extracted by hydrodistillation. Anti-oxidant and anti-tumor activities of essential oil were studied. The essential oil showed antioxidant activity using DPPH method [1] (IC50, 65 μg/ml). The essential oil has anti-tumor activity against HepG2 and MCF7 by 98% and 95% at 100 μg/ml, respectively and less activity against HT29 at the same concentration while the essential oil showed weak activity at 50 μg/ml (65% inhibition) and no activities at lower concentrations. Petroleum ether and chloroform extracts of plant have anti-inflammatory activity after 4hrs in carrageenan-induced oedema in rats [2] at dose of 200 mg/kg b.wt. Lovage plant seeds were cultivated in loam soil in two successive seasons (October 2007& 2008) at different distances (20, 40 and 60 cm in between plants) and fertilized using compost (25, 37.5, and 50 kg compost/1,000 g fresh herb/m²) for normal hu-

References:

Abd El-Hamid SR, Abey AT, Hendawy SF
Cultivation and Production of Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industrial Division, National Research Centre, 12311, Egypt

Levisticum officinale-Koch (lovage) is a plant of family Apiaceae used as expectorant and stomach stimulant. Essential oil of control plants was extracted by hydrodistillation. Anti-oxidant and anti-tumor activities of essential oil were studied. The essential oil showed antioxidant activity using DPPH method [1] (IC50, 65 μg/ml). The essential oil has anti-tumor activity against HepG2 and MCF7 by 98% and 95% at 100 μg/ml, respectively and less activity against HT29 at the same concentration while the essential oil showed weak activity at 50 μg/ml (65% inhibition) and no activities at lower concentrations. Petroleum ether and chloroform extracts of plant have anti-inflammatory activity after 4hrs in carrageenan-induced oedema in rats [2] at dose of 200 mg/kg b.wt. Lovage plant seeds were cultivated in loam soil in two successive seasons (October 2007& 2008) at different distances (20, 40 and 60 cm in between plants) and fertilized using compost (25, 37.5, and 50 kg compost/1,000 g fresh herb/m²) for normal hu-

References:
Investigation on Cytotoxic activity of Centaurea bruguierrana ssp. belangerana
Rajobi A\(^1\), Khani M\(^1\), Khamedi R\(^2\), Hadjiakhoondi A\(^1\), Ozadi S\(^1\)
\(^1\)Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14555 – 6451, Iran; \(^2\)Agricultural Research and Natural Resources of Bushehr Province Center, Bushehr 7131, Iran; \(^3\)Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14555 – 6451, Iran.

Total 80% MeOH extract and petroleum ether, CHCl\(_3\), EtOAc, n-BuOH, and remaining MeOH fractions obtained by solvent-solvent fractionation of the whole fruiting samples of Centaurea bruguierrana ssp. belangerana (Asteraceae) collected from the south of Iran were investigated for cytotoxicity against HT-29 (colon carcinoma), Caco-2 (colon adenocarcinoma), T47D (breast ductal carcinoma) and NIH-3T3 (Swiss embryo fibroblast) cell lines by MTT cytotoxicity assay [1]. The CHCl\(_3\) and EtOAc fractions showed significant cytotoxic activity on T47D and Caco-2 cell lines (IC\(_{50}\) > 100 \(\mu\)g/ml), which CHCl\(_3\) fraction exhibited the most potent in vitro cytotoxic activity against Caco-2 cell line with an IC\(_{50}\) value of < 10 \(\mu\)g/ml, and therefore, can be considered to have active compound(s) against the Caco-2 colon cancer cell line that may be due to the presence of the sesquiterpene lactones [2,3]. Although, the IC\(_{50}\) values of these two fractions are much higher than IC\(_{50}\) of methotrexate as an anticancer drug, this may be due to the impurity of fractions consisting of so many constituents other than active compounds. Interestingly, the IC\(_{50}\) values of these two fractions on normal NIH-3T3 cell line is higher than that of Caco-2 and Caco-2 cell lines which can be considered as inactive on normal cells while active on cancer cells. Finally, the isolation and structure elucidation of the active compounds of CHCl\(_3\) and EtOAc fractions as well as determination of IC\(_{50}\) values and understanding the mechanism of inhibition would be of interest. Acknowledgements: This research has been supported by Tehran University of Medical Sciences & health Services grant No. 6091 – 33 – 03 – 86 on November 12, 2007. References: [1] Mousman, T. (1983).] Immunol. Methods. 65:55 – 63. [2] Yesilada, E. et al. (2004) J. Ethnopharmacol. 95:213 – 215. [3] Özcelik, B. et al. (2007) Microbiol. Res. doi: 10.1016/j.micres.2007.05.006.

Study of the anti-inflammatory and antitumour effects of a hydroethanolic extract of the plant Piper marginatum
Contreras A\(^1\), Villasmil J\(^1\), Abad M\(^1\), Arsenak M\(^1\), Michelangeli F\(^1\), Fernández A\(^1\), Ruiz MC\(^1\), Fraile S\(^2\), Taylor P\(^1\)
\(^1\)Centro de Medicina Experimental; \(^2\)Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A, Venezuela

In Brazilian folk medicine, the aqueous extract of Piper marginatum Jacq. (Piperaceae) has been reported to have anti-inflammatory and wound-healing properties [1]. Screening of hydroethanolic Venezuelan plant extracts for both anti-inflammatory and antitumour activities indicated that this plant merited further study [2], especially in the light of the proven role of inflammation in cancer growth and metastasis [3]. In this study, a hydroethanolic extract of the leaves of Piper marginatum (PM) was tested for both cytotoxicity and anti-inflammatory activity in vitro and against primary tumour growth and metastasis in a mouse model. PM was cytostatic for three tumour cell lines at relatively high concentrations (G50 > 80 – 230 \(\mu\)g/ml) in a 48 h sulphorhodamine assay but only at higher doses (up to 300 \(\mu\)g/ml). Our data suggest that PM does not inhibit tumour growth through a direct cytotoxic effect, but possibly via another mechanism which requires further investigation. Acknowledgements: Project Misión Ciencia # 2007008881, MPPCT, Venezuela. References: [1] D’Angelo, L. et al. (1997) Phytochemistry 43: 33 – 40. [2] Villasmi, J. et al. (2006) Pharmacologyonline 3:808 – 816. [3] Cousens, L.M. et al. (2002) Nature 420:860 – 867.

PE65

Phytochemical characterization and cytotoxic activity of Iberogast\(^{\circledR}\) Bios.
Shafiei Hanjani J\(^1\), Yazdaehz Shotorbani P\(^1\), Asgari F\(^2\), Amin C\(^1\), Azizi E\(^3\)
\(^1\)Faculty of Pharmacy, Islamic Azad University, Yazdchali Street, 149133111, Tehran, Iran; \(^2\)Department of Pharmacology, Faculty of pharmacy, Tehran University of Medical Sciences, Enghelab Street, 1417644111, Tehran, Iran; \(^3\)Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417644111, Tehran, Iran; \(^4\)Young Research Club, Pharmaceutical Sciences Branch, Islamic Azad University

In Brazilian folk medicine, the aqueous extract of the plant

Iberogast\(^{\circledR}\) Bios. (Asteraceae), an endemic plant of Iran, aerial parts total extract and dichloromethane, ethyl acetate and methanol fractions were investigated for their in vitro cytotoxic activity as well as their phytochemical constituents. The total extract was prepared by cold percolation method using hydro-alcoholic solution [1]. The fractions were obtained by using Soxhlet apparatus [2]. In phytochemical screening, total extract was tested for alkaloids, saponins, tannins, anthraquinones, flavonoids, cardiac glycosides and cyanogenic glycosides [3]. The results revealed the presence of flavonoids and alkaloids in total extract. Human breast carcinoma cell line, T47D, was used for evaluating cytotoxic activity by MTT assay method and doxorubicin was used as positive control [4]. The total extract exhibited marked cytotoxic activity against human breast carcinoma cell line with IC50 of 1 mg/ml. In comparing all fractions at the concentration of IC50, the dichloromethane fraction was the most effective one which shows the presence of some cytotoxic components that are almost nonpolar and can be extracted by nonpolar solvents. References: [1] Fazeli, M.R. et al (2007) Food Cont. 18:646 – 649. [2] Francois, G. et al (2004) Phytother. Res. 18:184 – 186. [3] Evans, W.C. (2002) Trease and Evans Pharmacognosy. W.B. Saunders. London. [4] Kaabinejadian, S. et al (2008)). Biol. Sci. 8:380 – 385.

Anti-proliferative and pro-apoptotic mechanisms of Iberogast\(^{\circledR}\)
Bonaterra GA\(^{1}\), Kiefer G\(^2\), Traut V\(^3\), Ziegel S\(^3\), Weiser D\(^2\), Metz J\(^1\), Kirschner R\(^1\)
\(^1\)Section Macroscopic Anatomy, Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS C, Ludolf-Krehl-Str. 13 – 17, 68167, Mannheim, Germany; \(^2\)Steigerwald Arzneimittelwerk GmbH, Havelstr. 5, 64295, Darmstadt, Germany; \(^3\)Anatomy and Cell Biology of Heidelberg, INF307, 69120, Heidelberg, Germany

STW 5 (Iberogast\(^{\circledR}\)) is widely used in the treatment of gastrointestinal disorders, including functional dyspepsia and colon irritability. Our objective was to determine anti-proliferative and pro-apoptotic effects of this combination of nine plant extracts on colon adenocarcinoma cells (HT-29) in comparison with non-stereoidal anti inflammatory drugs (NSAIDs) like aspirin (ASA) or diclofenac (Diclo), substances, for which a reduction of colon carcinoma risk is known from clinical and epidemiological data. HT-29 cells were treated with Diclo (0.025 – 0.1 \(\mu\)M), ASA (0.2 – 2.5 \(\mu\)M), STW 5 (3 – 300 \(\mu\)g/ml) or its components STW 6 (12.5 \(\mu\)g/ml), STW 5-K II (peppermint leaves; 50 \(\mu\)g/ml), STW 5-K VII (100 \(\mu\)g/ml), STW 5-K VIII (50 \(\mu\)g/ml) or STW 5-K VII (lemon balm leaves; 25 \(\mu\)g/ml). The anti-proliferative effects were measured with Sulforhodamine staining. Apoptosis was identified by YO-PRO-1 staining. Apoptosis relevant Bcl2, BAX and Caspase-3 mRNA expression were quantified by Real-Time PCR. Treatment with either Diclo (0.1 \(\mu\)M), ASA (2.5 \(\mu\)M), STW 5 (100 \(\mu\)g/ml) or its components STW 6 (12.5 \(\mu\)g/ml), STW 5-K II (50 \(\mu\)g/ml), STW 5-K VII (100 \(\mu\)g/ml) or STW 5-K VIII (25 \(\mu\)g/ml) inhibited proliferation by ca. 50 – 60% (ASA or Diclofenac 45 – 50%) in comparison with untreated cells (control). STW 5 (as well as ASA or Diclo) induced a 3 to 4-fold increase in apoptosis. Moreover, 100 \(\mu\)g/ml STW 5 showed a 20% or 30% induction of Caspase-3 or BAX expression, whereas ASA or Diclo revealed inhibitory effects. Furthermore, 100 \(\mu\)g/ml STW 5 inhibited the Bcl2 mRNA expression compared to 25 \(\mu\)g/ml. Our data suggest that STW 5 and some of its components show anti-proliferative and pro-apoptotic effects on HT-29 cells in vitro, possibly due to an activation of the caspase cascade. Active concentrations of STW 5 are, in relation to therapeutic doses, comparable to those of ASA and Diclo, suggesting a similar favourable effect on colon carcinoma risk.
Sideritis scardica Griseb., Lamiaceae (mountain tea), an endemic plant of Balkan peninsula, traditionally has been known for its anti-inflammatory and gastroprotective properties [1]. The dried aerial parts of the mountain tea were extracted using ethanol, diethyl ether, ethyl acetate, and n-butanol. The total phenolics content was determined by the Folin-Ciocalteu method. The extracts were tested for their antioxidant activity measuring the reduction of DPPH absorption to indicate the capacity to scavenge free radicals. HPLC method was developed for qualitative fingerprint analysis of flavonoid and phenolic acids in investigated extracts (results presented in the Table). Investigation of the extracts influence on viability of C6 rat glioma cells and rat primary astrocytes demonstrated that the extracts decreased the viability of treated C6 rat glioma cells. The most potent was DE extract where in concentration of 100 μg/ml viability of C6 rat glioma cells decreased to 74.5 ± 5.6% compared to untreated cells. Contrary, the viability of rat primary astrocytes did not change in presence of investigated extracts in the same concentrations. However, both in C6 rat glioma cells and rat primary astrocytes, extract treatment resulted in changes in cellular morphology and actin distribution in the cells. All investigated extracts increased the production of reactive oxygen species in both, C6 rat glioma cells and rat primary astrocytes, as well as the caspase activation and subsequent apoptotic cell death [2].

Determination of cytotoxic compounds by HPLC and stability studied of Thai Traditional preparation called Benjakul for cancer treatment

Benjakul is a Thai Traditional medicine preparation, used for balanced health. From selective interviews of folk doctors in southern Thailand, it was found that Benjakul was used as the adaptogen drug for cancer patients [1]. In our previous study, the ethanolic extract of Benjakul preparation exhibited high cytotoxic activity against lung cancer cell lines (COR-L23). Piperine has been identified as main compound and plumbagin is the most cytotoxic compound [2]. In this study, we developed a reversed-phase high-performance liquid chromatography (HPLC) method for quality control such as chemical fingerprint, quantification and stability of the ethanolic extract of Benjakul preparation. Reversed-phase HPLC was performed with a gradient mobile phase composed of water and acetonitrile, and peaks were detected at 254 nm. Based on validation results, this analytical method is a precise, accurate and stable method to quantify determination of piperine and plumbagin which cytotoxic compounds isolated from the ethanolic extract of Benjakul preparation. The stability of the ethanolic extract of Benjakul preparation was evaluated under the accelerated conditions (45 ± 2 °C with 75 ± 5% RH for 4 months). The results exhibited that plumbagin is unstable but piperine exhibit as a stable compound in accelerated condition 45, 60, 70 and 80 °C, 75% RH and also tested cytotoxic activity of the ethanolic extract of Dioscorea membranacea Pierre against breast human cancer cell line [MCF-7] was also determined. The results of stability of dioscorealide B from the ethanolic extract under heat-accelerated conditions, 45, 60, 70, 80 °C. 75% RH for 1 month, also caused dioscorealide B remaining in the end of the exposure time decrease significant, 84.87 ± 1.89, 61.16 ± 3.72, 42.72 ± 0.92 and 22.97 ± 2.35, respectively. Even though, the cytotoxic activity against MCF-7 of all samples of every condition were not changed significantly. Acknowledgements: Faculty of Medicine, Thammasart University for the financial support. References: [1] Itharat, A. et al. (2004)). Ethnopharmacol. 90:33 – 38. [2] Itharat, A. et al. (2003) Org. Lett. 5:2879 – 2882. [3] Sirikatitham, A. et al. (2007) Songklanakarin J. Sci. Technol. 29(Suppl. 1): 101 – 107.

Anti-proliferative effects by Sabal serrulata (Prostasan®) on prostatic cell lines

Sabal serrulata (Prostasan®) on BHP and possibly the genesis of prostate cancer. In our experiments we looked at the effects of Prostasan® on prostate cancer cell lines. In the presence of testosterone (R1881). The extract alone had no significant steroid receptor-binding studies revealed possible interference with several testosterone-mediated proliferation, with invasion and migration of prostatic cells. Sabal serrulata extract effectively inhibited the proliferation of LNCaP cells – as described earlier. Also Prostasan® inhibited the androgen receptor-dependent transcription of an androgen dependent luciferase reporter gene in a dose-dependent manner after induction by testosterone (R1881). The extract alone had no significant steroid effect in this assay. As an indicator for tumorigenesis, the anchorage-independent growth of prostatic cell was investigated. In the presence of testosterone, the addition of Prostasan® reduced the growth of colonies. However our data indicate the independency of STAT-5 phosphorylation that is related to the JAK/STAT signalling cascade in the pharmacological action by Prostasan®. Receptor-binding studies revealed possible involvement of epidermal growth factor (EGF), muscarinic receptors, as well as chemokine receptors in the pharmacodynamic action by Prostasan®. Further studies need to differentiate the effects from antigenic effects. Conclusively, Prostasan® interferes with several testosterone-dependent adverse reactions. Via inhibition of proliferation and of anchorage-independent migration of prostatic cells Prostasan® might interfere with the symptoms of BHP and possibly the genesis of prostate cancer. Acknowledgements: Funding from Bioforce AG Switzerland.

PE74 Determination of some properties of yoghurt made by using some fruit juice concentrate Achkgozgo AB, Akin N2

1Selecuk University, CumraTechnical Vocational School of Higher Education, 42100 Konya/Turkey; 2Seleck University, Agricultur Faculty, Department of Food Engineering, 42021 Konya/Turkey

Free radicals and other reactive oxygen species play a crucial role in a variety of human physiological functions. However, excess generation of reactive oxygen species can often give rise to oxidative stress that results from the imbalance in the human antioxidant/oxidant status. It has now been recognized that prolonging this imbalance is implicated in a number of human diseases. Recently, the incorporation of plant phenolic into fat-containing foods has received considerable attention with regard to providing functional foods for antioxidant sources. The objective was to study the effect of pomegranate and sour cherry fruit juice concentrate that is dark red with a high antioxidant and phenolic content on the physico-chemical, microbiological and sensory characteristics of yogurt for four weeks storage. The changes in antioxidant and phenolic contents of yogurts supplemented with pomegranate and sour cherry fruit juice concentrate were examined and pH, titratable acidity, total solids content, ash, fat, water activity, water holding capacity and colour of samples were also determined during four week storage period. Furthermore, in order to determine total bacteria, yeast-and mold, total thermophilic lactic acid bacteria microbiologic analyses were also applied to the samples. In preparation process of fruit yogurts, pomegranate and sour cherry juice concentrate were preferred due to their high antioxidant capacity. It was determined that antioxidant capacity and phenolic contents of yogurts prepared with pomegranate and sour cherry fruit juice concentrate was higher than that of Sour cherry juice concentrate. Antioxidant and phenolic contents were decreased in both samples during storage.

PE72 Cytotoxic effects of ethyl acetate extract of Sambucus ebulus compared with Etoposide on normal and cancer cell lines

Saeedi Saravi SS1, Shokrzadeh M2, Mirzayi M3

1Faculty of Pharmacy, Mazandaran University of Medical Sciences, Young Researchers Club, Qaemshahr Islamic Azad University, 48187 861 Sari, Iran; 2Faculty of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, sari; Department of HSE, faculty of HSE, Shahed Beheshti University of Medical Sciences, 48187 861 Sari, Iran; 3Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48187 861 Sari, Iran

Sambucus ebulus is a native botany and exists in large amount in Iran and consists of anti-cancer substances such as ebulin (RIP, ribosome inactivated protein), flavonoids, etc. Isolation and identification of some potent anti-tumor compounds from medicinal plants, has motivated researchers to screen different parts of plant species for anti-tumor effects. In previous studies, anti-inflammatory effects of n-hexane and inactivated protein), flavonoids, etc. Isolation and identification of some activity and IC50 of specific concentrations of ethyl acetate extract of this plant and evaluation of role of vitamins C and E on prevention of cellular and pathological disorders induced by the ethyl acetate extract was performed and reported [1,2]. So, cytotoxic activity and IC50 of specific concentrations of ethyl acetate extract of fruits of S.ebulus on 4 normal and cancer cell lines was studied. Also, Etoposide, a chemotherapy drug was selected as control positive group. The normal cell lines were CHO and rat fibroblast and cancer cell lines. The potent compound of the species of this plant is podophyllotoxin, but active ingredients of other species are lignan, silicicolin and Cisplatin, as well known anticancer compounds on normal cell lines. The obtained results proved that the investigated algae were compared with hydroalcoholic extract of bark of Juniperus sabina Iranian conifers posse cytotoxic activities on some human tumor cell lines. Previous investigations revealed that different parts of some species of Iranian Juniperus sabina possess cytotoxic effects on some human cancer cell lines. The potent compound of the species of this plant is podophyllotoxin, but active ingredients of other species are lignan, silicicolin called desoxypodophyllotoxin. In this study cytotoxic effects and IC50 of specific concentrations of hydroalcoholic extract of fruits of Juniperus sabina were compared with hydroalcoholic extract of bark of Taxus baccata and Cisplatin, as well known anticancer compounds on normal cell lines (CHO and mice fibroblast) and cancer cell lines (HepG2 and CT26). The ethyl acetate extract was prepared by percolation. The cytotoxic effects and IC50 of the extract on the cell lines were studied followed by MTT assay after 72 hours incubation. The results showed that the ethyl acetate extract of Sambucus ebulus possesses lower IC50 in the cancer cell lines in comparison with the normal cell lines. On the other hand, the extract possesses higher IC50 in comparison with Etoposide on all 4 normal and cancer cell lines (P < 0.05), but it manifested a good cytotoxic compound which can introduce as an anticancer compound. References: [1] Ebrahimzadeh, M.A. et al. (2007) Pa-thakhan, J. Biol. Sci. 10(22):4171 – 4173. [2] Saeedi Saravi, S.S. et al. (2008) Toxicol. Letters 45th Congress of EUROTOX 1805-S57.

PE73 Phytochemical and Cytotoxic Activity of Some Marine Algae

Awad NE, Ibrahim NA, Matlobb AA

Pharmacognosy Department, National Research Center, Dokki, Cairo, Egypt

Discovery of drugs from marine, as they are considered a good natural source of many biologically active constituents, has received our increasing attention [1]. These constituents may be highly effective as anticancer natural agents [2,3]. Various marine algae brown (Zostera marina, Sargassum latifolium), red (Liagoria rugosa, Grateloupia filicina, Galavuarea oblongata) and green (Halimeda tuna, Udotea petiolata, Chlophora alboidea) have been collected from Red Sea at Hurghada for evaluation of their anti-carcinoma against different human cell lines in vitro. Alcoholic extracts from the collected marine algae have been prepared and phytochemical, LD50 and in vitro anti-carcinoma screening [4] have been evaluated. Furthermore, carbohydrates have been isolated by cold and hot water extracts and also tested against different human carcinoma cell lines. The obtained results proved that the investigated algae have various cytotoxic activities. References: [1] Awad N.E. et al. Phytother. Res. 14:614. [2] Awad, N.E. (2004) Phytother. Res. 18:275. [3] Awad, N.E. et al. (2008) Phytother. Res. 22:1613. 4, Shekan, P. et al. (1990) J. Nat. Cancer Inst. 82:1107 – 1112.

PE75 Cytotoxic effects of hydroalcoholic extract of Juniperus sabina compared with hydroalcoholic extract of Taxus baccata and Cisplatin on normal and cancer cell lines

Shokrzadeh M1, Azadbakht M2, Ahangar N3, Naderi H4, Saeedi Saravi SS1

1Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, sari; Department of HSE, faculty of HSE, Shahed Beheshti University of Medical Sciences, 48187 861 Sari, Iran; 2Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48187 861 Sari, Iran; 3Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48187 861 Sari, Iran; 4Faculty of Pharmacy, Mazandaran University of Medical Sciences, Young Researchers Club, Qaemshahr Islamic Azad University, 48187 861 Sari, Iran

Isolation and identification of some potent anti-tumor compounds from medicinal plants, has motivated researchers to screen different parts of plant species for anti-tumor effects. It has been reported that several confers posse cytotoxic activities on some human tumor cell lines. Previous investigations revealed that different parts of some species of Iranian Juniperus sabina possess cytotoxic effects on some human cancer cell lines. The potent compound of the species of this plant is podophyllotoxin, but active ingredients of other species are lignan, silicicolin called desoxypodophyllotoxin. In this study cytotoxic effects and IC50 of specific concentrations of hydroalcoholic extract of fruits of Juniperus sabina were compared with hydroalcoholic extract of bark of Taxus baccata and Cisplatin, as well known anticancer compounds on normal cell lines (CHO and mice fibroblast) and cancer cell lines (HepG2 and SKOV3). Hydroalcoholic extract of the plant were prepared by percolation. The cytotoxic effects and IC50 of the extract on the cell lines were
Although medicinal plants are widely used in the world, several studies showed that these plants could have toxic effects in human [1]. In this study, the in vitro cytotoxicity of the extracts from Cynara scolymus L. was studied using human lymphocyte and cancerous human bone marrow endothelial cells (HBMEC). This plant is traditionally used in Iran as a treatment for diseases such as diabetes and asthma. The extract was obtained in the traditional way by boiling 20 g of dried leaves powder in 900 ml of water until the volume reached to 450 ml. Also, a 10 times higher concentration extract (made using 200 g of dried leaves) was used to compare the toxicity of C. scolymus L in different concentrations. The cell lines, cultured in 96 well plates in their related medium and at 37 °C and 5% CO2 condition, were treated with serial dilutions of the plant extracts (1:30, 1:62.5, 1:125, 1:250, 1:500 and 1:1000) for 24 hours. Then, the cell viability was measured using trypan blue and lactate dehydrogenase (LDH) assays, for the lymphocytes and HBMEC, respectively. The results showed that all dilutions obtained from the 10 times extract caused death for 100% of the lymphocytes, however, for the normal extract, only the two first dilutions killed 100% of the cells. LDH assay showed that only the highest subjected dilution (1:30) from the 10 times concentration extracts of C. scolymus had 70% cytotoxic effects on HBMEC and the cytotoxicity of the other dilutions were less than 50%. Based on the findings, we conclude that even the extraction made in the traditional method (lower concentration) is toxic to the lymphocytes and further studies are required to obtain the right dose, the suitable concentration and the proper method of usage for C. scolymus L. Although the toxic effect of the extract on cancer cells is desirable, the dilutions which were toxic for cancer cells are also toxic for the normal human lymphocytes and further optimizations for the use of this plant for cancer treatment is required. References: [1] Souza, A. et al. (2006). Genet. Mol. Biol. 29:380 – 383

Some medicinal plants used in Bangladesh in traditional medicinal treatment of various forms of cancer

Mollaik AH, Hossan S, Jahan R, Rahmatullah M
Department of Biotechnology & Genetic Engineering, University of Development Alternative, House No. 78, Road No. 11A, Dhanmondi R/A, Dhaka-1205, Bangladesh

Traditional medicinal practitioners or Kavirajes form the primary health-care providers to the majority of rural population of Bangladesh. Each Kaviraj possess extensive knowledge of medicinal plants and usually has his own formulations for treatment of various ailments. Since cancer affects a huge number of people worldwide including Bangladesh, we conducted an ethnobotanical survey among Kavirajes of various regions of the country to learn more about medicinal plants used to treat various forms of cancer. Interviews were conducted with the help of a semi-structured questionnaire and plant specimens as pointed out by the Kavirajes were collected and identified at the Bangladesh National Herbarium. Some of the plant names obtained in our survey included Abrus precatorius, Acacia arabica, Acacia nilotica, Agave americana, Aloe vera, Alpinia galanga, Amorphophallus konjac, Andrographis paniculata, Areca catechu, Artemisia abisinthum, Arundo donax, Asparagus racemosus, Azadirachta indica, Barringtonia catouanga, Boerhavia repens, Borassus flabellifer, Brassica oleracea, Calendula officinalis, Calophyllum inophyllum, Camellia sinensis, Cassia angustifolia, Cassia fistula, Catharanthus roseus, Ceolosia argentea, Cinnamum camphora, Citrus aurantium, Citrus sinensis, Cucurbita moschata, Cucurbita maxima, Curcuma aromatica, Curcuma longa, Curcuma zedoaria, Cuscuta reflexa, Cydonon dactylon, Dacus carota, Dioscorea bulbifera, Ebrhita microphylla, Elettaria carda- momum, Eriobotrya japonica, Erythrina variegata, Euophoria antiquorum, Euphorbia ingens, Ficus pumila, Gloriosa superba, Gnanaphium luteoatum, Helianthus annuus, Hibiscus mutabilis, Hibiscus rosa-sinensis, Hydrangea japonica, Hyptis suaveolens, Ichnocarpus frutescens, Impatients balsamina, Indigofera tinctoria, and kora cocinea. It is expected that scientific studies on these plants shall lead to discovery of novel anticancer compounds.

Additional new 5,6-dihydroflavanones and cytotoxic constituents from the leaves of Cryptocarya chinensis

Chou TH1, Chen JF, Lee SJ, Huang HY2, Chen IS1
1Graduate Institute of Pharmaceutical Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; 2Graduate Institute of Pharmaceutical Technology & Department of Pharmacy, Taitung University, Taitung 950, Taiwan; *Division of Biotechnology and Pharmaceutical Research, National Health Research Institute, Miaoli 350, Taiwan

Cryptocarya chinensis (Hance) Hemsl. (Lauraceae) is a medium-sized evergreen tree, distributed in southern China, Japan, and Taiwan [1]. Approximately 1400 species of Formosan plants have been screened for cytotoxicity, and C. chinensis was shown to be one of the active species. Pavine alkaloids and their derivatives have been extensively studied from the basic fraction of this species [2 – 6]. However, the neutral-CHCl3 soluble fraction of this plant has not been studied. Investigating the in vitro cytotoxic effects of Cryptocarya chinensis

Identifying the in vitro cytotoxic effects of Cynara scolymus L. Mirfenderesky S1, Keyhanfar M1, Piri KT1, Mostafaei A2
1Department of Biotechnology, Bu-Ali Sina University 6517833131, Hamedan, Iran; 2Kermanshah University of Medical Sciences, 6734667149, Kermanshah, Iran

Although medicinal plants are widely used in the world, several studies showed that these plants could have toxic effects in human [1]. In this study, the in vitro cytotoxicity of the extracts from Cynara scolymus L. was studied using human lymphocyte and cancerous human bone marrow endothelial cells (HBMEC). This plant is traditionally used in Iran as a treatment for diseases such as diabetes and asthma. The extract was obtained in the traditional way by boiling 20 g of dried leaves powder in 900 ml of water until the volume reached to 450 ml. Also, a 10 times higher concentration extract (made using 200 g of dried leaves) was used to compare the toxicity of C. scolymus L in different concentrations. The cell lines, cultured in 96 well plates in their related medium and at 37 °C and 5% CO2 condition, were treated with serial dilutions of the plant extracts (1:30, 1:62.5, 1:125, 1:250, 1:500 and 1:1000) for 24 hours. Then, the cell viability was measured using trypan blue and lactate dehydrogenase (LDH) assays, for the lymphocytes and HBMEC, respectively. The results showed that all dilutions obtained from the 10 times extract caused death for 100% of the lymphocytes, however, for the normal extract, only the two first dilutions killed 100% of the cells. LDH assay showed that only the highest subjected dilution (1:30) from the 10 times concentration extracts of C. scolymus had 70% cytotoxic effects on HBMEC and the cytotoxicity of the other dilutions were less than 50%. Based on the findings, we conclude that even the extraction made in the traditional method (lower concentration) is toxic to the lymphocytes and further studies are required to obtain the right dose, the suitable concentration and the proper method of usage for C. scolymus L. Although the toxic effect of the extract on cancer cells is desirable, the dilutions which were toxic for cancer cells are also toxic for the normal human lymphocytes and further optimizations for the use of this plant for cancer treatment is required. References: [1] Souza, A. et al. (2006). Genet. Mol. Biol. 29:380 – 383

Genotoxic effects of aquatic extract of medicinal plants

Redzic A1, Redzic S2, Sejdic N2
1Dep. of Biology and Human Genetics, Medical faculty University of Sarajevo, Cekaluksa 90, 71 000 Sarajevo, Bosnia and Herzegovina; 2Dep. of Biology, Fac. of Sci. Univ. Sarajevo, 23 – 35 Zmaja od Bosne St, 71 000 Sarajevo, Bosnia and Herzegovina

The species Symphytum officinae contain pyrrolizidine alkaloids mostly alanthoine [1] and use in treatment of it is used in fracture bones, neglected wounds, skin diseases, and some respiratory disorders in some regions of W. Balkan [2]. Because of the content of carbohydrates used in the diet of people [3]. Goal of this study is to research genotoxic effects of over ground and underground parts of these species in vitro conditions. Herbal material for this research was gathered during September of 2007 in area of Bosnia (W. Balkan). Plant samples were dried and exposed to double mazzuration in accordance with Ph.Yug. IV in order to receive extract that was used in making 0.05% and 0.10% solution. Evaluation of geno-toxic effect was conducted by using Allium-test, along with observation of chromosomes abnormalities (partition spindle, irregular phases, multi-polarity, stagnating chromosomes, C-mitosis, and others). Effects were observed after 4, 8, 12 and 24-hours treatments. Testing of differences between determined (experimental group) and expected (control group) was conducted by using X2 test. Extracts of both concentrations, both over and under ground parts, are causing geno-toxic effects in mitosis at meristems cells of Allium cepa. Genotoxic effect is in co-relation with length of treatment and solution concentration. Aquatic extract of root showed distinguished geno-toxic effect after 4-hours treatment (mitotic index was 3, 55%, and in control was 10, 15%). Detected significantly higher geno-toxic effect 0.10% extract of over ground part (p<0.05). Lower degree of geno-toxic effect was determined for aerial part. Similar genotoxic effects have been identified and some related species such as Onosma stellulata. References: [1] El-Shazly, A. et al. (2003) Biochemical Systematics and Ecology, 31(5): 477 – 485. [2] Redzic, S. et al. (2007) Biochem. Pharmacol. 73 – 896. [3] Redzic, S. (2007) Planta Med. 73:1013. [4] Redzic, A. et al. (2008) AJATM (in press).
Biodiversity of endemic plants as a source of new medicines (W. Balkan, SE Europe)
Redzic S
Dep.of Biology Fac. of Science University of Sarajevo, 33 – 35 Zmaja od Bosne, 71 000 Sarajevo, Bosnia & Herzegovina;
Academy of Sciences and Arts of Bosnia and Herzegovina, 7 Bistrick St., 71 000 Sarajevo, Bosnia & Herzegovina

Ethnobotanical experience undoubtedly shows that the use of medicinal plants and played a game more and more important role in prevention and treatment of various diseases. So biodiversity plants give increasing attention, particularly from the kinds of difficult areas and endemic species that are hidden medical and pharmaceutical solutions to many diseases. One such area is the Western Balkans [1]. The biodiversity of W Balkan includes about 9,000 vascular plants. In ethnobotany of this region people use about 1000 plants in traditional human and veterinarian phytotherapy and nutrition[2,3]. Wester Balkan area are so rich in endemic species. In our investigation more than 700 plant species have been found on the Dinaric Mts. only [4]. In order to achieve the planned aims, it has been applied adequate methodology: intensive interviews, followed at the end by comparative taxonomic-biochemical field research on different vertical profiles, including ethnobotanical interviews, followed at the end by comparative taxonomic-biochemical method. Among plants that could be potentially significant in terms of the pharmacology and pharmacy it was detected 500 endemic species of W Balkan. The most significant new resources are contained within families and endemic genera: Pinaceae (Pinus and Picea), Caryophyllaceae (Drypis, Dianthus, Minuartia, Saponaria, Silene), Ranunculaceae (Ranunculus, Anemone, Pulsatilla, Aquilegia, Helleborus, Aconitum, Cruceciferae (Aubretia, Malcolmia, Alyssum, Cardamine, Barabarae, Lunaria), Rosaceae (Potentilla, Sibireja, Alchemilla, Geum, Dryas), Leguminosae (Astragalus, Genista, Oxytropis, Astragalus, Oxytropis, Umbelliferae (Aethamanta, Drynsyrtis, Panicica, Seseli, Bunium), Liliaceae (Lilium, Chouardia, Allium) and others. Those plants are potential sources of new metabolites, such as alkaloids, organic acids, polyphenols, saponins, essential oils, tannins, carbohydrates as well as other secondary and primary metabolic compounds. References: [1] Redzic, S. (2007) Planta Medica 73(9):1013 – 1013. [2] Redzic, S.S. (2007) Colleague, Immunologic 51:869 – 90. [3] Redzic, S. (2006) Ecol. Food & Nutr. 45(3):189 – 252. [4] Redzic, S. (2008) Planta Med. 74(9):1143 – 1144.

Inhibitory activity of Murraya koenigii (L.) on Tumor Take in mice
Iyer D¹, Devi P.², Patil UK²
¹Shri Ram Institute of Technology, Jabalpur 482002, (M.P.) India; ²Jawaharlal Nehru Cancer Hospital & Research Centre, Indgah Hills, Bhopal-462001, (M.P.) India; ³VNS Institute of Pharmacy, Neelbud, Bhopal-462001, (M.P.) India

The methanolic extract of Murraya koenigii (L.) leaves was investigated for the tumor take inhibitory activity. The aim of the present study was to assess the tumor take inhibition of the leaves of Murraya koenigii. Tumor regression studies showed a regression response for tumor growth in vivo of a murine murine melanoma. Preventive group animals were injected daily with the extract at dose 100 mg/kg body weight i.p. for 10 consecutive days. The control group animals were injected with double distilled water. The animals were observed for the growth of tumor after injection of B16F10 melanoma cells, three weeks after the last dose of the Murraya koenigii extract, into the dorsal skin of mice. In tumor regression studies, the Volume Doubling Time (VDT) and Growth Delay (GD) were calculated from the growth curves of individual tumor bearing mice. Pretreatment with the drug showed delay tumor growth by increasing the VDT and GD. The leaves had shown better mean survival time. References: 1. Abraham, A. (1997) Indian J. Exp. Biol. 35:148 – 150. 2. Medicinal Plants of India (1987) Indian council of medical research, Cambridge printing works, New Delhi.
An aqueous extract and a polysaccharide-enriched extract from *Rhododendron ferrugineum* L. (Ericaceae) were tested for their inhibitory effect on herpes simplex virus type 1 (HSV-1) using MTT assay and plaque reduction assay. In a standard assay HSV-1 was preincubated with the extracts for 1 h, followed by addition of the virus suspension plus the extract to Vero cells. Total incubation time of the assay mixture was 48 h. This test protocol investigated the influence of the extracts on the complete viral replication cycle. IC₅₀ values were calculated to be 2.4 µg/mL for the aqueous extract and 1.9 µg/mL for the polysaccharide-enriched extract, respectively. The 50% cytotoxic concentration for host cell growth (CC₅₀) were 285 µg/mL for the aqueous and 263 µg/mL for the polysaccharide-enriched extract. Thus, the selectivity index (ratio of CC₅₀ to IC₅₀) was 135 and 120. The antiviral activity was confirmed by both assay systems, plaque reduction and MTT assay. In order to determine the mode of antiviral action, both extracts were added at different time points to the cells or viruses during the infection cycle (pre-, co-, posttreatment). No anti-herpetic effect was achieved when cells were preincubated with extracts prior to addition of virus, however, a strong antiviral activity in MTT assay was observed when extracts were added to virus before the attachment of HSV-1 to Vero cells. In a specific adsorption assay, both *R. ferrugineum* extracts were shown to prevent the attachment of HSV-1 to cells. This mechanism was additionally shown by immunostaining of HSV-1 and host cells, indicating that the test extracts are potent inhibitors of virus attachment.

The inhibitory effect of monoterpene, phenylpropanoid and sesquiterpene components of essential oils against herpes simplex virus

Antoni A¹, Reichling J, Schnitzler P¹

¹Department of Virology, Hygiene Institute, University of Heidelberg, Heidelberg, Germany; ²Department of Biology, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany

Herpes simplex virus type 1 (HSV-1) is an important pathogen for humans causing labial herpetic infections and serious disease in immunosuppressed patients. The development of resistant strains of HSV to the available drugs, especially acyclovir, has further attempted to identify and develop new alternative agents for management of HSV-1 infections. Essential oils and their components are potential antiviral agents. 11 monoterpens e.g. α-terpinene, β-pinene and thymol, 2 phenylpropanoids, e.g. trans-anethole and 6 sesquiterpenes, e.g. β-caryophyllene, caryophyllene oxide and farnesol from essential oils were screened to evaluate their inhibitory effect against HSV-1 in vitro. All compounds were tested for cytotoxicity in a standard neutral red assay. These components from essential oils exhibited a high and concentration dependent activity against herpes simplex virus in RK-37 cells. The potential inhibitory effect against HSV-1 of monoterpenes, phenylpropanoids and sesquiterpenes was analyzed by plaque reduction assays and the 50% inhibitory concentrations (IC₅₀) were determined in dose response studies. β-pinene, β-caryophyllene and caryophyllene oxide showed potent selectivity indices of 24, 25 and 140, respectively. At maximum noncytotoxic concentration, herpes virus infectivity was reduced by 100% for β-pinene, by 98% for β-caryophyllene and by 84% for caryophyllene oxide. Most compounds revealed high antiviral activity against HSV due to direct inactivation of viral particles. We conclude that components of essential oils are highly effective antitherpetic agents.

References:

In vitro evaluation of EPs® 7630 for its ability to inhibit neuraminidase using sodium (4-methyl-umbelliferyl-D-N-acetylneuraminate) as substrate

Janeczi A¹, Kiderlen AF², Kolodziej H³

¹Friede Universität Berlin, Institute of Pharmacy, Pharmaceutical Biology, Koenigin-Luise-Str. 2+4, D-14195 Berlin, Germany; ²Robert Koch Institut, Cellular Immunology Unit P22, Nordufer 20, D-13353 Berlin, Germany

The claimed antiviral activity of a special extract of the roots of *Pelargonium sidoides*, EPs® 7630 [1], prompted the present investigation in terms of its neuraminidase (sialidase 1) inhibiting potential, a key enzyme for the release of influenza virus progeny from host cells. To evaluate the effects of EPs® 7630 on the viral associated neuraminidase, we used a fluorometric-based assay for neuraminidase (EC 3.2.1.18) from *Vibrio cholerae* with 2’- (4-methylumbelliferyl)-D-α-N-acetyleneuraminic acid [2]. The liberated coumarin derivative was determined in a spectrofluorometer using excitation light at 365 nm and fluorescence emission at 465 nm. The theoretically used inhibitor zanamivir served as positive control in our assays. Compared to zanamivir (IC₅₀ of 71 µg/mL), EPs® 7630 exhibited pronounced in vitro neuraminidase inhibiting activity with IC₅₀ of 0.9 µg/mL. To provide a chemical rationale for the inhibiting potential, EPs® 7630 was fractionated into a MeOH soluble and a MeOH insoluble portion. Again, both subfractions showed prominent inhibitory activities as reflected by IC₅₀ of 1.8 µg/mL and 1.3 µg/mL, respectively. In contrast, treatment of the extracts with skin powder produced inactive fractions in concentrations up to 100 µg/mL. This finding suggests that polyphenols apparently represent the underlying active principle. For further information, some phenolic constituents including caffeic acid, a series of flavan-3-ols, an enriched proanthocyanidin dimeric fraction as well as the coumarin umckalin were tested, providing support for this conjecture. References: [1] Kolodziej, H., Kiderlen, A.F. (2007) Phytomedicine 14 (Suppl. VI):18 – 26, [2] Potier, M. et al. (1979) Anal. Biochem. 94:287 – 296.

New phorbol analogues from Euphorbia grandicornis

Rédei D, Hajdú Z, Forgó P, Hohmann J

Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary

Phorbol esters are well known as activators of protein kinase C (PKC), which regulates different signal transduction pathways and other cellular metabolic activities. Recently, phorbol diterpenes, e.g. prostratin and phorbol-13-monoesters command special interest due to their HIV-1 latency reactivating effect by PKC-dependent NF-κB activation. This effect makes phorbol derivatives promising candidates of drug development for the HIV therapy [1,2,3,4]. We report herein the isolation and structure determination of three diterpenes from *Euphorbia grandicornis* Goebel (Euphorbiaceae), a succulent cactiform South African plant whose phytochemical investigation has not been reported previously. The methanol extract of the fresh aerial parts of *E. grandicornis* was subjected to solvent partitioning to furnish chloroform- and water-soluble fractions. The organic phase was fractionated by column chromatography on polyamide, then by vacuum liquid chromatography on silica gel. Selected fractions from these separations were further purified by CPC, preparative TLC and HPLC to yield three pure compounds, including two new natural products. The structure elucidation was carried out by HRESIMS and extensive NMR studies using advanced experiments (¹H NMR, ¹³C NMR, JMOD, 1H-1H COSY, HSQC and HMBC). Two compounds were identified as 12-deoxyphorbol di- and triesters, acylated with acetic, angelic and isobutyric acids. The third compound was found to have an unusual 12-deoxyphorbol-13-(2’-hydroxy-3’-acetyl-4’-methyl)phorbol-13-monoester command special interest due to their HIV-1 latency reactivating effect by PKC-dependent NF-κB activation, indicating that the attachment of HSV-1 to cells. This mechanism was additionally shown by immunostaining of HSV-1 and host cells, indicating that the test extracts are potent inhibitors of virus attachment.

References:

In vitro study of the antiviral activity of Zingeribe officinale
Ahd El-Walab A, El-Adawy M, El-Demmely M.
Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEIBRI), Mubarak City for Scientific Research and Technology Applications, Alexandria, Egypt

Aims: In the past, herbs were the only source of most drugs; ethnopharmacological research may represent a crucial step in the development of drugs from natural sources. Trial and error have led to the correlation of a particular herb with the amelioration and/or complete curing of certain diseases. Ginger (Zingeribe officinale, Zingeribaceae) has been widely used as a dietary spice, and as a traditional oriental drug. The rhizome of ginger contains pungent vanillyl ketones, including [6]-gingerol and [6]-paradol, which have been credited with therapeutic and preventive health benefits, including anti-cancer activity. The current work seeks to identify novel lead compounds with antiviral effect on hepatitis C virus (HCV). A lyophilized juice extract from Zingeribe officinale at different concentrations (5, 25, 50, 75, 100, 150 and 200 µg/mL) were tested in vitro as anti-HCV using the hepatocellular carcinoma HepG2 cell line infected with HCV. Inhibition of viral replication was detected by amplification of viral RNA segments using the reverse transcriptase (RT)-RNA technique. The test compound was Zingeribe officinale considered to be active by inhibiting the viral replication inside the HCV-infected HepG2 cells, as evidenced by the disappearance of the (+) and/or (-) strands of viral RNA- amplified products detected by RT-RNA (compared with the positive control). Results: The inhibitory dose was found to be effective at 100 µg/mL. Newer insight into molecular basis of the efficacy of Zingeribe officinale as anti-HCV will help us to formulate an alternative cheap natural drug to avoid the high cost and adverse effect of synthetic drugs.

Antiviral activity and mode of action of a peptide isolated from Helianthus annus
Oliveira ABS, Dias Filho BP, Nakamura CV, Ueda, Nakamura F.
1Pós Graduação em Microbiologia, Universidade Estadual de Londrina, 86505 – 990, Londrina – PR, Brazil; 2Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, 87020 – 900, Maringá – PR, Brazil

Helianthus annus L. is generally associated with primary and recurrent mucocutaneous facial, ophthalmic or genital lesions, but under certain conditions can produce serious infections of the central nervous system, causing acute necrotizing encephalitis and menigitis in patients with immune deficiencies [1,2]. Most of the treatments for HSV-1 are based on acyclovir (ACV) and ACV-like nucleoside analogues, but these are toxic, and some immunocompromised patients with recurrent HSV lesions develop resistance to ACV [3]. Antimicrobial proteins have been discovered in plants, insects and animals as important components of the innate defense system [4,5]. We have investigated the activity of crude extracts, a fraction, and an isolated peptide from seeds of Helianthus annus against HSV-1. The plaque reduction assay showed a dose-dependent effect against HSV-1 with EC50 values 21.5 µg/mL for crude extracts, 15.9 µg/mL for the fraction and 4.8 µg/mL for the isolated peptide. In an evaluation of the antiviral mode of action, the isolated peptide showed EC50 values of 5.3 µg/mL before the infection, 4.5 µg/mL during the infection and 78.6 µg/mL for a direct viricidal effect. The cellular toxicity of the peptide showed a CC50 value of 3.278 µg/mL before the infection, 4.5 µg/mL during the infection and 192.1 µg/mL for a direct viricidal effect. The isolated peptide appears to be an alternative for the development of new antiviral drugs.

Bioactivity-guided separation of anti HSV-2 and antioxidant metabolites from the plant Phyllanthus orbicularis
Álvarez AL, de la Barco-C, Piccinelli A, Suárez B, Valdés S, Acosta M, Roque A, Parra F
Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana. Calle 25 #455 Vedado, Plaza de La Revolución. 10400, Cuba; 3Área de Tecnología de los Alimentos, Servicio Regional de Investigación y Desarrollo Agroalimentario, Villavicencio. Asturias.

33300, España; 4Departamento de Bioquímica y Biología Molecular. Universidad de Oviedo. Edificio Santiago Gascón. Campus El Cristo. Oviedo. Asturias. 33006, España

The Phyllanthus genus includes nearly forty Cuban-endemic species, which have been widely used in traditional medicine for the treatment of jaundice, dysentery, urinary disorders, chicken pox and diabetes [1]. The antihelminthic properties of P. orbicularis (H.L.K.) was first reported by our group [2,3] and neither previous phytochemical characterization nor elucidation of antiviral metabolites and their modes of action have ever been conducted for this species. In this work, an antiviral-guided separation protocol was followed in order to isolate compounds or families of compounds responsible for HSV-2 inhibition. HPLC and MS analyses revealed the presence of flavones, flavan-3-ols, procyanidins, hydrolysable tannins, flavonols and flavonol glycosides. Fractions containing flavan-3-ol gallates, procyanidin B1 and B2, procyanidin dimer gallates, procyanidin trimers and procyanidin trimer gallates exerted the strongest anti HSV-2 activity. However, the higher antiviral selectivity index was recorded for crude methanol extract, suggesting that some synergistic effects contributing to antiviral activity could be lost with separation. Antioxidant power of P. orbicularis fractions was assessed in parallel, and a strong positive correlation between both antioxidant and antiviral activities was observed. These results highlight the potential of P. orbicularis to be included in topic formulations for the management of herpes-derived skin lesions, and also as an antioxidant dietary supplement.

Antimicrobial activity of Jatropha multifida L. against bacteria and fungi s.t.d. organisms
Aiyelaagbe O, Fatunsin O, Oguntuase B, Adeniyi B, Gibbons D
1Department of Chemistry, University of Ibadan, Ibadan, 200284, Nigeria; 2Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, 200284, Nigeria; 3Centre for Pharmogony and Phytotherapy, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, U.K.

Jatropha multifida L. (Euphorbiaceae) is a multipurpose shrub commonly planted as an ornamental but often exploited as a medicinal plant in many parts of Africa. Many Jatropha plants have toxic and irritant properties and are used in folklore medicines to cure various diseases in Africa, Asia and Latin America [1]. As part of a continuing investigation of the biological activity of Jatropha species [2,3], this study was carried out to investigate the antimicrobial activity of this plant against different microorganisms especially those responsible for sexually transmitted infections and isolate the bioactive constituents. Hexane, ethyl acetate and methanol extracts of the plants were obtained and subjected to phytochemical and antimicrobial analysis. The extracts and purified fractions were screened against many pathogenic microorganisms comprising gram positive and gram negative bacteria and fungi. The extracts and fractions displayed potent antimicrobial activity against many of the organisms including Gardnerella vaginalis, Neisseria gonorrhoeae and Candida albicans giving Minimum Inhibitory Concentration (MIC) as low as 12.5 µg/mL. Further phytochemical investigation resulted in the isolation of different compounds including a coumarin, 8-hydroxy-6,7-dimethoxy coumarin. The structures of the compounds were determined by MS, 1D and 2D NMR experiments. The results confirmed the potency of this plant in treating different diseases including sexually transmitted infections. References: [1] Burkhill, H.M. (1994) The useful plants of West Tropical Africa. Vol. 2, Royal Botanical Gardens, Kew. [2] Aiyelaagbe, O.O. et al. (2000) Phytother. Res. 14:60 – 62. [3] Aiyelaagbe, O.O. et al. (2007) Int. J. Pharmacology 3:106 – 110.
Phytochemical study of some medicinal plants used by traditcrapicins in Nde division ([Cameroon])

Yimbo F.1, Neumaisia F.1, Mbenkum T.1, Pengue A.2

1Faculté de Pharmacie, Université des Montagnes, Bp. 208, Bangangte, Cameroon; 2Faculté des sciences, Département de chimie médicinale, Laboratoire de pharmacognosie, Université de Kinshasa

The accelerated destruction of the flora and fauna in Cameroon on a daily basis has rendered their exploration and exploitation for scientific purposes more difficult. Ethnobotanical and phytochemical studies have been carried out in Nde division (Cameroon) to identify species drugs as source of anti HIV/aids, cancer, malaria and for other diseases that affect the population. Plant materials for each plant was botanically identified and the organs used, harvested, (leaves, roots, bark, etc.) treated and subjected to a rapid search for broad categories of chemical compounds and active ingredients (alkaloids, saponins, tannins, flavonoids, terpenes, steroids, quinones, coumarins, etc.) as a preliminary assessment. This initial assessment gave some indications and served as a pointer to select species for extractive research intended for commercial pharmaceutical development. The selection and analysis of plant species abundantly rich in alkaloids showed strong pharmaceutical activity that justified their use by traditional practitioners. Thus, out of the 129 species catalogued, 29 plants, belonging to 20 families proved active and have been recommended for further investigations that may find solutions to hitherto incurable diseases. Among these plants, we recommend the study of secondary metabolites of species whose bibliography confirms the pharmacological properties as indicated in the table below.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Families</th>
<th>Parts used</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acalypha olympica</td>
<td>Asteraceae</td>
<td>leaves</td>
<td>antimalarial</td>
</tr>
<tr>
<td>Bidens pilosa</td>
<td>Asteraceae</td>
<td>leaves</td>
<td>antimalarial antioxidant hepatoprotector</td>
</tr>
<tr>
<td>Myrtius senegalensis</td>
<td>Celastraceae</td>
<td>leaves</td>
<td>cancer</td>
</tr>
<tr>
<td>Potratima</td>
<td>Apocynaceae</td>
<td>fruits</td>
<td>antimalarial</td>
</tr>
</tbody>
</table>

Acknowledgements: Our sincere thanks go to the many traditional healers who freely furnished all information on plant uses and to all persons and informants who facilitated our contact with people and plants. Refer to [1] Zipcy, E. et al. (1976) Journal d’Agriculture Tropicale et de Foresterie/S ple/C216 et/C216 pour le titre de Pharmacien /C224 (L’UNIKIN):14 – 19.

Synergistic immunopharmaceutical effects of N-alkylamides in Echinacea purpurea herbal extracts

Chicca A.1, Raduner S.1, Pellati P.1, Strompen T.1, Altmann KH.1, Schoop R.2, Gertsch J.1

1Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland; 2Department of Pharmaceutical Sciences, University of Modena, 41100 Modena, Italy; 4Bioforce AG, Grünaustrasse, 9325 Roggwil, Switzerland

Echinacea purpurea (L.) Moench extracts are used in the production of standardized herbal medicines for the prevention and treatment of upper respiratory infections. Unsaturated N-alkylamide lipids, the main constituents of E. purpurea and E. angustifolia preparations capable of activating the cannabinoid receptor type-2 (CB2), have been suggested to play a role as potential anti-inflammatory and immune-modulatory principles. Here we show that ethanolic E. purpurea radix and herba extracts produce synergistic pharmacological effects on the endocannabinoid system in vitro. Superadditive action of N-alkylamide combinations were seen at the level of intracellular calcium release as a function of CB2 receptor activation. Likewise, synergism of the radix and herba tinctures was observed in experiments measuring LPS-stimulated cytokine expression from human PBMCs. While the expression of the anti-inflammatory cytokine IL-10 was significantly superstimulated, the expression of the pro-inflammatory TNF-α protein was inhibited more strongly upon combination of the extracts. We show that N-alkylamides act in concert and exert pleiotropic effects modulating the endocannabinoid system by simultaneously targeting the CB2 receptor, endocannabinoid transport and degradation.

Validation of GC-MS method for determination of varroacide residues in propolis

Czech K.1, Fingler S.1, Tomić S.1, Medić-Sarić M.1

1Agency for medicinal products and medical devices, Kovačeva cesta 4, 1000 Zagreb, Croatia; 2Institute for Medical Research and Occupational Health, Kovačeva cesta 2, 1000 Zagreb, Croatia; 3Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačica 1, 10000 Zagreb, Croatia

Propolis is a resinous material collected by honeybees (Apis mellifera L.) from various plants and enriched with bee salivary gland secretions and wax. Number of factors, such as beekeeping practice, can affect the quality and consequently the therapeutic value of propolis and its preparations. The most important sources of propolis contamination is improper administration of varroacides that have to be used for long-term control of honeybee mite Varroa destructor. Therefore, the analysis of these noxious substances is essential in quality control of propolis. In this study the method based on the extraction with n-hexane followed by purifying of extract on florisil column was used prior to sample analysis. Purified extracts were analyzed by gas chromatography-mass spectrometry hyphenated technique. The procedure was optimized and validated for the determination of bromopropylate, amitraz and coumaphos residues in propolis. Investigated validation parameters of applied procedure were selectivity, linearity, precision, accuracy, robustness and limits of detection (LOD) and quantification (LOQ). All these parameters satisfied the ICH criteria [1] in the test samples of standards mixture for all three examined compounds. The applied method for varroacide analysis in validation sample of propolis was suitable for determination of bromopropylate and coumaphos. Recoveries were 103% for PG1 and 105% for PG2. Recoveries were 100% for bromopropylate and 63% for coumaphos with LOQ of 0.08 and 1.5 μg/g, respectively. On the other hand, the procedure was inappropriate for determination of amitraz, probably due to its instability in complex matrix of propolis as was previously described for honey and beeswax [2]. Refer-
There are two groups of peaks for compounds differing in lipophility: 1 – 6 and 7 – 10. In recent study [1] we reported the composition of the first part (1 – 6) of extract. It was established that all substances belong to a general class of hydroxycinnamic acids. Current work is devoted to the structure estimation for main components of the second (more hydrophobic) part of this extract. Using SPE, analytical and preparative HPLC, UV and high resolution NMR spectroscopy, we found that the more hydrophobic group of compounds contains: 1,3,4,5-tetrahydroxy-cyclohexanecarboxylic acid-bis-4,5-(3,4-dihydroxycinnamate) (7); 1,3,4,5-tetra-hydroxycyclohexanecarboxylic acid-bis-3,5-(3,4-dihydroxycinnamate) (8); 1,3,4,5-tetrahydroxy-cyclohexanecarboxylic acid-bis-3,4-(3,4-dihydroxycinnamate) (9) and 1,3,4,5-tetrahydroxycyclohexanecarboxylic acid-tris-1,3,5-(3,4-dihydroxycinnamate) (10).

Fig. 1. RP-HPLC of dried water extract of *Gnaphalium uliginosum*.

Validation of an HPLC-method for an antimalamidial active stem bark extract of Nuxvea pobeiguini

Mesia K1, Dhooge L2, Tona L2, Cimanga K1, Kupfers K3, Apers S1, Vliegenick A1, Pieters L1, Maes L1
1Laboratory of Pharmacognosy and Pharmaceutical Analysis, University of Antwerp, Universiteitsplein 1, B-2650 Antwerp, Belgium; 2Faculty of Pharmacy, University of Kinshasa, Kinshasa, D. R. Congo; 3Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Stem bark extracts of Nuxvea pobeiguini (Rubiacae) are widely used in African traditional medicine against malaria. Alkaloids, such as the major compound strictosamide, may be responsible for this activity [1,2].

An HPLC-method for the quantification of strictosamide in the stem bark extract of N. pobeiguini was developed. The method was validated according to the ICH guidelines. The response function of ajmalicine HCL, used as a secondary standard, was linear in a range from 4.2 to 21.2μg/mL. The method was shown to be precise in respect to the time (RSD of 2.2%, 3 days, n=6) and with respect to the concentration (RSD of 2.6%, 3 levels, n=6). The accuracy of the method was investigated by means of a recovery experiment (mean recovery of 92.2% and RSD of 9.4%). A crude ethanolic extract of the bark, containing 5.6% (w/w) strictosamide, was evaluated in vivo in the Plasmodium berghei mouse model (PO at 300 mg/kg for two times 5 daily doses). Chloroquine was used as positive control at 10 mg/kg. Treatment with the crude extract resulted in moderate depression of parasitaemia during dosing, however quickly followed by a full relapse (mean survival time=about 13 days). One group received the treatment by intraperitoneal (IP) route at the same dosing regimen and showed the same results. At termination of the experiment at day 21, a single survivor in the PO group, was apparently cured (no parasitaemia). The single survivor in the IP group showed high parasitaemia and was in a moribund state. It can be concluded that the crude extract of N. pobeiguini has slight antimalarial potential when administered orally in a suppressive dosing regimen of two times 5 days at 300 mg/kg. Its action is likely to be static since full relapse occurs quickly after ending the daily dosing. References: [1] Zeches, M. et al. (1985). Nat. Prod. 48:42 – 46. [2] Abreu, P. et al. (2001) Nat. Prod. Lett. 15:43 – 48.
Due to the increasing costs for purchasing and waste disposal of solvents we developed an alternative method characterised by simple sample preparation (“dilute and shoot”) and low solvent consumption. Capillary zone electrophoresis (CZE) with a simple borate buffer and PDA-detection meets these demands. The electropherogram shows a fast separation of the main phenolic compounds after simple dilution of the extract. In further experiments assignment of the peaks was done by spiking experiments and comparison of UV-spectra with reference compounds.

PG12

Morphoanatomy and histochmistry of Maytenus heterophylla leaf, an African medicine

da Silva G, Tanica M. Gomes ET, Serrano R. Silva O

Assessment of genotoxicity of herbal medicinal preparations according to the guideline EMEA/HMPC/107079/2007: A model project of Kooperation Phytopharmaka, Bonn, Germany

Gaedcke F, Kelber O, Kraft K, Steinhoff B, Winterhoff H on behalf of the Working Group “Efficacy and Safety” of Kooperation Phytopharmaka, Pritellaneous Str. 218, 53173 Bonn, Germany

Leaves of *Maytenus heterophylla* (Ecik & Zeyh.) Robson (Celastraceae) are used in East Africa to treat different diseases such as infections, respiratory diseases and sores [1]. Despite some chemical studies have already been reported for this part of the plant, respective biological studies are scarce and there is a lack of studies aiming at its' botanical characterization. Alkaloids, triterpenes and tannins have previously been identified in the leaves [2]. Hereby we present results concerning the macroscopic and microscopic identification of *M. heterophylla* leaf as an herbal drug. Methodology includes the analysis of the leaf, fragmentized and powdered plant material by light and scanning electron microscopy techniques. Some histochemistry and quantitative microscopy studies were also performed. Among the identified characters the most useful for leaf identification includes the typical leaf bilateral organization; the presence of anomocytic stomata, more frequent in lower epidermis, and surrounded by a ring of four to six subsidiary cells appear with an irregular distribution; papillate cells on the surface of epidermal cells; multicelled uniseriate covering trichomes (rare). Calcium oxalate cluster crystals are present frequently in the palisade parenchyma, near the phloem cells of the midrib and occasionally occur on epidermis. Histochemical results confirm the presence of the major chemical classes previously reported, and allowed to know its' distribution: lipids on the surface epidermis and cuticle; alkaloids, tannins, terpenoids and starch in the mesophyll, and of some terpenoids on the collenchyma cells near the midrib. Obtained results can be included in an herbal drug quality monograph of *M. heterophylla*.

PG13

**Guidance for the assessment of genotoxicity of herbal medicinal substances (preparations) is given by a recent guideline of the Committee on Herbal Medicinal Products (HMPC) of the European regulatory agency EMEA [1]. A draft concept paper of the HMPC [2] recommends a bracketing approach, thus offering an alternative to testing each individual preparation (extract) from a certain herbal drug by a joint conduction of tests. In accordance to these documents, Kooperation Phytopharmaka, a German scientific organisation in the field of HMPS, has started a model project for the screening of herbal preparations, including extracts produced with polar to un-polar extraction solvents to cover the whole spectrum of constituents of the herbal drug. This even allows an assessment for powdered herbal drugs otherwise not accessible to in vitro methods. Until now the project has produced data on 24 of the most important herbal drugs used in Europe, including e.g. St. John's wort, caraway, lemon balm, garlic, ginkgo and hawthorn. The project was conducted in accordance with all modern guidelines including those of OECD, ICH and EMEA in cooperation with renowned laboratories, starting with the first step of the test strategy, the Ames test. The project has not only broadened the knowledge about the safety of important herbal drugs used in Europe and beyond and allowed to meet current regulatory requirements, but has turned out to be an important step in the continuous process of updating the safety profile of modern phytotherapy, which is already now documented excellently. For expanding the project to further herbal drugs, cooperation partners are welcome. References: [1] Guideline on the assessment of genotoxicity of herbal medicinal substances/preparations, Doc. Ref. EMEA/HMPC/107079/2007, in effect since 1 December 2008. [2] Draft concept paper on selection of test materials for genotoxicity testing for traditional herbal medicinal products/herbal medicinal products, Doc. Ref. EMEA/HMPC/315413/2008.
Dietary supplements and herbal medicinal products – for a clear differentiation – Statement of the Society for Phytotherapy (GPT) to the “Article 13 Health Claim List” of the EFSA

Audrey F. Eberwein B, Kolber O, Kraft K, Stauss-Grab M, Tegmeier M, Schulz V, Winterhoff H, Kemper F on behalf of the Gesellschaft für Phytotherapie/Society for Phytotherapy, Uferstrasse 4, 51063 Köln, Germany

Herbal medicinal products are trusted by the public. Their therapeutic indications are validated in established authorization procedures by regulatory authorities. Regulation (EC) 1924/2006, in effect since 19 January 2007, is dedicated to meet the expectations of the consumers in correctness and scientific validity of health claims for dietary supplements, as claims will have to be authorized by the European Food Safety Authority EFSA in the future. The EC “Consolidated List of Article 13 Health claims”[1] published by the EFSA seems to contradict these expectations. In this list, provided by the EFSA, the claim proposals of manufacturers of dietary supplements from all over Europe are presented. This list contains, besides many other substances, almost all herbal drugs in “well established use” or “traditional use” as herbal medicinal products with therapeutic indications authorized by European drug regulatory agencies, as e.g. the German drug regulatory authority BfArM. This fact has raised doubts, whether it will be possible also in future to distinguish dietary supplements with scientifically un-founded claims from herbal medicinal products authorized for the treatment of patients and therefore meeting high quality standards. The German Society for Phytotherapy therefore states, that a clear distinction of dietary supplements from herbal medicinal products is necessary and has to be possible also in the future. Herbal medicinal products are dedicated to the treatment of diseases and have pharmacological actions, whereas dietary supplements are food, for use in healthy consumers, having health-related physiological effects only. On the background of the well established quality, efficacy and safety of herbal medicinal preparations, EFSA should conduct the evaluation for dietary supplements of herbal origin based on a well-founded differentiation of the herbal medicinal preparations, in tight cooperation with EMEA. This is a necessary precondition for providing efficacious and safe products to patients and consumers also in the future. Reference: [1] EFSA, Consolidated list of Article 13 Health claims, URL: http://www.efsa.europa.eu (16 January 2009).

Variability of flavonoids contents in young flowers of Siamese neem tree

Chaisawangwong W, Gritsanapan W

Opfragar Co. Ltd. (Pharmaceuticals), Faculty of Pharmacy, Mahidol University, 447 Siriraj Road, Ratchathewi, Bangkok 10400, Thailand

Siamese neem tree (Azadirachta indica A. Juss. var. siamensis Valton) of the family Meliaceae is a medicinal plant found in every part of Thailand. Young leaves and flowers of this plant are commonly consumed as a bitter tonic vegetable [1]. The flower extract has been reported to exhibit in vitro free radical scavenging activity and can inhibit lipid peroxidation of bronchogenic cancer cell line [2]. Active compounds in the flowers are flavonoids such as rutin and quercetin [3]. Decoction extract of the flowers of Siamese neem tree gave the most effective DPPH scavenging activity [4]. In this experiment, the decoction extracts of the young flowers collected from 14 different locations in Thailand were quantitatively analyzed for the contents of active components rutin and quercetin. By validated HPLC, the aqueous flower extract contained rutin, and quercetin in the ranges from 429.81 ± 0.18 to 1081.77 ± 0.68 mg 50/w (average 757.74 ± 251.60 mg 50/w), and 3.12 ± 0.02 to 19.62 ± 1.06 mg 50/w (average 9.84 ± 6.27 mg 50/w), respectively. HPLC chromatograms of all extracts showed similar pattern which rutin is a major active constituent. The ranges of flavonoids contents will be useful as a guidance for standardization of the flower extracts of this plant for pharmaceutical purposes. Acknowledgements: This project was granted by The Thailand Research Fund (TRF) with Office of Small and Medium Enterprises Promotion (OSMEP). References: [1] Clayton, T. et al. (1996) Medicinal plants in Thailand, Aamarin Printing, Bangkok, Thailand. [2] Sithisarn, P., Gritsanapan, W. (2005) Mahidol J. Pharm. Sci. 32:31 – 35. [3] Sithisarn, P. et al. (2005). Ethnopharmacol. 99:109 – 112. [4] Chaisawangwong, W., Gritsanapan, W. (2007) Proceedings of Pharma Indochina V, Bangkok, Thailand.

Authentication of the traditional Chinese medicinal plant *Saussurea involucrate* using enzyme-linked immunosorbent assay (ELISA)

Xue CY1, Xue HGC, Li DZ1

1Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, People’s Republic of China; 2People’s Liberation Army General Hospital, Beijing 100853, People’s Republic of China

Saussurea involucrate (Kar. et Kir.) Sch.-Bip. (Asteraceae) has been used of the People’s Republic of China. Chemical Industry Press. Beijing. 57th International Congress and Annual Meeting of the GA | August 16 – 20, 2009, Geneva, Switzerland

Saussurea involucrate is a native plant of the Brazilian coasts, used in folk medicine to treat arthritis, wounds and contusions. The essential oil of the leaves has shown anti-inflammatory and anti-allergic activities, and is used in topical preparations. GC-FID and GC-MS using two columns of different stationary phases (methylsilicone and Supelcowax-10) for the treatment of chronic tendinitis, myofascial pain, muscular traumas and injuries. The anti-inflammatory activity has been related mainly to a decrease of TNFα, and α-humulene and trans-caryophyllene have been identified as active constituents of the oil [1]. The aim of the present work was to establish a method for the composition of this active essential oil. The oil was analysed by GC-FID and GC-MS using two columns of different stationary phases (methylsilicone and Supelcowax-10). The identification of the constituents was achieved from their GC linear retention indices (both, relative to alkanes and to fatty acid methyl esters) in the two columns, by comparison of their MS fragmentation patterns with those stored in our own library, in the GC-MS mass spectra library (Wiley 6) and with literature data. In some cases, chromatographic comparison with authentic reference compounds was also used. More than 91% (46 constituents) of the essential oil was identified. The oil was mainly composed by terpene hydrocarbons, both of monoterpene (41.5%) and sesquiterpene (42.7%) types. Oxygen-containing monoterpenes and sesquiterpenes represented only 3.7% and 3.4% of the oil, respectively. The major constituents were α-pinene (36.5%), β-caryophyllene (11.7%) and α-santalene (8.5%). The oil contained also significant amounts of allo-aromadendrene (4.3%) and α-humulene (3.0%). Additionally, GC separation methods were optimised for application to routine quality control of the oil. Acknowledgements: Eric Gibert, for technical assistance. References: [1] Passos, G.F. et al. (2007). Ethnopharmacol. 110: 323 – 332.

Composition of the essential oil of the leaves of *Cordia verbenaecae* DC (Borraginaeaceae) is a native plant of the Brazilian coasts, used in folk medicine to treat arthritis, wounds and contusions.

Vilha R1, Queiroz EP2, Cainnamon S3

Cordia verbenaecae DC (Borraginaeaceae) is a native plant of the Brazilian coasts, used in folk medicine to treat arthritis, wounds and contusions. The essential oil of the leaves has shown anti-inflammatory and anti-allergic activities, and is used in topical preparations. The essential oil contains over 91% of 46 constituents, mainly comprising by terpene hydrocarbons, both of monoterpene (41.5%) and sesquiterpene (42.7%) types. Oxygen-containing monoterpenes and sesquiterpenes represented only 3.7% and 3.4% of the oil, respectively. The major constituents were α-pinene (36.5%), β-caryophyllene (11.7%) and α-santalene (8.5%). The oil contained also significant amounts of allo-aromadendrene (4.3%) and α-humulene (3.0%). Additionally, GC separation methods were optimised for application to routine quality control of the oil. Acknowledgements: Eric Gibert, for technical assistance. References: [1] Passos, G.F. et al. (2007). Ethnopharmacol. 110: 323 – 332.
Passiflora incarnata L. (Passifloraceae) leaves are relevant raw materials for phytomedicines in Brazil and this species is also described in several European pharmacopoeias. The *Passiflora* flavonoids are associated with their pharmacological properties, and therefore the total flavonoid content is one important parameter with respect to the quality assessment of *Passiflora* phytomedicines. In order to assess the feasibility of producing raw material for the phytopharmaceutical industry through commercial cultivation of *P. incarnata* in subtropical climate (Brazil, SP state), the effect of soil characteristics (pH, macro- and micro-nutrients), environmental factors (temperature, humidity, period of the year and time of day of collection) and meteorological conditions (rain, sun, cloud and cloud/rain) on the flavonoid content of leaves of *Passiflora incarnata* L. were evaluated. Samples of leaves of mature plants were harvested and the environmental factors and meteorological conditions during each collection of the material were monitored. The total flavonoid contents of leaf samples harvested were quantified by HPLC-UV/PAD, according to a method developed in our laboratory [1], and the chromatography data acquired were submitted to chemometric analysis. Chemo- metric treatment of the data by PCA (principal component analysis) and HCA (hierarchical cluster analyses) showed that the samples do not have a specific classification in relation to the environmental and soil variables studied, and that the environmental variables were not significant for describing the data set. On the other hand, the levels of Fe, B and Cu in the soil showed an inverse correlation with the total flavonoid content of the leaves of *P. incarnata*. To the best of our knowledge the present study is the first relating to the application of chemometric methods to data derived from the HPLC analysis of flavonoids from a species of *Passiflora*. Acknowledgements: FAPESP, CNPq, Anidro do Brasil Extra/C231/C240es Ltda. Reference: [1] Pereira, C.A.M. et al. (2004) Phytochem. Anal. 15:241 – 248.

Passiflora incarnata L. (Passifloraceae) leaves are relevant raw materials for phytomedicines in Brazil and this species is also described in several European pharmacopoeias. The *Passiflora* flavonoids are associated with their pharmacological properties, and therefore the total flavonoid content is one important parameter with respect to the quality assessment of *Passiflora* phytomedicines. In order to assess the feasibility of producing raw material for the phytopharmaceutical industry through commercial cultivation of *P. incarnata* in subtropical climate (Brazil, SP state), the effect of soil characteristics (pH, macro- and micro-nutrients), environmental factors (temperature, humidity, period of the year and time of day of collection) and meteorological conditions (rain, sun, cloud and cloud/rain) on the flavonoid content of leaves of *Passiflora incarnata* L. were evaluated. Samples of leaves of mature plants were harvested and the environmental factors and meteorological conditions during each collection of the material were monitored. The total flavonoid contents of leaf samples harvested were quantified by HPLC-UV/PAD, according to a method developed in our laboratory [1], and the chromatography data acquired were submitted to chemometric analysis. Chemo- metric treatment of the data by PCA (principal component analysis) and HCA (hierarchical cluster analyses) showed that the samples do not have a specific classification in relation to the environmental and soil variables studied, and that the environmental variables were not significant for describing the data set. On the other hand, the levels of Fe, B and Cu in the soil showed an inverse correlation with the total flavonoid content of the leaves of *P. incarnata*. To the best of our knowledge the present study is the first relating to the application of chemometric methods to data derived from the HPLC analysis of flavonoids from a species of *Passiflora*. Acknowledgements: FAPESP, CNPq, Anidro do Brasil Extra/C231/C240es Ltda. Reference: [1] Pereira, C.A.M. et al. (2004) Phytochem. Anal. 15:241 – 248.

Near infrared spectroscopy supported by multivariate data analysis and GC-MS for discrimination and classification of different species in Achillea genus

Guo LP1, Heig NL2, Krieg C2, Petter CH2, Huang LQ2, Kopp B2, Wawrosch C1, Bonn GK1, Huck CW1

1Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; 2Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck 52a, 6020 Innsbruck, Austria; 3Institute of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

This study evaluated the use of near infrared spectroscopy (NIRS) for discriminating and classifying traditional medicinal plants. *Achillea mil- lefolium* and three of its related species, namely, *A. clypeolata*, *A. collina* and *A. nobilis* were chosen as sample material because they are well known in the field of traditional medicine. The study was subdivided into following sections: 1) Discrimination of *A. millefolium* flow- ers and leaves by using NIRS and gas chromatography hyphenated to mass spectrometry (GC-MS) as reference method. 2) Classification of differently treated *A. millefolium* samples by principal component analy- sis (PCA). 3) Classification of four *Achillea* species by PCA. The results showed that NIRS is suitable to discriminate between different *A. millefolium* parts (e.g., flowers and leaves), as well as between different sample preparation techniques (e.g. air-dried, oven-dried). Furthermore, the established NIRS method proved great potential for classification of related *Achillea* species. This approach allowed the clustering by NIRS according to the individual ingredient patterns, applying GC-MS as a reference method for calibration. This developed NIRS method proved to be rapid and nondestructive technique for identification, discrimination and classification of traditional medicinal materials.

Determination of primary and secondary metabolites in Matricaria chamomilla

Nasimullah Qureshi M1, Stecher G2, Abel G1, Popp M2, Bönk G1

1Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University Innsbruck, Innrain 52 a, 6020 Innsbruck, Austria; 2Bionorica research GmbH, Mitterweg 24, 6020 Innsbruck, Austria

Compounds of *Matricaria chamomilla* (common name: chamomile, family: Asteraceae) are of considerable interest because of their potential pharmaceutical activities [1]. Modern phyto-medicine is aiming to produce phyto-pharmaceuticals of high quality, high pharmaceutical effi- cacy and innocuousness for which analytical characterization of phar- macological activities is of utmost importance. A comprehensive approach was adopted in order to determine the primary and secondary metabo- lites in flowers of *M. chamomilla*. Focus within the study was placed on the qualitative and quantitative analysis of flavonoids, amino acids and carbohydrates. Flavonoids were determined in the methanolic extract of plant using HPLC-PDA. The extract was subjected to acid hydrolysis with 6 M HCl in order to release aglycons from the glycosidic forms. For the qualitative and quantitative analysis of primary metabolites—amino acids and carbohydrates in aqueous extract of chamomile flowers, thin layer chromatography (TLC) [2,3,4,5], amino acid analyser [6], gas chromatography-mass spectrometry (GC-MS) [7] and a newly developed mass spectrometric method, i.e. matrix free material enhanced laser desorption ionization time of flight mass spectrometry (mf-MELDI-MS) [9,10] was used. Among the flavonoids luteolin, quercetin, apigenin and isorhamnetin were quantified, yielding highest amounts for apigenin. TLC analysis proved the presence of various amino acids and carbohydrate-mono- and disaccharides in the extracts. The application of mf-MELDI-MS further confirmed the presence of amino acids and carbohydrate-mono- and disaccharides. For quantification of carbohydrates, samples were derivatised prior to GC-MS analysis with BSTFA solution in pyridine as derivatisation reagent employing microwave radiation for 4 min at 180 Watts. Glucose, fructose and sucrose were quantified. Fructose gave highest amount...

The present investigation was carried out to evaluate the safety of methanolic extract of Gmelina arborea bark (ME) by determining its potential toxicity after acute and repeated dose administration in rodents. In the acute toxicity study, the methanolic extract was administered orally to Swiss albino mice in single doses of 0, 300, 2000 and 5000 mg/kg. General behavior and mortality was noted up to 14 days. The effects on body weight, food and water consumption, organ weight, hematological parameters, biochemical parameters as well as histology of important organs were studied. In acute toxicity study, administration of methanolic extract not showed any general behavioral adverse effects and mortality at all selected doses. The no-observed adverse effect level (NOAEL) of methanolic extract was 5000 mg/kg. In repeated dose toxicity study, no mortality was observed when different doses of extract were administered daily for a period of 28 days. There were no significant differences in the body weight, organ weights and feeding habits between control and treated animals of both sexes. Repeated administration of methanolic extract did not cause any changes in hematological and biochemical parameters as compared with control. Histopathological examination of important organs at the end of study showed normal architecture indicating no morphological disturbances. The high NOAEL value in acute toxicity study and lack of significant effect on hematological parameters, biochemical parameters and histopathology in repeated dose toxicity study indicates that the methanolic extract of Gmelina arborea does not have any toxicological activity. Thus the methanolic extract of Gmelina arborea was found safe in acute and repeated dose toxicity studies. Reference: [1] Rhiouani, H. et al. (2008). J. Ethnopharmacol. 118:378 – 386.

Reduction of safrole and methyleugenol in Asari radix and rhizoma by decoction
Chen C, Spirova D, Lehmann T, Meier B
Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
Asari radix and rhizoma (Xixin, Manchurian Wildginger, Asarum spp) is a herbal drug commonly used as an ingredient in Traditional Chinese Medicine (TCM). Many species of Asarum contain safrole and methyleugenol as the main components of their volatile oils [1,2,3]. However, toxicological studies have shown that safrole may be a hepatocarcinogenic and genotoxic leading to concerns regarding the habitual consumption of this herbal drug [4,5]. An HPLC method was established to assess the levels of safrole and methyleugenol in five batches of Asari radix and rhizoma and two TCM formulæ containing this herbal drug as an ingredient. Analysis showed that the content of safrole in the dried herbal drugs tested ranged from 0.14-2.78 mg/g whilst the content of methyleugenol ranged from 1.94-16.04 mg/g. The present study demonstrated that following a 1 hour decoction, the amount of safrole remaining in the aqueous extract was decreased by more than 92% in the equivalent of no more than 0.20 mg/g safrole remaining in the aqueous extract. Such a reduction in the content of safrole is regarded as acceptable for therapeutic use. Similarly, the content of methyleugenol was decreased to the equivalent of 0.30-2.70 mg/g. Furthermore, both TCM formulæ, after decoction, showed negligible amounts of safrole (maximum, the equivalent of 0.06 mg/g), and only 1.38-2.71 mg/g of methyleugenol. Therefore, the present study shows that a decoction procedure, traditionally used for Chinese herbal preparations, is able to reduce the amount of safrole and methyleugenol effectively. Acknowledgments: We thank Lian ChinaHerb, Switzerland, and Mr Stöger, Austria, for the supply of herbal drug material as well as SWISS-MEDIC, Swiss Agency for Therapeutic Products, Pharmacopoeia division, for the financial support. References: [1] The State Pharmacopoeia Commission of China (2005) Pharmacopoeia of the People’s Republic of China, Vol. 1. Chemical Industry Press. Beijing. [2] Xiao, P.G. et al. (2002) Modern Chinese Materia Medica, Vol. 3. Chemical Industry Press. Beijing. [3] Cai, S.Q. et al. (2008) Fittoterapia 79:293 – 297. [4] Scientific Committee on Food, European Commission (2001) Opinion of the Scientific Committee on Food on the safety of the presence of safrole (1-allyl-3,4-methylene dioxylene benzene) in flavourings and other food ingredients with flavouring properties. http://ec.europa.eu/food/fs/sc/scf/out116.-en.pdf. [5] Scientific Committee on Food, European Commission (2001) Opinion of the Scientific Committee on Food on Methyleugenol (4-Allyl-2,6-dimethoxybenzene). http://ec.europa.eu/food/fs/sc/scf/out102_en.pdf.

Several Citrus fruit peels are described in different pharmacopoeia monographs, i.e. European Pharmacopoeia [1], Swiss Pharmacopoeia [2] and Chinese Pharmacopoeia [3]. Tinctures or syrups are monographed as well. Up to now there is no TLC identification test for sweet orange (Citrus sinensis Osbeck) and lemon (Citrus limon (L) Burm. fil.) in the pharmacopoeias. Therefore, the aim of the study was to establish a suitable HPTLC test to identify the citrus peel drugs as well as preparations in order to revise the pharmacopoeia monograph. Moreover, for aged tangerine peel (Citrus reticulata Blanco), a drug traditionally used in Chinese medicine and called Chenpi, a test to discern it from bitter-orange epicarp and mesocarp was established. The spraying of an aluminium chloride solution (UV 366 nm) was found to be a suitable HPTLC detection mode to visualize some typical citrus flavanones, e. g. hesperidin or naringin. The resulting fingerprint allows distinguishing orange, lemon and bitter-orange. In order to discern between aged tangerine and bitter-orange, a subsequent derivatization by natural products/polyethylene glycol 400 (NP/PEG) solutions and evaluation in visible light was found to be effective. Whereas bitter-orange shows a prominent red zone of neoorocitcin, in tangerine this compound is nonexistent. The results show that an identification of different Citrus species by HPTLC fingerprint is possible. However, since orange and tangerine have similar flavanone contents [4], the identification solely by HPTLC remains insufficient and has to be complemented by macroscopic and microscopic examination. Acknowledgments: We thank Dixa AG and Hänseler AG, Switzerland, for the supply of herbal drug material and herbal preparations, as well as SWISS-MEDIC, Swiss Agency for Therapeutic Products, Pharmacopoeia division, for the financial support. [1] European Directorate for the Quality of Medicines (2009) European Pharmacopoeia 6th Edition (6.5), Online-Edition. [2] Swissmedic (2006) Pharmacopoeia Helvetica 10th Edition. BBL, Vertrieb Publikationen. Berne. [3] The State Pharmacopoeia Commission of China (2005) Pharmacopoeia of the People’s Republic of China, Vol. 1. Chemical Industry Press. Beijing. [4] Peterson, J.J. et al. (2006). Food Compos. Anal. 19:566-573.

Toxicological screening of methanolic extract of Gmelina arborea in experimental animals
Kulkarni YA, Addepalli V
School of Pharmacy & Technology Management, NMIMS University, V.M. road, Vile Parle (W), Mumbai-400056, India
were applied on precoated silica gel \(GF_{254} \) plates and developed in a solvent system comprising benzene, ethyl acetate and methanol (75:20:5). The plate was scanned at 283 nm using HPTLC scanner 3, CAMAG. Quantities of capsaicin in extracts were determined as 12.2% in the Manipur variety and 8.8% in Nagaland variety using calibration curve. For visualization of the standard capsaicin, plate was sprayed with 1% methanolic solution of 2,6-dichloroquinone chlorimide and immediately exposed to ammonia vapor to get bluish black colored spots. \(R_{f} \) of capsaicin was found to be 0.44. The method was validated in terms of accuracy, precision, specificity etc. [3] The calibration curve was found to be linear between 300 – 900 ng of capsaicin per spot. Regression via area was best described by \(Y = 315.494 + 2.638 \times X \) with a correlation coefficient of 0.99952 and standard deviation of 1.26%.

Method validation data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation coefficient</td>
<td>0.99952</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.26</td>
</tr>
<tr>
<td>Linearity range</td>
<td>300 – 900 ng/sipot</td>
</tr>
<tr>
<td>Precision</td>
<td>(< 2)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>98.54 – 100.97%</td>
</tr>
<tr>
<td>Limit of detection</td>
<td>52 ng/sipot</td>
</tr>
<tr>
<td>Limit of quantification</td>
<td>157 ng/sipot</td>
</tr>
</tbody>
</table>

To promote the use of herbal medicines in hospitals, 8 single formulations were added into the Thai NEDL. There are Curcuma longa, Zingiber officinale, Cassia alata, Andrographis paniculata, Centella asiatica, Clinanthis nutans, Capsicum frutescens and Zingiber purpurareum. As with other modern medicines, herbal medicines should be governed by standards of safety monitoring that are equivalent to those required for modern medicines. The FDA issued the notification on safety monitoring herbal medicines within 2 years. In the meantime, the HVC has conducted a project: Intensive safety monitoring on herbal medicines of Thai NEDL. Objective: To investigate and categorize adverse events (AEs) of herbal medicines mentioned above. Duration of this project is two years, from 2007 – 2009. Method: Prospective study by intensive monitoring all patients who took herbal medicines in hospitals which were enrolled in the study. The patients were interviewed by pharmacists and structured questions form was given to them asked for follow up. All reports were analyzed. Results: A herbal using reports were 2,335 times during the study period (Apr 1, 2007-Jun 31, 2009). Of these, 59% were Curcuma longa, 30% were Andrographis paniculata and 11% were the rest of 8 formulations. All 54 AEs occurred and they were assessed by WHO algorithm. Thirty six (67%) reports of Curcuma longa AEs were collected. Of these, 61% were gastrointestinal system disorders: nausea, abdominal pain, flatulence, anorexia, diarrhea, etc. Thirty three percent were general disorders including chest discomfort, headache, dizziness etc. Seventeen per cents of AEs reports were Andrographis paniculata: abdominal pain, anorexia, inflammations. Conclusion: Almost all AEs occurred from using herbal medicines were known but for using among large populations, we should be continuing efforts to monitor safety, to assure and promote using them based on scientific evidenced.

The effects of Echinacea and its alkylamides on CYP3A4 transcriptional activity

Modarai M, Silva E, Sater A, Heinrich M, Kortenkamp A

1The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX United Kingdom; 2Bioforce AG, 9325 Roggwill, Switzerland

An important safety concern with herbal medicinal products (HMP) is interactions with conventional medicines, particularly ones mediated by the Cytochrome P450 enzyme system (CYP). Previously, we established that Echinacea and its immunomodulatory alkylamides [1] can weakly inhibit the activity of the main drug metabolising CYP isoforms [2]. However, the ability of Echinacea to alter CYP expression levels is not well characterized. In this study we investigate whether exposure of HepG2 cells to a commercial Echinacea extract (Echinaforce®) and four alkylamides (dodeca-2,4E,8Z,10E-tetradecenoic acid isobutylamide (1), dodeca-2,4E-dienoic acid isobutylamide (2), undeca-2E,2E-ene-8,10-diyonic acid isobutylamides (3) and dodeca-2-ene-8,10-diyonic acid isobutylamide (4)) can promote the transcription of CYP3A4 (the most important drug metabolizing CYP). HepG2 cells were treated for 96 hours with clinically relevant concentrations of either Echinaforce® (22 μg/ml or 11.6 μg/ml or 1.16 μg/ml) or the alkylamides (1.62 nM or 44 nM). Real-time RT-PCR analysis demonstrated that there were no statistically significant changes in the steady state mRNA levels of CYP3A4 compared to the vehicle control (medium with 0.1% ethanol). In contrast, treatment with 50 μM rifampicin resulted in a 3.8-fold up-regulation of the steady state mRNA level of CYP3A4. Observations of β-actin upregulation by Echinaforce® in human monocytes/macrophages [1] do not appear to be relevant to HepG2 cells. Using GAPDH as a reference gene we found that β-actin was not upregulated by Echinaforce® or its alkylamides in HepG2 cells. Our data suggests that Echinaforce® is unlikely to affect the transcription of CYP3A4, at concentrations previously shown to induce mild CYP 3A4 inhibition. Acknowledgements: Bioforce and the Mappleton Trust Fund, University of London, for funding this project.

Toxicity studies for antiabetic herbal formulation: a crude mixture (1:1:1) of Stevia rebaudiana, Andrographis paniculata, and Tinospora cordifolia

Rachana R, Vaidhe P, Joshi G

1School of Pharmacy, Technology Management, SVKM’s NMIMS University, 5thFlr, Milibibai Building, Vile Parle West, Mumbai, Maharashtra, India –400056; 2Torrent Pharmaceuticals Limited, Village Bhat, Gandhinagar, Gujarat, India – 382428

Present study, evaluates “Acute toxicity” and “Genotoxicity” [1] of polyherbal antiabetic formulation [2]. A “14 Days Dose Range Finding Study” and “in vivo Micronucleus Test” was also carried out, in rats. For “Acute toxicity study”, formulation was administered to the rats, orally (50, 500 and 2000 mg/kg b.w), observed as per OECD guidelines, no toxic symptoms were observed. In a “14 Days Dose Range Finding Study”; the drug was administered orally at three different doses: 250, 500 and 750 mg/kg b.w, once daily for 14 days. Various hematological and biochemical parameters: Glucose, Urea, etc, were measured. Animals were sacrificed on 15th day. Different organs (liver, kidney and heart, etc.) were processed for histopathological study. The bone marrow smears were also evaluated for micronucleus induction potential. Test substance did not produce any adverse pathological effect or its related changes in either sex, at the high dose (750 mg/kg) level. Maximum dose of 750 mg/kg b.w was well tolerated, after 14 days continues administration. Bone marrow smear evaluation reveals that, MicroNucleated Polychromatic Erythrocyte, MicroNucleated NormoChromatic Erythrocyte and Polychromatic Erythrocyte/NormoChromatic Erythrocyte in high dose group animals, were comparable to control group animals. Results were analyzed, using Student’s ‘t’ test and one way ANOVA. This formulation was found to be non toxic (at acute and genotoxic level) up to 750 mg/kg b.w dose level. References: [1] Matsui, M. et al. (1996) Mutagenesis 11:573 – 579. [2] Chandra, R. et al. (1994) J. Health Sci. 40:255 – 249.
Vegetable oils are essential in global nutrition. Depending on the used plant species and on regional conditions, a variety of oils with different qualities is produced. The pumpkin seed oils are produced from the seeds of pumpkins (Cucurbita species) and they have been utilized in pharmaceutical industry, first as a tenaiciad, then to relieve from disorders of the prostate gland and urinary bladder caused by benign prostate hyperplasia (BHP). The goal of this work is the study of the physico-chemical properties and the fatty acid composition of pumpkin seed oil obtained from the variety Cucurbita moschata Duchesne, cultivated in Cuba. The virgin oil was obtained from raw materials of special quality by mechanical procedures (high-pressure screw-pressing) and evaluated for its physicochemical characteristics. The fatty acid profile analysis of the oil was also carried out by gas liquid chromatography. The oil obtained from the pumpkin seed had a relative density of 0.9, a refractive index of 1.4 and an optical rotation of 0.34. Its saponification, acid, peroxide, and iodine values were 221 (mg KOH/g oil), 1.7 (mg KOH/g oil), 15 (meq peroxide/kg oil) and 144 (g I2/100 g oil), respectively. The unsaturated fatty acids content was 77% and comprises 27% oleic acid and 49.9% linoleic acid. The saturated fatty acids concentration was 22.8% and is consisting of 16.4% palmitic acid and 6.5% stearic acid. These results are confirmed by the findings of Al-Khalifa [1] and Younis et al. [2] for the variety C. pepo, and by the analytical monographs of the European Pharmacopoeia, 5th ed. [3] for other vegetable oils. The oil studied had high iodine values, thus reflecting a high degree of unsaturation, whereas the presence of high amounts of the essential linoleic acid suggests that the pumpkin seed oil is highly nutritious. The parameters evaluated could be useful, as quality criteria, to the seed oil obtained from Cucurbita moschata Duchesne, cultivated in Cuba. References: [1] Al-Khalifa, A. (1996). J. Agric. Food Chem. 44:964–966. [2] Younis, Y. et al. (2000). Phytochemistry 54:71–75. [3] European Pharmacopoeia. (2005) 5th ed. Council of Europe, Strasbourg, France.

Investigations of the underground parts of medicinally used plants and possible adulterations of various Cardueae and Cichorieae Fritz E. Soukel
Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

Asteraceae is the taxonomically most diverse family of plants comprising of more than 23,000 species and about 1,600 genera. Numerous representatives such as Taraxacum officinale, Cichorium intybus, Sillybium marianum, and Hieracium pilosella to mention only few thereby have a long history in both traditional and western medicine. The anatomy of rhizomes and roots of a representative number of species from the tribes Cardueae and Cichorieae was analyzed. Comparative studies on underground parts of medicinally used drugs and possible adulterations are missing yet for these diverse taxa. Until now, 28 genera and 37 species have been collected and examined by means of light microscopy and a database of typical anatomical characters created. In addition, some of the studied species were cultivated to follow the ontogenetic development of the underground organs at different states of growth. Particular attention was thereby spent to the secretory system: Endodermal resin ducts are characteristic to the Cardueae, whereas, according to literature data, these anatomical elements are restricted within the tribe Cichorieae to Scorzonera hispanica, Tragopogon porrifolius, and the genus Scolytus. Cichorium intybus and Lapsana communis were reported to exhibit the “doubling” of the endodermis, but with ducts missing [1]. Based on anatomical structure, we could distinguish different types of resin ducts. These various forms of resin ducts and the structural context of their occurrence, particularly with respect to tissue of origin and their position relative to prominent anatomical elements such as vascular bundles (e.g., a centrifugal position in Centaurea scabiosa versus an interfascicular position in Carthina acuticaulis) provided valuable characters to discriminate among the species studied. Reference: [1] Van Tieghem, M. Bull. Soc. Bot. Fr. 1884:112 – 116.

In Vitro genotoxic activities of the aqeous extract from Thai Noni's Leaves (ANL) in human lymphocytes
Ratanavalachai T1, Thitiroul S2, Nandhasri P3, Tanouchit S4, Duchesne C5
1Division of Biochemistry, Preclinical Science Department; 2Division of Anatomy, Preclinical Science Department; 3Division of Applied Thai Traditional medicine; 4Research center, Faculty of Medicine, Thammasat University, A. Klong Luang, Pathumthani 12121, Thailand

Noni (Morinda citrifolia L.; Rubiaceae) is an evergreen tree that their roots, fruits and leaves have been traditionally used to treat various diseases such as cancer, malaria and arthritis [1]. Our earlier study reported that Thai Noni fruit juice is not genotoxic against human lymphocytes in spite of showing cytotoxicity at high doses (≥ 100 mg/ml) [2]. Aims of this study were to investigate the genotoxic activities of the aqueous extract from Thai Noni’s leaf (ANL) in human lymphocytes. Chromosome aberration assay and sister chromatid exchange (SCE) assay in vitro were performed. Treatment of ANL (0.8 – 25 mg/ml) alone for 3 h did not significantly induce chromosomal aberration nor SCE (p < 0.05). Nevertheless, they could temporary arrest cell cycle as shown by lowering mitotic index measured after the first cell cycle. While proliferation index measured after the second cell cycle were getting higher value as compared to the positive control. Cytotoxicity was shown at higher doses (≥ 50 mg/ml). Therefore, concentration usage of ANL as food supplement is needed to be considered carefully for human safety. Nevertheless, ANL might be useful for treatment of human hyperproliferative disorder at appropriate dose. Since they interfere with cell cycle without possess genotoxic activities. Further scientific study is needed to verify the usefulness of the aqueous extract of Noni’s leaf. Acknowledgements: This study was supported by Research Fund, Faculty of Medicine, Thammasat University, Thailand. References: [1] McClatchey, W. (2002) Intern Cancer Ther. 1:110 – 120. [2] Ratanavalachai, T. et al. (2008) Songklaakarn J. Sci. Technol. 30:583 – 589.

Study of decomposition behaviour of absinthin from Artemisia absinthium using LC/MS and LC-SPE-NMR
Aberham A, Cick SS, Schneider P, Stuppner H
Institute of Pharmacy/Pharmacognosy*, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria, * Member of the Center for Molecular Biosciences (CMBI)

Artemisia absinthium L., commonly known as wormwood, is a well-known medicinal plant with monographs in several pharmacopoeas (e.g. Ph.Eur.). The aerial parts are used to treat anorexia and indigestion. Sesquiterpene lactones e.g. absinthin, a dimer guaianolide, and the monomeric arbutin account for the bitter taste of this plant. Absinthin is also regarded as marker substance to confirm the authenticity of wormwood. In weak acidic medium absinthin is unstable and isomerizes into anabisin, which is not only formed in acidic medium, but also under acid-free conditions [1]. Older literature describes absinthin as a glucoside, being decomposed by hydrolysis into sugar, a liquid and a resin. Further scientific study is needed to investigate the degradation behaviour of absinthin in different stress conditions (hydrolytic, oxidative, photolytic and thermal). An aqueous ethanol solution of absinthin was found to be stable for up to 6 months (recovery rate by HPLC analysis ≥ 95%). This was also the case when the solid compound was kept in the refrigerator at -35 °C. In contrast, the colourless needles, when stored in an exsiccator at 25 °C and exposed to light, turned yellow. In total, 3 decomposition compounds were detected by LC/MS and LC-SPE-NMR, and identified as dimeric sesquiterpene lactones. The major degradation product was anabisin, which is not only formed in acidic medium, but also under acid-free conditions [1]. Acknowledgements: This work was financially supported by Bionorica research GmbH, 6020 Innsbruck, Austria. References: [1] Hänsel, R. and Stichler, O. (2007) Pharmakognosie – Phytopharmazie, 8. Auflage, Springer Verlag, Heidelberg. [2] Senger, O. (1892) J. Chem. Soc. 62:1240 – 1241.

Constituents and quality control parameters of the vegetable oil from Cucurbita moschata, Duchesne, cultivated in Cuba
Jorge Rodríguez 1, Vander Heyden Y2, Monteguido Romero U3, Dramou P4, Gómez G4, Bravo Sánchez I5, Bernal N5, Saeucedo Hernández V6
1Department of Pharmacy, Faculty of Chemical-Pharmacy, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba; 2Department of Analytical Chemistry and Pharmaceutical Technology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel-UBV, Belgium

The pumpkin seed oil is a product of oil obtained from the pumpkin fruit. Numerous representatives such as Taraxacum officinale, Cichorium intybus, Sillybium marianum, and Hieracium pilosella have been utilized in pharmaceutical industry, first as a tenaiciad, then to relieve from disorders of the prostate gland and urinary bladder caused by benign prostate hyperplasia (BHP). The goal of this work is the study of the physico-chemical properties and the fatty acid composition of pumpkin seed oil obtained from the variety Cucurbita moschata Duchesne, cultivated in Cuba. The virgin oil was obtained from raw materials of special quality by mechanical procedures (high-pressure screw-pressing) and evaluated for its physicochemical characteristics. The fatty acid profile analysis of the oil was also carried out by gas liquid chromatography. The oil obtained from the pumpkin seed had a relative density of 0.9, a refractive index of 1.4 and an optical rotation of 0.34. Its saponification, acid, peroxide, and iodine values were 221 (mg KOH/g oil), 1.7 (mg KOH/g oil), 15 (meq peroxide/kg oil) and 144 (g I2/100 g oil), respectively. The unsaturated fatty acids content was 77% and comprises 27% oleic acid and 49.9% linoleic acid. The saturated fatty acids concentration was 22.8% and is consisting of 16.4% palmitic acid and 6.5% stearic acid. These results are confirmed by the findings of Al-Khalifa [1] and Younis et al. [2] for the variety C. pepo, and by the analytical monographs of the European Pharmacopoeia, 5th ed. [3] for other vegetable oils. The oil studied had high iodine values, thus reflecting a high degree of unsaturation, whereas the presence of high amounts of the essential linoleic acid suggests that the pumpkin seed oil is highly nutritious. The parameters evaluated could be useful, as quality criteria, to the seed oil obtained from Cucurbita moschata Duchesne, cultivated in Cuba. References: [1] Al-Khalifa, A. (1996). J. Agric. Food Chem. 44:964–966. [2] Younis, Y. et al. (2000). Phytochemistry 54:71–75. [3] European Pharmacopoeia. (2005) 5th ed. Council of Europe, Strasbourg, France.
Daphne mezereum L., Thymelaeaceae. Mezereum or February Daphne is a deciduous shrub up to 150 – 200 cm with spicy-fragrant pink flowers native to Europe as far as Siberia, Caucasus, Western Asia and cultivated in North America [1]. In homeopathy, preparations from fresh bark of branch collected at the beginning of blossom, are used in the treatment of respiratory and skin diseases, indigestions, neuralgia, bone pain, and other pain symptoms [2,3]. Mezereum is characterized in the German Homeopathic Pharmacopoeia, the described TLC-analytical conditions are comparative and might be updated. Continuing our work on optimization of TLC-analytical investigations for improved homeopathic pharmacopoeia monographs an easy and time and material saving horizontal TLC for Mezereum homeopathic tincture is proposed. Small amounts (2 – 3 ml) of homeopathic tinctures and references (scopoletin, umbelliferone, mezerein, daphnetoxin) are directly tested by using 5 x 5 cm silica gel plates (Si 60, - HPTLC, RF-material) and applying 2 – 3 ml of various mobile phases containing toluene, ethyl acetate, and formic acid at different proportions. After eluation (2 – 3 min) and drying the plates are detected by vis. UV sui, and UV su. Scopoletin, umbelliferone, and daphnetoxin (in traces) are distinctly identified in the ethanolic tinctures, mezerein was not found in the bark. The applied procedures may be proposed for an up-dated and optimized TLC identification test of the homeopathic monograph of Daphne mezereum L. easily being performed as a routine qualitative analytical method. References: [1] Brendler, Th. et al. (2003) Herbal Remedies, medpharm, Scientific Publishers, Stuttgart. [2] Hagers Handbuch der Pharmazeutischen Praxis (2006) Springer, Heidelberg. [3] Deutsches Homöopathisches Arzneibuch (HAB 2008), Monograph Daphne mezereum (Edition 2000).

The requirement for quality assurance in commercial medicinal plant products has been brought into focus as European national regulatory authorities move towards the 2011 deadline to implement the Traditional Herbal Medicines Directive (Directive 2004/24/EC). Medicinal plant products for human use in the European Union (EU), in this context, we report the development of a DNA-based method for the identification and authentication of plant species, based upon the economically important St John’s Wort (SJW) (Hypericum perforatum L.). The ITS regions of the nuclear-encoded ribosomal RNA genes provided the target for primer design. Sequences from 91 Hypericum species were analysed in order to identify the most divergent regions, and four PCR primers were designed to anneal specifically to H. perforatum in these regions. All of these were proved empirically to be SJW-specific when compared to DNA from likely contaminant or adulterant species. As herbal medicinal products are often sold as mixtures, a quantitative method of identification is of particular interest. Real-time PCR enables quantitation of template DNA by virtue of monitoring the reaction at every cycle, and this procedure was optimised for quantitation of SJW in a mixed preparation. A generic primer pairing was used to measure all of the amplifiable nuclear DNA within a sample; the specific primers allowed quantitation of SJW DNA. This gives a measure of the specific DNA as a proportion of total DNA, which could be used to calculate the ratio of SJW plant material in a mixed sample, or detect the presence of contaminant or adulterant plant material in pure SJW preparations.

The determination of best harvest time of German chamomile (Matricaria chamomilla L.) flowers based on solid-phase microextraction-GC-MS analysis data. Rafieiolhossaini M1,2, Adams A3, De Kimpe N1, Van Damme P1

Solid-phase microextraction (SPME) technique is a relatively simple, rapid, inexpensive and solvent-free sampling technique for the determination of volatiles in plant essential oils when compared to conventional sampling techniques like steam distillation solvent extraction (SDSE). Moreover, newer SPME can be automated and does not lead to thermal degradation of chemical components [1,2]. In order to determine best harvest times in terms of quality of chamomile (Matricaria chamomilla L.) grown in Belgium, SPME was applied. On April 15, 2005, 90 day old seedlings were transplanted into the field. At harvest, flowers were divided in two groups on the basis of development stage [3]. Stage I flowers corresponded to initial up to full development of the ligulate flowers, while tubular flowers were closed. Flowers were categorized as stage II when tubular flowers were partially (first circle) up to completely open. After drying, flower heads were analyzed by headspace SPME-GC-MS. Six marker compounds, i.e. (E)-farnesene, α-bisabolol oxide A and B, α-bisabolol oxide, (Z)-β-spiroether and spathulenol were identified and quantities compared statistically for the two different stages of flower development based on their GC peak area. Results indicate that most of the measured traits were not significantly influenced by the stage of development, except for (E)-farnesene. The peak area of this compound in stage I was significantly higher than in stage II. These results are in agreement with previous results obtained by SDSE. Therefore, SPME-GC-MS analysis is proposed to be a suitable technique for the differentiation in quality of chamomile flower development stages. References: [1] Shen, S. et al. (2005). JAOAC Int. 88:418 – 423. [2] Rubiolo, P. et al. (2006) Phytochem. Anal. 17:217 – 225. [3] Franz, C. et al. (1978) Acta Hort. (ISHS) 73:229 – 238.

Phytochemical analysis and biological activity of the flavonoids from the Mongolian medicinal plant Dianthus versicolor Fisch. Obmann A1, Presser A2, Kletter C3, Thalhammer T1, Gläs S1

Dianthus versicolor Fisch. is used in Traditional Mongolian Medicine against various liver diseases. Until now chrysosyerol-C-glycosides and triterpenoid saponins were found in the plant [1,2]. Aqueous (OWE) and methanolic extracts were tested in the isolated rat liver perfusion model [3] and both types of extracts showed a dose dependent increase of the bile flow. For preparation of the OWE aerial parts were powdered and extracted with water (pH 2, trifluoroacetic acid) for 1 h by shaking gently. This simulates the traditional way of intake where the crude drug is taken together with a certain amount of water. The OWE was further fractionated by SPE yielding four fractions. The 40% methanolic fraction showed a dose-dependent effect on the bile flow which was – even though in higher concentrations – comparable to the liver-affecting cynarin. From this fraction six main flavonoids were isolated using CC, CPC and semi-preparative HPLC. Their structure elucidation (UV, MS, 1D- and 2D-NMR) revealed apigenin, luteolin and chrysoeriol C- and O-di- and triglycosides. Three further flavonoids were characterized by UV and MS-data, one of them was identified as isovitexin-7-O-glucoside (saponarin). The nine flavonoids were quantified by HPLC on Aqua- sil C8 using a MeCN-H2O (pH 2.8, trifluoroacetic acid) gradient and quercetin-3-O-rutinoside (rutin) as internal standard. Additionally, the total flavonoid content was determined by establishing a UV-spectro-photometric method following the European Pharmacopoeia. Plant material of two different origins was compared. The total flavonoid content amounted to 0.75% and 1.19% in the crude drug; the two OWEs contained 1.78% and 3.58%, respectively. References: [1] Bogeuskaya, L. Planta Med 2009; 75: 877–1094.
Related crude herbal drugs with close morphological characteristics but different origins and chemical principles are commonly misused in local markets and can be significant problems in the quality controls of crude herbal drugs related products such as functional foods and botanical drugs. For example, *Rhei Rhizoma* has been commonly used in Korea as a purgative and haemostatic agent. Among *Rheum* genus *R. palmatum*, *R. tanguticum*, and *R. officinale* were specified as official origin of *Rhei rhizoma* in Korean Pharmacopoeia. *Rheum undulatum* belongs to same genus with *R. palmatum* but has different chemical profiles and pharmacological properties. Since these two crude herbal drugs are used as alternatives each other in the market, it is important to develop efficient method to differentiate between these related species. Direct Analysis in Real Time (DART) ion source has developed for the real time measurement of small molecules from any surface in open air. As protonated molecular ions are observed by DART-TOF-MS for most compounds without tandem fragmentations, it produces relatively simple and clear mass spectra.

References:

Development of HPTLC densitometric method for analysis of lycopsamine in comfrey (Symphytum officinale L.) using retorsine as a reference compound

Janel D. Krehf
University of Ljubljana, Faculty of Pharmacy, Alkerčeva cesta 7, SI-1000 Ljubljana, Slovenia

Comfrey (*Symphytum officinale L.*) has been used topically for treating inflammatory disorders such as arthritis, gout and thrombophlebitis and internally for treating diarrhoea. Apart of allantoin and other constituents, which are considered to have therapeutic effect, it also contains toxic pyrrolizidine alkaloids (mainly lycopsamine, intermedine, their acetylated derivatives and symptyline). Because of their high toxicity it is of interest to determine these alkaloids in medicinal products even at low concentrations [1,2]. Unfortunately, many reference compounds of pyrrolizidine alkaloids are not commercially available [3]. Commercially available alkaloids may be used as reference compounds, but they must be standardised against marker alkaloids, which are actually present in the plant. Therefore, lycopsamine was isolated from comfrey roots and employed together with commercially available retorsine for development of a high performance thin layer chromatography (HPTLC) method for quantitative densitometric analysis of pyrrolizidine alkaloids after derivatisation with Dann-Mattocks reagent. The method was validated according to ICH directives. It proved to be linear within 0.7 to 7.0 mg of lycopsamine per application of a sample. The mass factor retorsine/lycopsamine was 1.18 (calculated with height of peaks) and 0.98 (calculated with area under curve). The method also proved to be specific and to have good repeatability (with RSD 2 – 4% within the plate).

References:

The pharmaceutical quality of 10 commercial samples of Matricaria chamomilla L. flowers used for medicinal teas

Cioanca O1, Spac A1, Hancianu M1, Gille E2, Stanescu U1
1Faculty of Pharmacy, University of Medicine and Pharmacy “Gr. T. Popa,” University Street, No. 16, 700115, Iasi, Romania; 2National Institute of R&D for Biological Sciences/“Stejarul” Biological Research Centre, Piatra Neamt, Alexandru cel Bun 6, 700004, Romania

This study is part of a larger research for a PhD thesis concerning the quality of commercial *Chamomilla flores* samples. Knowing that natural products do not necessarily mean safe products, we tried to evaluate the pharmaceutical quality of 10 different commercial samples of *Matricaria chamomilla* L. The samples were bought from specialized salespeople and pharmacies. A number of qualitative (macroscopic and microscopic tests, thin layer chromatography – TLC) and quantitative (spectrophotometric, HPLC) methods were used to establish the composition of the plant material. The macroscopic study revealed the presence of major impurities for the majority of the plant material and the microscopy indicated that most of the samples contain true chamomile. The qualitative analysis showed similar compound spectra for the flavones and polyphenolic acids. The flavones (values between 0.4915 and 0.8041 mg/100 g drug) and polyphenolic acids (up to double concentration for the richest sample compared to the poorest) content varied a lot from one sample to the other, confirmed both by spectrophotometric and HPLC analysis. It seems that the ferric acid is best represented, while the lowest values are found for caffeic acid. All in all, we can state that even if the samples have a similar compound spectra, the extractibility for each active substance is different. Also, the commercial samples can not be considered as equivalent, the role of the pharmacist regarding the right posology is decisive for the expected pharmacological activity.

References:

Analysis of ginseng dietary supplements – content of ginsenosides
Marsik P1, Bacílkova A2, Langhansova L3, Andrele J3
1Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Research Institute of Crop Production, v.v.i., Rozvojova 263, 165 02 Prague 6 – Lýsovice, Czech Republic; 2Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague; Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; 3Department of Environmental Chemistry, Faculty of Environmental Technology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Czech Republic

Products based on Panax ginseng are the most popular commodity of Chinese traditional herb medicine worldwide. Due to the minimal side effects ginseng is predominantly used as component of various tonic and adaptogenic dietary supplements [1]. However, because dietary supplements, despite of their increased popularity, are not subject to the same regulations that pharmaceuticals are, there are concerns for their purity and potency [2]. Ginseng saponins (ginsenosides), which are unique for Panax species and are associated with their pharmacological activity, appear as suitable marker compounds for quality control [3]. In our work, 11 ginseng products (tablets, capsules, extracts, mixtures) commercially available on Czech market were evaluated for the presence and quantity of 12 ginsenosides (Rb 1,R b 2,R b 3, Rc, Rd, Re, Rf, Rg 1,R g 2, Rg3,R h 1,R h 2). Each of them were identified by comparison of retention times with standards and confirmed by LC/MS. The quantification was carried out by external standard method using UV detection (at 203 nm). Ginsenosides were found in 8 products only. Three preparations contained low concentrations of total ginsenosides (from 1.0 to 2.2 mg per recommended daily dose). In three other products no saponins were detected. The results suggest that not all of the products on Czech market where ginseng addition is declared contains sufficient amount of the ginsenosides. Acknowledgement: This work was supported by KJB 400550705 project.

Changes in the content of hyperoside in aerial parts of Pulmonaria mollis during the vegetation period
Kruglov D
Novosibirsk State Medical University, Department of Pharmacognosy, Krasny Prospect 52, Novosibirsk, 630091, Russia

Extracts taken from the aerial parts of Pulmonaria mollis Wulf. ex Hornem. (Boraginaceae) have anti-anemic activity. Bioactive compounds having anti-hemorrhagic activity play an important role in the phytotherapy of anemia. Such compounds include flavonoids which can be found in P.mollis. The presence of some flavonoids (predominantly hyperoside) in the aerial parts of P.mollis was established by TLC (SiO2). The content of flavonoids was analysed using spectrophotometric methods with AlCl3. The total amount of flavonoids was calculated as the hyperoside equivalent.

Metabolic profiling of the Brazilian medicinal plant Erythrina velutina (Willd) Fabaceae
Marcel RM1, Silva-Mann R1, Mushat MY2, Castro RD3, Pelacani CR 3, Hilhorst HWM4, Choi YH2, Verpoorte R2, Hall R5, de Vos RCH5
1Laffet, DPhS and Lab. Seeds Physiology, DEA, Universidade Federal de Sergipe-UES; Av. Marechal Rondon, S/N, CEP 49100 – 000, São Cristóvelo-São, Brazil; 2Division of Pharmacognosy, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands; 3Lab. Biochemistry, Biotechnology, Bioenergy, ICS – Universidade Federal da Bahia-UFBA, Av. Retiro Miguel Calmon, s/n – Vale do Céu, CEP: 40110 – 902 Salvador-BA, Brazil; 4Lab. Plant Pharmacognosy, Wageningen University, Building no. 352, Arboeolumaan, 4, 6703 BD, Wageningen, The Netherlands; 5Plant Research International (PRI) POB 16, 6790 AA, Centre for Biosystems Genomics, POB 98, 6700 AB, Wageningen, The Netherlands

Erythrina velutina (EV) is popularly used in Brazil against central nervous system disorders. Recently, anticholinesterase activity (ACA) of the plant has been detected in mice brain, suggesting a potential therapeutic usage for EV to combat Alzheimer disease (AD) symptoms. To get insight into the variation in metabolite composition between different EV trees and to study the effect of growing area and harvest season, we profiled leaf extracts using an untargeted LC-QTOF-MS metabolomics approach. Multivariate data analyses tools were subsequently applied to identify differences and similarities between samples and to link the variation in their metabolic profiles to variation in bioactivity. Principal component analysis of the LC-MS data showed a clear separation of the extracts, which, however, was independent of growth location or harvest time. As a measure of bioactivity, we assayed in vitro both ACA and antioxidant activity, as antioxidant compounds have been shown to exert neuroprotective effects in AD models. Individual antioxidants were subsequently profiled by HPLC with an on-line antioxidant detection system and identified by LC-MS/MS. The antioxidant profiles showed the presence of three main antioxidants present in all leaf material analyzed though at varying levels. Using partial least square regression-discriminant analysis (PLS-DA), the metabolic profiles could be clustered into two groups related to differential bioactivity, for both ACA and antioxidants, and the metabolites most significantly contributing to the clustering were selected. Currently, the structural elucidation of the most active compounds is underway. Acknowledgments: CAPES, CNPq, PLS.
Rapeseeds (Brassica napus L. ssp. oleifera) play an important role as a source of oil in human diet. They provide the most concentrated source of energy and also help in absorption of fat-soluble vitamins [1]. Sterols are the major constituents of the unsaponifiable fraction from most vegetable oils. Phytoestrogens are known to inhibit absorption of dietary cholesterol [2]. Sitosterol is the major phytosterol identified in rapeseed oil. In this paper, seed samples of 10 rapeseed cultivars developed in Romania (ADER, ATTILA, MILENA, SA VanNANNAN ONTARIO, COULVERT, POTOMAC, BELINI, TENNESSEE, LC) were analysed for sitosterol content. Oil was extracted with soxhlet apparatus. The sitosterol content was analysed using high performance liquid chromatography coupled with mass spectrometry (HPLC/MS) [3]. Analytical column used is Zorbax SB C18 100 mm x 3.0 mm i.d., 5 μm, pre-column Zorbax SB C18. The detection limits (200 ng/ml). Regression coefficients and reproducibility of the method were established. The high sitosterol content was registered to the SAVANNAH cultivar 1375.7 (μg/g) and the small quantities (2.9 μg/g) to COULVERT cultivar. References: [1] Mortuza, M.G. (2006), Pakistan J. Biol. Sci. 9:1812 – 1816. [2] Eskini, N.A. and McDonald, B.E. (1996) Baily’s Industrial Oil and Fat Products, Hui, Y.H ed., 5th edition, John Wiley & Sons, Inc. New York, USA [3] Sanchez-Machado, D.J. and Lopez-Hernandez, J. (2004) Biomed. Chromatogr. 18:183 – 190.

Sitosterol content of some rapeseeds cultivars developed in Romania
Pop C1, Alexe E1, Vlase L2, Peev C3, Militaru AV4, Pop DA5
1Babeș University of Agricultural Science, Galați Aradului 119, 300045, Timisoara, RO; 2University of Medicine and Pharmacie Motilor 68.400012, Cluj Napoca, RO; 3University of Medicine and Pharmacie Victor Babes, Ettifim Murgu Nr.2, 30004, Timisoara, RO; 4IDOW Agrosciences, Teheran no.1, Bucharest, RO

Swedish bitter – Total polyphenols and HPLC-MS analysis
Peev C1, Vlase L2, Dehelean C3
1UMF “Victor Babes”, Faculty of Pharmacy, Timișoara, Romania; 2UMF “Iuliu Hatăeganu”, Faculty of Pharmacy, Cluj Napoca, Romania

Bitter is a natural traditional tonic initially prepared by Paracelsus and then re-discovered by Swedish doctors in the XVIIIth century [1,2]. Bitter contains volatile oils and bitter principles of carminative, antispasmodic, cholagogue-choleretic or aperitif action [3]. The present study aims to clarify the types of vegetable products used for the preparation of two Bitter formulas: I and II and also the analysis of polyphenols and flavonoids. The vegetable mixture was purchased from Galkie (Germany). An

PG49

Evaluation of Lycopus uniflorus water extract for anti-inflammatory, anti-gerocenic and antioxidant activities

Saade S1, Ziadeh E2, Ramia E2, Daher CE3, Mroueh M2

1School of Arts and Sciences, Natural Sciences Department, Lebanese American University, PO Box 36, Byblos, Lebanon; 2School of pharmacy, Lebanese American University, PO Box 36, Byblos, Lebanon

PG50

Problems for the validation of analyses of TCM herbal drugs and herbal drug preparations: the case Fructus Gardeniae (Zhizi) and its preparata

Isachi B, Bergonz MC, Righeschi C, Vincenti FF, Bilia AR Department of Pharmaceutical Sciences, University of Florence, via U.Schiff 6, 50019 Sesto Fiorentino, Florence, Italy

Fructus Gardeniae (Zhizi) is the dried ripe fruit of Gardenia jasminoides Ellis (Fam. Rubiaceae). According to Traditional Chinese Medicine (TCM) it reduces pathogenic fire, eases the mind, eliminates damp-heat, promotes diuresis and removes heat-toxicity from blood [1]. These preparations are widely used for treatment of many diseases, such as hepatitis, inner fever, hypertension, and diabetes [2]. Zhizi contains a large amount of iridoid glycosides to which can be related the activity of the herbal drug. However, other classes of constituents such as crocins and caffoyl quinic acids are also present and can contribute in part to the activity [3]. Different preparata represented by the herbal drug dried after steaming are also present on the market and during the heat treatment some constituents can modify their structures. The aim of this work was the validation of an HPLC/DAD/ESI-MS method to be used for the complete characterization of Fructus Gardeniae (Zhizi) and its preparata. The proposed method was validated and because its simplicity, sensitivity, accuracy and reproducibility, can be conveniently used for the analysis of the characteristic iridoids, crocins and quinic acid derivatives. The iridoids identified were scandoside methylester, garanoside, genipin gentiobioside, geniposide, acetylgeniposide. The crocins were: crocetin, crocin-1, 2 and 3. The quinic acid derivatives identified were 3,4-dicaffeoyl-5-(3-hydroxy-3-methylglutaryl) quinic acid and 3-caffeoyl-4-sinapoyl quinic acid. References: [1] Pharmacopoeia of the People’s Republic of China (2005) 1:95 – 96. [2] Koo, H.J., et al. (2006). Ethnopharmacol. 103:496 – 500. [3] Wagner, H. et al. (2004) Chinese Drug Monograph and Analysis, Fructus Gardeniae – Zhizi 5 (22); ISSN 1430 – 8290.

PG51

Chemotype discrimination of Curcuma species by DART-MS

Kim HJ, Suh YJ, Kang YP Department of Pharmacognosy, College of Pharmacy, Kyung Hee University, Seoul 130 – 701, Korea

Animal ionization mass spectrometry allows for the direct analysis of organic compounds in the original condition, DART (Direct Analysis in real time) is one of the new generation of ambient desorption ionization techniques [1]. It analyzes samples directly in their native condition, bypassing most of the elements of the analytical system and transferring ions into the mass spectrometer without any sample preparation steps. Related crude herbal drugs with close morphological characteristions but different origins were subjected to DART-MS analysis for the intraspecifics discrimination by their chemotypes. Four groups of samples of rhizomes and leaves from Curcuma species were selected for this study. DART-MS spectra profiles showed that four groups were divided into two main anti-inflammatory and anti-cancer [3]. These sesquiterpenes are main components of C. phaeocaulis and easily detected in rhizomes and leaves. A few seconds analysis of small parts of intact Curcuma species with DART-MS was enough to get the significant profile of mass spectrum for chemical discrimination. These results showed DART-MS is a fast and easy tool for the determination of the chemical composition and for the chemical discriminations between related species of crude herbal drugs. References: [1] Robert, B.C. et al. (2005)]. Anal. Chem. 77:2297 – 2302. [2] Chihiro, T. et al. (2006) Evid.-Based Compl. Alt. 3:255 – 260. [3] Raina, V. K. et al. (2002) Flavour Fragr. J. 17:99 – 102.

PG52

Asbestos fibers in talcum – is this a pharmaceutical problem?

Tegtmeyer M, Siegers CP

University of applied Science, 25338 Luebeck, Germany

The inhalation of asbestos fibers can cause different adverse effects, especially to the lung, where the size and diameter of the fibers are critical for their toxicity. Whilst asbestos-induced diseases like lung fibrosis, pleura thickening and mesothelioma are quite common, we report on mostly unknown diseases in humans caused by asbestos. In severe cases, asbestos can cause mesotheliomas, i.e. malignant tumours of the pleura and peritoneum, with a long latency period of about 20 – 40 years. First we report on a veterinary doctor in northern Germany who died from peritoneal mesothelioma within a few months after surgery. His death was most probably provoked by asbestos fibers from powdered medicinal gloves. Talcum, which is used in sports and medicinal gloves, has its natural sources in Russia, Canada and China. Chinese talcum is contaminated with up to 10% asbestos fibers. The widow of the deceased veterinarian investigated the link from talcum to asbestos fibers to the mesothelioma disease, but the insurance company did not accept this causality. Talcum powder is also found in baby, body and makeup powders and is also part of the ingredients of traditional Chinese medicine (TCM). It is likely that other tumours are also the result of talcum ex-
Vernonia amygdalina L, Asteraceae (Bitter leaf) is a common traditional anti-diabetic remedy in many parts of Nigeria. Some scientific studies have confirmed its efficacy in both experimental animals and humans. In this study, we investigated the subacute toxicity of the leaf extract and fractions of *Vernonia amygdalina*, as well as their effects on biochemical and hematological parameters in alloxan-induced diabetic rats. Diabetes was induced in rats with a single intravenous injection of alloxan monohydrate (70 mg/kg). The alcohol extract and its chromatographic fractions were orally administered to the diabetic rats once daily for 28 days. The blood sugar lowering effects and the biochemical and hematological effects of the treatments were determined. The vital organs were also examined for possible abnormality. The results confirmed the anti-diabetic potency of *V. amygdalina* leaf extract. Chromatographic fraction F6 exhibited the most potent antidiabetic effect at a dose of 160 mg/kg. In addition, it significantly (P < 0.05) decreased elevated serum levels of TC, LDL-C, VLDL-C, and increased HDL-C level in diabetic rats. At the doses of 160 and 320 mg/kg, there was a significant (P < 0.05) increase in the lymphocyte counts. Urea and creatinine levels were significantly reduced while electrolyte levels were on the average increased. Diabetes associated elevation of hepatic enzymes (AST, ALT and ALP) were significantly reduced. Histological examination revealed no remarkable abnormality in the vital organs of the treated rats. These results suggest that in addition to its hypoglycemic and hypolipidemic effects, *V. amygdalina* is capable of normalizing the biochemical and hematological abnormalities associated with diabetes mellitus.

Phytomedicine can provide a safe and reversible male contraceptive

Man used various natural materials since ancient times as a source of medicines. 25% of all prescription drugs of modern pharmacopoeia still contain the drugs derived from plants or compounds isolated from plants [1–2]. Literature reveals that plant products have been used for human fertility regulation. Many plants have been screened to find safe and reversible contraceptive agents [3–6]. Therefore, *Euphorbia nervosa, Citrullus colocynthis, Martynia annua* and *Withania somnifera* were screened with the intention of finding an orally active, cheap, reversible and safe fertility regulating agent for men. 30% ethanolic extracts of these plants were administered orally in male wistar rats according to the WHO guidelines. The weights of testis and accessory reproductive organs were recorded. The hematological and biochemical parameters were investigated for side affects. The sperm motility and density were assessed in the testis and epididymis. Data were analyzed statistically and CPCSEA guidelines were followed. The data shows no change in the final body weights, where as weight of testis and accessory reproductive organs were decreased in extracts treated rats. The decreased protein, glycolic, ascorbic acid, ascorbic acid and fructose content indicative of reduction of androgens. The mature sperm number in seminiferous tubules of the extracts treated rats significantly declined with the treatment reduced fertility of the extracted rats. The anti-androgenic effects of the drug reduced the number of spermatozoa and spermatozoa in the lumens of seminiferous tubules and sperm motility. The presence of spermatogenesis in the germinal epithelium of the treated rats indicates possible reversibility after discontinuations of the extracts treatment.
Quality control of cortex Magnoliae officinalis

Yao, Y.², Fiorini, C.², Fabre, B.², David, B.², Berthin, Y.²

²Pôle Actifs Végétaux, Laboratoires Pierre Fabre, Parc Technologique du Canal, Ramonville 31521, France;

³Department of Natural Medicines of Pharmaceutical Sciences, Peking University, Beijing 100191, China

Cortex Magnoliae officinalis is the dried stem bark, root bark or branch bark of Magnolia officinalis. It is used in traditional Chinese medicine for more than 2000 years for the treatment of epigastric stiffness, vomiting and diarrhea, abdominal distention and constipation, cough and dyspnea, etc. It will be introduced as a monograph in the future European Pharmacopoeia, so the quality standard of this crude drug has been drafted, including identification, test (loss of drying, total ash, ash insoluble in hydrochloric acid, and aristolochic acid), as well as assay of magnolol and honokiol by HPLC. The TLC identification of magnolol and honokiol was performed on a reversed-phase C₁₈ column with acetonitrile:0.5% acetic acid (60:40) as mobile phase at a flow-rate of 1.2 ml/min, and the detected wavelength was set at 250 nm. This method was validated for its selectivity, linearity, precision and accuracy. The standard solutions were prepared, and the contents of magnolol and honokiol were found to be 0.07 – 96.51 mg/g and 0.05 – 91.91 mg/g, respectively. The large quantitative differences observed do justify careful controls to ensure the quality consistency of this crude material.

Seed germination of medicinal plants as affected by salinity stress

Youseghi, M.¹, Rahmani, H.A.², Barzegar, R.³

¹Faculty of agriculture, Islamic Azad University of Shahrekord, Shahrekord, Iran; ²Soil Biology Laboratory, Soil and Water Research Institute, Tehran, Iran; ³Faculty of agriculture, University of Rasht, Guilan, Iran

Preliminary assessment of the chemical stability of dried extract from Guazuma ulmifolia Lam. (Sterculiaceae)

Lopes GC, Longuini R, Klein T, Mella JCP

Programma de Pós-graduação em Ciências Farmacêuticas, Departamento de Farmácia e Farmacologia, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-000, Maringá, PR, Brazil

Guazuma ulmifolia Lam. (Sterculiaceae), popularly known as “Mutamba”, is a tropical-American plant found from Mexico to southern South America. In the popular medicine of several Latin-American countries, it is used for the treatment of burns, diarrhea, inflammations and alopecia. Polysaccharides, epicatechin (EP) and procyanidin oligomers, such as procyanidin B2 (PB2) and B5, three trimers [procyanidin C1], epicatechin-(4\(^{-}\)→6)-epicatechin-(4\(^{-}\)→8)-epicatechin: epicatechin-(4\(^{-}\)→8)-epicatechin-(4\(^{-}\)→6)-epicatechin and one tetramer have been isolated and identified from its extract [1]. The anti-diabetic properties [2], hypotensive and vasorelaxant activity [3], anti-ulcer [4], anti-bacterial activities [5], and antiviral activity [6] from the bark, aerial parts, fruits, crude extract and fractions were attributed to the presence of proanthocyanidins. The preliminary stability of the dried extracts from bark of G. ulmifolia containing or not colloidal silicon dioxide (CSD) was evaluated. The physical-chemical properties and compatibility of CSD in the extract were evaluated for 21 days of storage under stress conditions of temperature (45 ± 2 °C) and humidity (75 ± 5%). Thermal analysis (TG) was supplemented using a selective high-performance liquid chromatography (HPLC) for determination of stability of the characteristic constituents (chemical markers), namely PB2 and EP. The results showed that PB2 is an appropriate compound to use as chemical marker in control quality of dried extracts of G. ulmifolia. The stress study showed that there was no significant difference between the two extracts. On the other hand, considering the TG data and the high temperatures involved, the results suggest that CSD would increase the stability of dried extracts of G. ulmifolia. Acknowledgements: CNPq, CAPES. References: [1] Hör, M. et al. (1996) Phytochemistry 42:109 – 119. [2] Alonso-Castro, A.J. et al. (2008). Ethnopharmacol. 118:252 – 256. [3] Magos, G.A. et al. (2008). Ethnopharmacol. 117:58 – 68. [4] Berenguer, B. et al. (2007). Ethnopharmacol. 114:153 – 160. [5] Camporese, A. et al. (2005). Ethnopharmacol. 87:103 – 107. [6] Felipe, A.M.M. et al. (2006) Biol. Pharm. Bull. 29:1092 – 1095.

Possibilities of buckwheat Fagopyrum esculentum Moench. in modern nutrition and phyto-therapy (Dinardies, W. Balkan)

Redzic, S.; Bicsevic A.; Redzic A³

¹Center of Ecology and Natural Resources, Faculty of Science University of Sarajevo, Sarajevo, Bosnia & Herzegovina; ²Lab. of Nutrition of Medicinal Faculty University of Sarajevo, Sarajevo, Bosnia & Herzegovina; ³Dep. of Biology and Human Genetics of the Medicinal Faculty University of Sarajevo, Sarajevo, Bosnia & Herzegovina

Buckwheat Fagopyrum esculentum (Polygonaceae) used to be heavily used in nutrition of people in Balkan peninsula. At that time, buckwheat was being used for making mashes, pies, bread, and pastry. However, many people were using it as preventative and therapeutic mean in treatment of different diseases. After more than 50 years, buckwheat is becoming a favorite plant again. People started to breed it again in mountain areas where it is used for the treatment of burns, diarrhea, inflammations and alopecia. Polysaccharides, epicatechin (EP) and procyanidin oligomers, such as procyanidin B2 (PB2) and B5, three trimers [procyanidin C1], epicatechin-(4\(^{-}\)→6)-epicatechin-(4\(^{-}\)→8)-epicatechin: epicatechin-(4\(^{-}\)→8)-epicatechin-(4\(^{-}\)→6)-epicatechin and one tetramer have been isolated and identified from its extract [1]. The anti-diabetic properties [2], hypotensive and vasorelaxant activity [3], anti-ulcer [4], anti-bacterial activities [5], and antiviral activity [6] from the bark, aerial parts, fruits, crude extract and fractions were attributed to the presence of proanthocyanidins. The preliminary stability of the dried extracts from bark of G. ulmifolia containing or not colloidal silicon dioxide (CSD) was evaluated. The physical-chemical properties and compatibility of CSD in the extract were evaluated for 21 days of storage under stress conditions of temperature (45 ± 2 °C) and humidity (75 ± 5%). Thermal analysis (TG) was supplemented using a selective high-performance liquid chromatography (HPLC) for determination of stability of the characteristic constituents (chemical markers), namely PB2 and EP. The results showed that PB2 is an appropriate compound to use as chemical marker in control quality of dried extracts of G. ulmifolia. The stress study showed that there was no significant difference between the two extracts. On the other hand, considering the TG data and the high temperatures involved, the results suggest that CSD would increase the stability of dried extracts of G. ulmifolia. Acknowledgements: CNPq, CAPES. References: [1] Hör, M. et al. (1996) Phytochemistry 42:109 – 119. [2] Alonso-Castro, A.J. et al. (2008). Ethnopharmacol. 118:252 – 256. [3] Magos, G.A. et al. (2008). Ethnopharmacol. 117:58 – 68. [4] Berenguer, B. et al. (2007). Ethnopharmacol. 114:153 – 160. [5] Camporese, A. et al. (2005). Ethnopharmacol. 87:103 – 107. [6] Felipe, A.M.M. et al. (2006) Biol. Pharm. Bull. 29:1092 – 1095.

Redzic S\(^1\), Pilipovic S\(^2\), Redzic A\(^4\)

\(^1\)Center of Ecology and Natural Resources, Faculty of Science University of Sarajevo, 71 000 Sarajevo, Bosnia & Herzegovina; \(^2\)Academy of Sciences and Arts of BiH, 71 000 Sarajevo, Bosnia and Herzegovina; \(^3\)Institute of drug control of F BiH, Sarajevo, 71 000 Bosnia & Herzegovina; \(^4\)Dep. of Biology and Human Genetics of the Medicinal Faculty University of Sarajevo, 71 000 Sarajevo, Bosnia & Herzegovina

Most species of order Potentilla contain tannin [1] as active principle. Due to extinguished medical function many of them are used in traditional medicine for treatment of inner and outer fevers, against diarrhea, heart diseases or for healing of poisonous wounds [2]. High level of chlorophyll and carotenoids added to dominating secondary metabolite, influence distinguished anti-oxidant, anti-inflammatory and anti-microbial activities [3,4]. In these researches, tested was anti-microbial activity of rhizome with small roots of widely spread species P. reptans, edible plant P. anserina, very rare in range P. palustris and endemic Balkan plant P. tommassianiana. Plant material was gathered in September 2006 and it was dried at room temperature. Species P. tommassianiana was used to obtain dried extract with Soxhlet apparatus. Other species were used in obtaining ethanol mazzerato, obtained using physicochemical (ash value, acid value, saponification value and peroxide value) and also pharmacologically for their laxative properties in male albino rats, using official senna leaf (Senna acutifolia Del.) as the reference standard.

Reference:

Fingerprinting of formulation of Indian system of medicine: Triphala Churna

Saraf S \(^5\)

University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur. 492 020, CC, India

Herbal formulations of Indian system of medicines, especially Ayurveda are well known for their therapeutic efficacy. These formulations lack quality assurance specifications to maintain batch to batch uniformity. The authenticity, safety and efficacy of any formulation are assured by testing methods in the global market. The present research work has been attempted to provide the tool in the form of fingerprints of one of the most common and popular Ayurvedic formulation – Triphala Churna. The Triphala churna is an Ayurvedic medicine official in Ayurvedic formulary of India (2005) and enjoys great reputation in Ayurvedic text as tonic, blood cleanser and gentle laxative. The accepted botanical sources of herbal ingredients of Triphala are dry fruits of Terminalia chebula, Terminalia bellirica and Terminalia bellerica. The fingerprints were developed using physicochemical (ash value, acid value, saponification value etc.), macroscopic (morphological parameters), microscopic analysis. The instrumental methods were developed with ultra violet spectroscopy (UV), High Performance liquid Chromatography (HPLC) & High Performance Thin Layer Chromatography (HPTLC) using accepted markers. UV Fingerprint of Triphala Churna was determined at λmax 276 nm (tannic acid marker). The chromatograms of HPLC on C\(_8\) (5 micrometer column, 4.6 mm) from Phenomenex in binary gradient mode with mobile phase acetonitrile - methanol: phosphate buffer (pH 3.0) (10:5:85) at flow rate 1.0 ml/min and effluent monitored at 264 nm using gallic acid and tannic acid markers. The HPTLC fingerprint was specified by Densitometric Methods using gallic acid as a marker. The fingerprinting methods were validated for linearity, accuracy, limit of detection, limit of quantification, inter-day and intra-day assay precision, repeatability of measurement, and repeatability of sample application. The fingerprinting methods are simple, sensitive, precise and accurate and can be adopted for the routine quality control of Triphala Churna.

Reference:

Fingerprints of Triphala Churna were determined at max 276 nm (tannic acid marker). The chromatograms of HPLC on C\(_8\) (5 micrometer column, 4.6 mm) from Phenomenex in binary gradient mode with mobile phase acetonitrile - methanol: phosphate buffer (pH 3.0) (10:5:85) at flow rate 1.0 ml/min and effluent monitored at 264 nm using gallic acid and tannic acid markers. The HPTLC fingerprint was specified by Densitometric Methods using gallic acid as a marker. The fingerprinting methods were validated for linearity, accuracy, limit of detection, limit of quantification, inter-day and intra-day assay precision, repeatability of measurement, and repeatability of sample application. The fingerprinting methods are simple, sensitive, precise and accurate and can be adopted for the routine quality control of Triphala Churna.

Reference:

Comparative chemical and biological analyses of Aloe schweinfurthii and Aloe vera for laxative activity

Odeleye OM\(^1\), Eletu JO\(^1\), Gbolaade AA\(^2\)

\(^1\)Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria; \(^2\)Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Sagamu, Nigeria

Aloe species have been widely used for folk remedies in many countries and considered useful for a variety of diseases for several thousand years [1]. The genus comprises approximately 400 species [2]. Aloe vera (Linn.) Burm. f. has a legendary medicinal reputation, appreciably recorded in literature owing to its multipurpose medicinal properties while A. schweinfurthii Baker is cultivated in Nigeria. Identification, differentiation, authentification and quality assurance of the two Aloe species growing in Nigeria have been studied by Odeleye [3]. Aloe schweinfurthii Baker, Aloe schweinfurthii Baker, indigenous to Nigeria, and the imported but official Aloe vera (Linn.) Burm. f., both of Lilacae family, were assayed spectrophotometrically for combined anthraquinone contents and also their laxative properties in male albino rats, using official senna leaf (Senna acutifolia Del.) as the reference standard. The leaf exudates of A. schweinfurthii and A. vera were found to possess significant laxative activities higher than that of the official senna leaf. Statistical comparison of A. schweinfurthii, A. vera and S. acutifolia showed that the latter was the most effective for laxative activity. Aloe vera is reported to possess significant laxative activities higher than that of A. vera. Consequently, the use of laxative index is proposed for comparative study of Aloe (cv. related) species, and as a possible quality control tool. References: 1. Suga, T. and Hirata T. (1983) Cosmet. Toiletries 98:105 – 108. Kimberly, M.J. (1991) An Update of the T.B.C Harding 1979 Checklist, Index and Code of Aloe of the World. Excelsa No 15. Odeleye, O.M. (2004) M. Sc. Thesis, Obafemi Awolowo University, Nigeria.

Reference:
Oxidative stress is a mechanism which has been implicated to play a major role in pathogenesis of diabetic neuropathy. Antioxidant agents have an important place in prevention and treatment of diabetic neuropathy. In previous studies, the antioxidant effects of saffron and two active constituents (crocin and safranal) have been reported [1]. Thus, in this study, the effects of crocin on diabetic hyperalgesia are investigated in mice. Diabetes was induced by single injection of streptozocin (200 mg/kg). Three doses of crocin (50, 100 and 200 mg/kg/day) were administered subcutaneously in three groups of normal and diabetic animal for one or four weeks or in single administration. Hyperalgesia was evaluated using tail flick test. Four weeks of treatment with doses of 100 and 200 mg/kg/day of crocin prevented the induction of hyperalgesia (from 44 to 52%) in diabetic mice (P < 0.05 and P < 0.01, respectively). Also after induction of hyperalgesia, the treatment of diabetic mice by administration of crocin (50, 100 and 200 mg/kg/day) for one week (P < 0.05) or single dose (P < 0.001) was effective to prevent the induction of hyperalgesia (up to 50%). It can be concluded that the crocin is effective as a prevention and treatment of hyperalgesia in diabetic mice. Reference: [1] Assimopoulou, A.N. et al. (2005) Phytother. Res. 19:997 – 1000.

Effect of crocin on the progression and treatment of diabetic neuropathy in mice

Josie N. T., Tarasup C., Utama-ang N.* Lerdvuthisopon N.*
1Institute of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand;
2Department of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand

Quercetin and quercetin-3-glycosides thus potentially have applications for the prevention and treatment of metabolic diseases.

Effect of rice-bran water extract on the amelioration of pre-diabetic state in high-fat feeding rats

Kandee N., Tarasup C., Utama-ang N.* Lerdvuthisopon N.*
1Institute of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand;
2Department of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand

The water extract of rice bran (RBE) was shown to reduce fasting blood sugar and glycosylated hemoglobin in diabetes [1]. Being a staple food among Thai, the effect of RBE on pre-diabetic state was investigated. The study was done in high-fat (65% of total calories) feeding Sprague-Dawley rats. Four groups of 8 rats each were separately either co-treated daily with three doses (22.05, 220.5, 2205 mg/kg) of RBE or 9.55 mg/kg metformin, twice daily. After four weeks of treatments, RBE at the highest dose was able to significantly (P < 0.05) reduce the weight gain (125.98 ± 7.32 gm vs 160.72 ± 10.03 gm), visceral fat (8.99 ± 0.72 gm vs 13.95 ± 0.44 gm) and area under the glucose-clearance curve (1248.83 ± 189.62 vs 2787.75 ± 472.54). The percentage of homeostasis model assessment of B-cell function (HOMA-IR) was not affected by the treatment. Acknowledgements: Research Unit, Faculty of Medicine, Thammasat University, the National Research Council of Thailand. References: [1] Qureshi, A.A. et al. (2002). Nutr. Biochem. 13: 175 – 187. [2] Matthews, D.R. et al. (1985) Diabetologia 28:412 – 419.

Effect of traditional ayurvedic arjuna formulations on cardiometabolic disorders

Pathak G, Veeranjaneyulu A
1Department of Pharmaceutical, School of Pharmacy and Technology Management, SVKM’s NMIMS University, 5th Flr, Mithibai Building, Ville Parle West, Mumbai, Maharashtra, India-400056

As a part of an ongoing project aiming to develop culturally-adapted diabetes treatment for Canadian native populations, our team has identified several medicinal plants that stimulate glucose uptake in C2C12 muscle cells from among species used by the Cree of Eeyou Istchee. The present study shows the efficacy of Terminalia arjuna (Family-Combretaceae) herbal medicine is known as a remedy for cardiovascular disorders in traditional Indian System of Medicine. Arjunaaristha and Arjunakwath are traditional ayurvedic formulations containing Terminalia arjuna [1]. The effects of these formulations are not scientifically documented on cardiometabolic disorders like hypertension and hyperlipidemia. In the present study, antihyperlipidemic and antihypertensive activity screening had been done for Arjunaaristha and Arjunakwath on Wistar rats. The hyperlipidemia was induced by Triton X-100 (100 mg/kg i.p.). The formulations and lovastatin as standard were administered by oral intubations simultaneously with Triton injection. Biochemical estimation was studied by monitoring the serum lipid profile before and after treatment using enzymatic assay kit. Hypertension was induced in rats by cadmium chloride (1 mg/kg, i.p.) and fructose for two weeks [2]. The rats were treated with formulations along with cadmium chloride and fructose for four weeks. Amloidipine was used as a standard. The data obtained was analysed statistically by ANOVA followed by Dunnett’s post hoc test. Treatment with Arjunakwath and Arjunaaristha reduces cholesterol, triglycerides, low density lipoprotein in Triton induce group. Lipid profile demonstrated by the standard lovastatin was found to be analogous to that of traditional arjuna formulations. Simultaneously there was significant decrease in elevated blood pressure in cadmium chloride as well as fructose induce hypertensive animals when treated with Arjunaaristha and Arjunakwath. The present study shows the efficacy of Terminalia arjuna formulations as a hypolipidemic agent and antihypertensive agent and in overall management of cardiometabolic disorders. References: [1] Gauthaman, K. et al. (2001). J. Ethnopharmacol. 75:287 – 289. [2] Shaila, H.P. et al. (1998) Int. J. Pharmacol. 35:1 – 4.
The flavonoid rich fraction of Coreopsis tectoria promotes glucose tolerance regain in streptozotocin-induced glucose-intolerant rats

Dias T 1, Mata-Filipe H 1, Houghton PJ 2, Paulo A 3

1Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003, Portugal; 2Pharmaceutical Sciences Division, School of Biomedical & Health Sciences, Kings College London, SE1 9NN, England; 3IQUB-UNL, Portugal

In this study, the flavonoid rich fraction of Coreopsis tectoria was investigated for its ability to improve glucose tolerance in streptozotocin-induced glucose-intolerant rats. The results showed that the flavonoid rich fraction significantly improved glucose tolerance and reduced blood glucose levels. The findings suggest potential therapeutic applications for this natural compound.

Infusions of Coreopsis tectoria Nutt. flowering tops have been used traditionally in Portugal to control hyperglycaemia [1]. A previous study revealed marenin as the main chalcone and that daily administration of the infusion during a 3 week period (500 mg containing 20 mg of marenin/Kg/day) promoted the recovery of glucose tolerance in a streptozotocin-induced glucose-intolerant rat model [2]. In order to identify the active principles, we performed a comprehensive in vitro study.

For the pharmacological evaluation, glucose intolerance induction was achieved using streptozotocin (40 mg/Kg) and blood glucose levels were monitored by weekly OGTT as described previously [3]. This fraction was administered to male Wistar rats (n=8) at the concentration of 125 mg/Kg daily for 3 weeks. Normal (n=11) rats were used as controls. The results show that the 2 weeks oral administration of C. tectoria AcOEt fraction (125 mg containing 20 mg of marenin/Kg/day) the animals were no longer glucose-intolerant (p<0.01), an effect maintained over the remaining experimental period. The oral treatment caused no hepatotoxicity, as determined by blood ALT and AST. Conclusions: AcOEt fraction, containing the same amount of marenin as the infusion, promoted glucose tolerance regain in the rats more quickly, which means that the bioactivity is probably due to the flavonoids present in the AcOEt fraction and not to marenin itself. The possibility of a pancreatic citotoxic protective antioxidant action is now being considered as the probable mechanism responsible for reverting this glucose-intolerant state. The work is still ongoing and additional results will complete the study.

obtained from study deals with the antiulcerogenic effect of an hydroacoholic extracts attractive sources for new drugs and have been shown to produce pro-

Gastric and duodenal ulcers are illnesses that affect a considerable num-

A. nilotica, family Malvaceae, has been grown as a medicinal plant and pot herb since Roman times. It is found in subtropical and temperate latitude of both hemispheres. The present study investigates the role of the aqueous extract of its aerial part upon lipemia, glycemia, inflammation and gastric ulcer using rats as a model. After one month of extract intake via drinking water (100, 400 and 800 mg/kg body weight) the 400 and 800 mg/kg body weight doses resulted in significant increase in serum triglyceride, while other lipid and glycemic parameters and liver enzyme activities (AST, ALT, LDH, ALP) were unaffected. About 10% increase in stool water content was observed at highest dose used. Doses of 50, 100, 250 and 500 mg/kg body weight were used in acute and chronic inflammation models induced by carrageenan and formalin respectively [1]. Significant anti-inflammatory activity was observed at most doses used with an optimum inhibition at 100 mg/kg body weight (60% inhibition) in both models. Protection against etha-

Malva sylvestris, family Malvaceae, has been grown as a medicinal plant and pot herb since Roman times. It is found in subtropical and temperate latitude of both hemispheres. The present study investigates the role of the aqueous extract of its aerial part upon lipemia, glycemia, inflammation and gastric ulcer using rats as a model. After one month of extract intake via drinking water (100, 400 and 800 mg/kg body weight) the 400 and 800 mg/kg body weight doses resulted in significant increase in serum triglyceride, while other lipid and glycemic parameters and liver enzyme activities (AST, ALT, LDH, ALP) were unaffected. About 10% increase in stool water content was observed at highest dose used. Doses of 50, 100, 250 and 500 mg/kg body weight were used in acute and chronic inflammation models induced by carrageenan and formalin respectively [1]. Significant anti-inflammatory activity was observed at most doses used with an optimum inhibition at 100 mg/kg body weight (60% inhibition) in both models. Protection against etha-

Effect of plant derived-phenolic extracts on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats

Gastric and duodenal ulcers are illnesses that affect a considerable number of people in the world and they are induced by several factors, for example, stress, smoking, nutritional deficiencies and ingestion of non-steroidal-antiinflammatory drugs. Plant extracts are some of the most attractive sources for new drugs and have been shown to produce promi-

The genus Cistus (Cistaceae) is one of the characteristic genera of the Mediterranean region, colonizing degraded areas [1]. In Turkish folk medicine, various parts of Cistus laurusfolius L. are used to treat peptic ulcer and various types of pains, i.e., rheumatic, back pain, etc. It has been used for the treatment of stomach aches and gastric ulcers in the folk medicine since the time of Dioscorides, i.e., for at least 2000 years in Anatolia. The tea prepared from the leaves is used to decrease symptoms of diabetes hypoglycemic [2,3]. In the present study, the hypoglycemic and antiulcerogenic effects of water and ethanol extracts of C. laur-

In-vivo antidiabetic effect of Cistus laurifolius L. leaves

Antidiabetic effect and antioxidant potential of Rosa canina fruits

Rosa canina L. fruits (Rosaceae) are used to treat diabetes in Anatolia traditionally [1,2,3]. In this study, the ethanol extract of R. canina fruits and its fractions were screened for their antioxidant, hypoglycemic and antiulcerogenic activities. Two doses of ethanol extract (250 and 500 mg/kg) was administered to streptozotocin (STZ) induced diabetic rats for 7 days. The extract possessed a remarkable hypoglycemic effect at 250 mg/kg dose. Then it was fractionated through successive solvent extractions to yield chloroform fraction (CHCl3 Fr.), ethyl acetate fraction (EtOAc Fr.), n-butyl alcohol fraction (n-BuOH Fr.) and remaining water
Diabetes mellitus is of worldwide significance and increasing prevalence. Plant remedies have played an important role in traditional treatment of diabetes. In the present study effect of Limit, an Ayurvedic formulation of nine plant extracts with antidiabetic and antioxidant properties was evaluated. The fractions were isolated by using isolated hemidiaphragms. Glibenclamide (4 mg/kg, p.o) is used as standard for glucose lowering in diabetic rats. Diabetes was induced in Albino rats (streptozotocin, 65 mg/kg, i.p.). Limit (150 and 300 mg/kg), administered orally daily for 40 days to diabetic animals. Plasma glucose and body weight, urine volume, urine analysis and other biochemical parameters were monitored on every 10th day over a 40-day period of the experiment. Insulin and glycosylated haemoglobin levels were monitored on 0 day and 40th day. On 40th day, glucose uptake was measured using isolated hemidiaphragms. Gilbenclamide (4 mg/kg, p.o) is used as a reference standard. Treatment with Limit (150 and 300 mg/kg) significantly reduced plasma glucose levels (24.4% & 52.8% respectively) on 40th day of experiment. Reduction in glycosylated haemoglobin (19.1% & 30.5%), triglyceride (2.083.6%) and cholesterol (2.98±12.6%) levels were also observed (p < 0.05). Significant improvement in insulin (11.8% and 24.3%), body weight, urine volume and biochemical parameters were observed in treated groups compared to diabetic control. Hemidiaphragms treated with Limit showed significant enhancement of glucose uptake (34.6% and 61.4%, p < 0.001) compared to diabetic control. Thus Limit restored biochemical parameters & enhanced glucose uptake in diabetic rats. References: [1] Grover, J.K. et al. (2001). J. Ethnopharmacol. 76:223 – 238. [2] Ghosh, R. et al. (2004) Ind. J. Pharmacol. 38:222 – 225.

Diabetes mellitus is one of the most common diseases associated with carbohydrate metabolism. In the present study, the effect of six plant extracts and their mixtures were evaluated on diabetic rats. Plants used in this study included: Rosmarinus officinalis, Arctium lappa, Vaccinium myrtillus, Urtica dioica, Rosa canina, and Citrullus colocynthis. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 80 mg/kg in citrate buffer, 0.1 M, at pH 4.5). After 24 hours of food deprivation, blood samples were collected from the orbital sinus before oral administration of the extracts, immediately, and after 1, 2, 3, and 48 hours. Blood glucose level was determined by glucose oxidase, and blood insulin level was determined by standard radioimmunoassay method under light ether anesthesia. A rat was declared diabetic if it was found to have glucose levels greater than 12.0 mmol/L. In diabetic rats, R. canina, and R. officinalis had no effect. C. colocynthis, A. lappa, and U. dioica increased blood insulin levels (p < 0.05). Oral administration of a mixture of the six extracts induced increased blood insulin levels throughout the 3 hour sampling period (p < 0.01), and this effect continued for 48 hours thereafter (p < 0.05).
Anti-inflammatory activity of Mitragyna speciosa crude methanol extract on the guinea pig ileum

toxic, are easily removed by extraction with chloroform [7].

Secondary metabolites of the

In a recent study, we have shown that the crude methanol extract of Mitragyna speciosa (of the family Rubiaceae) exerted significant in vivo anti-inflammatory activities in rodents as evident in the carrageen-induced paw edema and cotton pellet-induced granuloma tests [1], but the underlying mechanism is poorly understood. Our present study aims to explore the anti-inflammatory activities of this plant in vitro in order to rationalize the traditional use of this plant in the treatment of some stomach ailments [2]. The pharmacologic actions of M. speciosa were assessed by measuring the mechanical activity of isolated guinea pig ileum strips in an organ bath. The resultant methanol extract (0.01 – 0.05 mg/ml) caused a stimulatory effect followed by a relaxation of ileal activities at a higher dose (0.3 – 5 mg/ml) (p < 0.05). These results indicate that M. speciosa exert spasmodic effects at a lower dose and a spasmyotic effect at a higher dose thus corroborating the use of plant in the treatment of diarrhoea and constipation. Moreover, results indicated that pretreatment with M. speciosa (0.3 – 5 mg/ml) which was tested positive for flavonoids, alkaloids, saponins, sterol and tannins produced significant concentration-dependent inhibition of spasmodic activities when exposed to single submaximal contraction induced by histamine (H) and bradykinin (B). These results suggest that the anti-inflammatory activity of M. speciosa is mediated possibly through the H and B receptor antagonism, thus providing a scientific basis for the folkloric use of this plant in stomach disorders. Acknowledgements: Faculty of Medicine and Health Sciences, UPM Fundamental Research Grant Scheme (FRGS/FGASU – 2006); (Sains Perubatan)/UPM(179) from the Ministry of Higher Education, Malaysia. Research Grant: [1] Shaik Moshadeq WM et al. (2006) Int. J. Food Sci. Nutr. 57:1 – 8. [6] Tundis, R. et al. (2007) Nat. Prod. Res. (2007) 21:398 – 400. [7] De Vivar, A.R. et al. (1996) Biochem. Syst. Ecol. 24:175 – 176.

In vitro hypoglycemic activity of Senecio nemorensis subsp. stabianus Lacaita (Asteraceae)

Tundis R1, Loizzo MR1, Menichini F3, Bonesi M1, Conforti F1, Statti GA1, Passalequacq NG2, Carini M1, Menichini F1

1Department of Pharmaceutical Analysis, Faculty of Pharmacy and Nutrition and Health Sciences, University of Calabria, I-87030 Rende (CS) Italy; 2Natural History Museum of Calabria and Botanic Garden, University of Calabria, I-87036 Arcavacata di Rende, CS, Italy; 3Department of Chemistry and Drug Technology, Faculty of Pharmacy, University of Perugia, 06122 Perugia Italy

The effect of total extract of Securigera securida L., seeds on serum lipid profiles and vascular function in hypercholesterolemic rats

Garanji A, Fathiazad F, Zakeri A, Allof-Akbari N, Azarmi Y, Maleki-Dizaji N

Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

Seeds of Securigera securida (Fabaceae), also called goose pea, are used for the treatment of disorders such as hyperlipidemia, diabetes, and epilepsy in folk medicine [1]. In this study the effect of total extract of S. securidaca seeds on serum lipid profile and on function of isolated thoracic aorta in high-fat fed rats was investigated. High-fat fed wistar rats received 50 – 200 mg/kg/day of the extract orally for 20 days. At the end of the experiment venous blood was collected for measurement and thoracic aorta was excised. The extract in doses of 100 and 200 mg/kg/day reduced the level of LDL significantly (p < 0.05) from 158 ± 17 mg/dl in hypercholesterolemic rats to 107 ± 14 and 99 ± 11 mg/dl in treated groups, respectively. These declines were accompanied by a significant reduction of serum triglyceride (p < 0.05; max: 40%) and liver deposition of lipids in all treated groups. The extract also produced a marked (p < 0.001) antioxidant activity by suppressing the hypercholesterolemia induced elevation of malondialdehyde levels both in serum (max 73%) and liver (max 80%). In hypercholesterolemic group carbachol-induced endothelium-dependant vasodilatation was decreased significantly from 55 ± 12% in control to 34 ± 7% (p < 0.001).

Piper ovatum Vahl (Piperaceae), an herbaceous plant occurring throughout Brazil, is popularly known as “jibo burandi” or “anesthetic.” It is used in traditional medicine for the treatment of inflammations [1] and as an analgesic [2]. The chemical composition of essential oil obtained from the leaves of Piper ovatum by hydrodistillation was analyzed by GC-MS. The main constituents were 6-Anisomene (16.5%), cis-Muurola-4(14),5-diene (13.5%) and Piperovatine (12.9%). The hydroalcoholic extract of Piper ovatum leaves and isolated compounds piperovatine, piperlonguminine and essential oil were screened for their antimicrobial activity by microdilution MIC and disc diffusion method respectively. The amides were made determination adherence inhibition assay and cytotoxicity assay. Hydroalcoholic extracts of different parts of Piper ovatum Vahl, essential oil, and amides isolated from leaves were tested against Gram-positive and Gram-negative bacteria and Candida species. All extracts and amides were active against Bacillus subtilis and Candida tropicalis, including clinical strains. Essential oil was active against C. tropicalis. These amides showed antibacterial activity against C. tropicalis ATCC 28707 on cover glasses at 10 μg/ml, but did not show morphological alterations at the tested concentrations. Amides were identified as piperovatine and piperlonguminine, and showed MIC values of 15.6 and 31.2 μg/ml to B. subtilis and 3.9 μg/ml to C. tropicalis, and low toxic effects to endothelial Vero cells and macrophages. Acknowledgements: The authors are grateful to CNPq for providing a research grant and fellowships References: [1] Rodrigues-Silva, D. et al. (2008). Ethnopharmacol. 116:569 – 573. [2] Correa, M.P. (1984) Dicionario das Plantas Uteis do Brasil. Secretaria de Estado de Ciência, Tecnologia e Desenvolvimento Florestal, Rio de Janeiro.
The extract improved significantly (P < 0.01) the endothelium-dependant relaxation in hyperlipidemic animals. So that, the maximum relaxation in thoracic aorta isolated from the rats treated by 100 mg/kg of the extracts was 82 ± 6.5%. The results of this study indicated that the total extract of S. securidaca seeds in addition to having a considerable antioxidant and anti-hyperlipidemic effects, is able to improve vascular endothelium dependent relaxation in hypercholesterolemia. Reference: [1] Hosseinzadeh, H. et al. (2002) Phytother. Res. 16:745 – 747.

PH23

Effect of caffeine on the neuromuscular system in rats: an immunohistochemical study

Lo Cascio P1, Lauriano ER1, Leuzer A1, Campolo L2, Calò M3, Silestrini G2, Pergolizzi S1

1Dipartimento di Scienze degli Alimenti e dell’Ambiente, Facoltà di Scienze MMFFN, Sal. Papardo, 98168, Messina, Italy; 2Dipartimento Farmaco-Biologico, Facoltà di Farmacia, SS Annunziata, 98168, Messina, Italy; 3Dipartimento di Scienze Sperimentali e Biotecnologie Applicate, Facoltà di Medicina Veterinaria, SS Annunziata, 98168, Messina, Italy

Caffeine (Caf) is a central nervous system stimulant, it is used to reduce physical fatigue and restore mental alertness. Caffeine (1,3,7-trimethylxanthine) is one of the most consumed drugs in the world. It is a natural alkaloid present in coffee, tea and mate plants. There is a strong belief that Caf is an ergogenic aid to sports performance [1,2]. Although much evidence suggests that Caf may improve endurance exercise performance, questions still remain with regard to neuromuscular function. At the cellular level, it stimulates the central nervous system (CNS), enhances neuromuscular transmission and improves skeletal muscle contractility [3]. Caf enters the bloodstream through the stomach and small intestine and can have its effects as soon as 15 minutes after it is consumed. Once in the body, it takes about 6 hours before to be eliminated. Since in scientific literature there are only few morphological studies about neuromuscular system, we performed an immunohistochemical study on neuropeptides expression in rat skeletal muscle after Caf oral administration: thirty male rats were divided into 3 groups, the first one received 6 mg/kg Caf, the second one 12 mg/kg Caf, the last one was control group. The immunohistochemical study was performed with antibodies against Protein Gene Product 9.5 (PGP 9.5), Serotonin (5-HT), Vasointestinal Peptide (VIP) and Substance P (SP), on rat skeletal muscle. We observed an accentuated immunoreactivity for peptides in samples with higher concentration administration (24 mg/kg Caf), compared with normo-fed rats (control group), in which was observed a small positivity for tested substances. Our results suggest that caffeine is able to increase muscular performance with a dose-dependent effect. References: [1] Tarnopolsky, M.A. (2008) Appl. Physiol. Nutr. Metab. 33:1284 – 1289. [2] Keisler, B.D. and Armsey, T.D. (2006). Curr. Sports Med. Rep. 5:215 – 219. [3] Paluska, S.A. (2003) Curr. Sports Med. Rep. 2:213 – 219.

PH24

Low density lipoproteins and cardiovascular disease – cause or consequence?

Schökel YD1, Schachner D1, Heiss EH2, Dirsch VM2, Bos R1, Oude Elferink PH26

1FrieslandCampina Research, Harderwijkstraat 41006, 7418 BA, Deventer, the Netherlands; 2Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

Saturated fatty acids can be found in certain vegetable or animal-derived foods (cocoa butter, coconut oil, dairy fat). Saturated fats have been shown to exert positive effects e.g. being antibacterial and anti-fungal. However some long chain saturated fats have been shown to increase low density lipoprotein (LDL) serum levels, which is considered to be a determinant of the metabolic syndrome. Concerning the aetiology of atherosclerosis, the general consensus is that “high circulating levels of LDL damage the arterial wall”, “at the site of injury, LDL can enter the arterial wall more easily” and “in the arterial wall, LDL becomes oxidized and this leads to even more cholesterol depositing and thus atherosclerosis”. Decreasing the level of LDL (via diet or medicine) is generally seen as beneficial for decreasing cardiovascular disease (CVD) development, though this view is challenged by several groups. We therefore hypothesize that the increase of LDL levels is rather a concomitant event in the development of CVD than a causal factor. Therefore, it was tested whether high concentrations of LDL negatively affect endothelial cells in vitro. Endothelial function was assessed by NO-release, intracellular cholesterol content and intracellular adhesion molecule (ICAM) expression in primary human aortic endothelial cells (HAEC). The results demonstrate that uptake of LDL by HAEC was increased with increasing exogenous LDL-concentrations; however, this did not induce endothelial dysfunction as measured by the mentioned parameters. Based on this, it can be concluded that saturated fats might lead to increased LDL levels, but this does not seem to be detrimental to endothelial cell function. Our data support reports stating beneficial effects or lack of detrimental effects of any type of dairy (skimmed or full fat) on cardiovascular health.

References

PH25

Effect of Oenothera paradoxa defatted seed extracts and penta-O-galloyl-β-D-glucose on human polymorphonuclear leukocyte function

Kiss AK, Naruszewicz M

Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02 – 097, Warsaw, Poland

Polymorphonuclear leukocytes (PMN) are suggested to be implicated in vascular and heart diseases [1]. Particularly, activated PMN produce and release reactive oxygen species (ROS), proteolytic enzymes and neutral endopeptidase (NEP). NEP degrades the atrial natriuretic peptides, which are protective factors in circulation and heart. Previously, we have demonstrated that *Oenothera paradoxa* defatted seed extracts inhibited the NEP activity on isolated enzyme [2]. In this study, we investigated the effect of those extracts on human PMN function: IC50 values for observed effects: IC50=7 µM for enzyme inhibition, ROS production and elastase release. The aqueous and 60%ethanolic extracts at concentration of 5 – 50 µg/ml inhibited in dose dependent manner the NEP activity, ROS production was inhibited at concentration of 0.2 – 20 µg/ml and the elastase release was slightly reduced. The HPLC-DAD analysis showed that the dominating compounds in both extracts are: gallic acid (3.7 ± 0.1 and 2.2 ± 0.1 mg/g), (+)-catechin (23.4 ± 0.8 and 30.4 ± 0.15 mg/g) and penta-O-galloyl-β-D-glucose (12.1 ± 0.5 and 16.8 ± 0.6 mg/g). PGG appeared to be partly responsible for observed effects: IC50=7µM for NEP activity inhibition, IC50=0.2µM for ROS production and IC50=7µM for elastase release. The results indicate that *Oenothera paradoxa* defatted seed extracts down-regulated the PMN function and may provide a protective effect against vascular and heart diseases. References: [1] Ernst, E. et al. (1987) JAMA 257:2318 – 2324. [2] Kiss, A.K. et al. (2008). J. Agric. Food. Chem. 56:7845 – 7852.

PH26

Phytochemical and antidiabetic investigations of *Otostegia persica* from Iran

Tofghi Z, Alijani F, Goodarzi S, Yasa N, Hadjihondhi A, Hadihondi V

Department of Pharmacognosy, Faculty of Pharmacy and Medicinal Plant Research Center, Tehran University of Medical Sciences, Tehran 14176 – 14411, Iran

Otostegia persica (Burm.) Boiss. is an endemic plant of Iran and Pakistan [1]. The people in the south of Iran used the flowering aerial parts of *O. persica* for antidiabetic and anti-inflammatory properties. *Otostegia persica* was collected at flowering stage in May 2005, around of the Taftan mountain of Sistan & Baluchestan Provinces, Iran. The dry-powered aerial parts of plant were extracted with petroleum ether, chloroform, ethyl acetate (EA), butanol and methanol (ME); the fractions concentrated in vacuum. Antioxidant activity of all fractions was measured with DPPH method [2]. ME and EA fractions were showed potent and moderate activities (91.53% and 82%) on inhibition of free radicals, respectively. ME fraction was showed equal activity with vitamin E for antioxidant activity and had a moderate activity as: NEP activity inhibition, ROS production and elastase release. The aqueous and 60%ethanolic extracts at concentration of 5 – 50 µg/ml inhibited in dose dependent manner the NEP activity, ROS production was inhibited at concentration of 0.2 – 20 µg/ml and the elastase release was slightly reduced. The HPLC-DAD analysis showed that the dominating compounds in both extracts are: gallic acid (3.7 ± 0.1 and 2.2 ± 0.1 mg/g), (+)-catechin (23.4 ± 0.8 and 30.4 ± 0.15 mg/g) and penta-O-galloyl-β-D-glucose (12.1 ± 0.5 and 16.8 ± 0.6 mg/g). PGG appeared to be partly responsible for observed effects: IC50=7µM for NEP activity inhibition, IC50=0.2µM for ROS production and IC50=7µM for elastase release. The results indicate that *Oenothera paradoxa* defatted seed extracts down-regulated the PMN function and may provide a protective effect against vascular and heart diseases. References: [1] Ernst, E. et al. (1987) JAMA 257:2318 – 2324. [2] Kiss, A.K. et al. (2008). J. Agric. Food. Chem. 56:7845 – 7852.

Computational evaluation of Isoorientin (C-glycosyl flavone) on PPAR-gamma receptors and HMG-CoA reductase using MOE 2008.10

Fidan O¹, Aslan M², Mor M²
¹Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06530 Ankara, Turkey; ²Computational Medicinal Chemistry, Faculty of Pharmacy, Parma University, Parma, Italy

Peroxisome proliferators-activated receptor-gamma (PPAR-gamma) plays an essential role in lipid and glucose homeostasis. Numerous studies and comprehensive reviews have documented various naturally derived ligands as PPAR gamma; a potential source of novel anti-diabetic compounds from plants and herbs [1]. Isoorientin, a C-glycosyl flavone, has been isolated as an anti-diabetic and anti-hyperlipidemic agent from aerial parts of Gentiana olivieri Griseb. [2]. The objective of this study is to find out, the relation between these receptors and ligand. We used docking property and site finder and electrostatic map tools of molecular operating environment (MOE) 2008.10 computer programme from Chemical computing group. Protein structures were taken from Protein Data Bank PDB and operated with Protonate 3D and minimized. Ligands were designed by LigX. Results shown that, E score: -16.0501 and E refine: -32.3072 for Isoorientin-PPAR gamma docking study, E score: -9.8957 E refine: -17.2581 for Isoorientin-HMG-CoA docking study. Data obtained from experiments demonstrated that isoorientin can be candidate as a good multi-target drug template. From experiments demonstrated that isoorientin can be candidate as a good multi-target drug template. Authors to thank the help of Mrs. Patricia Middleton from Chemical Computing Group INC, for supply MOE 2008.10 programme. References: [1] Salam, N.K. et al. (2008) Chem. Biol. Drug Des. 71:57 – 70. [2] Sezik, E. et al. (2005) Life Sci. 76:1223 – 1238. [3] Labute, P. et al. (2008) Electrostatic Maps, Chemical Computing Group, Montreal, Canada.

Brassica oleracea L.var. italica: A nutritional supplement for weight loss

Hashem F, Motawea H, El-Sherbiny S
Pharmacognosy depart National Research Centre, Dokki, Cairo Egypt

The florets of Brassica oleracea L.var. italica (Brassicaceae) are an important nutritional supplement containing a high percentage of sulphur compounds. GC/MS analysis of the volatiles produced by the action of endogenous cystine lyase on S-methyl cysteine sulphoxide present in Broccoli florets showed three sulphur components: dimethyl disulphide, dimethyl triisulphide and 3,5-dimethyl-1,2,4-thiatriline. Four isothiocyanate compounds were also present. Cystine lyase enzymatic fission of endogenous myrosinase gave the unsaturated glucosinolates ethenyl isothesitocyanate and allylisothiocyanate, together with the saturated 4-methylthiobutyl isothesitocyanate (Ercuin) and the aromatic 2-phenylthio isothesitocyanate. When an I_{50} test was performed on the crude extract of broccoli, no toxicity was observed up to 10 g/kg body weight in rats. The chloroform extract, the combined ethyl acetate and ethanol extracts and the crude extract of broccoli florets showed significant loss in body weight of female rats at 5% (LSD 24.9) and 1% (LSD 33.7) of diet, according to statistical tests (1) (180, 85, and 75 g total loss in body weight, respectively). When these results were compared with the water extract of green tea (117 g loss), the chloroform extract was more active.

Hypoglycemic effect of methanol and chloroform extract of Cuscuta reflexa Roxb. in mice

Mollie AH, Sultan Khan S, Al Safa Lucky S, Jahan R, Rahmatullah M
Department of Biotechnology & Genetic Engineering, University of Development Alternative, House No. 78, Road No. 11A, Dhamoni R/A, Daka-1205, Bangladesh

Cuscuta reflexa is a parasitic vine prevalent throughout Bangladesh. The plant is used in folk medicine as remedy for prostate cancer, impotency, scabies, fevers, diarrhea, and throat pains. In this study, we examined the hypoglycemic activity of methanol and chloroform extracts of the whole vine in glucose-loaded mice (oral glucose tolerance test). Control mice received distilled water, while experimental mice received methanol or chloroform extract at oral doses of 50, 100 and 200 mg/kg body weight. A further group was orally administered glibenclamide (10 mg/kg body weight). All mice received oral glucose at 2 g/kg body weight. 60 min after extract or glibenclamide administration, blood samples were collected at 120 min following glucose loading and serum levels of glucose determined. The results are expressed as mean ± SEM. The significance of the results was calculated using Student’s t-test and were considered statistically significant when P<0.05. Both methanol and...
chloroform extract demonstrated significant hypoglycemic activity; however, the effects were lower than that obtained with glibenclamide. Chloroform extract demonstrated higher hypoglycemic activity than methanol extract. Serum glucose concentrations in control, glibenclamide-administered, and 50 mg/kg body weight methanol extract- and chloroform extract-administered mice were respectively, 87.0 ± 1.7, 37.8 ± 1.8, 74.6 ± 1.5, and 54.1 ± 1.3 mg/dL. Overall, the results demonstrate significant hypoglycemic activity, particularly in the chloroform extract of Curcuma longa.

Curcuma longa L. (Zingiberaceae) rhizome (turmeric) is widely used in folk medicine of the Indian subcontinent for inflamed joints. The objective of the present study was to investigate the anti-inflammatory effects of turmeric when administered topically in gel form to carrageenan-induced paw edema in rats. Gels contained polyethylene glycol 6000, sodium carboxymethyl cellulose and isotopropyl alcohol without and with turmeric powder or diclofenac. The right hind paw of all rats were pre-treated twice daily for 2 days with gel without (Group 1) or containing turmeric powder at 3.33, 10.0 and 33.3% w/v (Groups 2, 3 and 4, respectively). Group 5 rats were pre-treated with gel containing the standard anti-inflammatory drug diclofenac (1% w/v). Edema was induced on Day 3 by injecting 0.1 mL of 1% carrageenan solution (in normal saline) into the plantar surface of the right hind paw of each rat. Increase in paw volume was monitored up to 5 hours after injection. Significance levels of the results were calculated using Student's t-test and date were considered statistically significant when P < 0.05. Pre-treatment with turmeric-containing gel produced a significant and dose-dependent inhibition of rat paw edema. Compared to controls, at the highest dose (33.3% turmeric), edema was inhibited by 53.4 ± 2.6, 40.0 ± 3.3, 36.3 ± 2.8, 33.5 ± 3.7 and 31.4 ± 3.4%, respectively, at the first, second, third, fourth and fifth hour following carrageenan injection. These results compare favorably with diclofenac, where the respective inhibitions were 35.5 ± 3.4, 36.5 ± 3.3, 33.5 ± 3.7, 29.5 ± 3.0 and 24.5 ± 4.0%, respectively. Even at the lowest dose (3.33%), turmeric inhibited paw edema by 27.4% at the first hour following carrageenan injection. The results validate the folk medicinal use of turmeric as an anti-inflammatory agent.

An ethnomedical survey of several regions of Pabna district, Bangladesh
Mollik AH, Alam J, Ahmed B, Jahan R, Rahmatullah M
Department of Biotechnology & Genetic Engineering, University of Development Alternative, House No. 78, Road No. 11A, Dhanmondi R/A, Dhaka-1205, Bangladesh

The predominantly rural population of Bangladesh relies on traditional medicinal practitioners (Kavirajes) for primary treatment of their various ailments. The medicinal plants used by the Kavirajas for treatment can vary considerably from region to region. We accordingly conducted an ethnomedical survey of several areas within Pabna district, Bangladesh to learn more about medicinal plants used by the Kavirajas. Interviews were conducted with the help of a semi-structured questionnaire and plant specimens as pointed by the Kavirajas were collected and identified at the Bangladesh National Herbarium. Some of these plant species (with ailments treated given in parentheses) included Jecoma stans (pain, piles), Asteracantha longifolia (insomnia, kidney stones), Holarrhena antidysenterica (rhematism), Trigonella foenum-graecum (to ease delivery pain, chicken pox), Lectea sativa (rhematism, sprain, asthma), Butea monosperma (to increase skin brightness), Bixa orellana (to stop menstruation), Brassica oleriana (filariais), Nigella sativa (to increase semen count, breast infections), Zingiber officinale (to increase memory, headache), Morinda citrifolia (snake bite), Azadirachta indica (skin diseases, chicken pox, strengthen gums and teeth), Artocarpus heterophyllus (to increase fetal safety), and Plumago rosea (to increase memory).

Papaya and kale are usual vegetables in the Brazilian diet that have antioxidant activity. This study proposed to evaluate if the concurrent administration of both dried vegetables results in a synergism in their intestinal anti-inflammatory activity in the TNBS model of rat colitis. Five groups of rats were used (n = 7); non-colitic (NC) and control-group (C) did not receive treatment; one group received orally 130 mg/rat/day of papaya (P), other group received the same dose of kale (K) and the last one, 78 mg K plus 52 mg P (M). The dose 130 mg/rat/day of vegetables has the highest butyrate production, as shown by an increase in butyrate production of incubated samples of mouse intestine. In addition, the antioxidative effects of STW 5 and its constituent extracts were studied. The evaluated data show that STW 5 as well as the constituent single extracts could reduce the induced radical production dose-dependently. This was evidenced by a lower Quenching effects, whereas the lowest effects were observed with greater celandine herb and bitter candy tuft, these results were similar to the in-vitro data [1]. Further experiments should show whether the effects of the extracts can be explained either by direct anti-oxidant properties or by inhibition of the enzymatic/oxidant production of free radicals. References: [1] Germann, I. et al. (2006) Phytopharmacology 13(Suppl V): 45–50.

Synergic anti-inflammatory activity of papaya and kale in colitis induced by trinitrobenzenesulfonic acid in the rat
Albuquerque CL1, Rodriguez-Cabezas ME2, Camuesso D2, Garrido N1, Bailón E1, Comalada M1, Cueto M1, Arribas B1, Luz-Ferreira A1, Socca EAR1, Suzuki E1, Galvez F1, Zorzuelo A1
1Department of Physiology and Biophysics, University of Campinas, Campinas, Brazil; 2CIBER-EHD, Department of Pharmacology, University of Granada, Granada, Spain

Papaya and kale are usual vegetables in the Brazilian diet that have antioxidant activity. This study proposed to evaluate if the concurrent administration of both dried vegetables results in a synergism in their intestinal anti-inflammatory activity in the TNBS model of rat colitis. Five groups of rats were used (n = 7); non-colitic (NC) and control-group (C) did not receive treatment; one group received orally 130 mg/rat/day of papaya (P), other group received the same dose of kale (K) and the last one, 78 mg K plus 52 mg P (M). The dose 130 mg/rat/day of vegetables has the highest butyrate production, as shown by an increase in butyrate production of incubated samples of mouse intestine. In addition, the antioxidative effects of STW 5 and its constituent extracts were studied. The evaluated data show that STW 5 as well as the constituent single extracts could reduce the induced radical production dose-dependently. This was evidenced by a lower Quenching effects, whereas the lowest effects were observed with greater celandine herb and bitter candy tuft, these results were similar to the in-vitro data [1]. Further experiments should show whether the effects of the extracts can be explained either by direct anti-oxidant properties or by inhibition of the enzymatic/oxidant production of free radicals. References: [1] Germann, I. et al. (2006) Phytopharmacology 13(Suppl V): 45–50.
Evaluation of the synergism of papaya and kale in their prebiotic effect in rats
Albuquerque CL, Rodríguez-Cabezas ME, Camuesso D, Garrido N, Bastón E, Comalada M, Cueto M, Arribas B, Luiz-Ferreira A, Socca EAR, Gálvez J, Zarzuelo A, Souza-Brito ARM*1
1Department of Physiology and Biophysics, University of Campinas, Campinas, Brazil; 2CIBER-EHD, Department of Pharmacology, University of Granada, Granada, Spain

Papaya fruits contain insoluble diet fibre and are used in popular medicine as a laxative, whereas kale leaves contain mainly soluble diet fibre that has beneficial effects on intestinal flora. The aim of this study is to evaluate if the concurrent administration of both vegetables to rats results in a synergism in their prebiotic effects. Four groups of rats were used: control group without treatment, and three treated groups, which received orally papaya (P), kale (K) or a mixture of both (M) (60% K and 40% P) at 130 mg/rat/day. Lactobacilli and bifidobacteria (beneficial bacteria) as well as aerobic and enterobacteria (potential pathogens) counts were determined in the colonic and ceacum contents. The percentage of water was evaluated both in faeces and in intestinal contents. The administration of M significantly increased the ratio of the beneficial bacteria to potential pathogens in both intestinal segments analysed, colon (1.43 ± 0.2 vs. 1.32 ± 0.1; p < 0.01) and ceacum (1.4 ± 0.2 vs. 1.3 ± 0.01; p < 0.01); however this effect was not observed with each vegetable. In addition, all treatments significantly increased the percentage of water in the faeces (52.3 ± 7.3% vs. 51.9 ± 8.4% and 51.6 ± 8.9%, K and M, respectively, vs. 48.5 ± 8.8% in controls; p < 0.01); whereas only the mixture significantly increased this in caecal contents (79 ± 12% vs. 75 ± 0.5%; p < 0.05) and colonic contents (78 ± 12% vs. 70 ± 2.6%; p < 0.05). The combination of both vegetables facilitates the prebiotic effects showed by each one when administered separately. Acknowledgements: Fapesp and Capes

Effect of grape seeds on the IL-10 and IL-12 in the trinitrobenzenesulfonic acid model of rat colitis
Luz-Ferreira A*, Almeida ACA1, Socca EAR*, Albuquerque CL, Suzuki E, de Faria FM, Dunder RJ*, Souza-Brito ARM*1
1Department of Physiology and Biophysics, University of Campinas, Campinas, Brazil; 2CIBER-EHD, Department of Pharmacology, University of Granada, Granada, Spain

The pathogenesis of inflammatory bowel disease (IBD) is not completely understood, a loss of immune tolerance toward the enteric flora it is mediated by different molecules. Among these molecules are included the cytokines that are key signals in the intestinal immune system and are important in the pathogenesis of IBD [1]. Grape seeds (GS) have been reported to possess a broad spectrum of pharmacological and therapeutic effects including antiinflammatory activity [2]. In this context, the aim of this study is to evaluate the efficacy of GS administration on reduction of proinflammatory cytokine interleukin-12 (IL-12) and antiinflammatory interleukin-10 (IL-10) production in TNBS model of rat colitis. Three groups of rats were used (n = 8); non-colitic (NC) and colitic groups (C) did not receive treatment, and the treated groups were given orally GS at 5, 10 and 20 mg/rat/day. After two weeks, colitis was induced by intracolonial administration of TNBS (10 mg), and, one week after, biochemical parameters (IL-10 and IL-12) were evaluated. The administration of the GS reduced the IL-12 expression when compared of TNBS group (182 ± 10 vs. 115 ± 11 pg/g tissue; p < 0.001). In addition, GS treatment significantly increased production of the IL-10 (111 ± 16 vs. 164 ± 9 pg/g tissue; p < 0.01). The efficacy of GS treatment for the reduction of intestinal inflammation in rats is a result of both antiinflammatory and immunosuppressive activity. Acknowledgements: Fapesp. References: [1] Andoh, A. et al. (2008) World J. Gastroenterol. 14:5851 – 5856. [2] de la Lastral, C.A. and Villegas, I. (2007) Biochem. Soc. T. 35:1156 – 1160.

Antiestrogenic properties of Griffonianine C in U2OS human osteosarcoma cells
Njamen D, Migne Nde CB, Kretzschmar G, Vollmer C*1
1Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, P.O.Box 812 Yaounde, Cameroon; 2Sex Hormone Biology, Prince Henry’s Institute, Monash Medical Centre, PO Box 5152, Clayton VIC 3168, Australia; 3Professor für Molekulare Zellphysiologie und Endokrinologie, Institut für Zoologie, TU – Dresden, Helmholtzstr.10, 01069 Dresden, Germany

Griffonianine C (Griff C) [1], the most potent isoflavone derived from Millettia griffoniana Bail. (Fabaceae), has been shown to be a weak activator of estrogen receptors-α (ERα) [2] and results in vivo suggested a possible interaction with estrogen receptor-β (ERβ) [3]. The aim of this study was to investigate the interaction of Griff C with both estrogen receptors in more details.

Griffonianine C

For this purpose the human osteosarcoma U2OS cells either stably transfected with ERα or transiently with ERβ were used in a luciferase gene assay. Cells were treated with different concentrations (10^{-8} M, 10^{-7} M and 10^{-6} M) of Griff C for 24 hours and the relative luminescence units were determined. The results showed an inactivation of residual ERβ and β in the presence of Griff C in a dose dependent manner in this particular experimental setup. In addition, competition experiments showed an antagonisation of estradiol-induced activation by Griff C. In vivo experiments in our lab are ongoing to investigate a potential tissue selective effect of Griff C. Acknowledgements: Dr C.B. Migne Nde was a research fellow supported by the German Academic Exchange Service (DAAD). This work is further supported by the DFG/BMZ grant NOVO 410/11 – 1 to Prof Dr G. Vollmer and Prof. Dr. D. Njamen. References: [1] Yankep, E. et al. (2001) Phytochemistry 56:363 – 368. [2] Ketcha Wanda, G.J.M. et al. (2006) Phytomedicine 13:139 – 145. [3] Ketcha Wanda, G.J.M. et al. (2007) Planta Med. 73:512 – 518.

Antihyperglycaemic activity of Hunteria umbellata (K. Schum) seed extract in experimental diabetes
Adeneay AA1, 2, Adeyemi O02
1Department of Pharmacology, Faculty of Basic Medical Sciences, Lagos State University College of Medicine, P.M.B. 21266, Ikeja, Lagos State, Nigeria; 2Department of Pharmacology, College of Medicine, University of Lagos, Ibadan, P.M.B. 12003, Surulere, Lagos State, Nigeria

The present study investigates the antihyperglycaemic activity of the aqueous seed extract of Hunteria umbellata K. Schum (Apocynaceae) (HU) in alloxan-induced, high fructose- and dexamethasone-induced hyperglycaemic rats. Single, daily oral administration of 1 mg/kg of glibenclamide, 50 mg/kg, 100 mg/kg and 200 mg/kg of HU to alloxan-induced hyperglycaemic rats in groups III, IV, V and VI, respectively, for 14 days [1] caused significant dose related (p < 0.05, p < 0.01 and p < 0.001) reductions in the fasting blood glucose when compared to the values obtained for model control (Group II) rats. In the high fructose-induced hyperglycaemic model, daily oral administration of 66.7 g/kg fructose [2] to rats for 8 weeks was associated with significant (p < 0.001) hyperglycaemia, elevations in plasma glycosylated haemoglobin (HbA1c), free insulin, fasting insulin resistance indices, serum triglyceride, and cholesterol. However, concomitant oral treatments with 1 mg/kg of glibenclamide, 50 mg/kg, 100 mg/kg, and 200 mg/kg of HU extract significantly and dose dependently (p < 0.05, p < 0.01, and p < 0.001) attenuated development of hyperglycaemia, and decreased

Ameliorative effect of Rhodotorula glutinis and its two mutants on histopathological and biochemical changes induced by ochratoxin A in rat kidney

Omane EA1, Nada SA2, Hoggag W3, Abou Eldien H4
1Pathology Department; 2Pharmacology Department; 3Plant Pathology Department, National Research Center, El-Bohouth Str. Dokki, Cairo, Egypt

Rhodotorula glutinis (R. glutinis), red soil yeast have proved safe and non-toxic in experimental animals. Two mutant strains (Col-1R1 and Col-1R3) were obtained from (Plant Pathology department, NRC, Cairo, Egypt), to improve cell contents (carotenoids, β-1, 3 glucane,) and to be used as safe biocontrol in harvesting crops. This study was designed to evaluate the possible curative effect of the wild strain and its two mutants against renal toxicity induced by ochratoxin (OTA) in rat. Rhodotorula glutinis containing higher amount of carotenoids [1]. Eight groups were used as follows: group 1 (the control group) was the vehicle (10 ml/Kg); group 2 treat with OTA (1 mg/Kg); groups 3, 4 and 5 treat with yeast and its two mutants at dose (10 CFU/ml liquid media); groups 6, 7 and 8 orally treat with yeast and its two mutants then OTA administration to animal after 1 h of treatment with yeast and its two mutants. The experimental period for this study was 15 successive days. The blood samples were collected for assign serum biochemical parameters (creatinine and uric acid). Biochemical results revealed that OTA significantly elevated kidney function (creatinine and uric acid) than normal control group. The two mutants and the wild strains of R. glutinis significantly decreased the increased values toward the normal level. The changes in the kidney tissues of control, OTA and OTA+ R. glutinis and two mutants-treated rats was evaluated by histopathology, histochemistry and DNA ploidy measurement using image analysis. There were no changes in the kidney tissues of the control rats. Histopathological examination of kidney of rats treated with OTA showed tubular epithelial cells degeneration, necrosis, proliferation and karyomegaly in the epithelial cells nuclei. Peritubular and periglomerular lymphocyte infiltration, fibrous tissue proliferation and hypercellularity of glomeruli were also observed in OTA group. The cytomict results revealed that the rats treated with OTA induced an increase in the aneuploidy cells and decrease in diploid cells. These findings were ameliorated by R. glutinis and two mutants when compared to the OTA-treated group. The resultant effect indicated that the two mutant strains had powerful effect more than the parent R. glutinis to ameliorate renal dysfunction in ochratoxin-induced rat specially Col-1R3 more effective than Col-1R1 due to its higher contents of carotenoids, glucane and chitine, which act as antioxidants. Reference: [1] Bhosale, P. et al. (2002) Curr. Sci. India 83:303 – 308.

Mechanisms underlying the vasorelaxant effect induced by Anacardium occidentale L. leaf fraction in rat small resistance mesenteric arteries

Todong L1, Gullet D2, Cler N3, Leptam L4, Feure S5, Haddad P6, Kamouching P7, Richomme P8, Henrion D9
1Department of Integrated Neurovascular Biology, Faculty of Medicine, University of Angers, 49004, Angers, France; 2Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, 88000 Yaounde, Cameroon; 3University d’Angers, IFR Quasav, Laboratoire SONAS, 49100. Angers, France; 4Natural Health Products and Metabolic Diseases, Department of Pharmacology, Faculty of Medicine, University of Montreal, 6128, Montreal, Canada

Anacardium occidentale L. (A. occidentale), belonging to Anacardaceae family, has been documented as traditional plant for the treatment of diabetes and hypertension [1]. Four extracts of A. occidentale were used for this study, namely AOL1 (from cyclohexane), AOL2 (from CH2Cl2), AOL3 (from EtOH) and AOL4 (from MeOH). The metabolites analysis revealed the presence of flavonoids and biflavonoids as major compounds (quercetin, chlorogenic acid (2976 TE/g of compound) as positive standard. In the bioassay, their IC50 values of 120 μg/ml, 70 μg/ml and 70 μg/ml. Exposure of EAhy cells to high glucose-induced dysfunction of EAhy cells. Preliminary phytochemical investigations of ALO3 and ALO4 by HPLC-DAD analyses suggested the presence of flavonoids and biflavonoids as major compounds in both extracts. Anacardium occidentale leaf extract induces a vasodilation in mesenteric arteries precontracted with phenylephrine. Ethylacetate and methanol extracts improved high glucose-mediated endothelial dysfunction and thus may be potential new therapeutic agents for diabetic cardiovascular complications. References: [1] Runnie, L. et al. (2004),”J. Ethnopharmacol. 92:311 – 316. [2] Henrion, D. et al. (2008) Cardiovasc. Res. 77:600 – 608.

Medicinal plants used by syphilis and gonorrhea by traditional medicinal practitioners of Bangladesh

Mohlik AH, Islam T, Khatun A, Hossan S, Nasrin D, Jahan R, Rahmanullah M
Department of Biotechnology & Genetic Engineering, University of Development Alternative, House No. 11A, Dhanmondi R/A, Dhaka-1205, Bangladesh

Sexually transmitted diseases like syphilis and gonorrhea are prevalent worldwide and are also present in both rural and urban areas of Bangladesh. Most people suffering from these diseases, particularly the rural population seek remedy from traditional medicinal practitioners (Kavirajes) rather than visiting modern doctors either because of lack of access or because of hesitancy in telling about these diseases to an unknown doctor. The remedies offered by the Kavirajes, although based primarily on Ayurvedic medicine, relies more on their knowledge of medicinal plants and their healing properties. We conducted an ethnomedicinal survey amongst the Kavirajes of Bangladesh to gather information on medicinal plants used by the Kavirajes to treat syphilis and gonorrhea. Plants were collected from the Kavirajes and herbarium specimens were deposited and identified at the Bangladesh National Herbarium. A total of 21 plants were identified as to their being used to treat syphilis or gonorrhea. The plants used to treat gonorrhea (with family name in parenthesis) include Amaranthus spinosus (Amaranthaceae), Piper betle (Piperaceae), Pongamia pinnata (Leguminosaeae), Sida cordifolia (Malvaceae), Ocimum tenuiflorum (Labiateae), Curcuma longa (Zingiberaceae), Swertia chirayita (Gentianaceae), Phyllanthus niruri (Euphorbiaceae), Abrus precatorius (Leguminosaeae), Aloe vera (Asphodelaceae), Senna alata (Leguminosaeae), and Ptilia stratiotes (Araceae). Plants used to treat syphilis include (with family name in parenthesis) include Cassia fistula (Leguminosaeae), Mucuna pruriens (Leguminosaeae), Solanum surfatense (Solanaceae), Azadirachta indica (Meliaeaceae), Terminalia chebula (Combretaceae), Phyllanthus niruri (Euphorbiaceae), Gloriosa superba (Colchicaceae), Areca catechu (Arecaceae), and Gmelina arborea (Labiateae). The plant Phyllanthus niruri (Euphorbiaceae) was used as remedy for both syphilis and gonorrhea.
In-vitro anticaludic activity of endemic Salvia potenslillifo Boiss. & Heldr. Ex Bentham and Origanum hypericifolium O. Schwartz & P.H. Davis in [12].

Kartal T, Celik A, Engin C, Arslan 1

1Pamukkale University, Faculty of Arts and Science, Department of Biology Denizli, Turkey; 2Pamukkale University, Faculty of Medicine, Department of Microbiology, Denizli, Turkey.

The present study established baseline data on anticaludic lytic activities of endemic species Origanum hypericifolium and Salvia potenslillifo naturally distributed Denizli and its environment. Stain distillation was used to isolate the unfatty polar part and clinical isolated Candida spp. strains were subcultured to sabouraud dextrose agar. Lytic anticaludic activities of unfatty polar parts were evaluated by enzym linked calorimetric method [1] against 93 clinical isolates belong to Candida albicans, C. tropicalis, C. glabrata, C. krusei, C. kefyr and C. para- psilosis. As a result, two (2.15%) strains of Candida glabrata amongst tested pathogenic 93 clinical isolates of Candida strains were found to be sensitive to S. potenslillifo. However, each strain of Candida albicans and Candida tropicalis was found to be sensitive to Origanum hypericifolium. Results indicated that O. hypericifolium and S. potenslillifo had a potential of being used in food and medicine because of its anticaludic activity. References: [1]Sally, N. et al. (2002) J. Micro. Methods 49:1 – 9.

Plantago holosteum Scop. as a potential natural antioxidant and antiinflammatory agent

Becar I, Lesjak M, Jovin E, Balog K, Orlici D, Simin N, Mimica-Dučić N

Department of Chemistry, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia

The genus Plantago L. (Plantaginaceae) comprises about 275 species found all over the world. Ancient use of plantains as herbal remedies is a consequence of their astringent, anti-toxic, antimicrobial, expectorant and diuretic properties. In order to valorize medicinal use of Planta- go holosteum Scop., some tests on antioxidant and antiinflammatory activities of methanolic extract of P. holosteum, collected from mountain Kopanok (Serbia) have been undertaken. The extract has been characterized regarding composition by LC-MS/MS and by different colorimetric techniques [2]. Flavonoids luteolin, lutrolin-7-O-gl, apigenin-7-O-gl, also iridoid aucubin were identified and quantified. The content of total phenolic compounds expressed as mg gallic acid equivalents/g of dry extract was 68.2±3 and flavonoids was 13.1±0.7 mg quercetine equiv/g of dry extract. The radical scavenger capacity (RSC) was evaluated towards several radicals using spectrophotometry [3] and following IC50 were found: diphenylpicrylhydrazyl (6.1±0.6 mg/ml), hydroxy (1272±6.8 mg/ml), superoxide anion (73.3±2.5 μg/ml) and nitric oxide radical (0.67±0.06 mg/ml), inhibition of lipid peroxidation (11.5±1.8 μg/ml). These results indicate comparable or higher extract activity than activity of synthetic antioxidants as BHA or BHT (butylated hydroxytoluene/hydroxyanisol). Antiinflammatory activity was examined by means of 12-lipooxygenase (12-LO) and cyclooxygenase-1 (COX-1) inhibition, quantifying the 12-LO product 12-HETE (12-hydro- xy-5,8,10,14-eicosatetraenoate) and COX-1 product 12-HHT (12-hydroxy-5,8,10,14-eicosatetraenoic acid) by RP-HPLC. IC50 of 4 mg/ml extract showed 12-LO and COX-1 inhibitory activity of 60 and 42%, respectively. In this study, we report for the first time about antioxidant and antiinflammatory activity of P. holosteum, and accordingly assesses this species as a promising source of natural antioxidant and antiinflamma-

Anticaludic activity of the ethyl acetate fraction of Anchomanes difformis

Okpo SO 1, Ching FB 2, Ayinde BA 3, Alonge PO 4, Udi O 1

1Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria;
2Department of Pharmacology, Faculty of Basic Medical Sciences, Niger Delta University, Wilberforce Island, Nigeria;
3Department of Pharmacognosy, Faculty of Pharmacy, University of Benin, Benin City, Nigeria; 4Department of Pharmacological Chemistry of Pharmacy, University of Benin, Benin City, Nigeria

The tuber of Anchomanes difformis is used by local herbalists in Nigeria especially in the western part of the country for the treatment of peptic ulcer disease. This study was carried out to evaluate the possible gastro-protective properties of the ethylacetate fraction of A. difformis on lesions induced by indomethacin, ethyl alcohol and pylorus ligation in rats. Oral administration of the extract (200 mg/kg and 500 mg/kg) caused a dose-dependent and significant reduction in total acid output and severity of ulceration in the pylorus ligation model. These same doses of the extract also produced dose-dependent and significant protection against ethanol-induced and indomethacin-induced ulcerations. The protection conferred by the extract was comparable to the effect of the standard ulcer drug – ranitidine – on these same models. Addition of the extract to 0.1 N HCl caused very little variation in pH suggesting a lack of buffering ability. Results obtained suggest that the ethylacetate fraction of Anchomanes difformis possesses clear gastro-protective activity. This activity may not be due to neutralization of gastric acid but may result from its ability to reduce total acid output, or via the production of prostaglandins and free radical scavengers which protect the gastric mucosa. Drugs with multiple mechanisms of protective action, including antioxidant properties, may be a way forward in minimizing injury in human disease [1]. The effectiveness of the extract in the three ulcer models studied confirms to its usefulness in the management of ulcer and this may provide the basis for its local use in this ailment. Reference: [1] Barry, H. (1991) Drugs 42:569.

Inhibition of morphine dependence by Withania coagulans in mice

Saeedi Saravi SS, Shokrzadeh M 2, Tahmasbi M 3

1Faculty of Pharmacy, Mazandaran University of Medical Sciences, Young Researchers Club, Qaemshahr Islamic Azad University, 48187 861 Sar i, Iran; 2Department of Toxicology-Toxicology Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 3Department of HSE, Faculty of HSE, Shahed Beheshti University of Medical Sciences, 48187 861 Sar i, Iran; 3Young Researchers Club, Qaemshahr Islamic Azad University, 48187 125 Qaemshahr, Iran

It is clear that repeated use of opioid drugs cause physical dependence and tolerance. Dependence can be measured by evocation of abstinence sign by abrupt drug withdrawal or administration of narcotic antagonists or both. Jumping is most commonly used criteria for measuring abstinence and is quantitatively as jumps are easily counted and jumping rate increases when dependence increases or dose of antagonist increased. Investigation of root extract of Withania coagulans revealed its beneficial effects to decrease dependence sign produced by morphine in mice. After in-duction of dependence by morphine, mice were divided in to 7 groups. Then, distilled water was injected to control group and specific concentrations of the extract were administered to the other groups. To assess morphine withdrawal, mice were given naloxone (5 mg/kg) on the day 4th after three consecutive days of morphine injection, intraperitoneally. Withdrawal syndrome was assessed by placing each mouse in a 30 cm high glass box and recording the incidence of escape jumps for 60 min-utes. Data were analyzed by one-way ANOVA followed by Student-Newman-Keuls’ test (p < 0.05). The results showed that animals received acute treatment with morphine displayed dependence. The animals treated with the different concentrations of root extract of W. coagulans could decrease or increase incidence of escape jumps in number following naloxone administration. The study showed that Withania coagulans can decrease development of morphine dependence.
Although, mechanism of action of this plant for inhibition or decrease of abstinence syndrome in dependent mice is unknown.

PH47

The protective role of *Sphenocentrum jollanum* (Pierre) root ethanol extract on alloxan-induced diabetic rabbits

Mbaka GO, Adeyemi OY, Ogbonna SO, Noronha CC

1Dept of Anatomy, Obalisi Ogunbami University, Remo Campus, Ogun State, Postal Code – 234, Nigeria; 2Dept of Pharmacology, College of Medicine of the University of Lagos, Lagos, Postal Code – 234, Nigeria; 3Dept of Pharmacognosy, University of Lagos, Lagos Postal Code – 234, Nigeria; 4Dept of Anatomy, College of Medicine of the University of Lagos, Postal Code – 234, Nigeria

The protective role of *Sphenocentrum jollanum* (SJ) (Pierre) root used locally for diabetic treatment was assessed against alloxan diabetic rabbits. Fifteen rabbits randomly divided into three groups (5 in each), received oral treatment as follows: group I- root extract (100 mg/kg); group II- glibenclamide (10 mg/kg); group III- diabetic control. A week later (day 0), basal glycemia was determined followed by alloxan challenge (170 mg/kg). Blood was collected at days 0, 3, 5, 7, 9, 11, 13, 15 and 17 and analyzed by glucose oxidase method. Oxidative activity was evaluated by C – reactive protein (CRP) analysis [1]; Superoxide dismutase (SOD), catalase and lipid peroxidation assays, as described by Rukumani et al. [2]. Results showed that alloxan influenced slight glycemic increase in extract treated that peaked at day 3 (165±0.67), followed by rapid decline to basal glycemia (94±0.15). The difference in value between the treated and the untreated was marked (P<0.01). This implied that the diabetogenic activity of alloxan was effectively checked by the plant extract. The extract group showed slight increase in CRP concentration at day 3 (10.34±1.0 mg/dl) but decreased appreciably at day 17 (7.6±0.4 mg/dl). The activities of SOD and catalase were considerably higher in the extract treated compared to the diabetic group. However, decrease in lipid peroxidation occurred indicating that the plant inhibited oxidative damage. The photomicrograph of extract treated group showed slight shrunken mass of amorphous eosinophilia. The extract provided effective protection against alloxan diabetogenic activity with comparably higher protection than the control drug. Acknowledgement: Omobre Aye Medical Herbalist Society, Otu, Ogun State, Nigeria. Chief (Dr.) Adeyemi Adekunbe

PI1

Chemical constituents and antibacterial activity against bacteria causing foot odor of three extraction methods from the pummelo peel oil

Chuenpratavat S, Temsirirruth P, Saraya B

1Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhaya Rd., Ratchatewi, Bangkok 10400, Thailand; 2Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhaya Rd., Ratchatewi, Bangkok 10400, Thailand; 3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhaya Rd., Ratchatewi, Bangkok 10400, Thailand; 4Department of Physiology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhya Rd., Ratchatewi, Bangkok 10400, Thailand

The flavedo from fresh peels of *Pummelo* ([*Citrus maxima* (Burm) Merr.] [1] were extracted by three different extraction methods; hydrodistillation [2], steam distillation and hexane extraction. The total yields from hydrodistillation, steam distillation and solvent extraction were 2.25, 1.83 and 1.47% w/w, respectively. Each oil samples were analyzed for chemical components by gas chromatograph and mass spectrometer (GC-MS). The highest content of monoterpen hydrocarbons i.e., limonene, phellandrene, a-pinene, were found from hydrodistillation (95.12%, 0.65%, and 0.61%, respectively). They were also investigated for their antimicrobial activities against bacterial causing foot odor, including *Bacillus subtilis* (ATCC 6633), *Staphylococcus aureus* (ATCC 6538), and *Staphylococcus epidermidis* (ATCC 12228) [3], using broth microdilution method [4]. The minimum inhibitory concentration (MIC) of the oil obtained from hydrodistillation with the most potency is 0.125, 0.125 and 0.03125% v/v for *Bacillus subtilis*, *Staphylococcus aureus* and *Staphylococcus epidermidis*, respectively. References: [1] Smitinand, T. (2001) Thai plant names. The forest research office. Bangkok. [2] Atti-Santos, A.C. et al. (2005).J. Braz. Arch. Biol. Techn. 48:155 – 160. [3] Katsutoshi, A. et al. (2006) Can. J. Microbiol. 52:357 – 364. [4] Ferraro, M.J. et al. (2000) Methods of dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standard-fifth. NCCLS, USA.

PI2

In vitro anti-inflammatory and antioxidant activities of stilbenoids of *Vanda coerulea* (Orchidaceae)

Simmler C1, Lobstein A2, Leplanquais V3, Andre P4, Archambault JC5, Bonté F-S2

1Guerlain 125, rue du Président Wilson, 92290 Levallois Perret, Paris, France; 2University of Strasbourg, Faculty of Pharmacy, 74 route du Rhin, 67400 Illkirch, France; 3UVMH Recherche, 185 avenue de Verdun, 45800 Saint Jean de Braye, France

In the framework of our investigations towards the isolation of biologically active constituents from Orchidaceae, we carried out biological screening of various Orchids. Among the metabolites isolated from *Vanda coerulea*, three stilbenoids corresponding to imbenthin, methoxyloconin and gigantol, display protective antioxidant and anti-inflammatory properties via complementary mechanisms: free radical scavenging activity and inhibition of PGE-2 liberation on HaCaT irradiated cells with UV₀ (60mJ/cm²). Imbinatin, the major stilbenoid in *V. coerulea* stem extract, displays an excellent hydroxyl radical scavenging activity (IC₅₀ 8.8μM) on HaCaT cells model in a concentration-dependant manner evaluated by dichlorodihydrofluorescine (DCFH) assay [1]. It also inhibits significantly PGE-2 liberation, implied in skin inflammation, induction of various matrix metalloproteinases or inhibition of collagen synthesis in fibroblasts [2]. Besides, this stilbenoids shows the best scavenging activities on 2,2-diphenyl-1-picrylhydrazyl, DPPH (IC₅₀ 110μM) and hydroxyl radicals in tubo with an IC₅₀ of 0.11 μM, twice as lower as reference molecule quercetol.

PI3

Analysis of *Rhaponticum carthamoides* (Willd.) Iljin crude extracts composition and ability to simulate cell proliferation

Biskup E1, Golebiowski M2, Borsuk K2, Stepniowski P3, Łajkowska E4

1Department of Biotechnology, Inter collegiate Faculty of Biotechnology University of Gdańsk & Medical University of Gdańsk, Kuźniarska 24, 80 – 822 Gdańsk, Poland; 2Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80 – 952 Gdańsk, Poland

The presented study concerns the activity of leaves crude extracts, isolated from eddyterroid-rich plant *Rhaponticum carthamoides* (Willd.) Iljin. Plant material, collected in Korniaż (Archangielsk district), was obtained through the courtesy of FITOSTAR® company. Composition analysis of chloroform, methanol and water extracts was performed using GC-MS. The presence of plant sterols: campesterol, β-sitosterol and stigmasterol were previously observed in extract of *R. carthamoides* seeds [1], whereas α- and β-amyrin were detected in this plant for the first time. The ability of *R. carthamoides* crude extracts, α-amyrin, β- sitosterol and stigmasterol to stimulate the proliferation of human keratinocytes (HaCaT cell line) was analyzed. Keratinocytes were grown in the presence of analytes (10 – 40 μg/ml of pure compounds or 10 – 80 μg/ml of crude extracts). The ability to influence cell growth and prolifera-

Plants of the genus Nigella, belonging to the family Ranunculaceae, play an important role in folk medicine in India and Arabian countries [1]. This family is generally considered as a taxon not containing essential oils [2]. However, during the last years several papers were published on essential oils in seeds of four species of the genus Nigella – [3] – [6]. Therefore, we have carried out analysis of Nigella nigellastrum seed essential oil by GC and GC-MS and compared the composition with a related species, i.e. Nigella arvensis. As the biological activity often depends on the absolute configuration, we have paid attention to this aspect, too. The N. nigellastrum oil consisted mainly of monoterpenes hydrocarbons, namely α-pinene (43%) and β-pinene (46%). Enantioselective GC separation on a permethylated β-cyclodextrin column showed that both pines were present in a high enantiopurity: (-)-α-pinene, 90% e.e. and (-)-β-pinene, 96% e.e. Sesquiterpene hydrocarbons formed about 3% of the total. N. arvensis essential oil contains a substantial amount of the same monoterpenes (α-pinene, 6%, and β-pinene, 21% [6]). In this species, (-)-enantiomers of both pines also predominated, however, their enantiopurities were lower: (-)-α-pinene, 72% e.e. and (-)-β-pinene, 80% e.e. Financial support by the Czech Science Foundation -PIN410718-10 and by com-
sion of the high Andes of Peru (Ayacucho), it is used to treat respiratory ailments, cough and bacterial infections. It is also used to flavour fresh pasteurized milk together with roasted sweet corn and as a source of natural dyes used to colour vicuña fiber and other fibers [1,2]. Ethanolic extracts from aerial parts of L. meyenii have shown antimicrobial and antioxidant activities [3,4]. Although several caffeic acid derivatives, carnosol, ursoic acid and diosmetin have been isolated and identified [5], the composition of its essential oil has not been previously investigated. In the present work, the essential oil from fresh leaves and flourishing young stems of L. meyenii was obtained by hydrodistillation and subsequently analysed by GC-FID, GC-MS and 13C NMR. The identification of the constituents was achieved from their GC retention indices (both, relative to alkanes and to fatty acid methyl esters) in two columns of different stationary phases (SP-1 and Supelcowax 10) and by comparison of their MS fragmentation patterns with those stored in our own database and with literature data. Major compounds were also identified by NMR. Sixty-three constituents, representing 99% of the total oil, were identified. It is characterised by a high content of monoterpenes (83.3%), 53.8% being hydrocarbons and 29.5% oxygenated. The major ones were identified to be limonene (23%), trans-pinocarvyl acetate (12.7%) and β-pinene (12.6%). Among sesquiterpenes (14.7%), guaiol (7.4%) and bulnesol (2.1%) are the main components. References: [1] Carhuauma, Y.M. (2002) Taxonomía de las plantas medicinales aromáticas nativas de la provincia de Huamanga y sus perspectivas económicas, UNSCH, Ayacucho. [2] Sorta, N. (2000) Plantas aromáticas y medicinales de la región de Arequipa, El Taller, Arequipa, [3] Rojas, R. et al. (2003).] Ethnopharmacol. 88:199 – 204. [4] Lock, O. et al. (2005) Acta Horticulutrae 675:103 – 106. [5] Castillo, R. et al. (2005) Rev. Soc. Quim. Perú 71:227 – 236.

Lepechinia meyenii (Walp.) Epling (Lamiaceae), locally known as “pacha salvia” or “puna salvia," is a stoloniferous perennial weed which grows in high altitudes in Peru, Bolivia and Argentina. In the communities from...
Inhibitory activity of nine essential oils on nitric oxide production by human leukocytes

Pérez-Rosés R1, Risco E2, Vila R3, Pelhtaver P4, Cariguello S5

1Unitat de Farmacologia I Farmacognosia, Facultat de Farmàcia, Universitat de Barcelona; Avda, Diagonal, 643, E-08028 Barcelona, Spain; 2Iidervet, S.L. Plaça García Lorca, 17, Baixos, E-43006 Tarragona, Spain

Nitric oxide (NO) plays a key role in the production of reactive nitrogen species (RNS), which have cytotoxic properties against pathogenic microbes and, at the same time, can damage host tissues [1]. Some essential oils have antioxidant properties and their consumption can influence immune cell functions [2,3]. In order to widen our knowledge of the antioxidant properties of essential oils we studied their effect on NO production induced by LPS in human blood leukocytes. NO was determined in 96-well microtiter plates by the Griess reaction [4]. N\textsubscript{2}-methyl-L-arginine acetate (L-NMMA, IC\textsubscript{50}= 38.2 ± 1.4 μg/ml) was used as positive control. The essential oils investigated were obtained from commercial sources: nutmeg (NM) (Myristica fragrans Houtt.), clove leaves (CL) (Syzygium aromaticum (L. Merr. et L.M. Perry), tarragon (TR) (Artemisia dracunculus L.), juniper berries (JB) (Juniperus communis L.), rosemary (RO) (Rosmarinus officinalis L.), lemon grass (LG) (Cymbopogon martini (Roxb.) Wats.), lemon (LE) (Citrus limon (L.) Burman fil.), thyme (TH) (Thymus zygis L.) and Spanish oregano (SO) (Thymus capitatus Griseb.). In addition, nutmeg terpenes (NT, a fraction of nutmeg Quedlingburg (Germany). [4] Green, L.C. et al. (1982) Anal. Biochem. 124:131 – 138.

The flavone luteolin displays numerous anti-inflammatory effects at micromolar concentrations which cannot be completely explained by its anti-oxidant capacities. In the present work we investigated a dry extract from Reseda luteola rich in flavones (40% w/w), especially luteo- lin, some of its glucosides, methylethers, and apigenin, obtained by a multistep extraction process using water and ethanol as solvents (drug to extract ratio 26 – 28:1). We investigated the anti-inflammatory potential of a particular nanosolubilisate of the Reseda extract (s-RE) in two independent studies in vivo. Reseda luteola extract was solubilized with polysorbate, resulting in product micelles with a diameter of 10 ± 1.5 nm. Standardized inflammation was induced by irradiating test areas on the back of healthy volunteers with defined doses of ultraviolet B (UVB). In the first study different concentrations of s-RE were tested in 10 volunteers to evaluate dose-dependency of anti-inflammatory effects of s-RE. In the second randomized, double-blind, placebo-controlled study a defined concentration of s-RE (2.5 w/w) was tested in 40 volunteers in comparison to the vehicle (glycerol) and hydrocortisone (1% w/w). s-RE dose-dependently inhibited UVB-induced erythema when applied 30 minutes before irradiation. Topical application of s-RE after irradiation also prevented UVB-induced erythema. s-RE was as effective as hydrocortisone, whereas the vehicle had no effect. Occlusive application of s-RE on non irradiated test sites did not cause any skin irritation. Due to excellent skin tolerance combined with potent anti-inflammatory properties s-RE bears potential especially for the prevention but also for the treatment of inflammatory skin conditions such as UV-induced erythema.
The antioxidant and free radical scavenging activities of peacock petal extracts
Kamkaen N1,2, Samee W1, Mapisansin W1, Soisawan S1, Brinner AH1
1Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand; 2Institute of Research and Development, Suan Dusit Rajabhat University, Bangkok 10330, Thailand; 3Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, A – 8010 Graz, Austria

The main objective of this study was to evaluate the anti-oxidant properties of the ethanolic extract of the petals of Caesalpinia pulcherrima (L.) Sw. (Caesalpinaceae). The DPPH radical scavenging and ABTS cation radical scavenging assays were used to evaluate the antioxidant properties compared to the standards gallic acid and rutin. The results of the DPPH radical scavenging assay demonstrated the strongest activity of the crude extract of the red petals (IC50= 34.74 µg/ml) followed by the extract of the orange petals (IC50= 35.63 µg/ml) and the yellow petals (IC50= 102.27 µg/ml), respectively compared with gallic acid and rutin (IC50= 5.21 and 23.11 µg/ml). The ABTS cation radical scavenging assay demonstrated the strongest activity (IC50= 227.66 µg/ml) for the orange petals followed by the red petals (IC50= 243.01 µg/ml) and the yellow petals (IC50= 338.72 µg/ml) compared with gallic acid and rutin (IC50= 6.73 and 257.82 µg/ml). The phenolic compounds consisting of tannins and flavonoids in the red and orange petals of C. pulcherrima may be a good source of natural antioxidants which could be incorporated into a range of cosmetics and health products [1,2].

Acknowledgements: Thailand Research Fund (TRF) through Industrial and Research Projects for Undergraduate Studies (IRGPS) 2550, University Mobility Asia Pacific (UMAP)

Beer is a widely consumed and widely studied alcoholic beverage. The beer aroma is influenced by several factors like the plant origin of the used malt (barley, wheat), the use of additional cereals (corn, wheat, barley, rice), the brewing methodology, the hop variety etc. A new methodology for the study of the volatile constituents of beer using adsorption and chiral GC/MS.

Correlation with malt type and brewing method
Friedt EH1,2,3, Millorsi E1,4, Magiatis P1, Skaltsounis Al1, Loioun M2
1Laboratory of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece; 2Faculty of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece

Beer sample without any treatment was passed through a column containing XAD 4 resin and the adsorbed volatile components were desorbed using diethylether/pentane (1:1) which was then carefully evaporated. The residue was analyzed by GC-MS on a chiral β-Dex sm column. Twenty commercial samples belonging to the three major beer classes (lager, barley, rice), the brewing methodology, the hop variety etc. A new methodology for the study of the volatile constituents of beer using adsorption and chiral GC/MS was evaluated using broth microdilution method [1]. Based on MIC and MBC values, the extract promoted a good inhibitory effect against P. acnes (MIC = 7.81 µg/ml, MBC = 15.63 µg/ml), while the 1% w/w mangosteen fruit rind gel showed similar anti-acne activity with standard 2.5% benzoyl peroxide anti-acne gel (Pan-Oxyl 2.5% gel) at MIC and MBC 1.56 mg/ml. The results showed that anti-acne gel with mangosteen fruit rind extract promoted good effect against acne inducing bacteria. The stability of this preparation is being investigated.

In vitro anti-acne inducing bacteria activity of mangosteen fruit rind extract gel
Gritsanapan W1, Pithayunukul P1, Chomnawang MT2
1Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; 2Faculty of Pharmacy, Faculty of Medicine, Mahidol University, Bangkok 10400, Thailand

The extract of fruit rind of mangosteen (Garcinia mangostana Linn.) was reported to possess a strong inhibitory effect against Propionibacterium acne which is a major bacteria involves in acne development [1]. Therefore, it is interesting for developing anti-acne gel preparation from this plant. The ethanolic extract of mangosteen fruit rind was prepared using Soxhlet extraction. Hydro-alcohol gel preparation containing 1% w/w of the extract was formulated. The antibacterial activity of the extract and its preparation against P. acnes was evaluated using broth microdilution method [2]. Based on MIC and MBC values, the extract promoted a good inhibitory effect against P. acnes (MIC = 7.81 µg/ml, MBC = 15.63 µg/ml), while the 1% w/w mangosteen fruit rind gel showed similar anti-acne activity with standard 2.5% benzoyl peroxide anti-acne gel (Pan-Oxyl 2.5% gel) at MIC and MBC 1.56 mg/ml. The results showed that anti-acne gel with mangosteen fruit rind extract promoted good effect against acne inducing bacteria. The stability of this preparation is being investigated.

Turmeric (Curcuma longa Linn.) is a medicinal plant in Zingiberaceae family. The rhizome of this plant has been used in traditional medicines for treatment of carminatives, gastric ulcer, inflammation, and fungal and bacterial skin diseases. The main components promoting anti-inflammtory and antimicrobial activities are curcuminoids and essential oil, respectively. In this study, turmeric oil and crude curcuminoids were extracted from dried rhizomes of C. longa and incorporated in a cream base. Five formulations consisting of cream base, 0.026% crude curcuminoid cream (CC), 6% turmeric cream with and without curcuminoids (6TC+CC, 6TC) and 20% turmeric cream with curcuminoids (20TC+CC), were tested for human skin irritation. A 21-day cumulative irritation method [1] was used for irritation test in 22 volunteers (10 women aged 21 – 35 and 12 men aged 21 – 32). The irritation reaction of 20TC+CC, 6TC+CC and 6TC could be visually observed from day 7, 14 and 10 on, respectively while their IT50 [2] was found to be 14.5, 17.2 and 15.9 days, respectively. It was found that 6TC+CC and 6TC caused irritancy potential significantly (p < 0.05) lower than 20TC+CC while the cream base and CC showed very low irritation score (c < 0.5). This study indicates 6% turmeric cream produced only mild irritation. Thus, turmeric cream should be of great benefit for dermatophytosis treatment.

Acknowledgements: This study was granted by Thai Traditional Medicine Development Foundation, Thailand. References: [1] Dreher, F. et al. (1996) Skin Phar-
Clinical evaluation of fitness cream “HOOTAN”
Orafai H1, Amoozegar C2, Mohammad-Poor AH1, Amoozegar H3
1 Department of Pharmacaceutics, School of Pharmacy, Mashhad University of Medical Sciences (MUMS), Mashhad, L.R. Iran; 2 Gaem Hospital, Ahmad abad Avenue, Mashhad University of Medical Sciences (MUMS), Mashhad, L.R. Iran

Obesity is the major problem in developed and developing countries. There are a lot of ways to reduce fats in the body particularly in accumulated areas which induce serious side effects. The aim of this study is to evaluate the effect of special formulated topical 2% cream based on glycyrrhetinic acid, the active principle of licorice roots extract, in reducing the fats of the skin. The extract and cream were standardized using HPLC method. The project was first approved by the university ethic board and carried out on double blind level. Twenty healthy volunteers girls aged 20 – 30 years with almost same level of life style were chosen, checked for blood pressure, triglycerides and cortisol levels before and after the study [1]. They were advised to keep their overall food regime unchanged skin as well as 20 patients with pruritus and chronic scratch lesions assessed by the prurigo-score. For daily documentation of pruritus intensity patients used the visual analogue scale (VAS) from 0 to 100.

PI15
Topical therapy with the betulin based triterpene extract (TE) in patients with chronic pruritus
Laszczyk MN1, Phan NQ2, Siepmann D2, Augustin M2
1 Institut für Pharmazie, Department of Pharmaceutical Chemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; 2 Carl Gustav Carus-Institut, Am Eichhof 30, 75223 Niefern-Dosselbronn, Germany

The betulin [BE] based triterpene extract (TE) from birch cork contains 81% BE, betulinic acid (4%), lauric acid (1%), oleic acid (1%). The TE is able to stabilize emulsions (BE emulsion) of water and jojoba oil without any other additives [1]. Experimental studies suggest that the TE components induce anti-inflammatory [2] and wound healing effects [3] in the skin, but no antipruritic activity is published, yet. An open-labelled trial aimed to investigate the antipruritic effects of the BE emulsion. 23 patients with chronic pruritus on unchanged skin as well as 20 patients with pruritus and chronic scratch lesions received the BE emulsion. It was applied for a period of two weeks twice daily on the affected areas followed by 2 weeks without cream and a follow-up visit. Before and after therapy, patients received a detailed clinical investigation with documentation of present scratch lesions assessed by the prurigo-score. For daily documentation of pruritus intensity patients used the visual analogue scale (VAS) from 0 to 10. Statistical analysis was done by intention-to-treat analysis. A significant antipruritic effect was documented in 56.2% of patients of group 1 and 70.0% of patients of group 2. The dynamic score (reduction of pruritus intensity in percent) in responsive patients was 66.8% in group 1 and 82.7% in group 2. The analysis of the VAS data before and after therapy showed a 2.6-fold better response of group 2. Patients of group 2 showed a slight regression of scratch lesions within two weeks of treatment. Nearly all patients (95.3%) tolerated the therapy well. The present results suggest that the topical use of TE within a BE emulsion is an effective, adjuvant antipruritic treatment option with good compatibility in patients with chronic pruritus, especially in patients with chronic scratch lesions. References: [1] Daniels, R. (2008) Pharm. Ztg. 11:34 – 35. [2] Alakurtti, S. (2006) Eur. J. Pharm. Sci. 29:1 – 13. [3] Harish, B.G. (2008) Phytomedicine 15:763 – 767.

A new emulsifier-free w/o system based on a triterpene extract from the outer bark of birch
Grysko MK1, Laszczyk MN2, Jäger S3, Scheffler A3, Daniels R1
1 Pharmaceutical Institute of the University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; 2 Birken GmbH, Department for Research and Development, Institut, Streiflingsweg 11, 75223 Niefern-Oschelbronn, Germany; 3 Carl Gustav Carus-Institut, Am Eichhof 30, 75223 Niefern-Oschelbronn, Germany

Surfactants are critically seen due to their impairment of skin barrier function. Therefore surfactant-free emulsions become more and more important. Here we present a new w/o emulsion system based on a triterpene dry extract from the outer bark of birch (TE) that is supposed to be emulsifier-free. Besides the galenic properties the TE display various pharmacological activities also important for dermatology [1]. 80% of TE is betulin, a pentacyclic triterpene with a polar group (alcohol) on each side of the molecule, respectively [1]. Investigations on the surface tension were done using a different method [2]. Accordingly, Raman microscopy shows that the TE particles surrounding the water droplets and they additionally form a network like structure in the lipid phase. The surface of the water droplets is not completely covered in contrast to a classic Pickering emulsion showing long term stability. Presumably, the stability of the w/o emulsions is enhanced by the lipophilic gel phase which is formed by the TE. In conclusion the TE allows to formulate a plant based and long-term stable emulsifier-free w/o system without any further ingredients. References: [1] Laszczyk, M.N. et al. (2006) Planta Med. 72:1389 – 1395. [2] Stillier, S. et al. (2004) Colloid Surface A 232:261 – 267. [3] Jäger, S. et al. (2008) Molecules 13:3224 – 3235.

PI16
Bornyl acetate conversion enhancement by pervaporation in ionic liquid
Izak P1, Hovorka S1, Randova A2, Bartovska L2, Afnosi CAM3, Crespo JC1
1 Institute of Chemical Process Fundamentals, Rozvojova 135, 16502 Prague 6, Czech Republic; 2 Department of Physical Chemistry, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic; 3 Dept. de Química, FCT, Universidade Nova de Lisboa, P-2829 – 516 Caparica, Portugal

The case study selected in this work involves the esterification of (-)-bornyl acetate with acetic acid in order to produce (-)-bornyl acetate. This compound is a valuable chemical for industries fresheners; (-)-bornyl acetate is a pre-intermediate for the production of camphor. A promising way to improve conversion consists in coupling the esterification reaction with a pervaporation process, able to selectively recover the reaction products in situ [1]. This work is focused on the study of a catalyzed esterification reaction, taking place in the ionic liquid [bmim][BF4], while one of the reaction products (water) is removed by pervaporation. In situ extraction of water from the reaction medium allowed shifting the reaction towards formation of the desired product. Conversion of the reactants during esterification was followed with and without integration of the pervaporation process, under exactly the same conditions (surface, volume of ionic liquid, concentration of reactants and catalyst, temperature), in order to determine the exact impact of pervaporation on the overall process performance. Due to the selective removal of water from the reaction medium by using an integrated reaction-pervaporation system it was possible to increase the

PI17
Bornyl acetate conversion enhancement by pervaporation in ionic liquid
Izak P1, Hovorka S1, Randova A2, Bartovska L2, Afnosi CAM3, Crespo JC1
1 Institute of Chemical Process Fundamentals, Rozvojova 135, 16502 Prague 6, Czech Republic; 2 Department of Physical Chemistry, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic; 3 Dept. de Química, FCT, Universidade Nova de Lisboa, P-2829 – 516 Caparica, Portugal

The case study selected in this work involves the esterification of (-)-bornyl acetate with acetic acid in order to produce (-)-bornyl acetate. This compound is a valuable chemical for industries fresheners; (-)-bornyl acetate is a pre-intermediate for the production of camphor. A promising way to improve conversion consists in coupling the esterification reaction with a pervaporation process, able to selectively recover the reaction products in situ [1]. This work is focused on the study of a catalyzed esterification reaction, taking place in the ionic liquid [bmim][BF4], while one of the reaction products (water) is removed by pervaporation. In situ extraction of water from the reaction medium allowed shifting the reaction towards formation of the desired product. Conversion of the reactants during esterification was followed with and without integration of the pervaporation process, under exactly the same conditions (surface, volume of ionic liquid, concentration of reactants and catalyst, temperature), in order to determine the exact impact of pervaporation on the overall process performance. Due to the selective removal of water from the reaction medium by using an integrated reaction-pervaporation system it was possible to increase the
The Acai berry (Euterpe oleracea) is a tropical fruit from the Amazon region [1]. It has long been consumed as part of the traditional Brazilian diet. The main component of Acai berry is anthocyanin, which has been reported to have antioxidant effects [2]. In this study, we investigated the whitening effects of the Acai berry on the B16F10 melanoma cell. The powder of freeze-dried Acai fruit was extracted by water at 60°C temperature. We examined melanin content (IC50=99.96 μg/ml) dose-dependently, and investigated whether ERK activation by water extract is related to MITF and tyrosinase down-regulation. The ERK pathway is involved in the melanogenic signalling cascade [3], and that ERK activation by water extract reduced melanin synthesis via MITF down-regulation, tyrosinase levels also decreased. In conclusion, the Acai berry indicated that it could decrease the melanin content. Therefore, we expect the whitening effects of the Acai berry may be a possible candidate for further functional foods or cosmetic research. References: [1] Lichtenhaler, R. et al. (2005) Int. J. Food Sci. Nutr. 56:53 – 64. [2] Schauss, A.G. et al. (2006), Agric. Food Chem. 54:8604 – 8610. [3] Englaro, W. et al. (1998), Biol. Chem. 273:9966 – 9970.

Melanogenesis is a physiologic process resulting in the synthesis of melanin pigments. Although melanin plays an important role in protection against UV [1], the overproduction of melanin can cause a large number of skin diseases, including hyperpigmentation such as melasma, freckles, etc. [2]. Vaccinium uliginosum is one of the Berries of Vaccinium genus in Ericaceae family. Its habitat includes Backdoor Mountain North Korea, Europe, and North America. Organic acids, vitamins, glycosides and anthocyanins are known as main components of this plant. However, few biological studies have been reported about it. To investigate the physiologic new function of Vaccinium uliginosum L, the effects on melanogenesis were studied. Treatment with Vaccinium uliginosum L extract for 72 h inhibited melanogenesis (IC50:500 μg/ml) and tyrosinase activity (64% in highest dose, % of CTL) in B16F10 melanoma cells. However, Vaccinium uliginosum L extract showed hardly inhibitory effect on mushroom tyrosinase (93.5% in highest dose, % of CTL) Also, the present study was conducted to investigate antimalelanogenesis effect of Vaccinium uliginosum L extract on ultraviolet radiation B (UVB)-irradiated C57BL/6 mice. Histological examination revealed that the number of 3,4-dihydroxyphenylalanin (DOPA)-positive melanocytes increased by ultraviolet radiation B (UVB) irradiation was decreased by oral administration of Vaccinium uliginosum L extract. These results suggest that Vaccinium uliginosum L has an inhibitory effect on melanogenesis and its inhibitory effect was associated with indirect inhibitory effect of tyrosinase References: [1] Oetting, W.S. (2002) Pigm. Cell Res. 13:320 – 325. [2] Sugumaran, M. (2002) Pigm. Cell Res. 15:2 – 9.

Effect of essential oil from Citrus aurantium and its main compound limonene on quantity of PGE2 and mucus production in gastric mucosa Moraes TM, Hiruma-Lima CA Department of Physiology, Biosciences Institute, cp.510, São Paulo State University, Botucatu – SP, CEP 18618 – 000, Brazil

The previous finding of an anticytotoxic effect from essential oil of Citrus aurantium L. (Rutaceae) / OEC and its main compound limonene (LIM) has provided continuity for research seeking to clarify their anticytotoxic action mechanisms. Models for gastric ulcer induction by non-steroidal antiinflammatory drugs (DAINE) [1], for the quantification of gastric mucus [2] and the quantification of prostaglandin PGE2 in the gastric mucosa have been established [3]. The dose of LIM (245 mg/kg) used in the experiments was calculated based on both the amount of the compound in the OEC (97%) and on determination of the most effective OEC dose (250 mg/kg). In models of gastric ulcers induced by DAINE, the OEC and LIM were effective in gastric protection, both showing 99% protection (p<0.05) in relation to control animals. In the PGE2 quantification model, even with the joint administration of DAINE (Indomethacin 30 mg/kg sc), a PGE2 inhibitor, the OEC and LIM were able to maintain high PGE2 levels similar to control groups, without changing basal PGE2 levels (p>0.05). The same did not occur in groups that were treated with vehicle and DAINE, since DAINE provoked a 60.2% drop in PGE2 levels in the gastric mucosa of these animals (p<0.05) in relation to control group. Groups treated with OEC and LIM presented significantly increased gastric mucus (mg/g tissue) secreted in the stomach: vehicle 1.8 ± 0.17 OEC 3.0 ± 0.26 ** and LIM 2.7 ± 0.23 *(p<0.05). The data show that OEC and LIM modulated the amount of PGE2 in the gastric mucosa without inducing immunohistochemical level reductions, which is just what the anticytotoxic effects observed and resulted rise in gastric mucus production. References: [1] Puscas, L.A. (1997) Arznei-Forschung. 47: 568 – 572. [2] Rafatullah, S. (1990), Ethnicpharmacol. 29:25 – 34. [3] Curtis, G.H. (1995) Can. J. Physiol. Pharmacol. 73:130 – 134.
The aim of this study was to evaluate free radical scavenging and anti-tyrosinase activities of the ethanolic extract of guava leaf (Psidium guajava Linn.). Anti-free radical and anti-tyrosinase activities were used as the outcome of the antioxidant and whitening properties. The percentage of free radical inhibition was evaluated by DPPH assay compared to the standard gallic acid. The percentage of tyrosinase inhibition was examined by Dopachrome method compared to the standard arbutin. The results of free radical scavenging activity of the guava leaf extract was found to be IC_{50}= 53.19 mg/ml compared with gallic acid (IC_{50}= 5.21 mg/ml). The anti-tyrosinase activity was shown to be IC_{50}= 9.86 mg/ml compared with arbutin (IC_{50}= 7.3 mg/ml). Gallic acid, one of the phenolic compounds in the ethanolic extract of guava leaf, was measured by HPLC technique to be 3.07 mg/ml. The guava leaf may be a potential source of natural antioxidant and whitening agents which could be incorporated into a range of cosmetics and health products.
The abiotic effects of different doses of saffron (Crocus sativus) decoction in mice
Hosseini SM 1, Dashi RMB 2, Anvari M 3, Zeinali P 4
1Pharmaceutical school, Isfahan University of Medical Sciences, Isfahan, Iran; 2Dept of physiology/Herbal Medicine Research Center, Shaheed Sadoughi medical university, Yazd, Iran; 3Dept of Biology and Anatomical Sciences/Research and Clinical Center for Infertility, Shaheed Sadoughi medical university, Yazd, Iran; 4Pharmaceutical school, Isfahan University, Isfahan, Iran

The aim of this study was to assess the evidences for the effects of saffron consumption on abortion and congenital disorders [1–3]. 65 female BALB/c mice, weighting 25–30 grams, were bred in animal house of medical college. The first day of pregnancy was the day on which the vaginal plaque was observed. The pregnant mice were divided into 13 subgroups. Each pregnant animal was placed in a separate cage throughout the gestational period and were fed in the same conditions. Animals in control group received tap water but the test groups received different concentration (0.8, 0.4, 0.2%). of aqueous saffron decoction in whole or only in 1st, 2nd or 3rd trimesters of gestational period. In 18th day of pregnancy, animals were anesthetized and their fetuses were extracted through a cesarean section. The placenta was excised, weighed, and the number and placement of implantation sites, Live, dead and resorbed fetuses were recorded. All fetuses were stereo microscopically examined for any morphological abnormalities. According to our findings the mean number of live fetuses in animals receiving 0.8% saffron solution and mostly those who were received the decoction on 2nd trimester or whole gestational period were significantly less than control group. The mean number of resorbed fetuses in test groups were dose dependently greater than control group (p < 0.05). Maximum number of dead fetuses was for animals receiving saffron solution on 2nd trimester. Some developmental abnormalities were observed only in animals in solutions in whole gestational period. Saffron’s components especially in high doses and in 2nd gestational trimester affect embryonic implantation, organogenesis and may lead to abortion. References: [1] Abdullaev, F.I. (1993) Biofaciliter 28:426–432 [2] Abdullaev, F.I. (1993) Biofaciliter 13:121–127.

The effects of different concentrations of saffron (Crocus sativus) decoction on preterm delivery in mice
Zeinali P 1, Anvari M 3, Dashi RMB 2, Hosseini SM 1
1Pharmaceutical school, Isfahan University of Medical Sciences, Isfahan, Iran; 2Dept of biology and Anatomy Sciences/Research and Clinical Center for Infertility, Shaheed Sadoughi medical university, Yazd, Iran; 3Dept of Physiology, Shaheed Sadoughi medical university, Yazd, Iran

It has been suggested that saffron increases the myometrial contractions and may lead to the abortion. The present study was conducted to assess the effects of non toxic concentrations of aqueous saffron decoction on preterm delivery in mice. In this study 65 female BALB/c mice, weighting 25–30 grams, were bred in the animal house of medical college by keeping the ratio of male: females as 1:3, in each plastic cage. The females were fed powdered daily for 2 days, after which the vaginal plaque was observed, was considered as the first day of pregnancy. The pregnant rats were divided into 7 subgroups and placed in separate cages throughout the gestational period and were fed in the same conditions. Animals in control group received tap water but the test groups received different concentrations (0.8%, 0.4%, & 0.2%) of aqueous saffron decoction in whole gestational period or only in 1st, 2nd or 3rd trimesters of gestational period. All animals had natural childbirth. Parturitions in 19th, 20th and 21th days of pregnancy was considered as normal delivery but deliveries before 19th day, were considered as preterm delivery. According to our findings the mean number of preterm delivery in animals receiving saffron decoction was dose dependently more than control group. Maximum preterm deliveries were observed in animals receiving different concentrations of aqueous saffron decoction on 3rd trimester or whole gestational period especially for 0.4% & 0.2%. Data collections in this study indicate that saffron consumption especially in last trimester of gestation can lead to preterm delivery. Preterm delivery may be due to increase in uterine contractions. References: 1. Sadraei, H. et al., Int. J. Aromatherapy 13:121–127.

Polyphenol content of aqueous preparations of three chemotypes of Lippia alba Mill. N.E. Brown (Verbenaceae) by HPLC/DAD/ESI-MS
Timóteo P 1, Arriotti A 2, Leitão SG 3, Vincieri FF 3, Bilò AR 3
1Department of Plant Pharmacology and Phytochemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; 2Faculty of Pharmacy, Federal University of Rio de Janeiro, Bloco A, 2 andar, Ilha do Fundão, 21941 – 590, Rio de Janeiro, Brazil

A number of Lippia species (Verbenaceae) [1,2] are used for food preparations and largely employed in folk medicines. In continuing our studies on Lippia genus, we now report on the polyphenol content of three different chemotypes of Lippia alba Mill N.E. Brown. Lippia species are characterized by the presence of phenylpropanoids, namely verbascoside and correlated molecules and flavonoids [3,4]. Recently, three chemotypes of L. alba have been classified according to the different percentages of cirital [chemotype I], carvone [chemotype II] and linalool [chemotype III] in the essential oil [5]. A rapid and efficient HPLC-DAD/MS assay was optimized and validated for the aqueous preparations of the three chemotypes of Lippia alba. The analytical method attended a satisfactory accuracy, specificity and reproducibility. Furthermore, a good separation of the different classes of constituents, iroidis, flavonoids and phenylpropanoids was performed. The aqueous preparations were lyophilised and submitted to the HPLC analysis s. All infusions had a lower content of polyphenols whencompared with the corresponding decocations. The highest concentrations of total flavonoids were found in the deconcasions of the leaves of chemotypes II (250 mg/g) and III (235 mg/g), while chemotype I showed a content of about 12 mg/g. Total phenols Ds I and III were 135 mg/g, while the content of phenylpropanoids in chemotype II was 180 mg/g. Chemotypes II and III of Lippia alba represent a good source of antioxidants, and decoction could be a simple and efficient extraction method of polyphenols. Acknowledgements: This study was supported in...

Essential oils of Dendettia tripelata Bak. f. stem bark and leaf. Constituents and biological activities

Cribale A. Aracri R. D’Arritto M. Olorumomo FO. Biondi DM. Roubeto G.

1) Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Sagamu Campus, Ogun State, Nigeria; 2) Dipartmento di Biologia, Università di Messina, Contrada Annunziata, I-91828 Messina, Italy; 3) The Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ilé-Ife, Nigeria; 4) Institute del C.N.R. di Chimica Biomolecolare Via del Santuario, 118-95028 Valverde CT, Italy.

Dendettia tripelata Bak. f. (Annonaceae) is a rain forest tree esteemed for its fruits and young leaves which are chewed on account of their pungent spicy taste. [1] Previous workers have documented the chemical constituents of the fruits [2], while Adeoti et al. reported leaf oil constituents from Benin [3]. We therefore analysed constituents of the stem, bark and leaf oil of the Nigeria-grown plant by combined GC and GC-MS, and also evaluated them for antimicrobial and anti-trichomonal activities, and protective effect against UVC-induced photodestruction. Both oils showed distinct chemical composition, in that leaf oil comprised seven components while stem bark oil had thirty. In both cases, 2-phenyl nitroethane was the preponderant component (over 70%), in addition to linalool (17.8%). Staphylococcus aureus was the only susceptible microorganism to both oils, and stem bark oil showed better antimicrobial activity (MIC, 62.50 mg/ml). Both oils also showed moderate protective effect against UV radiation-induced damage in biomembranes, with the stem bark oil being more active. Anti-trichomonal activity of leaf oil was comparable to that of metronidazole. 1. Burkill, H.M. (1985) The Useful Plants of West Tropical Africa (Families A-D) Royal Botanic Gardens, London. 2. Osisigou, I.U.W. et al. (1975) Planta Med. 27:287 – 289. 3. Adeoti, S.B. et al. (2000). J. Essent. Oil Res. 12:412 – 414.

Microwave-assisted hydrodistillation of essential oil from cherry laurel (Prunus laurocerasus) leaves

Stanisavljević I., Lazić M., Radulović N., Veljkić V.

1) Faculty of Technology, 124 Bulevar oslobođenja St., 16000 Leskovac, Serbia; 2) College Of Agriculture And Food Technology, St. 18, Petrovaradin, Serbia; 3) Chemical Industry Nevena A.D., Đorđa Stamenković St., 16000 Leskovac, Serbia

Microwave-assisted hydrodistillation, a combination of microwave heating and hydrodistillation, was engaged to isolate essential oil from cherry laurel (Prunus laurocerasus) fresh leaves. Extraction experiments were carried out at atmospheric pressure in an electrically and mechanically modified microwave oven at different levels of power (150, 300, 450 W). All the experiments were continued until no more essential oil was obtained. The essential oil composition was determined by GC-MS. Each of the experiments were carried out in three replicates, and results were expressed as mean ± standard deviation. The optimum time was approximately 10 min for hydrodistillation under 450 W and 300 W, or 20 min under 150 W microwave power, ensuring nearly the maximum yield of oil, which was 0.38 ± 0.005 ml/100 g fresh leaves. When 450 W microwave power was used in microwave-assisted hydrodistillation, time was reduced twice or thrice compared with the processes under 300 W and 150 W, respectively. All the oils were rich in benzaldehyde (about 90%) a component of interest to the perfume and dyes industries [1 – 3] and also known as artificial almond oil [4] although 2-phenenallic, benzoic acid and mandelonitrile were also present. Composition of the oils was similar to each other and depended on the microwave power input. The content of benzaldehyde was increased, while the content of benzoic acid and mandelonitrile were reduced by increasing the microwave power from 150 to 450 W. Acknowledgements: Ministry of Science and Environmental Protection, Republic of Serbia project 142073b. References: [1] MacEwen, E.G. (1986) Am. J. Vet. Res. 47:451 – 452. [2] Kochi, M. et al. (1980) Cancer Treat. Rep. 64:21 – 23. [3] Kochi, M. (1985) Cancer Treat. Rep. 69:533 – 537. [4] Burdock, G.A. (1996) Encyclopedia of Food and Color Additives. CRC Press. Boca Raton.
The qualitative and quantitative composition of the essential oils obtained from wild Sicilian officinal plants has been investigated. The aim of this study is to promote the cultivation and the possible exploitation of the aromatic plants, which have for long time been considered a poor source of profit. Due to growing market demand and their low cost of cultivation, aromatic plants are being revaluated for their commercial exploitation [1]. The main goal of this study is thus to obtain extensive information on the wild species, in order to achieve the best methods for controlled cultivation and give a standardized product. This will avoid the indiscriminate harvesting of wild material which, among the other negative aspects, does not guarantee qualitative homogeneity in the long run. Oregano, rosemary, thyme, sage and fennel from the whole of Sicily were sampled. Altogether, 175 samples were collected during the years 2006–2007, hydrodistilled and analyzed by GC-MS in order to obtain aromatic profiles. More than 95% of the total composition for each sample was clarified and all data were statistically analyzed in order to determine the relationship between the different samples using the percentage composition of their essential oils. Euclidean distance was selected as a measure of similarity. A broad picture of Sicilian wild officinal plant composition emerges from this study. The characteristics and the phytochemical richness, reported here, represent a patrimony to be protected and, at the same time, exploited with the aims previously described. Reference: [1] Dordas, C. (2009) Ind. Crop. Prod. 29:599–608.

PI37

Screening of the essential oil composition of Sicilian officinal plants

Napoli EM, Curcurato G, Strano T, Roberto G
Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Gaiamini 18, 95126 Catania – Italy

The methanolic extracts of *Zanthoxylum planispinum* leaves from south Korea were screened for their antioxidant properties, tyrosinase inhibition and antibacterial activities to apply as a functional ingredient for cosmetic products. The level of total phenolics and flavonoids of the leaves extracts were determined by UV/VIS spectroscopy. The extract was used for the in vitro evaluation of antioxidant, antibacterial, anti-tyrosinase activities of *Zanthoxylum planispinum*. The methanolic extracts of *Zanthoxylum planispinum* leaves had good phenolic (391 mg/g) and flavonoid (187 mg/g) contents and showed strongest activity of antioxidant, antibacterial, anti-tyrosinase activities.

References:

PI36

In vitro evaluation of antioxidant, antibacterial, anti-tyrosinase activities of *Zanthoxylum planispinum*

Hwang SJ1, Pak SC2
1Department of Biology, College of Natural Sciences, Chonnam National University, Gwang-ju 500 – 757, S. Korea; 2School of Biomedical Sciences, Charles Sturt University, Bat, Australia

The methanolic extracts of *Zanthoxylum planispinum* leaves from south Korea were screened for their antioxidant properties, tyrosinase inhibition and antibacterial activities to apply as a functional ingredient for cosmetic products. The level of total phenolics and flavonoids of the leaves extracts were determined by UV/VIS spectroscopy. The extract of *Zanthoxylum planispinum* leaves had good phenolic (391 mg/g) and flavonoid (187 mg/g) contents and showed strongest activity of antioxidant-related enzymes including SOD, CAT, and APX. IC50 value of the extracts against mushroom tyrosinase was 5.3 mg/ml which is about 3 times more effective than BHT and α-tocopherol. The extracts also showed the best antimicrobial activity from gram-negative bacteria to gram-positive bacteria with MIC value as low as 20 μg/disc.

References:

PI38

Chemical composition, antimicrobial and antioxidant activities of the essential oil of *Guizotia scabra* and *Microglossa pyrifolia* from Rwanda

Mukazavire MJ1,2, Tomani JC2, Chalchat JC3, Stévigny CI1,2, Duez P1
1Université Libre de Bruxelles (ULB), Laboratory of Pharmacognosy, Bromatology and Human Nutrition, CP 205 – 9, B-1050 Brussels, Belgium; 2Institute of Research Science and Technology (I.R.S.T.), Center of Research in Phytomedicine and life Science, B.P. 227 Butare, Rwanda; 3Laboratory of Photochemistry Molecular and Macromolecular, Chemistry of Essential Oils, Blaise Pascal Clermont University, 63177 Aubière Cédex, France

Alpinia species (Family Zingiberaceae) are used as a food additive, spice and in indigenous system of medicine. In the present study, germplasm of three different species of Alpinia viz; Alpinia galanga (7 accessions), Alpinia calcarata (5 accessions), and Alpinia officinarum (1 accession), were collected from different locations of South and Northeast regions of India were studied. The essential oils from rhizomes of these Alpinia species were isolated by hydrodistillation. The oil percentage was maximum in A. calcarata (0.73 – 1.26%), followed by A. galanga (0.27 – 0.56%) and A. officinarum (0.21%). These essential oils were analyzed by capillary GC and GC-MS. Around thirty compounds were identified in these species. The major component was 1,8-cineole, which was present in all three species, its percentage ranged from 40.92 – 72.94% in A. galanga, 32.5 – 46.77% in A. calcarata and 44.17% in A. officinarum. Our South Indian collections were found belonging to cineole rich chemotype, out of five chemotypes of the A. galanga reported in earlier studies [1 – 3]. These species differed as A. calcarata contained substantially high content of α-fenchyl acetate (13.74 – 27.39%) followed by A. officinarum (8.91%) whereas it was negligible in A. galanga. Other compounds found in appreciable amounts in A. calcarata were α-pinene (2.48%), camphene (6.02%), β-pinene (4.14%), camphor (5.27%), α-terpinen (6.44%) and methyl cinnamate (2.68%). Essential oil composition of A. officinarum showed α-pinene (1.99%), camphene (3.16%), β-pinene (5.66%), camphor (2.51%), α-terpinen (6.35%), α-fenchyl acetate (8.91%) and methyl cinnamate (1.88%). The drugs prepared from the A. galanga and A. calcarata are used in the treatment of rheumatism, bronchial catarrh, asthma and in reducing pain. 1,8-Cineole is an important aroma chemical reported to possess expectorant, antiseptic and anesthetic properties and is used widely in pharmaceutical preparations. Therefore, there is a promising possibility to utilize this plant species native to South India for industrial purpose. References: [1] Scheffer, C.J. et al. (1981) Sci. Pharm. 49:337 – 346. [2] Herman, L. et al. (1985) Phytochemistry 24: 93 – 96. [3] Charles, D.J. et al. (1992) J. Essent. Oil Res. 11:719 – 723.
Epidemiological studies show that tea drinkers exhibit lower risk for developing cardiovascular diseases. However, the pharmacological mechanism behind this effect is unknown. Previous studies in vitro have shown inhibition of angiotensin-converting enzyme (ACE) by green and black tea [1]. The aim of this project was to investigate the effect of Camellia sinensis L, green tea (Japanese Sencha), black tea (Indian Assam B.O.P.), and Aspalathus linearis Dahlh., Rooibos tea on ACE activity after oral intake. Seventeen healthy volunteers received a single oral dose of 400 ml green tea, black tea or Rooibos tea in a randomized three-phase cross over study. ACE activity was measured (at 0, 30, 60 and 180 minutes) in all three phases. ACE activity was analysed with a commercial radioenzymatic assay. In addition, ACE genotype was determined using a PCR method. After oral intake, a single dose of Rooibos tea significantly inhibited ACE activity, p < 0.01 after 30 min and p < 0.05 after 60 min was seen. A significant inhibition of ACE activity was also seen with the green tea for the genotype II p < 0.05, 30 minutes after intake of the tea and for the genotype ID p < 0.05, 60 minutes after intake. A significant inhibition of ACE activity was also seen with the Rooibos tea for genotype II p < 0.05, 60 minutes after intake. In conclusion, intake of green tea and Rooibos tea significantly inhibit ACE activity and may affect blood pressure regulation and thereby prevent cardiovascular diseases. Reference: [1] Persson, LA-L. et al. (2006). Parm. Pharmacol. 58:1139 – 1144.

The interest in medicinal plant research has increased in recent years, especially for the treatment of pathologies related to aging such as Alzheimer’s disease (AD). Natural products such as rivastigmine and galantamine act as acetylcholinesterase inhibitors (AChE) and are actually the only effective treatment for AD. Plants of the genus Citrus are primarily valuable for their edible fruit, but they also have traditional medicinal value. The peel of Citrus fruits has been used in traditional Asian medicine for centuries [1,2]. Citrus medica L. cv. Diamante (Diamante citron), known as Italian and Calabrese, is the cultivar more diffused in Italy and more sought by industry. Our previous study reported the chemical composition and the biological activity of Diamante citrus peel n-hexane extract [3]. In this work the anticholinesterase activity by the inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes of Citrus medica cv. Diamante peel essential oil assessed by the modified Ellman’s method was investigated to explore the beneficial effects of this citrus cultivar [4]. The chemical composition of the essential oil of C. medica L. cv. Diamante peel obtained by hydrodistillation was determined by GC/MS analysis. A total of forty-two components, representing 95.3% of the total oil, were identified. Limonene and γ-terpinene were the major components; the other most abundant were geranial, neral, α-pinene and β-pinene. The essential oil exerted an interesting inhibitory activity against BChE with an IC50 value of 154.6 μg/ml and AChE with an IC50 value of 171.3 μg/ml. References: [1] Blumenthal, M. et al. (1998) The Complete German Commission and Monographs: Therapeutic Guide to Herbal Medicines. American Botanical Council, Austin. [2] Wichtl, M. and Bisset, N.G. (1994) Herbal Drugs and Phytopharmaceuticals. Trans from 2nd German ed., Medpharm Scientific Publishers, Stuttgart. [3] Conforti, F. et al. (2007) Phytother. Res. 21:427 – 433. [4] Perry, N.S.L. et al. (1992). Pharm. Pharmacol. 52:895 – 902.

The increasing resistance of Candida towards antifungal compounds and the reduced number of available drugs has resulted in a search for new therapeutic alternatives. The objective of this study was to examine in vitro antifungal activity and susceptibility of Candida species to Solanum lycopersicum leaves and Punica Granatum in 60% ethyl alcohol extracts, and to present the results of studies concerning antifungal efficacy. Candida species were isolated from different hospital patient samples. The Mueller Hinton agar was inoculated with Candida species isolates and after inoculation 6 mm diameter wells were made in the agar. Leaves plant extract was added directly to each well. 60% ethyl alcohol plant extract was added to one well as a control. The plates were incubated at 37 °C for 24/48 hour and the growth of Candida species was observed. The inhibition zone of antifungal susceptibility was measured in mm. The highest alcohol extract dilution added to the agar and showing no visible Candida species growth after incubation was regarded as the MIC. MFC is defined as the lowest concentration of alcohol extract which when added to an agar medium shows no Candida sp. growth after incubation. The 100% susceptibility results of Candida sp. are encouraging and indicate the potential use of Solanum lycopersicum and Punica Granatum in the control of selected phytopathogenic fungi. Reference: [3] Tuner, R.A. and Hebborn, P. (1971) Screening Methods in Pharmacology. Academic Press New York, London, v.l.

Lagos is a huge metropolis which originated on islands separated by creeks. The city is the economic and financial capital of Nigeria. Intensive research in wound healing has not yielded, economic and effective pro-healing agents that could alleviate the long hospitalization of patients following surgery and wound infliction. An ethnobotanical study was carried out among women herb sellers who live in the central part of Lagos, Nigeria. Verbal information on the medicinal plants was obtained through unstructured questionnaire administered by interview in the local language spoken by the herb sellers in the study area. The local name, parts of plants used, mode of preparation and administration were recorded and literature searches carried out for the evaluation on the current status of investigations on these plants. Specimens were purchased in order to collaborate economically with their time and to gain their confidence. In this study, 22 species of plants, belonging to 18 plant families, which are commonly used for the treatment of wounds, are presented. The plants are used as first aids, in the washing of wounds, extraction of pus, as well as on infected wounds. Taxonomic distribution shows bark (36.7%), root (27.2%), leaves (9.1%), juice (22.5%) and rhizome (4.5%). Methods of preparation varies and they are species specific viz: plant parts applied at a paste, juice extracted from the fresh plant parts, powder made from fresh or dried plant parts, some fresh plant parts, and decoction. The most frequently used preparations are decoctions and powdered plant material.

Recent investigations on the pharmacokinetics of levodopa (L-Dopa) indicated that the presence of Helicobacter pylori (HP) in Parkinson dis-
ease patients, orally treated with L-Dopa, influences the absorption of this compound, which consequently leads to decreased plasma levels [1,2]. Therefore this work aims to study a potential in vitro interaction of L-Dopa with HP and its surface adhesin. Free L-Dopa was quantified from the incubation supernatants with HP by HPLC. A flow cytometric assay with fluorescence labelled HP was used to investigate the interaction of L-Dopa on the bacterial adhesion of HP. FITC-labelled bacteria were preincubated with L-Dopa, followed by incubation with gastric epithelial cells (AGS) and flow cytometric analysis. Quantitative evaluation of time and concentration dependent incubation experiments indicated a significant decrease of L-Dopa concentrations when getting in contact with HP. The reduction of L-Dopa concentrations was determined with 47 to 12% referred to the initial starting concentration, with time-dependency and dependency of the HP density. FITC-labelled HP, preadsorbed with differing L-Dopa concentrations, was shown to have a significant (p < 0.05) reduced bacterial adhesion to AGS cells with maximum reduction of 22 ± 9%. These results demonstrate a direct interaction of L-Dopa with outer membrane proteins of HP, responsible for the adhesion to gastric epithelial cells. By this interaction the unbound L-Dopa concentration in bacterial suspension was strongly reduced. This study suggests a potential in vitro interaction of L-Dopa with HP adhesins, confirming the clinical changes found in pharmacokinetics of L-Dopa therapy by HP-positive Parkinson patients. References: [1] Pierantozzi, M. et al. (2004) Am. Neurol. 50:686 – 687. [2] Pierantozzi, M. et al. (2001) Neuroul. Sci. 22:89 – 91.

PJ7

Diacaffeoylquinic acid ameliorates chronic dermatitis caused by trinitrochlorobenzene

Giner RM, El Alami M, Mátiez S

Departament de Farmacologia, Facultat de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain

Although the animal models of skin inflammation designed to mimic atopiform dermatitis (AD) do not completely reproduce the pathology, they are of importance as research tools to develop new approaches to therapy. Repeated application of 2,4,6-trinitrochlorobenzene (TNCB) at 2-days intervals results in a site-restricted shift in the time course of antigen-specific hypersensitivity responses from a typical delayed-type to an immediate-type hypersensitivity followed by a late reaction, a finding often seen in skin lesions of AD patients [1]. This communication reports the effect of 2-isoprenylhydroquinone-1-glucoside (IHG) and 3,5-dicaffeoylquinic acid (DCA) isolated from Phagnalon rupestre (Asteraceae) [2], on a mouse model of dermatitis induced by repeated application of TNCB. BALB/c mice were sensitized with 0.3% TNCB applied to the both ears on day-7, followed by application to the same site three times a week from day 0 to 21 [3]. IHG and DCA (0.5 mg/ear) and the reference drug dexamethasone (0.025 mg/ear) were topically applied to both ears 30 min after challenge. Ear thickness was measured immediately before sensitization and 24 h after elicitation with TNCB. All three phenolics significantly reduced ear thickness at 24h after challenge. IHG inhibited the edema by 50% whereas the effect of DCA and DCE was lower (38 and 39% inhibition, respectively). The levels of TNF-α and IL-2 content by 53% and 39%, respectively, whereas DCE reduced these levels by 39 and 43%, respectively. Dexamethasone inhibited the edema by 82% and cytokine contents by over 65%. These results suggest that the three alkylphenols might alleviate CHS-associated inflammatory reaction by reducing the levels of cytokines locally released in the lesioned skin. Acknowledgements: This work was supported by the Generalitat Valenciana (GVPR/2008/155) and by the Spanish Ministry of Science and Technology (SAF 2006-06726). References: [1] Góngora, L. et al. (2002) Planta Med. 68:561 – 564. [2] Olmos, A. et al. (2007) Br. J. Pharmacol. 152:366 – 373. [3] Martin, S.F. et al. (2008) J. Exp. Med. 205:2151 – 2162.

PJ9

Phytochemical investigations on the composition of phenols and carbohydrates of Myrtus communis L., indigenous to southern parts of Africa is traditionally used for infections of the respiratory and urinary system and well known for its ability to withstand dry seasons up to one year without fatal damages [1]. Besides the occurrence of osmotica, strong antioxidant systems [2] and physical adaption to intense solariation [3], this species obviously uses condensed tannins and thorough galleyaloyation of other substance-classes as a form of natural sunscreen [4]. To characterise the chemical characterisation of the plant, isolation procedures towards purified compounds were performed using Sephadex-LH20, MCI-CHP20P, RP-18 and RP-8 stationary phases in LPLC-, MPLC and HPLC-systems as well as HPLC and RP-8 stationary phases in LPLC- and HPLC-systems as well as HPLC and RP-8 stationary phases in LPLC- and HPLC-systems. Sugar analysis was accomplished using CE [5], HPAEC-PAD and an enzymatic fructan-assay. The flavonoid fraction was shown to be composed of quercetine and kaempferol, with the respective 3-O-β-D-glucosides, 3-O-β-D galactosides-, 3-O-α-L rhamnoses- and 3-O-β-D-glucuronides. Additionally, the kaempferol- and quercetin-3-neotropol-3'-O-glucoside exist at varying levels of galloylation. Furthermore, different galloylated forms of quinic acid, 2,3,4,5-di-O-galloyl-α-arbutin and 2-O-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxyphenylecetic acid were identified. To characterise the carbohydrate part of plant material, the fructan content was determined with 2.1%. Dependent on the respective batch of dried material, trehalose content was calculated to be 3.3 – 4.5%, as well as raffinose and stachyose with 0.2 – 0.3% each. The three alkylphenols, 2-isoprenylhydroquinone-1-glucoside (IHG), 3,5-dicaffeoylquinic acid (DCA) and its methyl ester (DCE), isolated from Phagnalon rupestre (Asteraceae) [1], have previously been demonstrated to possess anti-inflammatory and anti-allergic properties [2]. The present communication reports their effects on the contact hypersensitivity (CHS) response to 2,4,6-trinitrochlorobenzene (TNCB) in mice assessed by ear swelling and cytokine induction determinations. BALB/c mice were sensitized with 10μl of 7% TNCB applied to the shaved abdomen on day-7, followed by epicutaneous application of 20μl of 1% TNCB to both ears on day 0 for elicitation [3]. IHG, DCA and DCE (0.5 mg/ear), and the reference drug dexamethasone (0.025 mg/ear) were topically applied to both ears 30 min after challenge. Ear thickness was measured immediately before sensitization and 24 h after elicitation with TNCB. All three phenolics significantly reduced ear thickness at 24h after challenge. IHG inhibited the edema by 50% whereas the effect of DCA and DCE was lower (38 and 39% inhibition, respectively). The levels of TNF-α and IL-2 content by 53% and 39%, respectively, whereas DCE reduced these levels by 39 and 43%, respectively. Dexamethasone inhibited the edema by 82% and cytokine contents by over 65%. These results suggest that the three alkylphenols might alleviate CHS-associated inflammatory reaction by reducing the levels of cytokines locally released in the lesioned skin. Acknowledgements: This work was supported by the Generalitat Valenciana (GVPR/2008/155) and by the Spanish Ministry of Science and Technology (SAF 2006-06726). References: [1] Góngora, L. et al. (2002) Planta Med. 68:561 – 564. [2] Olmos, A. et al. (2007) Br. J. Pharmacol. 152:366 – 373. [3] Martin, S.F. et al. (2008) J. Exp. Med. 205:2151 – 2162.

PJ8

Effect of alkylphenols from Phagnalon rupestre on trinitrochlorobenzene-induced hypersensitivity

Giner RM, Giner-Ventura E, Reijo MC, Mátiez S

Departament de Farmacologia, Facultat de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain

The three alkylphenols, 2-isoprenylhydroquinone-1-glucoside (IHG), 3,5-dicaffeoylquinic acid (DCA) and its methyl ester (DCE), isolated from...
Antimalarial and cytotoxic properties of South African Agathosma species

van Zyl RL
Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa

The increasing prevalence and spread of drug resistant Plasmodium falci-
parum malaria parasites has increased efforts in the discovery of new chemically diverse antimalarial agents. Traditional phytomedicines have
been the source of quinine (Cinchona pubescens) and artemisinin (Arte-
misia annua). Southern African species of Agathosma have been used in
the treatment of clinical symptoms associated with malaria. The anti-
ma
larial activity of 17 indigenous species along with the specificity of
their inhibitory action and cytotoxic properties were investigated in
vitro. As such, the antimalarial activity of 19 acetone extracts were
tested against a chloroquine-resistant Plasmodium falciparum strain
using the [3H]-hypoxanthine incorporation assay to determine the con-
centration required to inhibit 50% parasite growth (IC50 value). The
haemolytic properties were assessed using uninfected human erythro-
cytes. The tetrazolium cell proliferation assay was used to determine
the cytotoxicity of the extracts against human erythroleukemia and kidney
epithelial cells. All 17 species were highly active with IC50 values less
than 30 μg/ml. Agathosma pungens and A. ovata (hook-leaf) were the
the two most active against malaria and erythroleukemia, but A. parva pos-
sessed the best safety index. Only A. ovata (hook-leaf) displayed minimal
haemolytic activity which would not have contributed to the antimalarial
activity of this extract. The toxicity profile of the extracts indicated
that there was selectivity to protozoa rather to mammalian cells. Thus,
the South African indigenous Agathosma species show promise as a
further source of antimalarial compounds. Acknowledgements: Faculty
of Health Sciences Research Committee, University of the Witwaters-
rand and the NRF Thuthuka Women in Research.

Antimalarial activity of thirteen South African Menispermaceae species

Van Zyl RL1, de Wet H2, van Wyk BE3, van Heerden FR4
1Pharmacology Division, Department of Pharmacy and
Pharmacology, University of the Witwatersrand, Faculty of
Health Sciences, Parktown, 2193, South Africa; 2Department
of Botany, University of Zululand, KwaDlangezwa, 3886,
South Africa; 3Department of Botany and Plant
Biology, University of Johannesburg, Auckland Park
2006, South Africa; 4School of Chemistry (Pietermaritzburg),
University of Kwazulu-Natal, Scottsville 3209, South Africa

Malaria remains a serious problem in most third world countries. In
South Africa, the use of traditional remedies plays a significant role
in the treatment of malaria and these phytomedicines are a source of novel
antimalarial agents. The medicinal plant family, Menispermaceae has
reported
cy been used in the treatment of malaria and clinical symptoms
associated with malaria such as fever. Thus, the 27 methanol extracts
from 13 species in the 7 genera found in southern Africa were evaluated
for their antimalarial activity against a chloroquine-resistant Plasmodi-
um falciparum strain using the [3H]-hypoxanthine incorporation assay.
The haemolytic properties were assessed using uninfected human erythro-
cytes and the tetrazolium cell proliferation assay was used to determine
the cytotoxicity of the extracts against human kidney epithelial
cells. Six of the 27 extracts displayed high activity at a concentration less
than 5 μg/ml, namely Antizoma miersiana (rhizomes), Albertisia delago-
ensis (rhizomes and leaves), Cissampelos capensis (coastal, rhizomes),
Cissampelos macronata (rhizomes) and Tilliaora funifera (leaves). The
haemolytic activity of Timonara fragosa (leaves) contributed slightly to
the antimalarial activity; while the remaining extracts had a direct inhib-
itory effect on the intra-erythrocytic parasite. The rhizomes of Anti-
zoma miersiana and Cissampelos torulosa were the most cytotoxic
against the human kidney epithelial cells with IC50 values less than
25 μg/ml. Albertisia delagoensis (rhizomes) yielded a favourable safety
index (>103), while Cocculus hirsutus had the lowest safety index (0.67).
Select Menispermaceae species have the potential as a source of anti-
malarial compounds. Acknowledgements: Faculty of Health Sciences Re-
search Committee, University of the Witwatersrand and the NRF Thuthuka
Women in Research.

Antioxidant activities of some endemic Verbascomum species growing in Turkey

Sökmen M1, Saltan Erdemgi F2, Gökçürk R3
1Black Sea University, Faculty of Science & Literature,
Department of Chemistry, 61088, Trabzon, Turkey;
2Anadolu University, Plant & Drug & Scientific Research
Center (AUBI-BAM), 26470, Eskisehir, Turkey;
3Mediterranean University, Faculty of Science & Literature,
Department of Biology, 07058, Antalya, Turkey

Antioxidant, antimicrobial, antiviral and cytotoxic activities of some members of Verbascomum genus have been reported [1]. The purpose of
this investigation was to determine and characterise the antioxidant
activity of the six extracts of the aerial parts from two endemic Verbas-
comum species growing in Turkey, utilizing the DPPH free radical-scaven-
ging and β-carotene/linoleic acid assays. Accelerated Solvent Extraction
(ASE) method was used to prepare the extracts using Dionex ASE 300
accelerated solvent extractor with different solvents namely, ethylace-
tate, chloroform and methanol at 80 °C temperature. The inhibition per-
centage of the methanol extracts of V. detritale (a) V. pestaloziae (b) at
various concentrations in DPPH test are given in Figure 1.

Figures

Figure 1: Antioxidant activity (DPPH) of the tested extracts in relation to the standard used. (a) V. detritale (b) V. pestaloziae.
These results indicate that only methanolic extracts of cocoa seeds were reported [1]. Hensel et al. demonstrated N-(E)-caffeic penoyl-L-amino acids (NPAs), isolated and structurally elucidated from recently a new homologous series of secondary products, N-phenylpropenoyl-L-amino acids as antiadhesive compounds against Helicobacter pylori. The methanol extracts of two Verbascum species exerted greater antioxidant activity than those of other extracts with an IC50 value of 48.0 ± 0.5 μg/mL, and 40.0 ± 0.5 μg/mL, respectively. Ethyl acetate and chloroform extracts were not active in DPPH method. All extracts of both species exhibited no activity in β-carotene/linoleic acid test system. These results indicate that only methanolic extracts of Verbascum deterrentes and Verbascum pestalozzai have ability to scavenge free radicals. Reference: [1] Tepe, B. et al. (2006) Food Chem. 98:9 – 13.

PJ15

Antibacterial activity of the green alga Ulva rigida collected from Tunisian coast: seasonal and geographical variation

Ismail-Ben Ali A1, Ktari L1, Boudabbous A2, El Bour M1

1Key Laboratory of Resource Biology and Biotechnology in West China (Northwest University), Ministry of Education, Xi’an 710069, China; 2Department of Life Science, YunCheng College, YunCheng 044000, China

The root of Polygala tenuifolia Willd. (Polygalaceae) is a well-known Chinese crude drug. The morphological development of roots with their dynamic accumulation of saponins in Polygala tenuifolia was investigated by anatomical, histochemical and phytochemical approaches. Histochemical results revealed that the secondary phloem was the main storage region of saponins. We took senegein content as an indicator compound to analyze the regularity of saponin accumulation. HPLC results showed that the average content of senegein of different-year-old roots in the “skin areas” (1.081%) including periderm and phloem was 16.01 times more than that in the xylem (0.072%). During the growth period from April to October, the percentage of senegein content of different-year-old roots exhibited a continuous decreasing trend (from 0.899% to 0.836% to 0.667% to 0.651%) and the accumulation of senegein was opposite to that of biomass accumulation (from1.540 g to 2.865 g to 8.840 g to 11.41 g). The length, diameter, thickness of the “skin areas” and dry weight as well as the total senegein content of roots increased most quickly from the second to the third growth year. The mid-tens days of August of the third year were the optimal time for collecting the roots (having total senegein 71.12 mg/plant). The results add data to the relationship between secondary metabolism and plant development, and provide scientific bases for determining the most appropriate period for harvesting the roots.

PJ14

Structure-activity relation of different N-phenylpropenoyl-L-amino acids as antiadhesive compounds against Helicobacter pylori

Niehues M1, Stark T1, Hofmann T1, Hensel A1

1University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Hittorffstr. 56, D-48149 Münster, Germany; Technical University Munich, Lehrstuhl für Lebensmittelchemie und Molekularle Sensorik, Freising, Germany

Recently a new homologous series of secondary products, N-phenylpropenoyl-L-amino acids (NPAs), isolated and structurally elucidated from cocoa seeds, were reported [1]. Hensel et al. demonstrated N-(E)-caffeic acid L-aspartic acid amide as a strong antiadhesive substance with properties against the adhesion of Helicobacter pylori (HP) to gastric tissue sections [2]. Using a new flow cytometric method, 35 different NPAs were analysed for a better understanding of the structural requirements needed for the antiadhesive effect against HP. Within the family of the NPAs, the N-(E)-caffeic acid L-dihydroxyphenylalanine amide and N-(E)-p-coumaric acid L-dihydroxyphenylalanine amide showed the best antiadhesive properties, inhibiting significantly the adhesion of HP to gastric epithelial cells (AGS) by almost 20%. This was shown to be a similar range as the positive control 3’-sialyllactose, which interacts specifically with epithelial cells (AGS) by almost 20%. This was shown to be a similar range as the positive control 3’sialyllactose, which interacts specifically with the HP neuraminyl-lactose-binding hemagglutinin (NLBH). Quantitative structure-activity relations of the NPA homologous serie revealed tentative structure-activity relations of the NPA homologous serie revealed that the best activity seems to be enhanced by the presence of two vicinal hydroxyl groups within the phenylpropenoyl or amino acid part of the molecule. In addition, the presence of a carboxylic group in the amido linkage derived from the amino acid also influences positively the activity, as demonstrated with the corresponding compounds N-(E)-caffeic acid L-phenylalanine and N-(E)-caffeic acid L-phenyllythytyminaline. Higher acidity of the amino acid part increased strongly the inhibitory activity. The described structural properties of NPAs are suggested to be responsible for the antiadhesive effect. References: [1] Stark, T. et al. (2005). Agr. Food Chem. 53:5419 – 5428. [2] Hensel, A. et al. (2007) Planta Med. 73:142 – 150.

PJ16

The relationship between morphological development and accumulation of saponins in the root of Polygala tenuifolia Willd.

Teng HM1, Cai X2, Hu ZH1

1Key Laboratory of Resource Biology and Biotechnology in West China (Northwest University), Ministry of Education, Xi’an 710069, China; 2Department of Life Science, YunCheng College, YunCheng 044000, China

Ulva rigida is one of the most abundant algae in Tunisia with important geographical variation. The relationship between morphological development and accumulation of saponins in Polygala tenuifolia was investigated by anatomical, histochemical and phytochemical approaches. Histochemical results revealed that the secondary phloem was the main storage region of saponins. We took senegein content as an indicator compound to analyze the regularity of saponin accumulation. HPLC results showed that the average content of senegein of different-year-old roots in the “skin areas” (1.081%) including periderm and phloem was 16.01 times more than that in the xylem (0.072%). During the growth period from April to October, the percentage of senegein content of different-year-old roots exhibited a continuous decreasing trend (from 0.899% to 0.836% to 0.667% to 0.651%) and the accumulation of senegein was opposite to that of biomass accumulation (from1.540 g to 2.865 g to 8.840 g to 11.41 g). The length, diameter, thickness of the “skin areas” and dry weight as well as the total senegein content of roots increased most quickly from the second to the third growth year. The mid-tens days of August of the third year were the optimal time for collecting the roots (having total senegein 71.12 mg/plant). The results add data to the relationship between secondary metabolism and plant development, and provide scientific bases for determining the most appropriate period for harvesting the roots.
Distilled spirits contain numerous phenolic constituents which are extracted, in part, from the wood cask during maturation. Such compounds may provide information on authenticity and quality of the products. Analyses have so far focused on the determination of the volatile constituents by GC, including GC-MS. Few HPLC methods for whisky analysis have been published. However, they are time-consuming [1] or afford only limited resolution [2]. This prompted us to explore the potential of Ultra High Performance Liquid Chromatography (UPLC) for the analysis of whiskies. UPLC is a recent development of HPLC relying on small size particles, which increase significantly resolution and considerably reduce separation time [3]. Using a HSS T3 column relying on small size particles, which increase significantly resolution, the potential of Ultra High Performance Liquid Chromatography (UPLC) whisky analysis have been published. However, they are time-consuming and laborious. We present here an alternative method for the analysis of whiskies.

Lycorine, a widespread alkaloid in Amaryllidaceae plant species, has been proven to have antiviral, cytotoxic and antimalarial activities [1–3]. A reversed-phase high-performance liquid chromatographic method has been developed and validated for the determination of lycorine in Amaryllidaceae plant species. A simple method for the extraction of lycorine in low mass plant samples was employed utilizing pre-packed columns with diatomaceous earth (Extralut®) [4]. The chromatographic separation was performed using an isocratic system with a mobile phase trfluoroacetic acid-water-acetonitrile (0.01:90:10) and diode array detector [5]. The linearity of the method was studied by injecting five known concentrations of the standard in the range of 0.01 – 500 μg/ml. The calibration curve was determined as Y = 23.9788285 X + 62.391901. Validation procedures showed that the method was specific, accurate and precise. The method was applied to the aerial parts and bulbs of Sternbergia sicula Tineo ex Guss., a commonly used Chinese herb, has been shown to be clinically effective in functional dyspepsia and irritable bowel syndrome. Its potent anti-inflammatory effects prompted us to study its efficacy in inflammatory bowel disease (IBD). IBD was induced, followed after 48 h by STW 5 orally daily for 7 days. Lesions were then assessed and biochemical parameters measured. Prophylactically, STW 5 was given orally for 1 week before TNBS and for 4 more consecutive days. Drug effects were assessed macroscopically and substantiated immunohistochemically as well as by measuring relevant biochemical parameters and mediators. In the curative setting, inflammation was first induced, followed after 48 h by STW 5 orally daily for 7 days. Lesions and biochemical parameters measured. Prophylactically, STW 5 was given orally for 1 week before TNBS and for 4 more consecutive days. Drug effects were assessed macroscopically and substantiated immunohistochemically as well as by measuring relevant biochemical parameters and mediators. In the curative setting, inflammation was first induced, followed after 48 h by STW 5 orally daily for 7 days. Lesions and biochemical parameters measured.

Anti-inflammation via inhibition of TNF-α pathways in hepatic stellate cells (HSCs) is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C15H14O3) and cryptotanshinone (C19H20O3) are two major diterpenes of Salvia miltiorrhiza. It has been shown to protect against changes in the level of ICAM-1, TNF-α, IL-1β, IL-10, LTB4 and PGE2 in blood and colon. Its protective and curative effect of STW 5 in colonic inflammation, indicating a potential therapeutic usefulness in inflammatory conditions of the lower gastrointestinal tract.

Poria cocos inhibited the activation of hepatic stellate cells

Activation of hepatic stellate cells (HSCs) plays a central role in hepatic fibrosis. Poria cocos, a commonly used Chinese herb, has been shown to exert anti-inflammatory bioactivities. We aimed to study its effect on...
the HSC activation. Two HSC cell lines, HSC-T6 (rat) and LX-2 (human), were used. These cells were pre-treated with an ethyl-acetate soluble extract from Poria cocos (PC-EA) and then stimulated with tumor necrosis factor-α (TNF-α). Nuclear factor-kappa B (NF-κB) and peroxisome proliferator-activated receptor gamma (PPAR-γ) activities were measured using reporter gene assays. Expressions of α-smooth muscle actin (α-SMA) were detected by Western blotting. Quantitative RT-PCR was used to analyze the mRNA expressions of α-SMA, intercellular adhesion molecule 1 (ICAM-1), and PPAR-γ. Cytotoxicity was accessed using MTT assay. One-way analysis of variance was used for comparison of parameters. The results showed that PC-EA (3.125 – 25 μg/ml) concentration dependently inhibited TNF-α-induced NF-κB activities in both HSC-T6 and LX-2 cells. PC-EA also attenuated TNF-α-induced protein and mRNA expressions of α-SMA. TNF-α-induced ICAM-1 mRNA upregulation was also attenuated by PC-EA whereas TNF-α-suppressed PPAR-γ activities and gene expression were both reversed by PC-EA. PC-EA alone could also enhance the PPAR-γ activities of HSCs. No significant cytotoxicity of PC-EA was observed within the concentration range we used. In conclusion, PC-EA could inhibit the activation of HSCs induced by TNF-α, possibly due to PPAR-γ upregulation.

Comparison of the inhibitory potency of curcumin, demethoxycurcumin and bisdemethoxycurcumin on iNOS-derived NO in activated macrophages and on gastric ulcer in rats

Mahattanadul S1, Panichayupakaranant P1, Tungsirirat Mongkol2; 1Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; 2Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand

Sustained overproduction of nitric oxide (NO) generated from inducible nitric oxide synthase (iNOS) expressed in activated macrophages can lead to a modulation of leukocyte infiltration and an interaction of NO with leukocyte-derived O2-, that forms other cytotoxic oxidants [1]. Likewise, the suppression of the excess generation of iNOS-derived NO supports gastric mucosal defence and promotes the onset of gastric ulcer healing [2]. Curcumin (Cur), demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) are three main curcuminoids isolated from turmeric (Curcuma longa L). These three curcuminoids have been shown to be strong nitric oxide scavengers each with similar scavenging potency [3]. Our recent study demonstrated that curcumin directly accelerates ulcer healing in an acetic acid induced gastric ulcer model in rats by a mechanism that involves its ability to suppress iNOS expression [4]. In the present study, each compound was evaluated for its potency to inhibit the iNOS-derived NO in the lipopolysaccharide activated macrophage cell line RAW 264.7 and the acetic acid induced gastric ulcer in rats. All three curcuminoids significantly suppressed NO production and iNOS protein expression in activated macrophages and the relative potency was Cur > BDMC > DMC. These three curcuminoids also significantly accelerated gastric ulcer healing 14 days after the induction. Interestingly, the antiulcer potency of curcumin was equal to bisde-

Bioavailability of dodeca-2E,4E,8E,10E/Z-tetraenoic acid isobutylamides after oral administration in rats and distribution in various tissues

Woelkart K1, frye RP2, Derendorf H2, Bauer R3, Butterweck V4
1Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-Universität Graz, Universitätsplatz 4, 8010 Graz, Austria; 2Department of Pharmacy Practice, College of Pharmacy, University of Florida, 1600 SW Archer Road, 32610 Gainesville, USA; 3Department of Pharmacaceutics, College of Pharmacy, University of Florida, 1600 SW Archer Road, 32610 Gainesville, USA

The pharmacokinetics and tissue distribution of dodeca-2E,4E,8E,10E/Z-tetraenoic acid isobutylamides (tretans), the main alkaloids in Echinacea preparations, were investigated in rats after a single oral dose administration of 2.5 mg/kg. Plasma, liver and 4 different brain regions (hippocampus, cerebral cortex, striatum and cerebellum) were collected after 8, 15, 30 minutes and 1, 2, 3 and 6 hours after oral dosing. Plasma and tissue concentrations were determined by a liquid chromatography tandem mass spectrometry (LC-MS/MS) method with benzanilide as internal standard (IS) using the respective [M-H]- ions. m/z 248/152 for the dodeca-2E,4E,8E,10E/Z-tetraenoic acid isobutylamides and m/z 198/105 for the IS. The lipophilic constituents were rapidly absorbed and well distributed to the tissues examined. The highest concentration was found in the striatum. The total tretans amount in plasma (794 min*/ng/mL) was calculated as AUC0→∞, and about 13-45% of that found in different brain parts (1764 – 6192 min*/ng/mL), and 63% of that in liver tissues (1254 min*/ng/g). The Cmax in plasma was 26.4 ng/mL, while the Cmax in the different brain regions varied between 33.8 ng/g and 46.0 ng/g. The results demonstrate that the dodeca-2E,4E,8E,10E/Z-tetraenoic acid isobutylamides are bioavailable in rats with a rapid passage across the blood-brain barrier. Reference: [1] Woelkart, K. et al. (2009) Planta Med, submitted.

A double-blind cross over study comparing Achillea wilhelmsii with mefenamic acid for the treatment of primary dysmenorrhea

Maleki-Dzigi N1, Hashemi M2, Nazemiyeh H3, Sattarnejad Jahdi N4
1Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; 2Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran; 3Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

A. wilhelmsii is used to regulate the menstrual cycle and reduces bleeding and pain in folk medicine [1]. We compared the effect of the powder of flowering aerial parts of A. wilhelmsii with mefenamic acid on primary dysmenorrheal pain. Randomized, double-blind and crossover trial was conducted in seventy single and sexually inactive female students (aged 26 ± 2) who had primary dysmenorrhea, regular menstrual cycles, and pain score of 5 or higher on Visual Analog Scale. The study was conducted over 3 menstrual cycles as follows: at cycle 1 (placebo) pain severity was measured in first day of menstruation; at cycle 2, the volunteers were randomly assigned to take A. wilhelmsii (1000 mg) or mefenamic acid (250 mg) at recommended doses as needed; at cycle 3, the treated group were less than of mefenamic acid, <0.001). But the pain relief induced by A. wilhelmsii was high (p < 0.01). The menstrual blood loss (p = 0.02), signs of dysmenorrhea (p = 0.001), the duration of bleeding and pain (p = 0.001) in A. wilhelmsii treated group were less than of mefenamic acid. The duration of self-medication for mefenamic acid was 167 ± 108 min and for A. wilhelmsii 99 ± 82 (p < 0.0001). The number of capsules chosen by patients was 1.7 ± 0.8 and 2.1 ± 0.7 (p < 0.0001) for the plant and mefenamic acid, respectively. A. wilhelmsii, when taken in recommended doses, was more effective in alleviating pain and bleeding associated with primary dysmenorrhea than mefenamic acid. Reference: [1] Javidnia, K. et al. (2004) DARU: Journal of the school of pharmacy, Medical Sciences University of Tehran 12:63 – 66.
Rhododendron ferrugineum L. (Ericaceae) is a European alpine plant traditionally used for rheumatic disorders, gout and accommodation of renal calculi. Due to insufficient phytochemical characterisation and a report on animal poisoning after oral ingestion of the plant, in 1990 the Commission E published a negative monograph. Aim of the present study was the phytochemical characterisation of the main compounds from the leaves of Rhododendron ferrugineum L. The essential oil was obtained with 7.35 mL/kg from the lyophilized, powdered herb by steam distillation of the leaves of Rhododendron ferrugineum L. The essential oil was obtained with 7.35 mL/kg from the lyophilized, powdered herb by steam distillation.

From the methanolic extract of Quercus ilex L.: a rich source of polyacylated flavonoid glucosides

Karioti A1, Bilia AR1, Skaltsa H2
1Department of Pharmaceutical Sciences, University of Florence, via Ugo Schiff 6, Polo Scientifico, Sesto Fiorentino, 50019 Florence, Italy; 2Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou, 157 71, Athens, Greece

From the methanolic extract of Quercus ilex leaves a series of acylated flavonol glucosides (1-10) were identified, among them five new naturally occurring compounds. The constituents, which were all p-coumaroyl glucosides of kaempferol, were characterized either as pure compounds or as inseparable, complicated mixtures of cis and trans isomers. Their complete structure elucidation was done by 2D NMR (COSY, HSQC, HMBEC, ROESY) and HPLC-DAD-MS analyses. 2D NMR spectral data allowed the discrimination between different isomers. Quantitative analysis of the methanolic extract of the plant revealed that it is a rich source of acylated flavonol glucosides (1.22%). Under the experimental conditions chosen HPLC-DAD-MS analyses showed that cis isomers are less polar than trans isomers and their detailed identification, the first in the literature so far, could serve as a tool for the detailed characterization of analogous isomers by HPLC-DAD-MS in other complicated plant extracts.

Taxonomic distribution of thymoquinone and related compounds in selected plant species

Táborský J1, Kanti M1, Kloucek P1, Kosokas L2
1Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21 Prague 6 – Suchdol, Czech Republic; 2Institute of Tropics and Subtropics, Czech University of Life Sciences, 165 21 Prague 6 – Suchdol, Czech Republic

Because of their significant biological activities, such as anti-inflammatory [1], anti-microbial [2], or anti-tumor [3] effects, in recent years a growing attention has been devoted to plant-derived quinones dithymoquinone (DTQ), thymohydroquinone (THQ), and thymoquinone (TQ). At present, a well-known natural source of TQ is the oil from the seeds of Nigella sativa [4]. In our study, twenty-one plant species were analyzed for the content of DTQ, THQ, and TQ with the aim to compare their quantities and taxonomic distribution in plants. The dried plant material was extracted with n-hexane; the analytes were reextracted to methanol and quantified by capillary GC with a flame-ionization detector (identity confirmation by GC/MS). The results of analysis were as following (mg·kg⁻¹ of dried matter): Monarda didyma 98 (DTQ), 1811 (THQ), 1905 (TQ), Nigella sativa (seeds) 38 (DTQ), 76 (THQ), 1597 (TQ), Satureja hortensis 16 (THQ), 54 (TQ), Satureja montana 88 (THQ), 152 (TQ), Thymus serpyllum 15 (THQ), 44 (TQ), and Thymus vulgaris 21 (THQ), 143 (TQ). Trace amounts of TQ (<10 mg·kg⁻¹) were found in Eupatorium cannabinum and Juniperus communis. Thus, we confirmed previously reported presence of TQ in following four families: Asteraceae, Cupressaceae, Lamiaceae, and Ranunculaceae. According to the above presented results, Monarda didyma can be recommended as an alternative source of TQ and related compounds, especially in the climatic conditions of moderate zone. Acknowledgements: Ministry of Education, Youth and Sports of the Czech Republic (research project MSM 6046070901). References: [1] Marsik, P. et al. (2005) Planta Med. 71:739 – 742. [2] Mouha, J. F. et al. (1999) Pharm. Biol. 37:391 – 395. [3] Worthen, D.R. et al. (1998) Anticancer Res. 18:1527 – 1532. [4] Salem, M.I. (2005) Int. Immunopharmacol. 5:1749 – 1770.

Licorice (Glycyrrhiza glabra L., Fabaceae) is a well known important medicinal plant. The roots and stolons, as well as extracts thereof, are used for the treatment of various disorders. Of predominant importance
are the antilucus/antiphlogistic, and the spasmyolitic activity, which are attributed to triterpene saponins (glycyrrhizinic acid and derivatives) and flavonoids (liquiritin, isoliquiritin and their aglycones), respectively [1]. According to the purposed use, it would be useful to have to disposal different licoric genotypes with a respective composition of the active compounds. Although licorice is routinely cultivated, it is well known that propagation through conventional methods like e.g. cuttings is slow, when compared to in vitro techniques. With the aim to develop an in vitro protocol for the rapid multiplication of selected genotypes, in our study we chose the method of somatic embryogenesis, because of its potential for scale-up [2]. Cotyledon explants of 7 day old seedlings proved to be best suitable to establish callus cultures. As for the formation of embryogenic callus, the growth regulator TDZ was superior to 2,4-D or picloram, and resulted in vigorous growth of embryogenic callus. For embryo maturation, subculture on nutrient medium without growth regulators gave best results of more than 80 embryos per gram of inoculated callus tissue. Within this study, the genotype did not significantly influence the embryogenic potential. Through this protocol, the large scale clonal propagation of selected genotypes of Glycyrrhiza glabra is feasible, for the production of plants of defined quality for further field culture. References: [1] Wichtl, M. (2009) Teedrogen und Phytopharmaka. 5th edition. Wissenschaftliche Verlagsgesellschaft mbH. Stuttgart, Germany; [2] George, E.F. (2008) Plant Propagation by Tissue Culture. 3rd edition. Springer. Dordrecht, The Netherlands.

PJ29 Comparative effects of a valerian extract and single compounds on sleep and body temperature in mice evaluated by telemetry

Chow N1, Fretz M2, Hamburger M2, Butterweck V3
1Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, POBOX 100494, USA; 2Department of Pharmaceutical Sciences, Institute of Pharmaceutical Biology, University of Basel, CH-4056 Basel, Switzerland

Traditional use of Valeriana officinalis L. suggests sleep promoting properties, yet contemporary observations in clinical trials and rodent models using the extract and isolated compounds are contradictory [1,2]. We evaluated locomotor activity and body temperature of mice using telemetry to obtain evidence of sleep promoting effects. This method provides a reduced variable environment which improves upon previous methods. A 70% ethanolic extract of Valeriana officinalis stood (250, 500, and 1000 mg/kg) was administered orally and data recorded for 180 minutes thereafter in male C57BL/6 mice. Oral administration of valerian extract had no effect on locomotor activity and body temperature compared to vehicle. Zolpidem (5 mg/kg, positive control) significantly decreased locomotor activity by 57% (activity counts after 30 min; control: 492 ±1418; zolpidem: 212.6 ±442; p < 0.001) and body temperature by 0.57°C (Δmax at 18 minutes, control: 36.53 ±0.12°C; zolpidem: 35.96 ±0.13°C; p < 0.01) whereas caffeine (5 mg/kg, negative control) induced an increase in activity of 47% (activity counts after 30 minutes; control: 492 ±1418; caffeine: 7251 ±764; p < 0.01) without affecting body temperature. In conclusion, telemetry is a simple, adequate method for the specific measurement of sleep promoting effects. The extract showed no significant difference to vehicle; yet, further studies on single compounds may help substantiate the use for Valeriana officinalis as insomnia treatment. References: [1]Hattelstahl, M. et al. (2008) Phytomedicine 15:2 – 15. [2] Fernández, S. et al. (2003) Pharmaco. Biochem. Behav. 77:399 – 404.

PJ30 Raunitidol isolated from Doroia macrophylla (Rubiaceae)

Nunez CV1, Santos PA1, Rouvy V1, Hennebelle T1, Sahzap S1, Mesquita ASS1, Baillieul P2
1Laboratório de Bioprospeção, Coordenação de Pesquisas em Produtos Naturais, Instituto Nacional de Pesquisas da Amazônia; 2Instituto de Química, Universidade Federal do Paraná

Doroia macrophylla Huber is a tropical tree, known as “puruí”, which occurs in the Amazon region. Their fruits can be eaten and, as we know, no chemical study has been performed before. Leaves of D. macrophylla were dried at room temperature, ground and extracted with dichloromethane, methanol and later with water, by using ultra-sound for 20 minutes, each twice repeated and concentrated with reduced-pressure evaporator or lyophilizer. The methanolic extract was fractioned by using chromatographic techniques and HPLC for further purification. The chemical identification of the indolic alkaloid raunitidine was achieved by NMR and MS data analyses and literature comparison [1].

PJ31 Cannabinoid receptor Gα fusion proteins as a highly sensitive model system for characterization of receptor ligands

Geiger S1, Seifert R2, Heilmann J1
1Department of Pharmaceutical Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; 2Institute of Pharmaceutical Medicine, Medical School of Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany

So far two human cannabinoid receptors (hCBRs) have been identified [1], both belonging to the family of G-protein coupled receptors (GPCRs); the hCB1R [2] is mainly located in the brain and the hCB2R [3] is predominately located in the periphery on immune cells. Because of their involvement in many physiological functions, such as movement, metabolic regulation, host defense, analgesia and memory, there is a great interest in targeting these receptors for therapeutic applications. For the search for new CBR ligands, we refined an existing in vitro assay [4] that allows for the differentiation of the pharmacological properties of a compound. In the already established steady-state [γ-35S]-GTPase assay Spodoptera frugiperda (SF9) cells were used for the co-expression of the CBR, the Gα-subunit and the Gβγ-heterodimer. Because the expression levels and the density of these proteins in the cell membrane influence the efficiency of the interaction between the receptor and the G proteins, we improved this assay using CBR-Gα fusion proteins. With these fusion proteins we can ensure a close proximity and defined stoichiometry of the signalling partners, resulting in higher coupling efficiency than the conventional co-expressing system. This very sensitive test system enabled us to detect an agonist at the CBRs in a matrix of other compounds. Therefore we added Δ9-THC to a Δ9-THC-free Cannabis sativa extract and found the expected increase of potency (e.g. extract logEC50 -6.08 vs. extract enriched with Δ9-THC logEC50 -6.86 at the CB1R and extract logEC50 -5.86 vs. extract enriched with Δ9-THC logEC50 -6.38 at the CB2R). References: [1] Howlett, A.C. et al. (2002) Pharmacol. Rev. 54:161 – 202. [2] Matsuda, L.A. et al. (1990) Nature 346:561 – 564. [3] Munro, S. et al. (1993) Nature 365:61 – 65. [4] Egger, M. et al. (2008) Chem. Eur. J. 14:10978 – 10984.

PJ32 Catechin-derivates affinity for human cannabinoid receptors

Korte C1, Geiger S1, Heilmann J1, Sand PC1
1Department of Psychiatry, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; 2Department of Pharmaceutical Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany

Flavonoids are common secondary plant metabolites and possess manifold health-enhancing effects. In addition to neuroprotective and anti-inflammatory activities, growing evidence suggests that flavonoids may

also possess anagelse properties [1]. These functionalities make a role for cannabinoid receptors (CB) in mediating biological effects possible [2]. The present study examines affinities of five catechin derivatives for human CB1 and CB2. Using membrane preparations of recombiant human cannabinoid receptors 1 and 2, the affinities of (-)-epigallocatechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, (-)-epicatechin and (+)-catechin were studied by radioligand binding assays. Dose dependent binding to CB1 and CB2 was noted for all compounds under study. Catechin derivatives differed in their affinity for CB1 by several orders of magnitude, ranging from the mid-micromolar range for (-)-epigallocatechin gallate and (-)-epicatechin gallate (K_i < 50 uM), to the millimolar range for (-)-epicatechin and (+)-catechin (K_i > 2.5 mM). Affinities for CB2 were comparable to CB1 results. Competitive radioligand binding assays identified (-)-epigallocatechin gallate and (-)-epicatechin gallate as ligands with moderate affinity to human CB2 (K_i < 150 uM). Very weak inhibition constants in the millimolar range were obtained for (-) epigallocatechin, (-)-epicatechin and (+)-catechin. Further characterisation of lead compounds is initiated to determine in more detail the structural correlates of CB bioactivity. References: [1] Nahrstedt, A. et al. (2007) Wien Med. Wochenschr. 157:348 – 351. [2] Di Marzo, V. et al. (2004) Nat. Rev. Drug Discov. 3:771 – 784.

Antibacterial and composition of the essential oil of Dracaenophyllum subcapitatum from Iran Choolipour A1,2, Sonbi L1, Jejad Akrami S1, Yousefi M1,2
1Payame Noor University (PNU); 2Department of Plant Sciences, Faculty of Biological Sciences, Shahid Beheshti University, G.C., Evin, 1983963113, Tehran, Iran;
3Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, 1983963113, Tehran, Iran, 4Department of Marine Biology, Faculty of Sciences, Hormozgan University, Bandar Abbas, Iran

The chemical composition of the essential oil obtained by hydrodistillation and its antibacterial activity from the aerial flowering parts of D. subcapitatum collected from Iran was analyzed for the first time by GC and GC-MS and tested. Monoterpenoids including oxygenated and hydrocarbons comprising 71.8 and 26.1% were the main compound groups of the essential oil, respectively. Totally, 22 components accounting for 98.2% of the total oil were characterized [1]. Perilla aldehyde (64.8%) was the most resistant strain with MIC value of 5.0 mg/ml. Pseudomonas aeruginosa strains with MIC values ranged 0.15 – 0.3 mg/ml. Gram-positive bacteria were more sensitive bioassays showed that the oil exhibited high antibacterial activity mining minimum inhibitory concentration (MIC) [2,3]. The results of the study the effect of light and differentiation were evaluated. A sterile ginger were cut and inoculated on mediums suitable for callus growth. One group stored at 16/8 light cycle and the other at continuous dark environment. Different samples from both groups in several stage of growth were collected and extracted with dichloromethane and analyzed by TLC. N-Hexan-diethyl ether (40:60) were used as solvent system. The accumulation of 6-gingerol and zingiberene was much higher in culture systems of Zingiber officinale in light treated samples where morphological differentiation was apparent as presented in the following table. So, light is a stimulatory factor for this secondary metabolite production.

<table>
<thead>
<tr>
<th>Stage of Growth</th>
<th>Kind of Treatment</th>
<th>Light</th>
<th>Dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>R1 < 0.35</td>
<td>R1 < 0.35</td>
<td>R2 < 0.2</td>
</tr>
<tr>
<td>Stage 2</td>
<td>R1 < 0.35</td>
<td>R2 < 0.2</td>
<td>R2 < 0.2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>R1 < 0.35</td>
<td>R2 < 0.35</td>
<td>R2 < 0.35</td>
</tr>
</tbody>
</table>

Pj35

Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Mangosteen (Garcinia mangostana L.) peel is used in Thai primary health care as an astringent to treat noninfectious diarrhea; for this, a beverage is prepared by boiling the dried peel of half a fruit (4g) in water. Because this procedure is inconvenient and mangosteen is a seasonal fruit, the aim of this study was to formulate ready-to-use anti diarrheal granules from a mangosteen peel extract. Peels were extracted with ethanol: water (1:1) and the extract lyophilized (yield 21.7%). Quantity of (-)-epicatechin in the dried extract was determined by HPLC [1] as 11.38 mg/g. Formulations of granules and effervescent granules, containing 1 g of dried extract per dose, were prepared using cross-linked homopolymer of N-vinyl-2-pyrrolidinone (Crosipovide), polyvinylpyrrolidone K30, aspartame, lactose, sodium bicarbonate, sodium carbonate, citric acid monohydrate and tartaric acid as excipients [2]. Physical appearance, taste and disintegration of all formulations were evaluated. A suitable formulation was the granules consisted of 20% mangosteen peel extract, 3.5% Crosipovide, 2% polyvinylpyrrolidone K30, 0.0018% aspartam and lactose. The granules rapidly disintegrated in water within 60 seconds, showed good appearance as well as good taste. Physical stability and term of (-)-epicatechin quantity were evaluated after storing at room temperature and 45 °C under 75% RH for 1 month. Acknowledgements: National Research Council of Thailand, Faculty of Pharmaceutical Sciences and Prince of Songkla University, Thailand. References: [1] Tansova-Savoya, S. et al. (2005)). Food Compos. Anal. 18:901 – 698 [2] Lachman, L. et al. (1986) Theory and Practice of Industrial Pharmacy. 3rd ed. Lea & Febiger, Philadelphia.

Hepatoprotective activity of Stachys extracts against CCl4-induced hepatotoxicity in rats

Kukic´-Markovic´ J1, Dobric´ S2, Jacević V3, Topic A4, Marin P5, Petrović S6
1Institute of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; 2Institute for Scientific Information, Military Medical Academy, Cmenjačka 17, 11000 Belgrade, Serbia; 3National Poison Control Centre, Military Medical Academy, Cmenjačka 17, 11000 Belgrade, Serbia; 4Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; 5Faculty of Biology, Botanical Institute and Garden, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia

Plant species of the genus Stachys L. have been used traditionally in different conditions (headache, neuralgia, nervous conditions, dyspepsia, wounds healing and skin inflammation) and variety of pharmacological effects was proven for some of them [1,2]. Phytochemical studies of Stachys species revealed the presence of several secondary plant metabolites: different polyphenols (flavonoids, tannins, phenolic acids, phtylethanoid glycosides), iridoids, terpenoids and sterols [3]. In our continuation in investigating pharmacological activities of MeOH extracts of four endemic Balkan Stachys species (S. becheana Dorrfler & Hayek, S. anisochila Vis. et Panič, S. plumosa Griseb, and S. alpina L. subsp. dinarica Murb.), their hepatoprotective activity was assayed. Hepatic damage in rats was induced using CCl4 and monitored using levels of marker enzymes: aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) in serum. The biochemical observations were supplemented by pathohistological examination of liver sections (liver damage score (LDS) for degenerative and vascular changes according to the 5-point semiquantitative scale). In rats who received CCl4 (2.5 ml/kg body weight s.c.) a significant increase of serum levels of AST, ALT, and ALP was observed, along with massive lesions in liver tissue (LDS>4.29). Four-day treatment with investigated Stachys extracts (200 and 100 mg/kg body weight p.o.) significantly reduced altered biochemical parameters in intoxicated rats (p<0.001). In addition, pathohistological evaluation of liver sections also pointed out lesser degree of degenerative and vascular changes. Extract of S. alpina subsp. dinarica showed the best and dose-related hepatoprotective effect. References: [1] Kukić, J. et al. (2006) Biol. Pharm. Bull. 29:725 – 729. [2] Kukic´, J. et al. (2007) Pharm. Biol. 45:560 – 563. [3] Meremet, A. et al. (2004) Biochem. Syst. Ecol. 32:139 – 151.

Antimicrobial activity of selected extracts and some compounds from Ruscus aculeatus L., R. hypoglossum L. and R. alexandrinus Garsault (Ruscaceae)

Hadžifejzović N1, Soković M2, Glamočlija J3, Stojković D4, Petrović S5, Kukić-Marković J6, Nahrstedt A7
1Institute of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; 2Institute for Scientific Information, Military Medical Academy, Cmenjačka 17, 11000 Belgrade, Serbia; 3National Poison Control Centre, Military Medical Academy, Cmenjačka 17, 11000 Belgrade, Serbia; 4Institute of Pharmaceutical Biology and Phytochemistry, Hittorfstrasse 56, 48149 Münster, Germany

Here we report on the antimicrobial activity of some polar extracts of Ruscus aculeatus (MeOH, EtOAc and BuOH herb extracts and MeOH rhizone extract), the MeOH extracts of the R. hypoglossum and R. alexandrinus herbs, as well as of some compounds previously isolated from these Ruscus extracts (rutin, p-dumaric, caffeic and dimethylcinnamic acid) [1]. The modified microdilution technique [2,3] was used for testing on eight bacterial strains: Escherichia coli (ATCC 35210), Pseudomonas aeruginosa (ATCC 27853), Salmonella typhimurium (ATCC 13311), Enterobacter cloacae (humane isolate), Listeria monocytogenes (NCTC 7973), Bacillus cereus (humane isolate), Micrococcus flavus (ATCC 10240), Staphylococcus aureus (ATCC 6538), and five fungi: Aspergillus versicolor (ATCC 11730), Aspergillus niger (ATCC 6275), Aspergillus fumigatus (ATCC 9142), Penicillium funiculosum (ATCC 36839), and Trichoderma viridae (IAM 5061). All tested extracts exhibited antimicrobial activity in a wide range of concentrations (0.1 – 4 mg/mL). Values of MICs and MBCs against bacterial strains were 0.1 to 2 mg/mL and 0.2 to 4 mg/mL, respectively. Antifungal activity was almost in the same range (MICs 0.25 to 2 mg/mL, and MFCs 0.5 to 3 mg/mL). EtOAc extract of R. aculeatus herb had the best antimicrobial effect. The four isolated compounds showed much better activity against tested microorganisms (MICs, MBCs and MFCs in a range 0.05 – 0.3 mg/mL, 0.05 – 0.4 mg/mL, and 0.1 – 0.3 mg/mL, respectively). Activity of isolated compounds was comparable with the activity of standard antibiotics: streptomycin (MICs and MBCs in a range 0.05 to 0.3 mg/mL) and ampicillin (MICs and MBCs in a range 0.1 to 0.5 mg/mL), and fungicides: bifonazole (MBCs and MFCs in a range 0.1 to 0.25 mg/mL) and ketoconazole (MICs and MFCs in a range 0.2 to 3 mg/mL, respectively). Results pointed out that these compounds mainly contribute to the obtained antimicrobial effects of the investigated Ruscus species. References: [1] Hadžifejzović, N. (2006) PhD Thesis. University of Münster, Germany. [2] Hanel, H. and Raether, W. (1998) Mycoses 31:148 – 154. [3] Daouk, R.K. et al. (1995) J. Food Protect. 58:1147 – 1149.

Antimicrobial, anti-inflammatory and anti-ulcer activities of Ferula heuffelii root extracts

Pavlović I1, Petrović S2, Milenković M3, Nikolić D4, Niketić N5
1Institute of Pharmacognosy, Faculty of Pharmacy, V. Stepe 450, 11221 Belgrade, Serbia; 2Institute of Microbiology and Immunology, Faculty of Pharmacy, V. Stepe 450, 11221 Belgrade, Serbia; 3University of Illinois College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, Chicago, IL 60612, USA; 4Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia

Ferula heuffelii Griseb. ex Heuff (Apiaceae) is an endemic and rare W. Moesian species, predominantly growing in E. Serbia and locally in S.E. Romania and E. Bulgaria [1]. Roots of this plant were extracted with CHCl3 and then with MeOH. Antimicrobial activity of CHCl3 and MeOH extracts was tested against 7 standard bacterial strains and 2 standard strains of yeast Candida albicans using the agar diffusion [2] and broth microdilution methods [3]. The best inhibitory effect (MIC < 12.5 μg/mL) CHCl3 extract exhibited against Staphylococcus aureus, and MeOH extract against S. aureus and Micrococcus luteus. In assessing anti-inflammatory activity, the carrageenan-induced rat paw edema test was used [4]. MeOH and CHCl3 extracts showed significant dose dependant anti-inflammatory effect (in dose of 100 mg/kg p. o. extracts reduced oedema with 84.00% and 64.71%, respectively). These effects were comparable with that of indomethacin (76.00% in dose of 8 mg/kg p.o.). Extracts inhibited ethanol-induced gastric ulcers in rats [4] and their activity was comparable with the activity of ranitidine used as a positive control. Gastric damage score for the animals treated with MeOH and CHCl3 extracts (in dose of 100 mg/kg p.o.) was 0.50 ± 0.55 and 0.25 ± 0.42, respectively, while the score for the animals treated with ranitidine (in dose of 20 mg/kg p.o.) was 0.58 ± 0.49. Statistical analysis was performed by Student’s t test for antimicrobial activity and Mann-Whitney U-test for anti-inflammatory and anti-ulcer activity. Preliminary LC-MS analysis revealed the presence of several analogs with elemental composition of C24H30O4. Analysis of tandem mass spectra of these metabolites suggested that they are likely sesquiterpene coumarins. References: [1] Nikolić, V. (1973): Ferula L. In: Josifovíc, M. (ed.): Flora SR Srbije 5:274 – 276, SANU, Beograd. [2] Acar, J.F. and Glodstein, F.W. (1996) In: Lorian, V. (ed) 4th Ed. Williams & Wilkins. Baltimore. [3] Candan, F. et al. (2003) J. Ethnopharmacol. 87:215 – 220. [4] Đorđević, S. et al. (2006). Ethnopharmacol. 109:458 – 463.

References:
A phytochemical and antimicrobial study of mastic water was carried out for the first time. Mastic water, which is obtained together with mastic essential oil (MEO) during the distillation of mastic gum (the resin of Pistacia lentiscus L. var. Chia), was passed through XAD-4 resin and the adsorbed organic compounds were eluted with diethylether, affording the mastic water extract (MWE). The extract was analysed with chiral GCMS and the major compounds identified were verbenone (12.96%), (-)-terpineol (12.05%), linalool (7.29%) and trans-pino-carveol (5.97%). The antimicrobial activity of MWE of its major constituents and of MEO was investigated. The antimicrobial test was performed against Gram+ and Gram- bacterial strains and Candida spp. for the experiments, wild strains resistant to antimicrobials and ATCC strains were used. Also the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined for each compound. Examination of the antimicrobial activity of each compound or extract was performed by the agar diffusion method against three Escherichia coli strains (Gram-), three Staphylococcus aureus strains (Gram+) and three Candida spp. strains (yeast). The MIC and MBC were performed by employment of a microtiter method and subsequent inoculation in Mueller Hinton agar. The MWE, (-)-trans-pino-carveol, (-)-linalool, (2)-linalool and \(\alpha\)-terpineol exhibited considerable antimicrobial activity in both Gram+ and Gram- bacterial strains. The average inhibition zones measured for \(E.\ coli\) and \(S.\ aureus\) were 9.2 mm and 10 mm for (\(+\)) \(\alpha\)-terpineol, 10.9 mm and 9.8 mm for (-)-linalool. Sufficient antifungal activity was exhibited by MEO (8.3 mm for \(C.\ albicans\)). The most potent antimicrobial agent was (\(-\)) linalool followed by \(\alpha\)-terpineol. References: [1] Koutsoudaki, C. et al. (2005). Agric. Food Chem. 53:7681 – 7685. [2] Magiatis, P. et al. (1999). Planta Med. 65:749 – 752.

Effects of calcium, W-7, and forskolin on flavonoid accumulation in cell cultures of Hypericum androsaemum L.

Paranhas A

Faculty of Pharmacy, University of Coimbra, Azinheira de Santa Comba, 3000 – 548 Coimbra, Portugal

Hypericum androsaemum L. is a common European species whose aero parts have been used in traditional medicine due to its diuretic and hepatoprotective properties [1]. The diverse flavonoids and phenolic acids found in the plant are thought to be responsible for such biological effects. Recently, cell cultures established from haploet-derived callus of *H. androsaemum* were shown to accumulate small amounts of flavonoids, with maximum levels being reached on the 14th day of the growth cycle [2]. Treatment of 11-day-old cultures for 72 h with 15 mM CaCl\(_2\) or 5 \(\mu\)M calcium ionophore A23187 increased considerably the accumulation of flavonoids and the activity of phenylalanine ammonia-lyase (PAL), a key regulatory enzyme of phenylpropanoid metabolism assayed according to [3]. On the other hand, pretreatment of cultures with the calmodulin antagonist W-7 (50 \(\mu\)M) suppressed the Ca\(^{2+}\) induced rise in flavonoid contents without any accompanying decrease in PAL activity levels. Furthermore, the addition of the adenosine cyclic activator forskolin (20 \(\mu\)M) to control cultures also enhanced the accumulation of flavonoids, but had no significant effect on the activity of PAL. The results point to a possible involvement of Ca\(^{2+}\)/calmodulin-dependent and cAMP-dependent processes in the biosynthesis of flavonoids by *H. androsaemum* cell cultures and also indicate that changes in the accumulation of these compounds can occur independently of changes in PAL activity. Acknowledgements: Center of Pharmaceutical Studies References: [1] Novais, M. et al. (2004). J. Ethnopharmacol. 93:183 – 195. [2] Paranhas, A. (2006). Planta Med. 72:1060 – 1061. [3] Mori, T. et al. (2001) Planta Med. 68:355 – 360.
Plants are one of the major sources for the biologically active organic compounds and play a key role in medicinal chemistry for the treatment of various diseases [1]. DIAMS method is able to determine the secondary metabolites of complex vegetal extracts. The high throughput analyses of vegetal extracts are relatively difficult to perform in MALDI mass spectrometry, since the preparation of the sample involves the co-crystallization of the matrix with the analyte. Moreover irradiation of the matrix ion produces many low-m/z vs high-intensity ions preventing the detection of low molecular weight molecules such as secondary metabolites. We have developed a matrix-free alternative to MALDI analyses by the means of an original desorption/ionization on self-assembled monolayers surfaces (DIAMS) technique [2]. Monolayers were formed by using novel thiophene and coumarin-triazole analogues that absorbs the laser beam at 337 nm. We herein disclose our findings with respect to the DIAMS method which is well suitable for the detection and quantification of the low molecular weight compounds that are present in plant extracts. Some of the isoquinoline alkaloids from the root extracts of Thalictrum flavum have been detected by the DIAMS method. Indeed, this technique would be promising suitable for the qualitative and quantitative analysis of polar and non-polar organic components that are widely distributed in the plants, without any preliminary chromatographic resolution [3].

Acknowledgements: Financial support of Agence nationale de la recherche (ANR).

References:

A promising method for efficient analysis of secondary metabolites in plant extracts by a matrix-free Desorption/Ionization on self-Assembled Monolayer Surface (DIAMS) technique

Plants are one of the major sources for the biologically active organic compounds and play a key role in medicinal chemistry for the treatment of various diseases [1]. DIAMS method is able to determine the secondary metabolites of complex vegetal extracts. The high throughput analyses of vegetal extracts are relatively difficult to perform in MALDI mass spectrometry, since the preparation of the sample involves the co-crystallization of the matrix with the analyte. Moreover irradiation of the matrix ion produces many low-m/z vs high-intensity ions preventing the detection of low molecular weight molecules such as secondary metabolites. We have developed a matrix-free alternative to MALDI analyses by the means of an original desorption/ionization on self-assembled monolayers surfaces (DIAMS) technique [2]. Monolayers were formed by using novel thiophene and coumarin-triazole analogues that absorbs the laser beam at 337 nm. We herein disclose our findings with respect to the DIAMS method which is well suitable for the detection and quantification of the low molecular weight compounds that are present in plant extracts. Some of the isoquinoline alkaloids from the root extracts of Thalictrum flavum have been detected by the DIAMS method. Indeed, this technique would be promising suitable for the qualitative and quantitative analysis of polar and non-polar organic components that are widely distributed in the plants, without any preliminary chromatographic resolution [3].

Acknowledgements: Financial support of Agence nationale de la recherche (ANR).

References:

A promising method for efficient analysis of secondary metabolites in plant extracts by a matrix-free Desorption/Ionization on self-Assembled Monolayer Surface (DIAMS) technique

Plants are one of the major sources for the biologically active organic compounds and play a key role in medicinal chemistry for the treatment of various diseases [1]. DIAMS method is able to determine the secondary metabolites of complex vegetal extracts. The high throughput analyses of vegetal extracts are relatively difficult to perform in MALDI mass spectrometry, since the preparation of the sample involves the co-crystallization of the matrix with the analyte. Moreover irradiation of the matrix ion produces many low-m/z vs high-intensity ions preventing the detection of low molecular weight molecules such as secondary metabolites. We have developed a matrix-free alternative to MALDI analyses by the means of an original desorption/ionization on self-assembled monolayers surfaces (DIAMS) technique [2]. Monolayers were formed by using novel thiophene and coumarin-triazole analogues that absorbs the laser beam at 337 nm. We herein disclose our findings with respect to the DIAMS method which is well suitable for the detection and quantification of the low molecular weight compounds that are present in plant extracts. Some of the isoquinoline alkaloids from the root extracts of Thalictrum flavum have been detected by the DIAMS method. Indeed, this technique would be promising suitable for the qualitative and quantitative analysis of polar and non-polar organic components that are widely distributed in the plants, without any preliminary chromatographic resolution [3].

Acknowledgements: Financial support of Agence nationale de la recherche (ANR).

References:
A. collina is a tetraploid proazulenes-containing species of the Achillea millefolium aggregate (yarrow) cultivated in alpine areas. Yarrow is commonly used as a medicinal plant for its digestive, anti-inflammatory, analgesic and antipyretic properties. Terpenes, especially sesquiterpenes, are considered to be mostly responsible for its bioactivity [1]. The emitted volatile fraction plays a central role in plant-environment interaction, being involved in very important processes in plant life cycle, such as reproduction, defense, communication, etc. [2]. In this work, a valuable method for accurate screening of volatile compound emissions from A. collina plants (e.g. leaves, flowers and stems) is presented, and the opportunity to use it to evaluate variations caused by plant-insect interactions (e.g. aphids), is discussed. Headspace Solid-Phase Microextraction (HS-SPME) method was developed and integrated with Gas Chromatography-Mass Spectrometry (GC-MS). Three types of SPME fibers including PDMS, PDMS-DVB and DVB-CAR-PDMS were investigated and a best extraction was achieved with the mixed fiber DVB-CAR-PDMS. Parameters for HS-SPME in term of extraction temperature, extraction time, sample amount and desorption time were also investigated showing that 120 min at room temperature from 2.5 g of sample given the best results, while 240 min at room temperature were chosen as the best for the ‘in vivo’ sampling. As a result, 100 compounds were identified from the plant materials. The main components were camazulene (19%), 6-cadinene (5.21%), followed by β-myrcene (4.5%) and trans-β-caryophyllene (2.9%). The present method is simple, rapid and effective and can be applied for the analysis of volatile compounds not only in herbs derived drugs but also in “in vivo” plants supporting phytochemical and physiological studies. References: [1] Benedek, B. et al. (2007). Chem. Biodivers. 4:849 – 857. [2] Pareja, M. et al. (2007). J. Chem. Ecol. 33:695 – 710.

Flavonoids and antioxidant activity in flowers of Crataegus

Aguilar-Santelices L 1, García-Mateos R 2, Soto-Hernández M 2, Nieto-Angel K 2, Kite G 2

In Mexico, are located 15 species of the genus Crataegus (Rosaceae) known locally as ‘tejocote’, but which have not been studied phytochemically. The phytochemical and clinical effects of leaves, flowers and fruits are attributed to its flavonoids and proanthocyanidins [1]. The aim of this work was to identify the flavonoids and evaluate antioxidant activity of extracts of flowers from Crataegus. Flowers were collected from the genetic collection at the experimental station of the Autónoma Chapingo University. Flavonoids were identified by Liquid Chromatography-Mass Spectrometry and the test of antioxidant activity was made by the method of 2,2-diphenyl-1-pircilylhydrazyl (DPPH) radical scavenging capacity assay [2]. Four flavonols glycosides were identified in the flowers from six accessions of ‘tejocote’. Accessions 6 and 52 presented the major antioxidant activity (93.87 and 94.35% of DPPH[red]). In both were identified quercetin 3-O-rhamnoside, this compound was most abundant in the two accessions (98.55 and 72.64%, respectively). Among accessions, the highest antiradical efficiency (AE[50] = 1.266) was observed in the accession 52, the lowest in the accession 48 (2.1759), however, quercetin present in AE[50] 0.293. The presence of a sugar moiety is important in increasing the rate and extent of absorption in comparison with the aglycon quercetin [3]. These results explain some of the medicinal properties of ‘tejocote’ and contribute to chemotaxonomical knowledge of the genus. References: [1] Chang, Q, et al. (2002). J. Clin. Pharmacol. 42:605 – 612. [2] Sánchez-Moreno, C. (2002) Food Sci.Tech. Int. 8:121 – 137. [3] Harborne, J.B. and Williams, C.A. (2000) Phytochemistry 55:481 – 504.

Twelve crude extracts from six Swiss plants of the family Crassulaceae were submitted to rapid TLC tests against DPPH and acetylcholineesterase. Sedum dasystylum L., which showed interesting activities against these two targets, has been studied. The chemical investigation of the methanol extract from the whole plant afforded the new flavonols kaempferol 3-O-α-rhamnoside-7-O-p-hosphoroside, gossypetin 3,7-di-O-β-glucoside-8-0-β-glucuronide, herbacetin 3,7-di-O-β-glucoside-8-0-p-j-glucuronide, herbacetin 3-O-β-(3’-acetylglucoside)-7-O-β-glucoside-8-0-j-glucuronide, herbacetin 3-O-(3’-acetylglucoside)-7-O-β-glucoside-8-0-j-glucuronide, and hibiscetin 3-O-β-glucoside-8-0-j-glucuronide, along with thirteen known flavonols, isoflavones, cyanogenic glycosides, caffeic acid and ferrulic acid derivatives. The structures of the products were established by means of spectroscopic data analysis. Among the isolates, seven exhibited strong scavenging activity against DPPH (IC50 from 20 to 75 µM).

Effects of salvianolic acids on oxidative stress and hepatic fibrosis in rats

Jin Mi 1, Lin Yi 2, Huang Yi 1

1. Institute of Traditional Medicine, National Yang-Ming University; 2. National Research Institute of Chinese Medicine, Taipei 112, Taiwan

Reactive oxygen species (ROS) is associated with activation of hepatic stellate cells (HSCs) and liver fibrosis in vivo. The present study is to investigate the in vitro and in vivo anti-fibrotic effects of salvianolic acids A (Sal A, C18H20O11) and B (Sal B, C19H22O12) from Salvia miltiorrhiza. A cell line of rat HSCs (HSC-T6) was stimulated with platelet-derived growth factor (PDGF), 10 ng/ml). Intracellular hydrogen peroxide...
(H₂O₂), α-smooth muscle actin (α-SMA), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and phosphorylations of mitogen-activated protein kinases (MAPKs) were measured. Liver fibrosis was induced by intraperitoneal injections of thiacetamid (TAA, 200 mg/kg) twice per week for 6 weeks. Sal A (10 mg/kg) or Sal B (50 mg/kg) was given by gavage twice per day for 1 month starting 2 weeks after TAA injection. PDGF increased the accumulation of hydrogen peroxide in HSCs, which was attenuated by Sal A (10 μM) and Sal B (200 μM). Sal A and B attenuated the PDGF-stimulated expression of NADPH oxidase subunits gp91phox and p47phox in membrane fractions. Sal B reversed PDGF-stimulated phosphorylations of p38 and JNK.

In vivo studies showed that the hepatic collagen contents, fibrosis scores and expressions of α-SMA and gp91phox were increased in TAA-intoxicated rats, all of which were attenuated by Sal A and Sal B treatment. Our results showed that Sal A and B attenuated PDGF-induced ROS formation in HSCs, possibly through inhibition of NADPH oxidase. Sal A and B treatments were also effective against hepatic fibrosis in TAA-intoxicated rats.

Protective effect of milk thistle and grape seed extracts on fumonisin B1 induced hepatotoxicity in rats

El-Azhary D², Abdel-Mohsen M³, Abd El-Wahab A¹, El-Shafeey M¹

¹Medical Biotechnology Dept., GEBRI institute, Mubarak City, Alexandria, Egypt; ²Zooology Dept., Faculty of Science, Menia University, Menia, Egypt; ³Applied Medical Chemistry Dept., Medical Research Institute, Alexandria, Egypt

Fumonisin B1 (FB1) is a mold metabolite produced by Fusarium species that is frequently found in corn worldwide [1]. It is toxic to both liver and kidney [2]. Research: Hepatotoxicity was induced in rats by feeding them FB1 contaminated corn. Evidence of hepatotoxicity was observed after 60 days by an increase in the plasma activity of alanine aminotransferase (ALT), where that elevation reached 78% (p < 0.001), in comparison with the control group. Pretreatment with milk thistle (S), or grape seeds (G) extracts or both (S+G) was found to return the ALT level back to normal. FB1, drastically depleted glutathione peroxidase (Gpx) to 48%, while pretreatment with S, G, and S+G could elevate the Gpx by 30%, 31% and 50%, respectively. Lipid peroxidation represented by malondialdehyde was elevated significantly to 137%. On the other hand, the pretreated groups (S, G, and S+G) have altered the levels down to 38%, 37%, and 44%, respectively. In addition to the hepatotoxicity of FB1, the kidney function was investigated too, where the creatinine level was elevated to 65%. The pretreatment by S and S+G lowered the level down to 38%, 37%, and 50%, respectively and the pretreatment with G could successfully return the creatinine level to normal. Serum activity of urea dial contractility were also markedly (p < 0.001) positive inotropic effects concomitant with a parallel decrease in the LVEDP. The results of this study indicated that C. dactylon exerted strong protective effects on right heart failure, at least in part by positive inotropic action and improving cardiac functions. Reference: [1] Miraldi, E. et al. [2001]. Ethnopharmacol. 75: 77 – 87.

Anti-inflammatory activity of Thai traditional medicine preparation called Prasaproyah itharat A¹, Makchutch S², Tevtrakul S³

¹Applied Thai Traditional Medicine Centre, Faculty of Medicine, Thammasart University, Rangsit Campus, Klongtuam, Pathumthani 12120 Thailand; ²School of Master Degree of Medical Sciences Program (Nutraceutical group) Postgraduate Program, Faculty of Medicine, Thammasart University, Klongtuam, Pathumthani 12120, Thailand; ³Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Thai traditional medicine preparation called Prasaproyah was commonly used to treat a cold, asthma and as antipyretic drug. It is composed with nineteen plants, Angelica sinensis, Atractylodes lancea, Cuminum cyminum, Foeniculum vulgare, Kaempferia galanga, Lepidium sativum, Lycium chinense, Mimusops elengi, Nigella sativa and Syzygium aromaticum [1]. The objective of this research is to investigate on anti-inflammation activity of this preparation and its components. It and its components were extracted by ethanol, ethanolic-water and water which imitated with using in Thai traditional book [1]. These extracts were examined for their inhibitory activities against lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cell lines. Nitric oxide in the culture supernatant was measured by Griess reaction [2]. The Ethanolic extract of Prasaproyah preparation showed high anti-inflammation with this assay (IC₅₀: 7.29 mg/ml). The ethanolic extract of Myristica fragrans (Chan this) which is an ingredient above assays. The rosemary extract in 50% acetone showed the highest DPPH scavenging activity (652.27 μmol TE/g dry weight) of the samples. The clove extract in 70% ethanol had a higher DPPH scavenging value than the 50% acetone extract (477.81 μmol TE/g dry weight vs. 243.02 μmol TE/g dry weight, respectively. The results of this study show that these botanicals may serve as natural dietary sources of radical-scavenging antioxidants. The type of extracting solvent was able to significantly alter the antioxidant property estimation. This study provides background for future research into the health benefits of these botanicals.
of this preparation exhibited the most potent inhibitory activity, with an IC₅₀ value of 1.613 µg/ml followed by the ethanolic extract of Ligusticum sinense (Kot hua bua) (IC₅₀=3.769 µg/ml) and Nigella sativa (Thian dam) (IC₅₀=4.085 µg/ml). The water and ethanol-water extracts of all plants were apparently inactive (IC₅₀ >100 µg/ml). These results can support using Paspalomyrha in Thai traditional medicine for antipyretic cause by inflammation. References: [1] Foundation of resuscitate and encourage Thai Traditional Medicine (2005) Thai Pharmaceutical Book Pikanite Printing Center Cooperation, [2] Tewtrakul, S. and Itharat, A. (2007). Ethnopharmacol. 109:412 – 416.

PJ56

Ethnopharmacological study of two plants of Northern Madagascar: bronchodilator activity of Tetramer a madagascariensis and antispasmodic activity of Mascarenhasia arborescens

Désiré O¹, Liévrière C², Razafindrazaka R², Goossens L³, Moore N⁴, Andramiandrisoana J², Raharisoanarivo A²

¹Faculté des Sciences, Université d’Antsiranana, B.P. 0 Antsiranana 201, Madagascar; ²Département de pharmacologie, INSEERM U657, Université Bordeaux 2, F-33076 Bordeaux Cedex, France; ³Institut Malgache de Recherches Appliquées, BP 2633, 101-Antananarivo, Madagascar; ⁴Institut de Chimie Pharmaceutique Albert Lespagnol, EA 6292, Université de Lille 2 3, rue du Pr. Lagasse, B.P. 83, F-59006 Lille, France; ²Faculté des Sciences, Université d’Antananarivo, BP 696 Ankasa, Antananarivo, Madagascar

Ethnobotanical investigations were conducted with population and traditional healers in several villages in the North of Madagascar. From this field research, two plants have been selected to justify their traditional use. Tetramer a madagascariensis Willd. ex Schltdl. (Dilleniaceae), a species endemic to Madagascar, is traditionally used to treat respiratory disorders. The bronchial asthma is a widespread disease in Madagascar. Bioassay-guided fractionation using isolated guinea pig trachea pre-contracted with histamine at 2.10⁻⁶M led to the identification of methylene chloride extract as the main active fraction. This extract induced a concentration-dependant relaxation with a median effective concentration of 53 ± 0.5 µg/ml (n = 6). Subfractions are in analysis process. Mascarenhasia arborescens A. DC. (Apocynaceae), a tree growing in the East of Africa and Madagascar, is widely used in Northern of Madagascar to treat intestinal disorders and diarrhoea. It is on account of these data that we investigated this species for antispasmodic activity. Bioassay-guided fractionation using isolated guinea pig ileum pre-contracted with histamine at 3.10⁻⁶M to monitor the activity led to the isolation of davidigenin (dihydrochalcone) as the main active constituent from methylene chloride fraction. Effectively, it induced a concentration-dependant relaxation of the histamine pre-contracted guinea pig ileum with an EC₅₀ of 11.1 ±0.7 µg/ml (n = 4). This data is in accordance with the literature underlined an antispasmodic effect of davidigenin on mouse jejunum [1]. Acknowledgements: A. Rakotozafy (botanist, IMRA), J.P. Nicolas (association “Jardins du Monde”), population and healers surveyed. Reference: [1] Sato, Y. et al. (2007) Biol. Pharm. Bull. 30:145 – 149.

PJ57

Isoflavonoids in tropical and subtropical neglected leguminous species

Sklenickova O¹, Havlík J², Prokudina E¹, Lapic O³, Kokoska L²

¹Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic; ²Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic; ³Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Rep.

Isoflavonoids, bioactive compounds belonging to the phytoestrogens, are known to prevent some kinds of hormone-related cancers and may participate as alternatives to the conventional hormone replacement therapy [1]. Although they have already been identified in about 50 different plant families [2], the quantities were usually in trace amounts and therefore legumes remain the most important source of isoflavonoids. Since the tropical and subtropical regions offer wide range of neglected leguminous species, we decided to analyze 27 of them for the presence of isoflavonoids. Aqueous/methanolic extracts obtained from dried seeds were pretreated on an immunoaffinity column (IAC) [3] and subsequently analyzed by reverse phase HPLC/UV-DAD. Immunosorbers for IAC are characterized by high molecular selectivity so that single group of structurally related compounds can be targeted. UV spectra and retention times were compared with set of standards. As a result, we have identified certain commonly known (e.g. genistein) and high levels of uncommon isoflavonoids in several samples. Genistein was present in Spartium junceum L., Pachyrhizus tuberosus Spreng., and Trigonella foenum-graecum L., in concentrations 13.7 and 0.8 µg/g of dry seeds, respectively. Interestingly, the extract of P. tuberosus contained significantly higher amounts of total isoflavonoids than soybean. Though presence of isoflavonoids in these species has never been published before, the fact itself is basically not striking, but the amounts are hint for the need for their further investigation and possible use in dietary products. Acknowledgements: This research was supported by project GAČR 525/09/0994 and MSM 6046070901. References: [1] Adlerczuetz, H. et al. (2004) BioFactors 22:229 – 236; [2] Mackova, Z. et al. (2006) Phytochemistry 67:849 – 855; [3] Delaunay, N. et al. (2000). Chromatogr. B 745:15 – 37.

PJ58

Antibacterial effects of leaves of Vaccinium vitis-idaea L.

Vučić D¹, Comlić L², Petkovic M², Stefanović O³

¹Department of Pharmacy, Medical Faculty, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; ²Department of Microbiology, Medical Faculty, University of Banja Luka, 78 000 Banja Luka, Bosnia and Herzegovina; ³Department of Microbiology, Faculty of Science, University of Kragujevac, 34 000 Kragujevac, Serbia

This study was realized to investigate the antibacterial activity of extracts from leaves of Vaccinium vitis-idaea L. (Ericaceae) against eleven strains of Escherichia coli. Leaves of Vaccinium vitis-idaea L. collected on Kokoška mountain (RS, Bosnia and Herzegovina, W. Balkans) were extracted by different solvents (water, ethanol and ethyl acetate). Cultures of bacteria were clinical isolates and standard strain of E. coli ATCC 25922. Minimal Inhibitory Concentrations (MICs) and Minimal Bactericidal Concentrations (MBCs) of extracts and antibiotic amoxicillin were determined by tube dilution method. The results revealed that water extract exhibited the highest activity against all strains of E. coli (MICs were 5 mg/ml). MICs of ethyl acetate extract were 20 mg/ml for all bacteria strains tested. Ethanol extract exhibited antibacterial activity with MIC values between 20 and 40 mg/ml. In conclusion, water extract from leaves of Vaccinium vitis-idaea L. showed high antibacterial activity against Escherichia coli with MBCs 5 mg/ml for nine strains and 10 mg/ml for two strains.

PJ59

In vitro antibacterial activity of cloves (Syzygium aromaticum) against MRSA

Demirpei U¹, Ögün A², Kisa O³, Güvenç A³

¹ÇAĞA Hıdırpaşa Medical School, Department of Microbiology, 34068, Konya, Turkey; ²Erciyes Mil. Hospital, Biochemistry Lab. 24000 Erzincan Turkey; ³ÇAĞA Medical School, Department of Microbiology, 06018 Etilk Ankara, Turkey; ³Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 06100, Tandogan, Ankara, Turkey

The process of microbial resistance against antibiotics makes it essential to seek for novel drugs. There have been many studies over the last years, in which a lot of plant species have been checked for their antimicrobial activities. Cloves (Syzygium aromaticum) which is a commonly used spice worldwide, have antibacterial, antifungal, antiviral, antioxidant, antimutagenic, anaesthetic, insecticidal, anti-inflammatory, antithrombotic, antiparasitic and antiulcerogenic activities [1]. Staphylococci are a well known cause of both hospital and community acquired infections. Isolates that have acquired methicillin resistance pose serious problems for treatment and eradication. After the introduction of the drug, Methicillin Resistant Staphylococcus aureus (MRSA) strains were reported in the early 1960s. Epidemics have occurred around the world and the clones have diversified since then. MRSA is still on the rise. Nowadays, the imminent threat of reduced susceptibility to vancomycin have emerged [2]. The purpose of this study was to evaluate antibacterial activity of cloves against MRSA. All 100 (one hundred) clinical MRSA isolates were screened by using agar dilution method. Both aqueous and ethanol extracts of cloves were obtained. All of the strains were found to
be susceptible to both of the extract forms. At 1000 and 500 mg/mL concentrations all of the isolates were found sensitive. At 250 mg/mL, 11% of the isolates were sensitive. The isolates were multi-drug resistant, mostly against beta-lactams, aminoglycosides, tetracyclines, florfenicol, and macrolide antibiotics. In terms of a practical use of the clove as an antibacterial drug, clinical studies are urgently needed. References: [1] Chai, K. et al. (2007) Phytother. Res. 21:501 – 506. [2] Fluit, A.C. and Schmitt, F.J. (2003) MRSA Current Perspectives. Caister Academic Press. Wymondham, UK.

In vitro and in vivo anti-inflammatory activities of the stems and leaves of *Vitis amurensis* and *Momordica charantia* in rats

Kim JY1, Ju H2, Jeong HY2, Song KY2, Seong YH1
1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361 – 763, Korea. 2 College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 702 – 701, Korea

Ischemic stroke results from a transient or permanent reduction in cerebral blood flow caused by occlusion of a cerebral artery via an embolus or local thrombosis. Loss of blood flow results in depletion of metabolic substrates such as oxygen and glucose, leading to hypoxia. During ischemia/reperfusion condition, there is a heavy production of the free radicals such as superoxide, hydroxyl and hydrogen peroxide (H2O2). These free radicals inhibit the uptake of glutamate and enhance glutamate release, resulting in excitotoxicity through NMDA receptor overstimulation, which is one of the major pathological factors leading to neuronal death in stroke. *Vitis amurensis* (VA), a species of *Vitis*, is distributed in Japan, China and Korea. The roots and seeds of VA have been reported to have antioxidant and anti-inflammatory effects [2]. In the present study, we performed *in vitro* and *in vivo* investigations on the neuroprotective effects of an ethanol extract of the stems and leaves of VA. In cultured cortical neural cells from rats, VA (10 – 100 μg/mL) inhibited H2O2 (100 μM), glutamate (0.5 mM), and hypoxia-induced neuronal cell death. In rats, VA prevented cerebral ischemic injury induced by 2 h of middle cerebral artery occlusion, followed by 24 h reperfusion. Ischemic infarct and edema volumes were significantly reduced in rats that received VA (25 – 100 mg/kg, orally) in a concentration-dependent manner. The corresponding improvement in neurological function. Viniferin, an active compound isolated from VA, also inhibited H2O2-, glutamate-, and hypoxia-induced neuronal cell death, suggesting that some of the neuroprotective effects of VA may be attributable to this compound. It is possible that the anti-excitotoxic and anti-oxidative activities of VA may be responsible for its neuroprotective effects against focal cerebral ischemic injury. In the future, VA might play a therapeutic role in the prevention and treatment of neurodegeneration in stroke. References: 1. Ikemune, K. et al. (1999) Neurosci. Lett. 275:125 – 128. 2 Lee, E.O. et al. (2006) Carcinogenesis 27:2059 – 2066.

Inhibition of TNF-α induced ICAM-1, VCAM-1 and E-selectin expression by *Momordica charantia* L.

Tai J1, Ham I1, Yoon H2, Choi H2
1 College of Oriental Medicine, Kyung Hee University, Seoul 130 – 701, Republic of Korea

The initiation of an atherosclerotic lesion involves establishment of an endothelial cell pro-inflammatory state that recruits leukocytes and promotes their movement across the endothelium. These processes require endothelial expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-leucocyte adhesion molecule-1 (E-selectin). Tumor necrosis factor-α (TNF-α) is a powerful inducer of these adhesion molecules [1]. The fruit of *Momordica charantia* L. (MC) is a common vegetable in tropical areas of Asia and Africa. MC also has been traditionally used as a bitter stomachic and an anti-diabetic [2]. Experiments were performed to test whether MC alters TNF-α-induced expression of these adhesion molecules. Human umbilical vein endothelial cells (HUVEC) were treated with 18 h with or without an extract and fractions of MC and TNF-α. ICAM-1, VCAM-1 and E-selectin were detected by cell-based ELISA, Western blots and RT-PCR. MC significantly inhibited TNF-α-induced expression of each adhesion molecule in a dose-dependent manner. The chloroform fraction of MC significantly inhibited TNF-α-induced expression of each adhesion molecule in a dose-dependent manner. Nuclear factor-κB (NF-κB) is required for transcription of ICAM-1, VCAM-1 and E-selectin adhesion molecule genes [3]. Western blot analysis revealed that the chloroform fraction of MC inhibits translocation of the p65 subunit of NF-κB to the nucleus. Thus, the chloroform fraction of MC inhibited TNF-α-mediated induction of ICAM-1, VCAM-1 and E-selectin in HUVEC by inhibiting NF-κB, and lipophilic components of MC may suppress inflammation and modulate the immune response. Acknowledgements: This work was supported by the Second Stage of Brain Korea21 project in 2008. Oriental Medical Science Center. References: [1] Chen, C.C. et al (1995) Journal of Immunology 155:3533 – 3545. [2] Li, C.K. et al. (2009) J. Ethnopharmacol. 122:227 – 233. [3] Mo, S.J. et al. (2007)]. Ethnopharmacol. 109:76 – 86.

Effects of STW 5 and its components on viability of Caco-2 cells

Schwalbe M1, Oehme S2, Abraham G2, Weisser D1, Köbler G2, Nieber K1
1 University of Leipzig, Institute of Pharmacy, D-04103 Leipzig, Germany. 2 University of Leipzig, Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, D-04103 Leipzig, Germany. 3 Steigerwald Arzneimittelwerk GmbH, D-64295 Darmstadt, Germany

Herbal preparations like STW 5 (Iberogast •) are widely used in treatment of dyspepsia and motility-related disorders of the gastrointestinal tract. STW 5 is a fixed combination of nine individual plant extracts, containing 15% Iberis amara fresh plant extract (STW 6) and showing a very good efficacy and tolerability in a large number of clinical and preclinical studies [1,2]. In order to characterize the mode of action of STW 5, STW 6 as well as curcubitaines E and I, belonging to the phytochemical constituents of *Echinacea pallida* root extracts. They are natural compounds known for their antifungal and antibacterial activity, and have enzyme inhibitory effects [1]. There is some evidence that they might also exhibit antiallergic as well as anti-inflammatory activities, and recently cytotoxic effects have been demonstrated [2]. Fractionation of a supercritical CO2-extract of *Echinacea pallida* roots led to the isolation and structure elucidation of seven polyacetylenes and polyenes, namely 8-hydroxy-tetradeca-(9E)-ene-11,13-diyne-2-one, 8-hydroxy-pentadeca-(9E)-ene-11,13-diyne-2-one, tetradeca-8Z,13Z-diene-11,13-diyne-2-one, pentadeca-8Z,13Z-diene-11-yn-2-one, (8Z)-pentadeca-8,11-diene-2-one and (8Z)-pentadeca-8-ene-2-one. The structures of the compounds were determined by UV (DAD-HPLC), NMR (including 1D and 2D NMR experiments) and MS in comparison with data from literature [3,4,5]. The anti-inflammatory activity of various silica gel fractions of the above compounds was evaluated *in vitro* by using an ELISA assay determining the inhibition of leukotriene B4 formation in human granulocytes. Fractions 6, 7 and 8 showed potent inhibitory activity on LT B4 formation (86.5 ± 1.17; 67.56 ± 6.89; 75.34 ± 0.43, respectively). References: [1] Binnis, S.E. et al. (2000) Planta Med. 66:241 – 244. [2] Chicca, A. et al. (2008) Brit. J. Pharmacol. 153:879 – 885. [3] Pellati, F. et al. (2006) Phytochemistry 67:1359 – 1364. [4] Bauer, R. et al. (1986) Planta Med. 52:424. [5] Morandi, S. et al. (2008), Org. Biomol. Chem. 6:4333 – 4339.
incubation (24 h). The present data indicate: (1) STW 5 is able to increase cell viability of epithelial cells in vitro, suggesting this mechanism may contribute to the protective effect against morphological changes seen in an experimental model of intestinal inflammation; (2) STW 5 did not affect the integrity of epithelial cells at concentrations of 512 μg/ml and below, not even at long-term incubation; (3) cucurbitacin E had no effect in relevant concentrations. Taken together, these results are in accordance to the well-characterized tolerability of STW 5 and in addition give information on the mechanisms of action involved in its mucosa-protective effects. References: [1] Rosch, W. et al. (2006) Phytomedicine 13:114 – 121. [2] Michael, S. et al. (2009) Phytomedicine 16:161 – 171.

Possible mechanisms of action of STW 5, acting on multiple targets (explanation see text).

Antibacterial activity of propolis from two sources in the Basque Country

Iris pseudacorus L., a species belonging to Iridaceae family, is native to Europe, Great Britain, North Africa and the Mediterranean region. It has been introduced in temperate areas nearly world-wide and occurs throughout the United States. The aim of this study was to establish antibacterial and antifungal activity of methanolic, etherous, acetate and butanolic extracts from rhizomes and roots of *Iris pseudacorus* L. All examined crude extracts were tested in vitro against the reference strains of 6 Gram-positive bacteria (Staphylococcus epidermidis ATCC 12228, Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 6538, Bacillus cereus ATCC 10876, Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 10240), 4 Gram-negative bacteria (Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 9027, Proteus mirabilis ATCC 12453) and two yeasts (Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019). The tested extracts had inhibitory activity on the growth of most examined strains. Most active against bacteria and yeasts was methanolic extract from the rhizomes of *I. pseudacorus* L. The Gram-positive bacteria were more sensitive to the extracts than Gram-negative ones (inhibitory zones ranging from 7 – 24.5 mm and 0 – 19 mm, respectively). The minimal inhibitory concentrations (MICs) were determined by the agar dilution method, using two-fold dilutions of examined extracts in Mueller-Hinton agar (for bacteria) or Mueller-Hinton agar supplemented with 2% glucose (for yeasts). Among Gram-negative bacteria only *K. pneumoniae, P. aeruginosa* and *P. mirabilis* were sensitive to methanolic, acetate, butanolic extracts from rhizomes (MIC > 250 mg/l). The growth of yeasts tested was inhibited by methanolic extract from rhizomes and etherous extract from roots of *I. pseudacorus* L. (MICs 500 – 1000 mg/l and 1000 mg/l, respectively).
Effectiveness of Cystus 052 in the prophylaxis and treatment of upper and lower respiratory tract infections
Kalus U., Grigorov A., Todorova K., Radtke H., Jansen J.P.,
Kadecki O., Kiesewetter H.
Institute of Transfusion Medicine, Charité –
Universitätsmedizin Berlin, Campus Charité Mitte,
Charitéplatz 1, 10117 Berlin, Germany

In this prospective, randomised, placebo controlled clinical study, we aimed to investigate the clinical effect of a Cistus extract (Cystus 052) in 160 patients with infections of the upper respiratory tract. In the placebo group there were 45 viral and 35 bacterial infections, in the treatment group 47 viral and 33 bacterial infections. The Cystus 052 tablets were taken orally. The primary outcome measure was a well-being score, which could reach a maximum of 30, and constituted of pain, cough (intensity and frequency), sputum and rhinorrhea. There was no difference in the score at the beginning of the treatment, therefore ensuring the homogeneity of the two groups. Starting with day 4, the score differed significantly between the two groups. From the 5th day onwards, the difference was highly significant (p < 0.001). In the group taking Cystus, 77% of the completers responded to the treatment in about 60%. In the placebo group, the treatment response was 25%. Among the inflammatory markers investigated the C-reactive protein was most affected by Cystus 052, which decreased significantly in the treatment group. In addition the antiviral effect is independent of the spectrum of pathogens. Bacteria and viruses are both inhibited, therefore the efficiency of Cystus 052 is mainly related to its physical effects. Especially in the early phase of infection, Cystus 052 is an effective agent in the prevention of a further dissemination of the disease, as the active agents minimize the risk of a re-infection of other cells.

References:

Frankincense – historical evidence from traditional Chinese literature of beneficial effects on the human physiology
Mertens M1, Tessenow H1, Buetter A1,2
1Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, D-85354 Freising, Germany;
2Institute of the History of Medicine, Department of Medicine, Ludwig-Maximilians-University München, Lessingstr. 2, 80336 München; 3Institute of Pharmacy and Food Chemistry, Department Food Chemistry, University Erlangen-Nürnberg, Schulstr. 19, 91052 Erlangen, Germany

Frankincense (olibanum), obtained as a white gum resin of the Boswellia tree, has been used since ancient times in the Orient and the Occident both for religious and festive purposes, but also for medical applications and as an addictive drug [1,2]. In early history, frankincense was used in the resin-form and also burned as frankincense pyrolalyte. It was known to be antiseptic, disinfectant, an efficient drug against catarrh or diarrhoea, and was used in mixtures to initiate abortion [3]. In classical Chinese literature, the most comprehensive work on pharmacology is the Ben Caogang Mu (Ebers 742 (89,6 – 89,7) and 743 (89,7 – 89,8)). [2] Mittwede, M. (1977) Ayurvedic text Bhava prakasha Nighantu, Pandita Vishvanatha advivedi Shastri, Motilal Banarsidas, Delhi. [3] Martinez, D. and Lobs, K. (1981) Vom geweihten Rauch des Olibanum – zur Kulturgeschichte des Weihrauchs”, Wissenschaft und Fortschritt 31.

In vitro cytotoxic activity of lichen Laurera benguelensis
Vasiljević P1, Najman S2, Manojlović N3, Vukelić M2,
Jušković M1
1Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Nis, 18000 Nis, Serbia; 2Faculty of Medicine, University of Nis, 18000 Nis, Serbia; 3Department of Pharmacy, Medical Faculty, University of Kragujevac, 34000 Kragujevac, Serbia

The petrol ether, ethyl acetate and methanol extracts of the lichen Laurera benguelensis (Trypetheliiaceae) from Thailand and its major anthraquinone metabolite were separately tested for cytotoxic activity. 1,8-dihydroxy-6-methoxy-3-methylantraquinone (physcion) was isolated from the lichen Laurera benguelensis as the main pigment by column chromatography. Physcion content in the petrol ether, ethyl acetate and methanol extracts was 1.15%, 0.78% and 0.48%, respectively. The cytotoxic activity of above-mentioned individual extracts and physcion were evaluated in vitro using HeLa (human carcinoma of the cervix) cell line [1 – 3]. The lichen extracts and physcion were dissolvent in dimethyl-
Influence of chlorophyll and tannins in plant extracts on cell-based luciferase reporter gene assays

Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria

Various studies indicate that several ubiquitous plant compounds, like chlorophyll and tannins, possibly interfere with biological in vitro assays. Chlorophyll might interact with fatty acids, whereas tannins can form tight complexes with metal ions, proteins and polysaccharides [1]. The aim of this study was to examine whether the chlorophyll and/or tannin content of plant extracts leads to false positive or false negative results in several luciferase gene assays. Therefore, two model plants, Sambucus nigra and Urtica dioica, were extracted with dichloromethane (DCM) and methanol (MeOH) using the Accelerated Solvent Extractor (Dionex ASE200). From the DCM extract chlorophyll was removed, whereas tannins were separated from the MeOH extract. The chlorophyll separation method was based on a liquid-liquid-repartition between DCM and MeOH: H₂O (1:1). For the separation of tannins a liquid-liquid-solvent partition in CHCl₃ and 1% NaCl [2] was used. In addition HPLC-MS fingerprints were generated. Samples, with and without the possible interfering substances, were examined for their potential to activate the peroxisome proliferator-activated receptors (PPAR-α and -γ) as well as to inhibit the transcription factor NF-κB. Assays were performed in HEK293 cells transfected with luciferase-reporter constructs for PPAR α/γ or pNF-κB and with green fluorescent protein as internal normalization control. Further, fluorescence intensity was quantified. The results indicated that in all three assay systems the purified extracts were more active. Thus, the pure substances chlorophyll a and b, tannic acid, and epicatechin gallate were tested in the different assay formats too. Since, neither the pure chlorophyll nor the pure tannins had any influence in our assay systems, the higher activity of the purified extracts might be due to enrichment of the active compounds in those. Acknowledgements: This work is funded by the Austrian Science Fund, FWF: S10704-B037. References: [1] Potterat, O. and Hamburger, M. (2006) Curr. Org. Chem. 10:899 – 920. [2] Wall, M.E. et al. (1996) Phytomedicine 3:281 – 285.

Screening of 35 plants used in Austrian folk medicine for PPAR-α and -γ activation and NFκB inhibition

Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria

Austria and its adjacent regions have a great history in traditional folk medicine. Folk-medical knowledge was collected over years and transferred to the VOLKSMED database [1] which contains an exact botanical description of each used plant. The aim of this study was to investigate the potential of in vitro anti-inflammatory activity of plants selected from that database, using luciferase reporter gene assays. Thirty five preselected plants were extracted with dichloromethane (DCM) and methanol (MeOH) using the Accelerated Solvent Extractor (Dionex ASE200). The chlorophyll, if present, was separated from the DCM extract, whereas the tannins were removed from the MeOH extract, in order to avoid possible interferences with the assay formats [2]. Crude and purified extracts were then examined for activation of PPAR-α and -γ and inhibition of NFκB using HEK293 cells transfected with green fluorescent protein plasmid (as internal control). The cells were also co-transfected with PPAR-α or -γ plasmids and reporter plasmid pPIRE-tk-Luc in the PPAR assay, while a pNFκB-luc transfection and a TNF-α stimulation were used in the NFκB assay. Luciferase activity and fluorescence intensity were then measured using a GeniosPro plate reader. The extracts of fifteen plants showed no activity in the applied assays, while the other twenty exhibited activity in one or more of the test systems. The three most active ones in both assays were the DCM extract with the chlorophyll separated of Urtica dioica leaves, the MeOH extract with the tannin separated of Sambucus nigra fruits and the DCM extract with the chlorophyll separated of Prunella vulgaris. Acknowledgements: This work is funded by the Austrian Science Fund FWF: S10704-B037. References: [1] Saukel, J. (2006) Sci. Pharm. 74:36. [2] Potterat, O. and Hamburger, M. (2006) Curr. Org. Chem. 10:899 – 920.

Cinnamomum tamala (Family Lauraceae) was used traditionally in the treatment of inflammation [1] but there is no scientific evidence to validate the folkloric use of the plant. Thus the present work aimed at investigating the anti-inflammatory effect of the aqueous extract of Cinnamomum tamala leaves (CTW) by various in vivo and in vitro screening methods. CTW at dose of 100, 200 and 400 mg/kg was evaluated in acute inflammation against carrageenan induced paw edema in rats and acetic acid-induced vascular permeability in mice. In vitro anti-inflammatory activity of CTW was studied by membrane stabilizing activity i.e. red blood cells (RBC’s) exposed to hypotonic solution and inflammatory activity of CTW was studied by membrane stabilizing

The well-known antimicrobial activity of usnic acid, isolated from different Usnea sp., was used in many patents for topical and oral administration [1,2]. Also, usnic acid is used for weight loss, but hepatotoxicity in humans was reported after the ingestion of dietary supplements with usnic acid [3]. Because of economic reasons, as well as reported liver toxicity were the motives for further research of antimicrobial properties of remaining solution after the isolation of crystal usnic acid. The cutted lichen Usnea barbata (20 g) was extracted with 96% ethanol under reflux during 15 min. Usnic acid was isolated by crystallization, the solvent was evaporated under reduced pressure at 40°C (total yield 1.54 g). The composition of the extract was monitored by TLC and HPLC. Our results have shown retaining activity of ethanol extract after the isolation of usnic acid, and even higher activity against Gram-positive bacteria Staphylococcus aureus, S. epidermidis, Micrococcus luteus, Bacillus subtilis with MIC 0.78 μg/mL, and Gram-negative Klebsiella pneumoniae (MIC 1.56 μg/mL). Antifungal activity was lower compare to usnic acid.

The antifungal activity of Satureja kitabellii was collected in July 2008 on mountain Rtanj (Serbia). The antifungal activities of S. kitabellii essential oil and the methanol extract of aerial parts were tested using broth microdilution method [5]. The essential oil was highly active against tested Gram-positive and Gram-negative bacteria (MIC 0.39 – 25 μg/mL) and especially against Candida albicans with MIC 0.097 μg/mL. The major compounds in the essential oil were o-cymene (17.09%), limonene (13.56%), γ-terpinene (13.56%), β-ocimene (7.73%) and thymol (8.21%) determined by GC-FID and GC/MS analysis. Luteolin and its methoxy derivatives, diosmetin and acacetin were identified using HPLC.

Isolation of metabolites from the wild mushrooms *Helvella lacunosa* and *Helvella crispa*

1Division of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece; 2Department of Ecology and Systematics, Faculty of Biology, University of Athens, Athens Greece

Wild mushrooms are good sources of a wide range of metabolites that can exhibit diverse nutritional and medicinal properties. Very few species of wild mushrooms have been extensively investigated for their activities. The present work, in a continuation of our research for the isolation of new metabolites from wild mushrooms, focuses on the investigation of two species of Ascomycetes *Helvella lacunosa* and *Helvella crispa*, which belong to the family Helvellaceae. Both species are considered edible, although they are regarded as suspicious for gastrointestinal symptoms to some people. The species *H. lacunosa* and *H. crispa* were collected in Mt. Parnitha from Abies cephalonica. In the lab the specimens were lyophilized and finally extracted. *H. lacunosa* was first extracted with a SuperCritical Fluid Extractor using CO₂ and then with Accelerated Solvent Extractor (ASE) using EtOH. *H. crispa* was extracted directly with Accelerated Solvent Extractor using EtOH as a solvent. Subsequently, the fractionation and investigation of *H. lacunosa* supercritical extract lead to the isolation and identification of hexadecanoic acid, octadecanoic acid, linoleic acid, oleic acid, hexadecanoic acid ethyl ester, oleic acid methyl ester, oleic acid ethyl ester, linoleic acid ethyl ester, crinosterol and squalene. The extract from the ASE lead to the isolation of one of these is described. Moreover, we report a new compound characterized by IR and NMR analysis, including TOCSY, COSY, HSQC, HMBC and reversed-phase HPLC, yielded a new clerodane diterpenoid (1).

Investigation of bioactive compounds in the genus *Garcinia* (Guttiferae) of Cameroon

Bilia Messi B1, Ho R, Meti Lannang A, Tangmou JC, Hostettmann K

1Department of Organic Chemistry, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon; 2Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, EPLG, University of Geneva, University of Lausanne, Quai Ernest-Annet 30, CH-1211 Geneva 4, Switzerland; 3Department of Chemistry, Higher Teachers’ Training College, University of Maroua, P.O.Box 46 Maroua, Cameroon

The very high cost of imported drugs coupled with the inadequacy of modern health care personnel and infrastructures excludes a very large majority of the Third World population from any modern health care program. Thus, traditional medicine remains and will remain for a long time, the main source and method of health care for most developing countries. The genus *Garcinia* (Guttiferae) which comprises 200 species is widespread in the tropical regions and 21 species of *Garcinia* are found in Cameroon [1]. Three of these, *G. epunctorata*, *G. brevipedicellata* and *G. preussii*, are indigenous medicinal plants of Cameroon [1], and were screened for their activities in simple benchtop tests. Biologically active compounds belonging to the triterpened, xanthone and flavonoid classes have been found in the genus *Garcinia* [2]. Some of these exhibit a wide range of biological and pharmaceutical properties such as antimicrobial and antioxidant action [2]. As no phytochemical investigation of *G. preussii* has been reported so far, this species was selected for further study. Antioxidant activity was investigated by DPPH. 1-Level (1.1-diphenyl-2-picrylhydrazyl) radical scavenging on TLC plates. A TLC bioautographic method for the detection of acetylcholinesterase inhibitory activity was also performed. The screening test was able to detect inhibition of acetylcholinesterase (AChE), and positive activity of the compounds present in the hexane extract of the fruit. Thus, several compounds responsible for these activities were isolated from this part, using usual chromatographic methods. With the aid of spectroscopic methods (IR, RMN 1H, RMN 13C, SM, HMBC, HMBC, COSY) and by comparison with information available in the literature, three of these compounds have been identified respectively as Garcinol, isogarcinol, and guttiferone E. References: [1] Guedje, N.M. et al. Le genre *Garcinia* au Cameroun: diversité et utilisations traditionnelles « [on line] » available on: http://carpe.umd.edu/resources/Documents/report-guedje-changueu.pdf. [2] Waffo, A.F.K. et al. (2006) Chem. Pharm. Bull. 54:448-451.

Evaluation of the anti-inflammatory efficacy of *Glycyrrhiza uralensis* according to extracting solvents

Yoon I, Cheon MS, Kim SJ, Choo BK, Moon BC, Lee AY, Chun JM, Kim HK

Center of Herbal Resources Research, Korea Institute of Oriental Medicine, 483 Exporto, Yuseong-gu, Daejeon 305 – 811, Republic of Korea

Glycyrrhiza uralensis (Leguminosae) is a well-known herbal medicine that has long been valued as a demulcent to relieve inflammatory disorders [1]. To compare the influence of different extracting solvents on the anti-inflammatory efficacy of *G. uralensis*, we measured the inhibition of pro-inflammatory mediators such as NO, TNF-α, and PGE₂ in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells by extracts produced using different solvents (water, ethanol, methanol, or n-hexane) [2]. The results showed that methanol was the most effective extracting solvent for the inhibition of both NO and PGE₂ production in RAW 264.7 cells. However, there was no difference among the extracts for inhibition of TNF-α, and the extract from n-hexane had no detectable activity. Further study must be performed for the analysis of correlation between the anti-inflammatory activity of extracts produced using different solvents and the content of major bioactive compounds in *G. uralensis*, such as glycyrrhizin and liquiritin [3]. The present study suggests that methanol may be a more appropriate extracting solvent of *G. uralensis* for yielding the greatest anti-inflammatory activity for food.

Pj82 Pomelo fruit juice increased cell survival and enhanced glutathione-S transferase (GST) activity in doxorubicin-induced rat cardiac cell cytotoxicity

Chularojmontri L1, Suwattrakornakorn M2, Wattanapitayakul SK1
1Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani 12211 Thailand, 2Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110 Thailand

Pomelo (Citrus Maxima, CM) is a tropical fruit native to South East Asia. Broadly proven by scientific evidence, fruits in the citrus family provide antioxidant effects and enhance detoxification metabolism of cytotoxic agents [1,2]. In this study, the amounts of five major antioxidants/common constituents of citrus fruits were evaluated by HPLC. We investigated the cytoprotective effect of CM against DOX-induced cytotoxicity. Enzyme activity and mRNA expression of GST in rat cardiac cell (H9c2) treated with the cytotoxic agent doxorubicin (DOX, 100 nM) was also evaluated. Cell survival was significantly decreased to 69.32% ± 6.26% (© Control) in cells treated with DOX while CM dose-dependently protected cells as assessed by crystal violet cell staining assay. DOX significantly decreased GST activity and CM reversed DOX effect by increasing enzyme activity. Despite the apparent effect of CM on GST activity there was no significant alteration in GST-Pi mRNA level. In summary, CM fruit juice can be promoted as functional fruit to protect cells from cytotoxic agent, enhance phase II enzyme activity, and expedite metabolism of potential cytotoxic/carcinogenic agents. Acknowledgements: Srinakharinwirot University Research Fund; Thammasat University Travel Award; Asia-Pacific University (botanical identification of Citrus Maxima). References: [1] Prince, M. et al. (2008) Toxicol. Lett. 185:180 – 186. [2] Pisoschi, A.M. et al. (2009) Molecules. 14:480 – 493.

Pj83 Twenty five years of pharmacognostic research on Panamanian flora (1984 – 2009)

Gupta MP
Center for Pharmacognostic Research on Panamanian Flora, College of Pharmacy, University of Panama, Panama, Republic of Panama

Panamanian flora is one of the richest in the world. Its medical and economic potential has not been fully explored. The results of ethnobotanical surveys among the Kuna, Ngobe-Bugle and Nabo Amerindians of Panama will be presented. Results of biosay-guided fractionation of plants within the framework of multinational collaborative projects executed during the last 25 years 1984 – 2009, supported by the Organization of American States, National Secretariat of Science, Technology and Innovation of Panama, European Union, Convenio Andres Bello, ICBG, and International Foundation for Science will be presented. Examples of successful collaborations with the University of Lausanne-Geneva will also be highlighted. Acknowledgement: SENACYT and OAS

Pj84 Effects of extracts from Myrtothamnus flavellifolia Welw. on Streptococcus mutans induced biofilm formation and Porphyromonas gingivalis induced inflammation parameters in KB cells

Loehr G1, Beikler T2, Bicker J1, Hessel A1
1Institute of Pharmacy/Pharmacognosy*, University of Hamburg, Germany; 2Department of Operative and Preventive Dentistry and Periodontics, Moorreesenstr. 5, 40225 Dusseldorf, Germany

Streptococcus mutans (ATCC 25175), a Gram-positive, facultatively anaerobic bacterium is a significant contributor to dental caries as well as periodontitis. It is one of the early colonizers of the human oral cavity and involved in plaque formation and accumulation. An acetone/water extract from Myrtothamnus flavellifolia Welw. was tested on its influence on biofilm formation by S. mutans. 10μg/ml of the extract were incubated with S. mutans over 72 hours and biofilm formation decreased to 70%, compared to an untreated control. A polyphenol-enriched extract from M. flavellifolia Welw., which has shown antiadhesive effects on the adhesion of P. gingivalis on KB cells (investigated via FACS assay), was tested on its influence on inflammation effects caused by P. gingivalis. Oral epithelial cells (KB-cells ATCC CCL 17) were treated with Porphyromonas gingivalis (ATCC 33277) for RT-PCR investigation of the influence of this Gram-negative bacterium on the gene expression of cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNFα) and interleukins IL-1β, IL-6 and IL-8. The expression of ILs and TNFα was stimulated up to 10 μg/ml P. gingivalis. Incubation of KB cells with only the extract from M. flavellifolia Welw. (10, 50,100μg/ml, 6 hours) resulted in significant stimulation up to twenty times of inflammation related genes. Coincubation of KB cells with the extract and P. gingivalis led to 10-25-fold increase of COX-2, IL-6 and IL-8. These results lead to the assumption that polyphenols can stimulate inflammation parameters.

Pj85 Development of a fast method for the isolation of triterpene saponins from Actaea racemosa

Cick S1, Schwalger S2, Ehmerer EP1, Supper H2
1Institute of Pharmacy/Pharmacognosy*, University of Innsbruck, Innsbruck, Austria; 2Institute of Organic Chemistry*, University of Innsbruck, Innsbruck 52c, A-6020 Innsbruck, Austria

*Member of the Center for Molecular Biosciences (CMBI)

Extracts of the sub-aerial parts of Actaea racemosa L. (Ranunculaceae), commonly known as black cohosh, belong to the most selling herbal supplements, mainly used to treat mild climacteric symptoms. Although the plant is phyto-chemically well investigated the mechanism of action still is unknown and discussed controversially [1,2]. One discussed group of active principles are cycloartane glycosides which are also used for standardization of extracts. Due to the fact that only a few relevant substances of A. racemosa are commercially available and prices for those substances are very high, a fast and simple method for isolation and purification of triterpenes from black cohosh was developed. Accelerated solvent extraction (ASE) was used for defatting and extracting the sub-aerial parts. The obtained extract was subjected to Sephadex LH-20 CC leading to three highly enriched fractions. One fraction mainly contained actein, the second fraction 23-epi-26-deoxyactein, while the third fraction was a mixture of additional derivatives. The most complex third fraction was used for optimization of a high-speed counter-current chromatography system, an established technique for the separation of saponins. Separation parameters were first optimized on analytical scale, using a hyphenated HSCCC-ELSD setup, before the system was scaled up to preparative size. The optimized two-phase solvent system, consisting of n-hexane-acetone-2-propanol-acetone-2-propanol-water (3:5:1:2:1:0.5:2 v/v/v/v/v/v), enabled the isolation of the aglycone cimigenol (purity of 98.4%) and three triterpene glycosides (purities of 96.8%, 96.2% and 97.9%). The same method was suitable for the purification of actein (97.9%) and 23-epi-26-deoxyactein (98.3%). References: [1] Palacio, C. et al. (2008) Pharmakol. Res. 58:8 – 14. [2] Borelli, F. and Ernst, E. (2002) Eur. J. Clin. Pharmacol. 58:235 – 241.

Pj86 Lamiaceae essential oils and alcoholic extracts and their effects on zoonotic multi drug-resistant bacteria

Niculae M, Spinu M, Sandru D, Bradaaş F, Cazar D, Kőbölki K1, Ungvári A, Rindt I, Uricaru A, Kiss T
1Discipline of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur street no 3 – 5, 400372, Romania

In the last decade, an increasing incidence of multi-drug resistant bacterial strains, both in human and animal medicine, has been reported. Furthermore, the phenomenon of drug resistance was encountered mainly in zoonotic bacteria. Vegetal extracts and essential oils, widely used in folk medicine and well-known for their bioactive potential, were suggested by numerous researchers to represent a therapeutic alternative. It is only recently that a number of findings have emerged on the chemistry and biological activity of plants in Lamiaceae family, some of them referring to bioactive compounds able to inhibit bacterial growth [1,2]. This study aimed to evaluate and compare antimicrobial properties of essential oils and ethanolic extracts from Thymus vulgaris, Salvia officinalis and Thymus citriodorus.
cinalis, Lavandula officinalis, Mentha piperita, Rosmarinus officinalis, Ocimum basilicum, Melissa officinalis and Origanum vulgare against multiple-drug-resistant strains of Staphylococcus spp., Salmonella spp., E. coli and Pseudomonas aeruginosa, isolated from diseased animals. The antimicrobial potential was assessed by disc diffusion test, while minimal inhibitory (MIC) and bactericidal (MBC) concentrations were determined by a broth microdilution method. Synergistic interactions between the tested extracts and two antibiotics (enrofloxacin and amoxicillin-clavulanic acid) were detected by Etest method. The antibacterial effects, dependent on type of vegetal product and on bacterial species, were statistically significant (p < 0.001 – 0.05) for all screened Lamiaceae species, more pronounced against Gram-positive than Gram-negative bacteria. Melissa officinalis essential oils demonstrated the strongest antimicrobial efficacy against all bacterial strains. Thymus vulgaris and Salvia officinalis essential oils possessed promising antibacterial properties against tested animal pathogens, displaying synergism with enrofloxacin. References: [1] Pasqua, R. et al. (2005) Ann. Microbiol. 55:139 – 143. [2] Delamare, A. et al. (2007) Food Chem. 100:603 – 608.

Immunostimulatory activity of Rhus verniciflua stokes in vitro

Kim JM1, So BJ1, Chang H1, Ku HD2, Kang SK2, Choi CI2
1National Veterinary Research & Quarantine Service MIFAFF, Anyang, Korea; 2Hanyang University, Seoul, Korea

Rhus verniciflua stokes (RVS) have been used as a traditional food and medicine to enhance immune response against infectious agents and to treat cancer [1]. Unfortunately, there is a lack of scientific evidence to support efficacy of this widely used botanical, and little information about potential mechanism of action. In this study, the methanol extract of RVS and its successive n-butanol, ethyl acetate and aqueous extracts have been screened on immune response of goat neutrophils and murine RAW 264.7 cells. Freshly isolated neutrophils from healthy goats were incubated fractions of the RVS, and then they were tested for migration and superoxide production induced opsonized zymosan. And also the immunostimulatory effects of its fractions assessed by in vitro spleen lymphocyte proliferation and nitric oxide (NO) production. The n-butanol fraction stimulated spleen lymphocyte proliferation, NO production, goat neutrophil migration and superoxide production and also ethyl acetate fraction exhibited some immunostimulatory activity (p < 0.05).

<table>
<thead>
<tr>
<th>Dose µg/ml</th>
<th>Methanolic extracts</th>
<th>Aqueous extracts</th>
<th>Ethyl acetate extracts</th>
<th>n-butanol extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.133 ± 0.056</td>
<td>0.555 ± 0.15</td>
<td>1.049 ± 0.026*</td>
<td>1.080 ± 0.050*</td>
</tr>
<tr>
<td>10</td>
<td>0.565 ± 0.007</td>
<td>0.604 ± 0.064</td>
<td>1.184 ± 0.002*</td>
<td>1.222 ± 0.103*</td>
</tr>
<tr>
<td>100</td>
<td>0.449 ± 0.020</td>
<td>0.523 ± 0.013</td>
<td>1.189 ± 0.020</td>
<td>0.806 ± 0.106</td>
</tr>
<tr>
<td>Control</td>
<td>0.661 ± 0.027</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanisms involved in the probiotic effect of STW 5 in an acute model of esophagitis in rats

Khanavi M1, Haghamehpoor H2, Emadi F3, Fathi M4, Hadjiakhoondi A1
1Department of Pharmacognosy, Medicinal Plants Research Center, University of Tehran, Tehran, 14155/6451, Iran; 2Herbal drugs department, food and drug laboratory research center, Tehran, 11136, Iran

Gastro-esophageal reflux is a gastrointestinal complaint associated with a variety of functional disorders of the stomach, including functional dyspepsia, where STW5 (Iberogast®) has been successfully used to alleviate symptoms including heartburn. The present study was aimed at investigating the effect of this drug in an experimental model of esophagitis. Esophagitis was induced in male Wistar rats by gastric ligation between fore-stomach and corpus as well as between stomal and pylorus. The pH of the lower third of the esophagus was measured 3 h later. Rats were sacrificed 5 h from surgery. The gastric ligations led to marked symptoms, measured as the ulcerative area of the esophageal mucosa. To test the activity of STW5, the rats were treated with the drug daily for 5 successive days at different dose levels (0.2 – 2 ml/kg) by oral gavage. On day 5, animals were anesthetized 3 h after the last dose, and esophagitis was induced as described above. STW 5 led to a significant dose-dependent reduction of the ulcerative area, but had no effect on lower esophageal pH. Measurement of myeloperoxidase activity and lipid peroxidation as well as mediators, including TNF-α and IL-1β confirmed the anti-inflammatory activity of the drug. Pantoprazole (5 mg/kg) was used as a reference standard. The findings were confirmed by histological examination of the lower esophagus. The results indicated that the beneficial effect of STW 5 (Iberogast®) in heartburn as a symptom of functional dyspepsia could in part result from an anti-inflammatory effect on the mucosa of the esophagus.

Selective antimicrobial activity of biochanin A

Fiesar I1, Šklenickova O2, Vlkova E3, Malík J4, Koskosa L2
1Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 21, Czech Republic; 2Department of Crop Sciences and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 21, Czech Republic

Biologically active components such as isoflavonoids are common part of human and animal diets. Isoflavonoids are plant secondary metabolites known to possess various biological activities [1]. These compounds play important roles in growth, development and defense against microorganisms and pests. In this study, we decided to test the selective inhibitory activity of the isoflavonoid biochanin A against potential bacterial pathogens of the human digestive system represented by several species of the genus Clostridium and simultaneously towards beneficial human microbiota. In this study, biochanin A has shown significant selective antimicrobial activity. The species C. tertium and C. clostridioforme were the most sensitive species with a minimum inhibitory concentration (MIC) of 0.13 mM, followed by C. ramosum, C. paraputrificum and C. Butyricum (MIC 0.26 – 0.51 mM). Interestingly, biochanin A did not affect the growth of any strain of Lactobacillus spp. or of bifidobacteria even at concentration of 4 mM. Our results suggest the potent selective antimicrobial properties of biochanin A. Acknowledgements: This research was supported by Czech Science Foundation (Project No. 525/08/H060) Reference: [1] Dastidar, S.G. et al. (2004) Int. J. Antimicrob. Agents 23:99 – 102.

Determination of the carvacrol concentration in the essential oil of Thymus kotschyanus

Khanavi M1, Haghamehpoor H2, Emadi F3, Fathi M4, Hadjiakhoondi A1
1Department of Pharmacognosy, Medicinal Plants Research Center, University of Tehran, Tehran, 14155/6451, Iran; 2Herbal drugs department, food and drug laboratory research center, Tehran, 11136, Iran

Carvacrol is used as oral bactericidal, anti-fungal and breath freshening compound but there exist some reports on its toxicity [1]. Therefore the amount of carvacrol in oral products should be detected carefully. Thymus kotschyanus was collected in the city of Yazd in Iran and the essential oil obtained by hydrodistillation (HD) or microwave oven distillation (MD) was analyzed by GC and GC/MS. Major constituents in the oil isolated by HD were carvacrol (80.66%), 1,8-cineole (2.98%), borneol (1.49%) and thymol (1.47%), whereas in that obtained by MD it were carvacrol (65.99%), thymol (4.4%), borneol (4.19%), and 1, 8-cineole (2.44%). In another study on T. kotschyanus, the maximum amount of carvacrol was 65.94% [2]. In order to determine an accurate carvacrol concentration, diphenylamine was used as internal standard. A calibration curve was established by addition of diphenylamine to 2, 4, 6 and 8 mg/ml carvacrol and AUC determination of carvacrol and diphenylamine. The carvacrol concentration of T. kotschyanus can be calculated to be 0.196% in MD-method or 1.02% according to the HD-method due to different yield of essential oil compounds in dependence of the isolation method. Acknowledgments: We would like to thank the authorities of Tehran University for its financial support. References: [1] Seifidon, F. (2002). Essent. Oil Res. 14:116 – 117. [2] Stammati, A. et al. (1999). Food Chem. Toxic. 37:813 – 823.
Artemisia annua essential oil has potential to be used in perfumery, cosmetics and aromatherapy. Since the oil composition and effects vary in different climates, our objective was to investigate the A. annua oil from Rasht region in Iran. The A. annua were gathered and subjected to hydrodistillation method. The achieved essential oil analyzed by GC/MS and 48 compounds were identified. Major constituents were β-selinene (16.16%), camphor (12.12%) and δ-3-carenomyl (7.43%). These identified components and their percentages were different from previous studies [1,2]. Antimicrobial and antifungal tests carried out by Agar dilution method, showed inhibition against S. aureus studies [1,2]. Antimicrobial and antifungal tests carried out by Agar fied components and their percentages were different from previous References:

The authors thank the Ministry of Education, Youth and higher than the efficiency of other extracts. On the basis of LD50 values, the peppermint isolates showed specific effect on adults of Spodoptera litoralis larvae. In contrary to lavender extracts which were more effective against Lepidoptera litoralis, our results demonstrated remarkable difference in bioactivity properties of honey from different sources. Total phenolic content, antioxidant and antibacterial activities were higher in artisanal honey samples, suggesting their richness in bioactive compounds that might exert potential health-promoting effects and increase its nutraceutical value. Acknowledgements: Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, AGRIPOLIS, Viale dell’Università, 1, 35138 Padova (PD), Italia, Prof. Stefano Bona, Dr.ssa Sara Sandrini. References: [1] Kučik, M. et al. (2007) Food Chem. 100:526 – 534. [2] Wilson, T. et al. (1998) Annu. Rev. Cell Dev. Bi. 14:197 – 230.

Honey is a natural food largely known as a sweetener, produced by Apis mellifera bees by collecting nectar from flowers. The use of honey in the treatment and prevention of numerous diseases such as respiratory disorders has been known since ancient times. It has been well documented the role of oxidative stress in many diseases and several studies demonstrated that honey contain a great number of metabolites that can scavenge free radicals. In this study, we investigated and compared phenolic content, antioxidant capacity and in vitro biological activities of multifloral commercial and artisanal Italian honey samples. Total phenolic content and radical-scavenging activity were analysed by Folin–Ciocalteu reagent and by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, respectively. Phenolic compounds were extracted using Amberlite XAD-2 resin and a RP-HPLC method involving gradient elution and UV detection was applied to their separation [1]. The antimicrobial activity of the phenolic extracts was tested by means of a luminiscence bacterial bio- sensor [2]. A strain of Staphylococcus pyogenes isolated from human throat containing a firefly luciferase reporter gene was incubated with the honey phenolic fractions. A luminometer was used to quantitify bioluminescence, which is directly connected to the cell metabolic state. The results demonstrated remarkable difference in bioactivity properties of honey from different sources. Total phenolic content, antioxidant and antibacterial activities were higher in artisanal honey samples, suggesting their richness in bioactive compounds that might exert potential health-promoting effects and increase its nutraceutical value. Acknowledgements: Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, AGRIPOLIS, Viale dell’Università, 1, 35138 Padova (PD), Italia, Prof. Stefano Bona, Dr.ssa Sara Sandrini. References: [1] Kučik, M. et al. (2007) Food Chem. 100:526 – 534. [2] Wilson, T. et al. (1998) Annu. Rev. Cell Dev. Bi. 14:197 – 230.

Increased pest resistance against traditional synthetic insecticides is the perfect prerequisite for sustainable worldwide farming systems. Therefore these insecticides are not easily environmentally degradable and have negative effects on human health. Thus, botanical insecticides, i.e. the agents containing natural plant compounds, are expected to be applied in the future as selective, efficacious and toxico-logically-safe insecticides [1,2]. Biologically active components were isolated from peppermint (Mentha piperita L.) and lavender (Lavandula angustifolia L.) using the supercritical fluid extraction (SFE). Three types of extracts were prepared using the benefit of variable solvent power of supercritical carbon dioxide under different experimental conditions, and compared in terms of chemical composition and biological activity with the products of hydrodistillation and Soxhlet extraction with ethanol and hexane. The composition of volatile oil in all extracts was determined using GC-MS and GC-FID. Insecticide activity of all isolates was determined in terms of toxicologic and antifeedent effects against model kinds of insects (Spodoptera litoralis, Musca domestica and Lepintotarsa decimemetae). Strong insecticidal effects of all isolates were observed, but significant differences between the particular isolates and plants were found. The efficiency of CO2 extracts was comparable with that of hydrodistillate and higher than the efficiency of other extracts. On the basis of LD50 values, the peppermint isolates showed specific effect on adults of Lepintotarsa decimemetae in contrary to lavender extracts which were more effective against Musca domestica adults and Spodoptera litoralis larvae. Acknowledgement The authors thank the Ministry of Education, Youth and Sports (project No. 2B06049) for financial support. References: [1] Isman, M.B. (2000) Crop. Prot. 19:601 – 608. [2] Pavela, R. (2007) Pest. Technol. 1(1):47 – 52.

Evaluation of phenolic composition and biological activity of honey

Madoe M1, Guglielmetti S2, Speranza G2, Lozza GC1, Giorgi A1 1Department of Food and Agricultural Industry and Urban Systems Protection and Biodiversity Valorization, University of Milan, via G.Celoria 2, 20133, Milan, Italy; 2Department of Food Science and Microbiology, University of Milan, via G.Celoria 2, 20133, Milan, Italy; 3Department of Organic and Industrial Chemistry, University of Milan, Via Venezian 21, 20133 Milan, Italy; 4Department of Plant Production, University of Milan, via G.Celoria 2, 20133, Milan, Italy

New cycloartenane-type glycosides from Astragalus icmadophilus Hand.-Mazz.

Hara I1, Bedir E2, Perrone A1, Piacente S1, Özgökçe F1

1Department of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; 2Department of Biotechnology, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey; 3Department of Pharmaceutical Sciences, Salerno University, 84084 Fisciano (Salerno), Italy; 4Department of Biology, Faculty of Science Art, Yüzüncü Yıl University, 65080 Van, Turkey

Astragalus L., the largest genus in the family Leguminosae, is represented by 380 species in the flora of Turkey [1]. The roots of Astragalus species represent a very old and well-known drug in traditional medicine for its usage as an antiperspirant, diuretic and tonic drug [2]. Known biologically active constituents of Astragalus roots represent two major classes of chemical compounds, polysaccharides and saponins [2]. Our earlier investigations performed on Astragalus species resulted in the isolation of a series of cycloartenane-type triterpenic saponins [3,4]. In our continuing search on Turkish Astragalus species, we have isolated four new and five known triterpene glycosides from methanolic extract of Astragalus icmadophilus by combined chromatografies on reverse phase C-18 and silica gel. The structures of the new compounds were determined as 3-O-[αL-arabinopyranosyl(1→2)-3-O-acetyl-[αL-arabinopyranosyl(1→6)-O-D-glucopyranosyl-3,6,16,24]-25-pentahydroxy-cycloartenone, 3-O-[αL-rhamnopyranosyl(1→2)-αL-arabinopyranosyl(1→2)-28-O-D-glucopyranosyl-3,6,16,24]-25-pentahydroxy-cycloartenone, 20(R),25-epoxy-3-O-[αL-arabinopyranosyl(1→2)-28-O-D-glucopyranosyl-3,6,16,24]-25-pentahydroxy-cycloartenone, 20(R),25-epoxy-3-O-[αL-rhamnopyranosyl(1→2)-αL-arabinopyranosyl(1→2)-28-O-D-glucopyranosyl-3,6,16,24]-24κ-tetrahydroxy-cycloartenone, 20(R),25-epoxy-3-O-[αL-arabinopyranosyl(1→2)-αL-rhamnopyranosyl(1→2)-αL-arabinopyranosyl(1→2)-28-O-D-glucopyranosyl-3,6,16,24κ-tetrahydroxy-cycloartenone by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. References: [1] Davis,

Chemical composition of Iranian Artemisia annua L. essential oil and its antibacterial, antifungal and antioxidant effects

Emadi F1, Yasoo N2

1Department of Pharmacognosy, Faculty of Pharmacy, University of Tehran, Tehran, 14155/6451, Iran

References:

PJ91

PJ92

PJ93

PJ94
American foulbrood (AFB) is a serious worldwide spreading disease of honeybees caused by the spore-forming, Gram-positive bacterium Paenibacillus larvae. Antimicrobial natural products may provide a safe and acceptable alternative in prevention and treatment of AFB. The inhibiting action of thymoquinone (TQ) on P. larvae was previously studied in vitro [1] (MIC 8 – 16 µg/mL). Laboratory and field trials were conducted to evaluate the acute oral toxicity and transfer of TQ to royal jelly or to honey. We determined in vivo acute oral toxicity on adult honey bees by technique ICBr (1993) [2], expressed as LD$_{50}$. The defined amounts of TQ were dissolved in a feeding solution (50% v/v sucrose in distilled water). The second experiment transfer to royal jelly was conducted from September to October. Non-toxic dose of TQ was fed on honey bee colony. Amount of TQ was given with the aid of GC-MS methods. LD$_{50}$ value of thymoquinone was higher than 50 µg per bee and would be classifying according to results as slightly or non-toxic compound. TQ occurred in royal jelly in concentrations potentially useful for application against P. larvae. Acknowledgements: This research was supported by grants NAZV QH72144, CIGA 20082012 and GACR (No. 525/08/H060). References: [1] Flesar, J. et al. (2008) Planta Med. 74:1135. [2] ICBrP (1993) Hazard of Pesticides to Bees. Wageningen, The Netherlands.

Phytochemical studies on Astragalus wiedemannianus Fischer

Polar E*, Bedir E*, Perrone A*, Piacente S*, Senol SC*, Alankuş-Çağıahan O*

*Department of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; *Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey; *Department of Pharmaceutical Sciences, Salerno University, 84084 Fisciano (Salerno), Italy; *Department of Biology, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey

Astragalus L., the largest genus in the family Leguminosae, is represented by 380 species in the flora of Turkey [1]. The roots of Astragalus species represent a very old and well-known drug in traditional medicine for its usage as an antispasmpotic, diuretic and tonic drug [2]. In the district of Anatolia, located in Eastern Turkey, an aqueous extract of the roots of Astragalus is traditionally used against leukemia and for its wound-healing properties. Known biologically active constituents of Astragalus roots represent two major classes of chemical compounds, polysaccharides and saponins [2]. In our continuing search on Turkish Astragalus species, we have isolated a new cycloarteann-type triterpene glycoside from methanolic extract of A. schottianus together with three known compounds by combined chromatographies on reverse phase C-18 and silica gel. The structure of the new compound (1) was determined as 20(R),25-epoxy-3-O-[(1-L-arabinopyranosyl)-1-2]-3beta-D-xylopyranosyl]-24-O-D-glucuronopyranosyl-3beta,D-glucopyranosyl-3beta,L6alpha,16beta,24a-tetrahydroxy-cycloartane by a combination of one- and two-dimensional NMR techniques.

A new cycloarteann-type glycoside from Astragalus schottianus Boiss.

Karabay E, Bedir E

Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey

Astragalus L., the largest genus in the family Leguminosae, is represented by 380 species in the flora of Turkey [1]. The roots of Astragalus species represent a very old and well-known drug in traditional medicine for its usage as an antispasmpotic, diuretic and tonic drug [2]. In the district of Anatolia, located in Eastern Turkey, an aqueous extract of the roots of Astragalus is traditionally used against leukemia and for its wound-healing properties. Known biologically active constituents of Astragalus roots represent two major classes of chemical compounds, polysaccharides and saponins [2]. In our continuing search on Turkish Astragalus species, we have isolated a new cycloarteann-type triterpene glycoside from methanolic extract of A. schottianus together with three known compounds by combined chromatographies on reverse phase C-18 and silica gel. The structure of the new compound (1) was determined as 20(R),25-epoxy-3-O-[(1-L-arabinopyranosyl)-1-2]-3beta-D-xylopyranosyl]-24-O-D-glucuronopyranosyl-3beta,D-glucopyranosyl-3beta,L6alpha,16beta,24a-tetrahydroxy-cycloartane by a combination of one- and two-dimensional NMR techniques.

Additive antimicrobial effects of the active components of the essential oil of Thymus vulgaris – chemotype carvacrol

PJ100

Herbal remedies are multi component mixtures by their nature as well as by pharmaceutical definition. Being a multi component mixture is a pre-condition for interactions such as synergism or antagonism. Antibiotic activity of thyme oil and single active components were tested against six different strains of microorganisms. The degree of the detected interactions corresponded with the demarcating FICI measure of 0.5, which separates the additive from the over additive (synergistic) effects [1]. Therefore, the observed effect was called “partial synergism”. Partial synergism was observed only in the presence of *Klebsiella pneumoniae*. Additive antimicrobial activity was observed for the combination of the two monosubstances carvacrol plus linalool and thymol plus linalool as well as with the combination of the two essential oils of the carvacrol and linalool chemotypes. An increase of the carvacrol-oil concentration from one to two times the MIC resulted in a considerable acceleration of the kill-rate. Carvacrol-oil (Cve) caused a faster kill-rate than the artificial combination (Ac), which was composed of the two main active monosubstances carvacrol and thymol. References: [1] Odds, F.C. (2003). Antimicrob. Chemother. 52(1):1.

Preliminary determination of biochemical activity of the three plants of the Echium genus

PJ101

Antilulcer activity of Feijoa sellowiana L. (Mirtaceae): morphological study

PJ102

In a project, financed by Regione Sicilia, several studies on tropical fruits, obtained from experimental cultivations located in Sicily (Milazzo-MESSINA), were carried out. This project aims at implementing the cultivation of tropical fruit in Sicily through phytochemical and biological studies. This paper reports the preliminary results of the study about the effectiveness of *Feijoa sellowiana* L. var. coulioid fruit, on the gastric mucosa. The activity of methanolic extract of the fruit was studied on experimental ethanol-induced ulcer in rat. 2 g/Kg of extract were administered to the rats and, 1 h later, the ulcer was induced by administration 0.5 ml of ethanol (90%). Samples of gastric mucosa, stained by PAS and Hematoxylin-Eosin, have been observed by light microscopy. The results verify that preventive treatment with *F. sellowiana* fruit methanolic extract inhibits the ulcerogenic effect of ethanol. Actually the mucosal surface appears undamaged and the microscopic evaluations show an increase of mucus, mostly in glandular pits. These fruits contain many anti oxidant compounds, including terpenes, flavonoids, steroid saponins, ascorbic acid and minerals [1]. Besides, our study in progress shows in the fruit the presence of pectins and mucilages The protective effect on gastric mucosa could depend on the flavonoids which can stimulate prostaglandins synthesis and therefore favour mucus and bicarbonate secretion and increase mucosal blood flow. Certainly, the antioxidant potential of the fruit plays a protective role by removing damaging agents from the gastric mucosa, but it is possible to propose a synergistic activity of all the active principles. References: [1] Mantas, A. et al. (2000)]. Mol. Struct. (Theochem) 504:77 – 103.
In this study, we have examined chemical constituents of the above-ground parts of *Pterocephalus pinardii* Boiss. which is an endemic plant belonging to the family Dipsacaceae. Hydroxycinnamic acid esters, iridoids, phenolic glucosides, lignans [1], triterpenoid saponins [2,3] and flavonoid C-glycosides [4] were isolated from the genus. Hydroxycinnamic acid esters, iridoids, phenolic glucosides, lignans, triterpenoid saponins and flavonoid C-glycosides were isolated from the genus *doids*, phenolic glucosides, lignans [1], triterpenoid saponins [2,3] and belonging to the family Dipsacaceae. Hydroxycinnamic acid esters, iridoids, phenolic glucosides, lignans [1], triterpenoid saponins [2,3] and flavonoid C-glycosides [4] were isolated from the genus *Pterocephalus pinardii*.

In this study, we have examined chemical constituents of the above-ground parts of *Pterocephalus pinardii* Boiss. which is an endemic plant belonging to the family Dipsacaceae. Hydroxycinnamic acid esters, iridoids, phenolic glucosides, lignans [1], triterpenoid saponins [2,3] and flavonoid C-glycosides [4] were isolated from the genus *Pterocephalus pinardii* previously. This is the first phytochemical investigation on *Pterocephalus pinardii*. For the first time, the total fatty acid composition of the fruits of *Pterocephalus pinardii* has been examined by gas chromatography combined with mass spectroscopy. After extraction with n-hexane and methyl-esterification, fourteen compounds were identified, of those components, linalool, α-terpinene and α-pinene as major constituents were obtained in yields of 60.70%, 14.50% and 10.39%, respectively. The oil from *Anethum graveolens L.* was characterized by its richness and it contains carvone (40.60%), α-phellandrene (21.03%) and limonene (10.39%) among the 13 components comprising of the total oil. β-Pinene (15.71%), geranyl acetate (15.48%), (Z)-3-ο-cinone (9.20%) among the 30 constituents found in the oil of *Cicuta virosa L.* were found to be the main components. Essential oils were investigated for activity against *Escherichia coli*, *Staphylococcus aureus*, *Bacillus subtilis* by using an agar dilution method. Interestingly, *C. sativum L.* oil even showed more high antimicrobial activity against *methicillin-resistant Staphylococcus aureus* (MSSA) strains. Antioxidative activities of (IC50) of ethanol extracts from four *Umbelliferae* species have been studied by the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging test. All the studied extracts showed antioxidant capability and *Anethum graveolens L.* extract exhibited the strongest activity. The scavenging activity of the extracts in decreasing order was: *Anethum graveolens L.* > *Foeniculum vulgare Mill* > *Coriandrum sativum L.* > *Cicuta virosa L.*

For the first time, the total fatty acid composition of the fruits of *Peucedanum alsaticum* collected in Poland has been examined by gas chromatography combined with mass spectroscopy. After extraction with n-hexane and methyl-esterification, fourteen compounds were identified, among which oleic and linoleic acids were predominant. Linalool, α-pinene, palmitic, stearic, α-linolenic, n-eicosanoic, palmitoleic, eicosenoic, aromadendran, linaloceric, bohenic, myristic, capric, and nervonic acid were observed. Minimum inhibitory concentrations (MICs) for a panel of reference bacterial and yeast strains were performed by the micro-dilution broth method, using serial two-fold dilutions in Mueller-Hinton broth and Mueller-Hinton agar supplemented with 2% glucose for bacteria and yeasts, respectively. MIC values were between 125 and 1000 μg/mL.

References:

Fatty acid constituents and antimicrobial activity of Peucedanum alsaticum L. fruits

Skalica-Woźniak K, *Łos K*, *Głowacki K*, *Maim A*
1. Department of Pharmacognosy with Medicinal Plant Laboratory, Medical University of Lublin, 1 Chodzki Str., 20–093 Lublin, Poland;
2. Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Str., 20–093 Lublin, Poland

For the first time, the total fatty acid composition of the fruits of *Peucedanum alsaticum* collected in Poland has been examined by gas chromatography combined with mass spectroscopy. After extraction with n-hexane and methyl-esterification, fourteen compounds were identified, among which oleic and linoleic acids were predominant. Linalool, α-pinene, palmitic, stearic, α-linolenic, n-eicosanoic, palmitoleic, eicosenoic, aromadendran, linaloceric, bohenic, myristic, capric, and nervonic acid were observed. Minimum inhibitory concentrations (MICs) for a panel of reference bacterial and yeast strains were performed by the micro-dilution broth method, using serial two-fold dilutions in Mueller-Hinton broth and Mueller-Hinton agar supplemented with 2% glucose for bacteria and yeasts, respectively. MIC values were between 125 and 1000 μg/mL.

Essential oil composition and antimicrobial activity of *Pterocephalus pinardii*

Irekhebayar J, *Shatar S*, *Altantsetseg S*, *Namdz T*, *Lee BJ*
1. Biooilith Products Research Center, Inje University, 621 – 749, Republic of Korea; 2. Institute of Chemical and Chemical Technology, 210 – 646, Ulaanbaatar, Mongolia; 3. Faculty of Chemistry, National University of Mongolia, 210 – 646, Ulaanbaatar, Mongolia

Essential oil plants have been used for a long time in traditional medicine. The *Aipacea* or *Umblelliferae* is a cosmopolitan family. The family has about 35 species, 73 kibds in Mongolian region. The chemical composition of essential oil from *Foeniculum vulgare Mill*, *Coriandrum sativum L.*, *Anethum graveolens L.*, *Cicuta virosa L.* were determined by GC/MS-analysis. Among the 31 components obtained from *Foeniculum vulgare Mill*, α-phellandrene (9.56%), limonene (13.42%), anethol (51.32%) were found as major components. Fifteen components from the oil of *Coriandrum sativum L.* were identified and of those components, linalool, γ-terpinene and α-pinene as major constituents were obtained in yields of 60.70%, 14.50% and 10.39%, respectively. The oil from *Anethum graveolens L.* was characterized by its richness and it contains carvone (40.60%), α-phellandrene (21.03%) and limonene (10.39%) among the 13 components comprising of the total oil. β-Pinene (15.71%), geranyl acetate (15.48%), (Z)-3-ο-cinone (9.20%) among the 30 constituents found in the oil of *Cicuta virosa L.* were found to be the main components. Essential oils were investigated for activity against *Escherichia coli*, *Staphylococcus aureus*, *Bacillus subtilis* by using an agar dilution method. Interestingly, *C. sativum L.* oil even showed more high antimicrobial activity against *methicillin-resistant Staphylococcus aureus* (MSSA) strains. Antioxidative activities of (IC50) of ethanol extracts from four *Umbelliferae* species have been studied by the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging test. All the studied extracts showed antioxidant capability and *Anethum graveolens L.* extract exhibited the strongest activity. The scavenging activity of the extracts in decreasing order was: *Anethum graveolens L.* > *Foeniculum vulgare Mill* > *Coriandrum sativum L.* > *Cicuta virosa L.*

PJ107

Essential oil of Bupleurum pauciradiatum Fenzl flowers

Taner Saracoğlu H, Akin M

Department of Biology, Science and Arts Faculty, Selcuk University, 42031, Campus, Konya, Turkey

PJ108

Essential oil of Bupleurum rotundifolium L. flowers

Taner Saracoğlu H, Akin M

Department of Biology, Science and Arts Faculty, Selcuk University, 42031, Campus, Konya, Turkey

PJ109

Study on essential oil composition and antimicrobial, antioxidant activities of Bupleurum multinerve L.

Irekhbayar JI, Shatar S2, Tayagerel B2, Altansetseg S3, Tanbch K5, Nanzad T5, Lee BJ1

1Biomedical Products Research Center, Inje University, 621 – 749, Republic of Korea; 2Institute of Chemical and Chemical Technology, 210 – 646, Ulaanbaatar, Mongolia; 3Department of Pharmaceutical Engineering, Inje University, 621 – 749, Republic of Korea; 4Faculty of Chemistry, National University of Mongolia, 210 – 646, Ulaanbaatar, Mongolia

Bupleurum has been widely used for over 2,000 years in Asia. Bupleurum multinerve is one of the endemic plants of Mongolia, which is a popular plant used in Mongolian traditional medicine. A number of essential oils from Mongolian aromatic plants are claimed to have antimicrobial and antioxidant activities. The chemical composition of essential oil from Bupleurum multinerve was determined by GC/MS-analysis. Among the 36 components germacrene-D (19.40%), trans-beta-ocimene (18.63%), beta-caryophyllene (9.15%) and limonene (7.81%) were found to be the major ones. Essential oil was investigated for activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis by using an agar dilution method. Interestingly, Bupleurum multinerve oil even showed antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA4) strains. Antioxidant activity of ethanolic extract from B.multinerve was evaluated by using DPPH (1,1-diphenyl-2-picrylhydrazine) radical scavenging assay with an IC50 value of 63.83μg/ml.

PJ110

Isolation and purification of new minor dihydropyranochrome and furanocoumarin from fruits of Peucedanum alsaticum L. by high-speed counter-current chromatography

Irekhbayar JI1, Shatar S2, Tuyagerel B1, Altantsetseg S3, Tanbch K5, Nanzad T5, Lee BJ1

1Department of Pharmacognosy with Medicinal Plant Laboratory, Medicinal Plant University of Lincoln, Lincoln, Nebraska, USA; 2Institute of Chemical and Chemical Technology, 210 – 646, Ulaanbaatar, Mongolia; 3Department of Pharmaceutical Engineering, Inje University, 621 – 749, Republic of Korea; 4Faculty of Chemistry, National University of Mongolia, 210 – 646, Ulaanbaatar, Mongolia

Antimicrobial activity of epigallocatechin-gallate (EGCG), the chief flavan-3-yl-type compound of Camellia sinensis Kuntze and baicalin, the flavon constituent of Scutellaria sp. as well as their ability to inhibit multidrug resistance Staphylococcus aureus have been previously reported [1-5]. In this study we examined in-vitro effect of EGCG and baicalin in combination with doxycycline, oxytetracycline and cefamandole on growth of methicillin-sensitive S. aureus (MSSA) ATCC 29213, ATCC 25923 and MRSA and biar-resistant ATCC 43300 strains. The minimum inhibitory concentrations (MICs) were determined by the broth microdilution method and the effect of combinations was evaluated according to the sum of fractional inhibitory concentration (FIC) indices as follows: additive effects were observed in combinations of baicalin with doxycycline, oxytetracycline and cefamandole and of EGCG with doxycycline and cefamadone, indifferent effect showed combinations of baicalin and EGCG with cefamandole against MSSA strains and of EGCG with doxycycline against all strains tested. The strongest activity exhibited combination of baicalin and oxytetracycline (MICs 853 and 0.33 mg/L) alone and 128 and 0.125 mg/L in combination respectively) against S. aureus ATCC 29213 (FIC = 0.53). Although the data on additive effect with tetracyclines have been published [3,4], according to our best knowledge, this is the first report on additive effect of EGCG and baicalin with doxycycline and oxytetracycline and the first report on additive effect of EGCG and baicalin with representative of cefalosporine antibiotics – cefamandole. Acknowledgements: project MSM 6006407090. References: [1] Zhao, W.H. et al. (2001) Antimicrob. Agents Chemother. 45:1737 – 1742. [2] Hu, Z.Q. et al. (2002) Antimicrob. Agents Chemother. 46:558 – 560. [3] Hu, Z.Q. et al. (2002). [4] Antimicrob. Chemother. 50:1083 – 1085. [5] Liu, X. et al. (2000). J. Pharm. Pharmacol. 52:361 – 366.

Antiviral activity of ethanol extracts of Ficus binfjamina and Lilium candidum in vitro Huiehel M1, Yarmolinsky L1, Zaccai M2, Ben-Shabat S3

1Department of Virology and Developmental Genetics, Faculty of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 2Department of Life Sciences and Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 3Department of Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. The aim of the present study was to evaluate the antiviral activity of ethanol extracts from Ficus binfjamina and Lilium candidum in vitro. Ficus binfjamina is known to be resistant to various plant viruses, while Lilium candidum has a high susceptibility to plant viruses [1]. Vero cells and Herpes Simplex Virus -1 and 2 (HSV-1, HSV-2) and Varicella-Zoster Virus (VZV) were used. The toxicity of the extracts was tested by three methods: direct account, observation of morphological changes by optical inverted microscope and MTT assay. Evaluation of viral infection was performed by cytopathic effect examination and plaque assay. No cytopathic effect was observed at concentrations over 100 µg/mL in all examined extracts. Extract of F. binfjamina fruits had no effect on HSV-1 and HSV-2 infection, while significantly inhibited VZV infection with IC50 of 10 µg/mL (p < 0.001). Stems of F. binfjamina, bulbs and petals of L. candidum didn't show significant antiviral properties. Leaf extracts of F. binfjamina inhibited all studied viruses, while L. candidum leaf extracts didn't have an effect on VZV but strongly inhibited HSV-1 and slightly HSV-2. There was an indirect evidence for strong interactions between the plant extracts and the viruses and weak interactions with the cell surface. It is suggested that plant extracts exerted their anti-herpetic effect mainly by blocking the virus access to the host cells. References: [1] Petrov, D.B. et al. (1974) Journal of Botany 4:23 – 26.

Antifungal and antioxidant activities of extracts from Drosophyllum lusitanicum Gonçalves S1, Domingos T1, Costa P1, Quintas C2, Romano A1

1Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Ed. B, 8005 – 139 Faro, Portugal and IBB/CIB – UTAD, 5001 – 801 Vila Real, Portugal; 2School of Technology, University of Algarve, Campus da Penha, 8005 – 139 Faro, Portugal.

Drosophyllum lusitanicum (L.) Link is an insectivorous plant of the family Drosophylyceae native to the western Iberian Peninsula and northwest Morocco. Leaves of this species contain flavonoids, phenolic compounds and higher amounts of the naphthoquinone plumbagin [1,2,3]. The antimicrobial (against bacteria and yeasts) and insecticidal activities of the hexane extract from this species were previously demonstrated by our group [4,5]. The purpose of this study was to study the antifungal and the antioxidant activities of aqueous, methanol and hexane extracts from D. lusitanicum. Antifungal activity was tested against several mycotoxicogenic fungi using the agar diffusion method followed by the determination of minimum inhibitory concentrations in liquid medium (MIC). The antioxidant activity was determined by Folin-Ciocalteau (F-C), trolox equivalent antioxidant capacity (TEAC) and oxygen radical antioxidant capacity (ORAC) assays. Results demonstrate that hexane extract as the most effective in inhibiting fungi growth, with inhibition zones ranging from 14.00 to 49.00 mm and with MIC values ranging from 15.6 to 62.5 µg ml⁻¹, which may be related with its higher content in plumbagin [3]. Moreover, the most susceptible fungus to all the extracts was Aspergillus fumigatus. The results show that the methanol extract has the highest antioxidant activity in all the assays (F-C: 1188.06±52.96 µmolGAE/gextract; TEAC: 432.23±6.71 µmolTE/gextract; ORAC: 764.18±61.18 µmol/mLextract), possibly due to its higher phenolic content. These results indicate that D. lusitanicum extracts have strong antioxidant and antifungal activities, and thus could be used as sources of agents for the food and pharmaceutical industries. S. Gonçalves acknowledges a grant from Portuguese Science and Technology Foundation (FCT, Grant SFRH/BDP/13534/2006). References: [1] Nahálik, J. et al. (1998) Biotechnol. Lett. 20:841 – 845. [2] Budzianowski, J. et al. (2002). Phytochemistry 61:421 – 425. [3] Grevenstuk, T. et al. (2008). Phytochemistry Analysis 19:229 – 233. [4] Gonçalves, S. et al. (2008). J. Nat. Prod. Res. 23:119 – 229. [5] Gonçalves, S. et al. (2008). J. Hortic. Sci. Bio-tech. 83:653 – 657.

Antibacterial activity of phenolic compounds from Mongolian plants Odontuya G1, Oyunjargal T1, Sukhkhua B1, Ryu SY2, Kim YS3, Battkhuu J1

1Natural Product Chemistry Laboratory, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, The 4th building, 13330 Peace ave., Ulaanbaatar, Mongolia; 2Laboratory of Pharmacognosy, Faculty of Biology, National University of Mongolia, P.O.B-617, Ulaanbaatar 46A, Mongolia; 3Medicinal Plant Phytochemistry Laboratory, Korean Research Institute of Chemical Technology, Daedeon, 305 – 600, Korea.

Fourty seven pure compounds such as flavonol derivatives (20), simple phenolics (9), xanthone derivatives (13), luteolin, cynaroside, prunasin, euscaphic acid and 6-8-D-glucopyranoside isolated from Mongolian some medicinal plants have been tested against bacterial strains as Staphylococcus aureus (Sa), Micrococcus luteus (Ml), Enterococcus facialis (Ef), Pseudomonas aeruginosa (Pa) and Escherichia coli (Ec) by the disk diffusion method, respectively. Kanamycin was used as a standard antibiotic. From tested compounds only kaempferol, quercetin, ethylgallate, gallic acid and desmethyribidilifolin exhibited at the dose of 200 µg/disk a significant inhibition of the growth of Sa, while luteolin was active only at the high dose 750/µg disk. Ethylgallate demonstrated a great activity against the growth of MI at the dose 200 µg/disk, while desmethyribidilifolin was active at 200 µg/disk. Quercetin showed activity against MI only at the high dose of 750 µg/disk. Moreover, ethylgallate significantly inhibited the growth of Ef at 200 µg/disk and was faint against Pa only at the high dose of 1000 µg/disk. Whereas, desmethyribidilifolin was active against the...
growth of Ef and Ec only at the high dose 750 μg/disk. It has been determined that kaempferol, quercetin, gallic acid and luteolin did not show any activity against the growth of Ef, Ec and Pa even at the highest dose 1500 μg/disk. However, all other compounds including flavonol, flavone and xanthone glycosides even at the highest dose 1500 μg/disk were found not active against the growth of all bacterial strains. This evidence confirmed that antibacterial activity of aglycones of phenolic compounds are much higher than the related glycosides [1,2]. In particular, ethylgalate, the simple phenol derived from the related quinone activity than all other tested compounds. References: [1] Riganò, D. et al. (2007) Phytother. Res. 21:395 – 397. [2] Gatto, M.T. et al. (2002) Bioorg. Med. Chem. 10:269 – 272.

Coxoxygenase-2 (COX-2) inhibition by ethanol extracts obtained from roots of certain Ranunculaceae species

Malik J1, Landa P1, Marsik P1, Vanek T1, Kookosa L1

1Department of Crop Sciences and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague – Suchdol, Czech Republic; 2Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Research Institute of Crop Production, v.v.i., Rozvojova 263, 165 02 Prague 6 – Lysolaje, Czech Republic

Cyclooxygenase-2 (COX-2) is one of the key enzymes of arachidonic acid metabolism involved in the production of important mediators of inflammation. It has been believed that inhibition of COX-2 derived prostaglandins such as prostaglandin E2 (PGE2) are responsible for anti-inflammatory, analgesic and antipyretic effects of therapeutic preparations [1]. The plant family of Ranunculaceae comprehends various species of worldwide traditionally used species for medicinal purposes, whose marked biological activities (including anti-inflammatory) have previously been published in a number of studies [2,3]. Thus we decided to evaluate the in vitro inhibitory activity against COX-2 of 20 samples of ethanol extracts obtained from roots of various species of the genera Aconitum, Actaea, Anemone, Aquilegia, Cimicifuga, Eranthis, Ficaria, Helborus, Ranunculus, Thalictrum and Trollius using method previously described by Reininger and Bauer [4]. The ethanol samples were tested at final concentrations of 128, 64, 32 and 16 μg/ml in the assay mixture. Indomethacin was used as a standard reference material. Among all samples tested, the H. purpurascens root extract possessed the strongest inhibitory effect against PGE2 formation at a concentration of 16 μg/ml. At 32 μg/ml, enhanced effect of extracts from C. racemosa, V. bulbifera, T. altissimus and T. europaeus could be also determined. Other samples had relatively weak or no effect on PGE2 production even at 128 μg/ml. Our results show a considerable inhibitory activity of extract of H. purpurascens against COX-2, suggesting these species might be a potential source of effective plant-derived substances. Acknowledgements: This research was supported by Czech Science Foundation (Project No. 525/08/1179). References: [1] Smith, W.L. et al. (2000) Annu. Rev. Biochem. 69:145 – 182. [2] Li, R.W. et al. (2003) J. Pharmacol. Exp. Ther. 305:109 – 111. [3] Kokoska, L. et al. (2008), Food Prod. 71:2475 – 2480. [6] Jorgensen, J.H. et al. (1999). In: Murray P.R. (ed.), Manual of Clinical Microbiology. ASM Press, Washington, DC. [7] El-Dakhakhny, M. (1963) Planta Med. 11:463 – 470.

Anti-inflammatory and anti-oxidative activity of Vaccinium bracteatum

Marsik P1, Landa P1, Ladova K1, 2, Malik J1, Kookosa L1, Vanek T1

1Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Research Institute of Crop Production, v.v.i., Rozvojova 263, 165 02 Prague 6 – Lysolaje, Czech Republic; 2Department of Crop Sciences and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 – Suchdol, Czech Republic

Vaccinium bracteatum Thumb. is a shrub growing in undulating countries of China, Japan and Korea [1]. It is used in the traditional Chinese medicine for its anti-tumor properties [2]. We tested extracts from leaves of V. bracteatum obtained by successive maceration by n-hexane (HE), dichloromethane (DE), methanol (ME) and water (WE) for its anti-inflammatory and anti-oxidative potentials. Anti-inflammatory effect was as-
sessed in vitro as an ability to reduce production of prostaglandin E2 by cyclooxygenase-1 and -2 (COX-1, COX-2) detected by PGE2 EIA Kit [3]. Anti-oxidative activity was evaluated in vitro using 2,2-diphenyl-1-piryldihydrazyl (DPPH) radical scavenging method. We observed that HE was the most potent inhibitor of COX-1 (100% inhibition of blank) and WE of COX-2 (98% inhibition of blank) with activities comparable to the standard inhibitor indomethacin tested in a concentration 300 μg/ml (100% inhibition of blank). Only ME and WE exhibited significant anti-oxidative activity with EC50 values 32.7 and 123.2 μg/ml, respectively. The reference compounds trolox and ascorbic acid had an EC50 of 2.9 and 0.5 μg/ml, respectively. These preliminary results show good potential of V. bracteatum as a source of anti-inflammatory compounds. Acknowledgement: This study was supported by project ME08070. References: [1] Tu, P. et al. (1997) Zhong Yao. Cai. 22:423 – 448. [2] Duke, J.A., Ayen-The objective of this study is to determine the range of variation in certain morphocological, anatomical and biochemical characteristics of leaf within three spontaneous Lamiaceae species: Hysopos officinalis L. (from Montenegro Republic), Thymus comosus Heuff. and Ocimum basilicum L. (both from Romania) The research material was collected in anthesis stage of plant development. Anatomical characteristics of leaf epidermis were examined by light microscopy. Scanning electron microscopy was used to examine leaf surface and trichomes. The qualitative analysis of the volatile oils has been carried out using GC-MS. All examined species had bifacial heterofacial and amphistomatous leaf. The stomata are diacytic. The glandular hairs consist of one epidermal basal cell, a uni- or multicellular stalk and a uni- or multicellular secretory head. The non-glandular trichomes are simple, short or long, multicellular uniseriate. The variable morphocological and anatomical characteristics of leaf are rather quantitative than qualitative, as follows: 1. the mesophyll thickness; 2. the density of stomata and trichomes; 3. the number and size of intercellular air spaces of spongy mesophyll. The volatile oils produced by the investigated species differ in their composition. The aromatic value and therapeutical efficiency of these products strictly depend on the moment of plant development, metabolic transformations and climatic conditions. Among the analyzed species, the main constituents of volatile oils are: thymol, carvacrol, β-caryophyllene, germacrene D, 6-cadinol, linalool and methylchavicol. References: [1] Burzo, I., Mihaiescu, D. E. (2004) Contribution to the data concerning phytochemical and biological properties of Ocimum basilicum L. An. Știin. Univ. “Al. I. Cuza” Iași. XXXVII. [2] Fahn, A. (1988) Secretory tissues in vascular plants. New. Phyto108. The aim of this work was to examine the chemical composition and the in vitro antimicrobial activity of the essential oil of Gentiana asclepiadea. G. asclepiadea is a member of the large genus Gentiana in the family Gentianaceae [1]. Gentiana species are distributed in Europe, Asia, North America and South America [2]. The underground parts of several Gentiana species are widely used throughout the world as potent stomachic and hepatoprotective agents, because they contain bitter principles [3]. The essential oil from the underground parts (roots and rhizomes) of Gentiana asclepiadea (from Montenegro, Portugal) was tested in the concentration range of 5.00 – 0.078 μg/mL. The oil showed activity with MIC values ranging from 2.5 – 5.0 μg/mL. The most sensitive microbial species were Bacillus subtilis, Klebsiella pneumoniae and Staphylococcus aureus (FBS 30) with MIC values of 2.5 L/mL. Micrococcus lysodeikticus and Staphylococcus aureus (ATCC 25923) showed a higher resistance than other microorganisms in test. The commercial antibiotics, amoxicillin (for bacteria) and nystatin (for fungus), showed stronger antimicrobial activity than the essential oil. References: [1] Jiang, R.W. et al. (2005) Phytochem. J. 66:2674 – 2680. [2] Georgieva, E. et al. (2005) Biochem. Syst. and Ecol. J. 33:938 – 974. [3] Szczes, Z. et al. (2002) Chromat. Suppl. J. 56:S-19-S23.
Impaired sperm parameters of Balb/c mice fed plumagin
Sukardi S1, Yaukib H2, Ganabadi S2, Ahmad Z2, Abdul Hamid R3
1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, UPM, 43400, Malaysia; 2Department of Animal Science, Faculty of Agriculture, UPM, 43400, Malaysia; 3Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, UPM, 43400, Malaysia

Plumagin (2-methyl-5-hydroxy, 1:4naphthoquinone), the active ingredient isolated from the root of Plumago zeylanica, has significant antioxidant abilities. The roots of Plumagin zeylanica were boiled as a concoction and taken orally by women in the rural areas of Malaysia for contraception, however there were no reports of men consuming the same concoction to reduce fertility. As Plumago zeylanica have high antioxidant activities and NO acts as an antioxidant in lipid peroxidation, this study was therefore undertaken to examine the effects of feeding plumagin on various sperm parameters (sperm count, sperm motility and nitric oxide NO levels in blood plasma) of mature male Balb/C mice as well as the relationship between NO levels with sperm count and motility. Twenty-one sexually mature male mice (Balb/C) were randomly divided into three groups (initial control, positive control and low dose groups). The treatment group (low dose) was forced-fed with 0.34 mg/ml of plumagin for four weeks, whereas the initial control group with water and control group 1 ml olive oil. Caudal epididymis and testes were removed, and testes were randomly divided into three groups (initial control, positive control and low dose groups), 4 mm slices were cut, and samples were frozen at −70°C. Sperm count and motility were determined using a Leica microscope at 200× magnification. The results obtained showed a significant increase in sperm count and motility in the plumagin-fed group compared to the control group. The plumagin-fed group also showed a significant increase in nitric oxide NO levels. These results suggest that Plumago zeylanica may have potential as a contraceptive agent.

References:
Antibacterial properties of certain essential oils against different strains of *Staphylococcus aureus* Nederostova L, Kloucek P, Smid J, Urban J, Kokoška L, Strohovský M 1Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6-Suchdol, Czech Republic; 2Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6-Suchdol, Czech Republic; 3Centre of Epidemiology and Microbiology, National Institute of Public Health, Štrobrová 48; 100 42 Prague-10, Czech Republic

Antibiotics introduce very narrow group of substances. On the other hand natural active substances are chemically very diverse [1]. There have been more and more bacteria which are resistant against same type of antibiotics, for example the large problem introduce *Methicillin-resistant Staphylococcus aureus* (MRSA) in hospitals [2]. The aim of this study was to identify antimicrobial properties of the 7 essential oils (EOs) in vapour phase against 2 collection strains of *MSSA*, 1 collection strains of *MRSA* and 6 clinical isolates of *S. aureus*, obtained from two hospitals. All these strains have been tested against 10 species of antibiotics in standard doses. Tested EOs were obtained by hydro-distillation and tests of their antimicrobial properties were carried out by the modified diffusion method for testing of EOs in vapour phase [3] in concentrations 0.0083 – 0.53 μl/cm² of air. The ampicillin and erythromycin were tested as reference antibiotics by standard diffusion method in direct contact. The best MICs were shown by *Armonia rusticana* (0.0083 – 0.07 μl/cm²), followed by *Majorana syriaca* (0.0083 – 0.13 μl/cm²) > *Allium sativum* (0.0083 – 0.26 μl/cm²) > *Satureja hortensis* (0.017 – 0.13 μl/cm²) > *Satureja montana* (0.033 – 0.26 μl/cm²) > *Thymus vulgaris* (0.033 – 0.26 μl/cm²) > *Thymus serpyllum* (0.033 – 0.53 μl/cm²).

Determinant of total anthocyanins and anthocyanine glycosides in the fruit of lingonberry, *Vaccinium vitis-idaea L.* (Ericaceae)

Krvavec J1, Kovan-Besovic E1, Toromanovic J2, Sahliovic M2, Tahirovic I2, Saponcin A2, Sofic E2
1Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; 2Facility of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; 3Institute for Quality Control of Medicines, Sarajevo, Bosnia and Herzegovina

The aim of this study was to determine total anthocyanins and anthocyanine glycosides in fruits of lingonberry, *Vaccinium vitis-idaea L.* (Ericaceae). Total anthocyanins were estimated with spectrophotometric pH differential method. Cyanidin-3-galactoside served as a standard. Anthocyanins were measured by High Pressure Liquid Chromatography with dioda array detection (HPLC-DAD). HPLC-DAD was performed with a Zorbax StableBond-C18 column (250 x 4.6 mm, 5 μm). Mobile phase was A:0.01M HCl and B: 10% (v/v) acetic acid and 1% phosphoric acid in water. Supernatants of fresh fruits were hydrolysed with 2M HCl. As standards for HPLC-DAD were used pelargonidin chloride (C₁₇H₁₉ClO₇), malvidin chloride (C₁₇H₁₅ClO₇), delphinidin chloride (C₁₇H₁₃ClO₇), cyanidin-3-galactoside chloride (C₁₇H₁₅ClO₇Cl), naringenin-3-glucoside (C₁₅H₁₀O₇), peonidin chloride (C₁₇H₁₅O₇Cl), peonidin-3-glucoside chloride (C₁₃H₁₉O₈Cl), petunidin chloride (C₁₇H₁₇O₈Cl) and malvidin-3-o-galactoside chloride (C₁₇H₁₉O₈Cl₂). Detection was at 517/525 nm and 220/254 nm. Total content of anthocyanine glycosides was 0.80 mg/g of fresh fruit of lingonberry. Using HPLC-DAD only peonidin as aglucone in quantity of 0.025 μg/g in lingonberry was found.

Quorum quenching activity of the secondary metabolites from in vitro cultures of *Dionaea muscipula*

Sofic E 2, Krvavac J 1,2, Uzunovic A 3, Tahirovic I 2, Kovac-Besovic E 1, Sofic E 2
1University of Sarajevo, Faculty of Pharmacy, Cekalusa 90, 71000 Sarajevo, Bosnia and Herzegovina; 2University of Sarajevo, Faculty of Science, Zmaja od Bosne 33, 71000 Sarajevo, Bosnia and Herzegovina

Determination of arbutin, rutin, total content of phenols and antioxidant capacity in fruits and leaves of lingonberry, *Vaccinium vitis-idaea L.* (Ericaceae)

Sofic E 2, Krvavac J 1,2, Uzunovic A 3, Tahirovic I 2, Kovac-Besovic E 1, Sofic E 2
1University of Sarajevo, Faculty of Pharmacy, Cekalusa 90, 71000 Sarajevo, Bosnia and Herzegovina; 2University of Sarajevo, Faculty of Science, Zmaja od Bosne 33, 71000 Sarajevo, Bosnia and Herzegovina

The aim of this study was to determine arbutin, rutin, total phenols content (TCP) and total antioxidant capacity (AC) in the fruits and leaves of lingonberry, *Vaccinium vitis-idaea L.* (Ericaceae). Dry fruits and leaves of lingonberry were collected in Bosnia. For determination of AC was used Oxygen Radical Absorbance Capacity (ORAC) assay with trolox, a water soluble analogue of vitamin E, as a standard. The TPC was estimated by photometric method with Folin-Ciocalteau reagent at 765 nm, with gallic acid as a standard. Arbutin and rutin determined using High Pressure Liquid Chromatography with electrochemical detection (HPLC-ED). As mobile phase it was used a mixture of water, methanol, acetonitrile, formic acid and isopropl alcohol in proper proportion: 75:5:12:6S:1:5:1.5. Performance was done at 25 °C with flow rate of 0.5 ml/min and potential of 0.750 V. The TPC, expressed in milligrams of phenols per gramme of dry weight (mg/g dw) was 12.7 in fruits, and 164.4 in leaves. The content of arbutin was 0.51 mg/g dw in leaves, and 0.04 mg/g dw in fruits. The content of rutin was 2.54 mg/g dw in leaves, and 0.06 mg/g dw in fruits. The values of AC, expressed as mmol trolox equivalents per gramme of dry weight (mM TE/g dw), were 46.45 mM TE/g dw in fruits, and 235.23 mM TE/g dw in leaves. The analysis show the higher content of phenols, arbutin and rutin in the leaves of lingonberry in comparison with fruits and higher AC in leaves. The higher AC in leaves correspond to the higher values of phenolic compounds.

Gastric healing effect of methanolic and alkolofic fraction from Strychnos pseudoquina Bonamin P, Rocha LRM1, Pellizzi CHF, Baub TM1, Viegos WP, Hiranuma-Lima CA1

1Department of Physiology, IbirUNESP-Butucatu Brazil; 2Department of Morphology, IbirUNESP-Butucatu Brazil; 3Department of Biological Sciences, UNESP-Ararangua Brazil; 4Department of Organic Chemistry, Institute of Chemistry UNESP-Ararangua Brazil

Strychnos pseudoquina St. Hill (Loganiaceae) is used in folk medicine to treat malaria, gastric ulcer and gastritis. In the present studies a methanolic extract (ME) and alkolofic fraction (AF) from S. pseudoquina leaves were investigated for their ability to heal gastric ulcer by the method of TAKAKI et al. (1980) [11]. Male Wistar rats (n = 6) were treated with saline (vehicle), cimetidine (100 mg/kg), ME (250 mg/kg) or AF (250 mg/kg) for 14 consecutive days after gastric lesion induction by acetic acid. Vital organs and body weight were also analyzed to evaluate the subacute toxicity. Samples of gastric tissue were collected for histological and immunohistochemical analysis. We also evaluated the in vitro anti-Helicobacter pylori action of ME from S. pseudoquina. Macroscopic analysis after 14-day ME treatment showed no significant healing action in relation to vehicle-treated rats. However, the gastric lesion of animals treated with EAF, at the same dose, induced significant reducti
tion (p < 0.05) in internal (42%) and external (38%) lesion area (mm²). The regenerative areas of AF (1611.7 ± 28.14 µm) and ME (1516.7 ± 36.45 µm) were significantly increased (p < 0.01) when compared to animals treated with vehicle (1462.0 ± 25.2 µm) or cimetidine (1489.5 ± 17.56 µm). Immunohistochemical staining for papa and anti-trypsin showed that EAF treatment stimulates cellular proliferation and increases angiogenesis in the region of gastric mucosa regeneration. We also observed anti-Heli
cobacter pylori with MIC of 75 µg/mL. We concluded that EAF from S. pseudoquina presents expressive gastric healing action by increasing cell proliferation in gastric mucosa, while augmenting angiogenesis and antibacterial action against H. pylori with absence of toxicity for 14 consecutive days. Acknowledgements: Biotaf/PAPESP and CNPq Refer

Antimicrobial activity of some isolated triterpenoid substances from birch bark, Betula pendula Roth. Kovac-Besovic E1, Duric K1, Kalodera Z2, Softic D3

1University of Sarajevo, Faculty of Pharmacy, Cekalusa 90, 71000 Sarajevo, Bosnia and Herzegovina; 2University of Zagreb, Faculty of pharmacy and biochemistry Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia; 3University of Sarajevo, Faculty of Science, Zmaja od Bosne 88, 71000 Sarajevo, Bosnia and Herzegovina

Betula cortex, Betula pendula Roth., Betulaceae, comprise triterpene substances which are confirmed to possess very important pharmacological activities such as anti-inflammatory, anticancer and antiviral. In this study, acetone-methanol extraction of triterpene substances from both, inner and external birch bark was carried out. Insolubility in water of triterpenes betulin, betulinic acid, lupeol and oleanolic acid, is used for precipitation of triterpene substances from methanolic extracts. Qualitative analysis of triterpene in precipitated raw extracts was performed by method of thin layer chromatography, applying system for development benzene – ethyl acetate – formic acid (36:12:5). Separated spots of betulin (Rf 0.62), betulinic acid (Rf 0.59) and lupeol (Rf 0.75) were showed in colors of violet color by reagents anisaldehyde sulphuric acid and did not show fluorescence (UV lamp 254 and 366 nm). Dry column chromatography and preparative thin layer chromatography were used to isolate triterpene substances from row triterpene mixture. The study include all obtained IC specters and interpretations on the basis of which can be concluded that triterpene substances, betulin, betulinic acid and lupeol isolated from external birch bark give identical characteristic signals and absorbance as those referent. Betulinic acid – IR (KBr) (ν cm⁻¹): 3484 (OH); 2970 (CH₃); 1686 (C = O); 1432 (OH); 1362 (CH₂ – CH₂); 1156 (C – O). Betulin – IR (KBr) (ν cm⁻¹): 3448 (OH); 2868 (CH₃); 1638 (C = C); 1432 (OH); 1388 (CH₂ – CH₂); Lupeol – IR (KBr) (ν cm⁻¹): 3308 (OH); 2872 (CH₂); 1630 (C = O); 1468 (CH); 1380 (CH₃) "Umbrella"; 920 (CH alkynes). Method of dry column chromatography was resulted as simple, efficient, repeatable and economical for laboratory conditions. References: [1] Krasutsky, P.A. (2006). Nat. Prod. Rep. 23:919 – 942. [2] Dzubak, P. et al. (2006) Nat. Prod. Rep. 23:394 – 411.

Investigation of irritation properties of some extracts and isolated triterpenes from birch, Betula pendula Roth. Kovac-Besovic E1, Duric K1, Kalodera Z2, Mulabegovic N3

1University of Sarajevo, Faculty of Pharmacy, Cekalusa 90, 71000 Sarajevo, Bosnia and Herzegovina; 2University of Zagreb, Faculty of pharmacy and biochemistry Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia; 3University of Sarajevo, Faculty of Medicine, Institute of Pharmacology, Toxicology and Clinical Pharmacology, Cekalusa 90, 71000 Sarajevo, Bosnia and Herzegovina

Interest for medicinal plants has increased all over the world, starting from usage of herbal products in cosmetics going beyond their applica
tion in self medication by great number of patients. This effect empha
sizes toxicology and clinical pharmacology of herbal preparations, so to provide high quality information about pharmacological and toxico
gal properties of herbal drugs which are in every day usage. Very important triterpene derivatives were identified and isolated from dif
derent parts of plant species birch, Betulae folium, birch leaf, Betula pendula Roth., Betulaceae, is official birch drug. Other birch parts are also in large use in pharmaceutical industry as well as in cosmetic and perfume industry. Pharmacological investigations were carried out using metho
ds of irritation and sensibilization on eye, ear and skin of experimental animals, mouse, rats and rabbits. To those effects were tested samples of methanolic extracts and decocts of leaf and external birch bark as well as betulin and betulinic acid isolated from external birch bark. Grade of irritation or corrosion was evaluated in determined time intervals, scores were determinate as well and effects were described completely in order to obtain overall analyses of effects of investigated samples. According to the results obtained on rabbit eye after a on a one-time basis application of samples, with a great probability it is possible to deduce that investigated samples should not cause irritation on a hu
man skin, respectively irritations should be present in a small number of

Antioxidant activity of three polyphenol-enriched cocoa products obtained on an industrial scale

Rios JI1, Schinella G2, Mosca S2, Cienfuegos-Jovellanos E3, Paramar MA4, Mugera B5, Ramón D6

1 Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Spain; 2 Cátedra de Farmacología Básica. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, Argentina; 3 Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata-CONICET, Argentina; 4 National Research Group A-3. Salida 343, Camino de Torrent s/n, Quart de Poblet, 46303 Valencia, Spain; 5 Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, Valencia, Spain

Using different protocols we have obtained three cocoa extracts with a high content in polyphenols: A (167 mg/g), B (374 mg/g) and C (787 mg/g). The scavenging capacity of the extracts was measured as the ability to bleach the stable radicals DPPH and ABTS, and the antioxidant effect of them by the FRAP assay [1]. The results in the DPPH test were 0.2, 1.4 and 3.0 (expressed as Trolox equivalent, μmol/mg dry weight of each extract), and in the ABTS test were 1.0, 4.7 and 9.8, for A, B and C, respectively. The antioxidant capacity expressed as ascorbic acid equivalents and antioxidant concentrations and alimentary supplements.

References:

Shikonin (5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methyl-3-pentenyl]-1,4-naphthoquinone) inhibits 12-O-tetradecanoylphorbol-13-acetate-induced mouse ear acute inflammation through blocking of mitogen-activated protein kinases

Andújar J, Recio MC, Rios JI

Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Spain

In our search for anti-inflammatory agents from natural products we found that shikonin, a naphthoquinone major component of the root of Lithospermum erythrorhizon Sieb. et Zucc., topically applied in vivo reduced the acute inflammation in mouse ear oedema induced by TPA (ED50=1 mg/ear) [1]. Mitogen-activated protein kinases (MAPKs), such as ERK, p38 and JNK and protein kinase C (PKC) are signal transducers which activate the transcription of NF-κB in mouse skin after topical application of TPA (12-O-tetradecanoylphorbol-13-acetate) [2,3]. The aim of this work was to study the in vivo topical anti-inflammatory activity of shikonin in TPA-induced skin inflammation through the inhibition of protein kinases activation. Experiments conducted using female Swiss mice (25 – 30 g) were approved by the Institutional Ethics Committee of the University of Valencia. Skin inflammation was induced by topical application of 2.5 μg/ear of TPA in 20 μl of acetone. Shikonin (1.0 and 2.0 mg/ear) was dissolved in 20 μl of acetone, and applied topically in conjunction with TPA. Control received acetone only. Animals were sacrificed by cervical dislocation 1 h after TPA treatment and ear punches of 7 mm in diameter were taken from each mouse. Protein extraction from skin was performed as previously described [4] and the targeted proteins (ERK, p38, JNK, and PKC) were analyzed by Western blot assay. Our results show that the topical application of shikonin in mouse ear resulted in a dose-dependent inhibition of TPA-induced protein kinase activation. At the dose of 1 and 2 mg, the expression of ERK 1/2 was inhibited, without affecting that of p38 nor JNK. PKC translation was reduced by 80% at the same dose. Based on these results and on our previous investigations [5], we might infer that shikonin exerts its anti-inflammatory properties through regulation of PKC and MAPKs activation probably by inhibiting the activity of NF-κB. Acknowledgments: This study was supported by grants from the Spanish government (grant no. SAF2006-06726) and from the Generalitat Valenciana (grant no. GVPRE/2008/387). References: [1] Recio, M.C. et al. (2007) Methd. Find. Exp. Clin. Pharmacol 28(1):116. [2] Karin, M. (2005) Proc. Am. Thorac. Soc. 2:386 – 390. [3] Garg, R. et al. (2008) Carcinogenesis 29(6):1249 – 1257. [4] Lai, C.S. et al. (2007) Carcinogenesis 28(12):2581 – 2588. [5] Andújar, I. (2008) Methd. Find. Exp. Clin Pharmacol 29(suppl):386.

Teurium cubense induces glucose-uptake in insulin-sensitive and insulin-resistant murine and human adipocytes

Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular. Camino a la Presa San José 2055, Lomas 4a secc., San Luis Potosí, SLP, 78216 México

We investigated the anti-diabetic mechanisms of Teurium cubense Jacq. (Lamiaceae) assaying non-toxic concentrations of an aqueous extract of this plant (TE) on the 2-NBD glucose uptake [1] and adipogenesis [2] in 3T3-F442A murine and normal human subcutaneous adipocytes. In insulin-sensitive 3T3 adipocytes, TE stimulated the 2-NBDG uptake by 122% whereas in human adipocytes induced the 2-NBDG uptake by 15% respect to the 2-NBDG uptake stimulated by insulin. TE also induced 2-NBDG uptake in insulin-resistant murine and human adipocytes by 69% and 31% respectively. TE (70 μg/mL) added to murine adipogenic medium increased 3T3 adipogenesis by 167% whereas added to human adipogenic medium induced human adipogenesis by 138%. Under non adipogenic conditions, TE only marginally increased adipogenesis by 13% in 3T3 preadipocytes and by 9% in human preadipose cells, suggesting that this preparation lacks of pro-adipogenic effects. Our results suggest that Teurium cubense exerts its anti-diabetic effects stimulating glucose uptake in both insulin-sensitive and insulin-resistant murine and human adipocytes without affecting triglyceride accumulation.

Opuntia leucotricha possesses insulin-like activities inducing glucose uptake in murine and human normal and diabetic-like adipocytes

Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular. Camino a la Presa San José 2055, Lomas 4a secc., San Luis Potosí, SLP, 78216 México

We investigated the anti-diabetic mechanisms of Opuntia leucotricha Marnier (Cactaceae) assaying non-toxic concentrations of aqueous extracts of this plant (OP) on the glucose transport and adipogenesis in both insulin-sensitive and insulin-resistant murine and human adipocytes. Results suggest that OPL exerts its anti-diabetic effects stimulating glucose uptake in both insulin-sensitive and insulin-resistant murine and human adipocytes without affecting triglyceride accumulation.

PJ139

Adipocyte culture: an optimal model system for screening new promissory drugs for type 2 diabetes mellitus treatment

Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Carrera a la Plaza San José 2055, Lomas de la Seca, San Luis Potosí, SLIP, 78216 México

Nowadays the screening for new anti-diabetic compounds is done using experimental animals treated with alloxan or streptozocin to destroy or at least inactivate pancreatic cells producers of insulin [1]. Nevertheless such experimental models in which animals fail to produce insulin or produce it in insufficient quantities correspond more to type 1 diabetes mellitus than to type 2 diabetes (T2-D), the prevailing form of this disease worldwide. Hypoglycemic oral agents can exert their effects by any of three principal mechanisms of action: decreasing sugar intestinal absorption, stimulating insulin secretion, or stimulating glucose uptake by peripheral insulin-target tissues. This latter mechanism represents the most promising therapeutic target for T2-D. Here we present the use of an adipocyte culture system for screening new compounds that stimulate glucose uptake and the characterization of their molecular action mechanisms. The proposed model system has enabled us to characterize the mechanisms of the anti-diabetic properties of Guazuma ulmifolia [2] and Ceroporia obtusifolia [3] as well as their lack of proadipogenic effects. Acknowledgements: RBZ and AJAC were endowed with graduate fellowships from CONACyT (211445 and 210841, respectively). AJAC also received special support from IPICYT (SA-157/2008). References: [1] Matteucci, E., Giampietro, O. (2008). Ethnopharmacol. 115:163 – 172. [2] Alonso-Castro, A.J., Salazar-Olivo, L.A. (2008). Ethnopharmacol. 118:252 – 256. [3] Alonso-Castro, A.J. et al. (2008). Ethnopharmacol. 120:458 – 464.

PJ140

Total phenol content and aromatic compounds variation among Latvian medical plants depending on vegetative stage

Kruva Z, Karklinis D, Zalane I, Sabovics M

Latvian University of Agriculture, Faculty of Food Technology, Department of Food Technology, liela iela, 2, LV – 3001, Latvia

The use of medical plants in the form of crude extracts, infusions has been applied as a common practice to treat different diseases. Latvian flora is rich in wide range of medical plants and most popular are chamomile, yarrow, marigold etc. The aim of this research was to determine total phenols, aroma compounds in Latvian medical plants depending on vegetative stage. Plant material chamomile Matricaria chamomilla L., St. John’s wort Hypericum perforatum L., yarrow Achillea millefolium L. were harvested in 2008 in Latvia at different vegetative stages. Volatile aroma compounds from dried leaves and flowers were extracted using headspace autosampler Turbomatrix (PerkinElmer) and for the analysis of compounds, a PerkinElmer Clarus 500 GC/MS was used. Total phenols were determined in teas prepared from previous mentioned plants (1% w/w) using Folin-Ciocalteu assay. For comparison commercially available green and black tea were analyzed. Total phenols varied among medical plants. The highest phenol content was detected in St. John’s wort tea, and it even was higher than in the green and black tea. The content of total phenols in tea samples significantly depend on plant vegetative stage, and mainly higher content were detected in plants collected in budding stage. In the headspace of medical plants aroma compounds belonging to different chemical classes were detected: monoterpens, oxygenated monoterpens, sesquiterpenes, alcohols, aromatic compounds etc. The highest amount of total identified aroma compounds were detected in St. John’s wort and marigold.

PJ141

Phytoestrogenic activity of Morinda citrifolia L. (Noni) leaf

Basar S, Schmitt M, Lieberert S, Effenberger K, Westendorf J

Institute of Experimental and Clinical Pharmacology and Toxicology, University Clinic Hamburg Eppendorf, Martini-Strasse 52, D-20246 Hamburg, Germany

Decreasing estrogen blood levels in postmenopausal women can exert a variety of adverse symptoms. One of the most critical side effects of the lack of estrogen is an imbalance in the bone-mineral turnover, leading to osteoporosis. We investigated the effect of extracts prepared from the leaves of the noni plant to increase the activity of alkaline phosphatase (AP), the key enzyme in osteosynthesis, in Ishikawa (endometrial cancer) cells and in U2OS (osteosroma) cells. In both cells, AP is regulated via the estrogen receptor complex. Compared to 17-β-estradiol (E2), an alcoholic extract of noni leaf showed a moderate increase in AP-expression. In U2OS cells, however, an aqueous extract of noni leaf was very active in the induction of AP and even stronger than E2. Aqueous, alcoholic and hexane extracts of noni leaf were all active in the estrogen receptor replacement assay. Further experiments including animal studies and human trials are warranted to examine whether noni leaf extracts can be used to antagonize osteoporosis caused by a lack of estrogen.

In field experiments during two successive seasons (2005 – 2006 and 2006 – 2007), the effect of gibberellic acid (GA3) and active dry yeast on growth, yield, and essential oil (EO) of lemon balm plants was investigated. Application of GA3 and/or active dry yeast increased vegetative characters (i.e. plant height, number of branches, and herb fresh and dry weight per plant) compared to control (sprayed with water only). The maximum mean values of growth characters were obtained as a result of spraying with 6 g l-1 yeast + 300 ppm GA3. The lowest fresh and dry weights of plants were observed with the treatment of 2 g l-1 yeast + 0 ppm GA3, in the first harvest. EO content in the lemon balm herb increased due to the application of GA3 and/or active dry yeast compared to control. The highest EO yield per plant was observed with the treatment of 6 g l-1 yeast + 300 ppm GA3. The lowest amount of EO yield was obtained with the control treatment. The highest geranial in lemon balm EO occurred with the treatment of 6 g l-1 yeast + 300 ppm GA3.

PJ142

Lemon balm (Melissa officinalis L.): Effects of giberrellic acid and dry yeast on growth and essential oil yield and composition

Sharaf El-din MA1, Ibrahim AV2, Korkar HM2

1Medicinal and Aromatic Plants Dept., National Research Centre, Cairo-12622, Egypt; 2Higher Institute for Agricultural Co-Operation, Cairo, Egypt

Phenolic metabolites from Acacia nilotica flowers and evaluation of antihyperglycaemic effect of aqueous extract

El-Touny SA, Dabouzi EA4, Carlos J, Bermejo J

1Chemistry of Tannins Department; 2Pathology Department, National Research Centre, El-Bohouth Str, Dokki, 12622 Cairo, Egypt; 3Instituto de Productos Naturales y Agrobiología, Av. Astrofísico F. Sanchez 3, 38206 La Laguna, Tenerife, Spain

Diabetes mellitus is a chronic disease caused by inherited and/or acquired deficiency in production of insulin by pancreas, or by the ineffectiveness of the insulin produced. The present study deals with the isolation and identification of the phenolic constituents from Acacia nilotica flowers and evaluation of antihyperglycaemic effect of aqueous alcoholic extract. The aqueous alcoholic extract (MeOH:H2O, 7:3) of Acacia nilotica flowers was subjected to extensive repeated Column chromatography on polyamide, cellulose and Sephadex LH-20 resulted in catechin 7-O-β-gallate, gallic acid, methyl gallate, naringenin 7-O-β-glucopyranoside, quercetin 3-O-β-glucoside (2-1-glucopyranoside, quercetin 3-O-β-glucopyranoside, chalconaringenin 4′-O-β-glucopyranoside, naringenin and quercetin. The structure of the isolated compounds was elucidated on the basis of spectral analysis. The effect of
the oral treatment with dry aqueous alcoholic extract of *Acacia nilotica* flowers (25 mg/Kg for 21 days) on serum glucose in normal and alloxan-induced diabetic rats is reported. Fasting blood glucose levels of diabetic rats were significantly (P < 0.01) higher than those in normal rats. A significant decrease in blood glucose level was observed in diabetic rats treated with the extract of *Acacia nilotica* flowers from an initial level of (258.6 ± 22.8) to (118.8 ± 10 mg/dl). The extract failed to produce hyperglycemic activity in normal treated rats. The chemical constituents of plant especially polyphenols and other compounds present in the plant may be involved in the observed hypoglycemic effect of the plant extract [1]. The results show that the oral administration of *Acacia nilotica* flowers extract on the diabetic state reducing hyperglycemia. References: [1] Resurreccion-Mago, M.H. et al. (2005) Phytother. Res. 19:246 – 251.

PJ144

Antitumor and antibacterial activities of some fruits

Turker AU, Yildirim AB, Karakas FP

Abdett Eret Baydal University, Faculty of Arts and Sciences, Department of Biology, 14280 Bolu, Turkey

The use of most medicinal plants discovered by traditional societies has not been verified scientifically and bioassays can provide initial screening data about the biological activities of these plants. Two different bioassays (antibacterial and antitumor) were performed to show the biological activities of nine different aqueous and ethanol extracts of fresh or dried fruits [*Viburnum opulus* L. (guilder rose), *Viburnum lantana* L. (wayfaring tree), *Cornus mas* L. (cornelian cherry), *Pyracantha coccinea* Roemer (firethorn), *Rubus canescens* L. (dewberry), *Crataegus monogyna* (Lam.) Pers (tansy-leaved thorn), *Crataegus monogona* Jacq. (hawthorn), *Rosa canina* L. (dog rose) and *Fragaria vesca* L. (wild strawberry)]. The disc diffusion assay (Kirby-Bauer Method) was used to screen for antibacterial activity. Among the tested fruits, best antibacterial activity was obtained with fresh fruits of wayfaring tree, firethorn and hawthorn. Hot ethanolic extracts of these fruits showed strong antibacterial activity against *S. aureus, S. epidermidis* and *S. pyogenes*. Antitumor activity was evaluated with potato disc diffusion bioassay. Best antibacterial activity was obtained with ethanol extract of fresh or dried fruits of guelder rose and hawthorn before treatment with antibiotics. Furthermore, fresh fruits of dewberry showed 100% tumor inhibition. Strong antibacterial activities of cold or hot ethanol extracts of fresh fruits of wayfaring tree and hot ethanolic extract of fresh fruits of wild strawberry were also observed.

PJ145

Biological activities of meadowsweet (Filipendula ulmaria (L.) Maxim)

Yildirim AB, Turker AU

Abdett Eret Baydal University, Faculty of Arts and Sciences, Department of Biology, 14280 Bolu, Turkey

Filipendula ulmaria (L.) Maxim (meadowsweet) is a medicinal plant that has been used to treat several inflammatory diseases including gout and rheumatoid arthritis, and for the treatment of coughs, bronchitis, fevers, ulcers and colds. Three different bioassays (antibacterial, antitumor and toxicity) were performed to show the biological activities of meadowsweet. They were evaluated between field-grown plants and in vitro-grown plants using eight different extracts (aqueous, ethanol, ethylacetate and hexane). The disc diffusion assay (Kirby-Bauer Method) was used to screen for antibacterial activity [1]. The microorganisms used were: *Streptococcus pyogenes* (ATCC® 19615), *Staphylococcus aureus* (ATCC® 29253) and *Staphylococcus epidermidis* (ATCC® 12228) which are Gram-positive bacteria and *Escherichia coli* (ATCC® 25922), *Pseudomonas aeruginosa* (ATCC® 27853), *Salmonella typhimurium* (ATCC® 14028), *Serratia marcescens* (ATCC® 8100), *Proteus vulgaris* (ATCC® 13315), *Enterobacter cloacae* (ATCC® 23355) and *Klebsiella pneumoniae* (ATCC® 13883) which are Gram-negative bacteria. Generally, antibacterial activities of field-grown plants were better than in vitro-grown plants against all used bacteria. Aqueous extract of field-grown plant (FW) exhibited better antibacterial activity than other extracts. *S. aureus, S. pyogenes* and *Clonal aureus* (ATCC® 700222) were susceptible to FW. Antitumor activity of all extracts was assessed with the potato disc method as modified by McLaughlin’s group [2]. The inhibition of Agrobacterium tumefaciens-infected fruits (or crown gall) in potato disc tissue is an assay based on antimitotic activity and can detect a broad range of known and novel antitumor effects [3,4]. The validity of this bioassay is predicted on the observation that certain tumorigenic mechanisms are similar in plants and animals. It has been shown that the inhibition of crown gall tumor initiation on potato disc and subsequent growth showed good correlation with compounds and extracts active in the 3PS (P388) (in vivo murine leukemia) leukemogenic mouse assay [45]. Field-grown plants showed better activity than in vitro-grown plants. But, after viability test for *A. tumefaciens*, it was understood that inhibition of crown gall formation on potato disc is caused by decreasing the viability of the *A. tumefaciens*. It is not possible to evaluate the antitumor activity of *F. ulmaria* with potato disc bioassay. Because meadowsweet extracts have very strong antibacterial activity and affect the viability of *A. tumefaciens*. The brine shrimp bioassay was used to assess the general toxicity of meadowsweet extracts [6]. All extracts were toxic at higher doses (LC50 > 2.000 mg/l) by comparing with MS-222 (Tricaine methane sulphonate). Aqueous extracts of field-grown and in vitro-grown plants were less toxic than other extracts (ethanol, ethylacetate and hexane). References: [1] Andrews, J.M. (2004). Antimicrob. Chemother. 53:713 – 728. [2] Ferrigini, N.R. et al. (1982). J. Nat. Prod. 45:679 – 686. [3] McLaughlin, J.L., Rogers, L.L. (1998) Drug Inf. J. 32:513 – 524. [4] Coker, P.S. et al. (2003) Phytomedicine 10:133 – 138, [5] Galsky, A.G. et al. (1980) Plant Physiol. 65:184 – 185. [6] Meyer, B.N. et al. (1982) Planta Med. 45:31 – 34.

PJ146

Whey protein and its major peptide fractions ameliorate hepatorenal dysfunction induced by CCL4 in rats

Omara EN1, Zharan HG2, Nada SN1, Kasem J1, El-Sayed MM4

1Pathology Department; 2Therapeutic Chemistry Department; 3Pharmacology Department; 4Diary Department, National Research Center, El-Bohouth Str. Dokki, 12311, Cairo, Egypt

The major whey proteins (WP) are α-lactalbumin (α-La) and β-lactoglobulin (β-Lg) possess interesting nutritional, functional and therapeutic properties [1]. This study was designed to evaluate the effect of WP, α-La and β-Lg, on CCl4-induced hepatorenal damage in rats. The albino rats were pre-treated with WP, α-La and β-Lg (100 and 200 mg/kg b.wt.) for 15 days before treatment with single dose of CCl4 (0.5 ml/kg, s.c. in olive oil). The rats were sacrificed 24 hrs later and blood samples were collected for serum biochemical parameters. Serum samples were taken to determine the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transferase (GGT), alkaline phosphatase (ALP), triglycerides and cholesterol levels. The histopathological effect on the liver tissue was also investigated to support above parameters. The results of the present study indicated that the levels of serum AST, ALT, ALP, GGT, triglycerides and cholesterol were significantly (P < 0.05) elevated by CCl4 administration as compared with the control group and significantly reduced at P< 0.05 by the treatment with the WP, α-La and β-Lg (100 and 200 mg/kg/b.wt. for 15 days) compared with the CCl4-intoxicated rats. Moreover, kidney function tests showed significant (P < 0.05) reduction in the level of creatinine and uric acid by the treatment with the WP, α-La and β-Lg. Microscopic examination of liver of CCl4-intoxicated animals revealed that hepatocytes infiltration, cytoplasmic vacuolization, fatty degeneration, focal necrosis, and fibrous tissue. Also renal tissues showed hypercellularity and shrinkage of glomeruli, vacuolization and necrotic of epithelial cells with interstitial inflammatory cell infiltration. The histopathological examination also showed ameliorative effect of WP, α-La and β-Lg reduced the alterations that induced in liver and kidney by CCl4. The higher dose of α-lactalbumin is more effective than whey proteins and β-lactoglobulin.

PJ147

Antifungal activity of plant essential oils against wild strains of Candida spp. isolated from hospitalized patients

Sakkas H1, Gousis P1, Economou V1, Arvanitidou M1, Levidiotou S1, Papadopoulou C1

1Microbiology Department, Medical School, University of Ioannina, Dokou University Campus, Ioannina 45110, Greece; 2Department of Hygiene and Epidemiology, Medical School, Aristotle’s University of Thessaloniki, Thessaloniki, Greece

The antimicrobial activity of Basil oil, Chamomile Blue oil, Origanum oil, Tea Tree oil and Thyme oil was investigated using a broth macrodilution method against 12 strains of Candida spp isolated from clinical speci-
mens (wounds, blood and urine), derived from various patients entering the University Hospital of Ioannina plus one ATCC Candida strain. The strains used in this study were C. albicans (n = 4), C. parapsilosis (n = 5), C. tropicalis (n = 2), C. glabrata (n = 1) and C. albicans ATCC 10231. Susceptibility test against essential oils was performed using the Bauer-Kirby method and the Vitek II system (Biomerieux). Basil oil (W211907), Chamo-

mire oil (W227307), Origanum oil (W282812), Tea Tree oil (W390208) and Thyme oil (W306509) were obtained from Sigma-Aldrich (Germany). Carvacrol and thymol (Origanum oil), thymol, finalool and p-cymene (Thyme oil), terpine-4-ol and p-cymene (Tea tree oil), methyl chavicol (Basil oil) were the main components of the tested oils. The antifungal activity of the selected essential oils was tested also by the viable counts method and the optical density method in addition to the MTT (tetrazolium) assay method. The Minimal Inhibitory Concentration (MIC) was determined at 24 hours, 48 hours and 7 days. All experiments were performed in duplicate. All tested essential oils except the Chamomile Blue oil, displayed similar antifungal activity ranging from 0.06 to 0.37% (v/v). Specifically, the MIC values for Origanum oil ranged from 0.06 to 0.25% (v/v), for Basil oil from 0.06 to 0.37% (v/v), for Tea Tree oil from 0.09 to 0.25% (v/v) and for Thyme oil from 0.12 to 0.25% (v/v), while Chamomile Blue oil exhibited no antifungal properties. After 7 days of incubation the MIC values for the tested oils except Chamomile Blue oil, ranged from 0.12 to 0.5% (v/v). Relevant studies by other researchers report MIC values ranging from 0.04 to 0.12% (v/v) for Origanum oil, 0.12 to 0.32% (v/v) for Thyme oil, 0.18 to 0.5% (v/v) for Basil oil and 0.03 to 1% (v/v) for Tea tree oil, while there are no data available for chamomile blue oil. Acknowledgements: This research was financially supported by the HERAKLEITOS project, funded by the General Secretariat of Research and Technology, Greek Ministry of Development (References: [1] Pozzatti, P. et al. (2008) Can. J. Microbiol. 54:950–956. [2] Preuss, H.G. et al. (2005) Mol. Cel. Biotechnology 272:29–34. [3] Rosato, A. et al. (2008) Phytomedicine 15:635–638. [4] Salgueiro, L.R. et al. (2003) Planta Med. 69:871–874.

Localization of arabinogalactan-proteins in roots of Echinacea purpurea by immunofluorescent labelling
Busta A, Blaschek W, Classen B
Pharmacological Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany

From the high molecular weight fraction of an aqueous extract from roots of Echinacea purpurea (L.) MOENCH, arabinogalactan-proteins (AGPs) were purified and characterized with special regard to the structure of the polysaccharide moiety. It is highly branched and shows a semi-branching pattern. It is highly branched and shows a semi-branching pattern. After addition of a FITC-conjugated secondary antibody, the sections were analyzed by confocal laser scanning microscopy. AGPs were mainly detected in the central cylinder in xylem elements. Cell walls of vessels and tracheids are strongly labeled, especially at the inner area of the wall. Furthermore, there was an intense labeling of pit canals. The proposed involvement of AGPs in xylem differentiation [2] thus could be confirmed, and in addition it is suggested that AGPs are involved in the formation of pit canals during xylem development. References: [1] Dessauer, C. et al. (2000) Carbohydr. Res. 327:497–504. [2] Motose, H. et al. (2004) Nature 429:873–878.

Phytochemical investigation and biological evaluation of the secondary metabolites isolated from Erythrina poepigiana – Fabaceae
Djiogu S1, Halabalgi M2, Njamen D1, Alexis M1, Tanee Fomum 2, Skatousou AL1
1Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé1 Po box 812, Yaoundé-Cameroun; 2Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupi, Zografou, 15771, Athens, Greece; 3Department of Organic Chemistry, Faculty of Sciences, University of Yaoundé1, Po Box 812 Yaoundé-Cameroun; 4Molecular Endocrinology Programme, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece

In most developing countries, the traditional medicine based on preparations from medicinal plants still stays one of the main appeals. Many Erythrina species for example are used in the traditional system of medicine in Cameroon for the treatment of menopause related illnesses. Additionally, the Leguminosae family is well known for its great content in isoflavonoids which have been shown to exhibit numerous biological activities including estrogenic/anti-estrogenic activity (so called phytoestrogens) [1]. In our endeavour, aiming to discover novel active natural products based on the long-established empirical traditional knowledge, phytochemical investigation of Erythrina poepigiana (Fabaceae), a Leguminosae species growing in humid and sub-humid tropical lowland is undertaken. After a qualitative evaluation of DCM and MeOH extracts using TLC and HPLC-PDA, further investigation was performed on both extracts leading to isolation and structure determination of a number of secondary metabolites using several chromatographic (VCC, CC, F CPC, HPLC) and spectroscopic (UV, MS, 1&2D NMR) techniques, respectively. At this stage of the work, 10 isoflavonoids (5 novel compounds), one pterocarpan and 3 simple phenolic ester were isolated from the DCM extract and 4 Erythrina alkaloids from the MeOH extract. The ability of the isolated compounds derived from the DCM extract to bind to the estrogen receptor (ERα & ERβ) was estimated. Most of them found to be potent ligands. References: [1] Veitch, N.C. (2007) Nat. Prod. Rep. 24:417–464.

A new flavonoid from Cassia bicapsularis
Said A1, Aboufotouh M1, Sobhi M2, Elky E1
1National Research Center, Pharmacognosy Dept., Dokki, Giza, Egypt; 2Faculty of Pharmacy, Pharmacognosy Dept., Cairo University, Egypt; 3National Research Center, Chemistry of Tannins and Leather Technology Dept., Dokki, Giza, Egypt; 4National Research Center, Chemistry of Natural Compounds Dept., Dokki, Giza, Egypt

Genus Cassia is considered one of the most important genera of family Leguminosae [1]. It was reported to contain flavonoids, anthraquinones, triterpenes, sterols and carbohydrates [2]. Cassia bicapsularis L. is a semi-evergreen shrub native to South America [3]. We studied the phenolics of the hydroalcoholic extract of C. bicapsularis flowers and we isolated 11 compounds: kaempferol 8-O-methyl ether, vanillic acid, rutin 4’-O-glucopyranoside, rutin, isorhamnetin 3-O-galactopyranoside, isoqueritrin, hyacinthine, luteolin 7-O-glucopyranoside, luteolin 4’-O-galactopyranoside, luteolin 3’-O-galactopyranoside and a flavonoid 8-methoxy kaempferol 3-O-glucopyranosyl(1”-2”)glucopyranoside. L3D50 tests showed that C. bicapsularis L. hydroalcoholic flowers’ extract was non toxic up to 5 g/kg which is the maximum soluble dose. It possessed a significant anti-inflammatory activity on the carrageenan induced paw edema at a dose of 1000 mg/kg, compared with indomethacin which was the reference drug at a dose of 25 mg/kg.
Evaluation of some types of fennel (Foeniculum vulgare Mill.) newly introduced and adapted in Egypt

Shalaby A, Hendawy SF, Khalil M
Cultivation and Production of Medicinal & Aromatic Plants Dept., National Research Centre, Cairo, Egypt

Exports of local fennel (Foeniculum vulgare Mill.) from Egypt in last years have been affected due to its high estragole but low anethole contents in the oil. Therefore, fennel seeds were imported from different countries to investigate the adaptability of such strains in different locations in Egypt in comparison with the local one. The obtained results indicated that Holland fennel surpassed other fennel strains under study, as it showed the best growth in terms of number of umbels, seed production, seed oil (%) and oil production per plant and unit area. The seed oil of this strain had the highest content of anethole (75.93% in average) and low estragole percentage (4.22%). The Indian strain showed poor characteristics. The German strain although contained high oil percentage, but the oil yield/plant or/unit area were poor. Menia location led to the best low estragole percentage (4.22%). The Indian strain showed poor characteristics and oil yield/plant or/unit area. The seed oil of Egypt in comparison with the local one. The obtained results indicated to investigate the adaptability of such strains in different locations in Egypt in comparison with the local one. The obtained results indicated that Holland fennel surpassed other fennel strains under study, as it showed the best growth in terms of number of umbels, seed production, seed oil (%) and oil production per plant and unit area. The seed oil of this strain had the highest content of anethole (75.93% in average) and low estragole percentage (4.22%). The Indian strain showed poor characteristics. The German strain although contained high oil percentage, but the oil yield/plant or/unit area were poor. Menia location led to the best low estragole percentage (4.22%).

Antimicrobial effects of Sumac extract (Rhus coriaria L.) in minced meat

Badmehr B, Abdolrahimzade M
Department of Food Hygiene and quality control, Faculty of Veterinary Medicine, Islamic Azad University - Karaj branch, Iran

In recent years, there is a great interest in use of natural preservatives in food. One of the most important one is plant extracts [1]. Rhus coriaria L., commonly known as Sumac, grows wild in the region extending from the Canary Island to Iran and Afghanistan. It used traditionally as a flavor in food in Iran [2]. So, this study was done to assess antimicrobial effects of Sumac extract on spoilage and pathogenic bacteria in minced meat. Ethanolic extract of Sumac was prepared and minimum inhibitory concentration of it was evaluated. Sterile plastic bags with 50 grams minced meat were prepared. Different amounts of Sumac extract were added into the bags (5, 10 and 15 μl/g). Total bacterial count of the meat was measured and definite number of Salmonella Typhimurium was inoculated. Two control group (alcohol and without extract) was mentioned. All samples were stored at 4°C and evaluated at the days 7, 14, and 21. Result showed that there was a significant difference between tests and control groups in total microbial count in the first week (for example: 6.6 ± 0.1 log10 cfu/g in tests group and 8.7 ± 0.7 in control group), but this was not significant in second and third weeks (p<0.05). Also there was a significant difference between tests and control group in Salmonella count in the first week but this was not significant in second and third weeks (p>0.05). The results are similar to those obtained from previous studies of sumac [2,3]. Therefore it seems that Sumac extract can have an antimicrobial effect on total microbial and Salmonella count in minced meat for one week. References: [1] Polhill, R.M., Raven, P.H. (1981) Advances in Legume systematics. Royal Botanic Gardens, Kew. [2] Anu, S.J. and Rao, J.M. (2002) Phytochemistry 59:425 – 427. [3] Wiggins, I.L., Porter, D.M. (2000) J. Ethnopharmacol. 73:379 – 385.

Effect of potassium fertilizer on lemon balm (*Melissa officinalis* L.) grown under water stress conditions

Department of Cultivation and Production of Medicinal and Aromatic Plants, National Research Centre, Al-Beihoth, St. Dokki, 12622, Giza, Egypt; "Department of Water Relations and Field Irrigation, National Research Centre, Al-Beihoth St. Dokki, 12622, Giza, Egypt

This work was carried out to study the effect of K fertilizer rates and water stress levels on the growth and essential oil content of *Melissa officinalis* L. A pot experiment was carried out under the natural conditions of the greenhouse of the National Research Centre, Dokki, Giza, Egypt. Growth characters (herb fresh and dry weights g plant−1 leaves number and leaf area) and essential oil content of *Melissa officinalis* L. were significantly decreased with the rise in water stress levels, but proline synthesis was stimulated in response to water stress levels. Application of K fertilizer rates counteracted the adverse effects of water stress. Irrigation at 80% available soil moisture and fertilization with 0.8 g K pot−1 dose in the 1st cut resulted in the highest mean values of herb fresh and dry weights (51.01 and 12.05 g plant−1, respectively) and leaves number (420.80 plant−1), while 40% available soil moisture treatment resulted in the lowest values (13.71; 3.22 and 113.60) of these parameters, respectively. The maximum mean value of essential oil content (0.131%) was obtained from plants irrigated with 80% available soil moisture with K fertilizers rate (0.6 g K pot−1), while the lowest mean value (0.097%) was determined in the plants irrigated with 40% available soil moisture with no potassium fertilization in the 3rd cut. Increasing the dosage of K fertilization significantly increased the proline content while, increasing water irrigation decreased the proline content. The highest mean value of proline was determined in the plants received 0.8 g K pot−1 and irrigated with 40% of available soil water an increase of 68.69% than that for the plants irrigated with 80% available soil moisture in the 3rd cut. Geranial and nerol were identified as the two major compounds in the essential oil extracted from *Melissa officinalis* L. Increasing both of K rates and available soil moisture tended to increase the contents of geranial and nerol. The results revealed that, the highest amount of geranial (49.75%) was recorded from the combination of irrigation at 80% available soil moisture and fertilization with 0.8 g K pot−1 treatment in the 3rd cut, while the highest amount of nerol (35.71%) was recorded at 80% available soil moisture treatment in the 2nd cut.

Antibacterial activity of *Curcuma longa* longa extract against bacteria isolated from infected burn wounds

Department of Microbiology, Faculty of Medicine, Shahed University, No.29, Dehkadeh St., Keshavarz Blvd., 1415631111 Tehran, Iran; 2Department of Microbiology, Faculty of Medicine, Shahed University, No.29, Dehkadeh St., Keshavarz Blvd., 1415631111 Tehran, Iran

Burns are suitable sites for antibiotic resistant infections. Thus search for effective drugs against this problem is necessary. Medicinal herbs with antimicrobial activity have always been important in traditional medicine. The aim of this study was to determine the antibacterial activity of a methanol extract from roots of *Curcuma longa* against bacteria isolated from infected burns and their comparison with selective antibiotics in vitro. First, a sample of methanol extract of dried roots of *Curcuma longa* (1 mg, 5 ml) by maceration method was prepared and then its antibacterial activity against 8 bacterial isolates obtained from 100 samples of infected burns was tested for the determination of MIC (minimum inhibitory concentration) using well diffusion and agar serial dilution (0.039, 0.078, 0.156, 0.312, 0.625, 1.25, 2.5, 5, 10, 20, 40) assays. Also the antibacterial activity of penicillin, oxacillin, vancomycin, cefazidime, tobramycin, imipenem, amikacin was tested by the disk diffusion method. Statistical methods were used to analyze the data. The results demonstrated that the *Curcuma longa* methanol extract had been effective against more than 75% of *Staphylococcus aureus*, *S. epidermidis*, *S. saprophyticus*, against 80% of *Pseudomonas aeruginosa* and 69% of *Acinetobacter baumannii*. The MIC of the extract was about 3/7 mg/ml. The MIC against *Pseudomonas aeruginosa* and *Acinetobacter spp.* was 13/95 mg/ml and 14/55 mg/ml, respectively. This study demonstrates that a methanol extract of *Curcuma longa* is effective on most of bacteria isolated from infected burns and its effect is even better than that of selective antibiotics. Further investigations will be necessary.
there is no distinct antiinflammatory way of action but rather a moderate inhibition of several inflammatory targets.

PJ159

A multicentre open clinical trial to assess the tolerability and efficacy of Sage tablets in menopausal patients with hot flushes

Boomer S, Klein P, Suter A

*Bioforce AG, Grauenaustrasse, CH -9325 Ruggwil; *d.s.h. statistical services GmbH, Bahnhofstrasse 20, DE – 8296 Rohrbach*

Hot flushes figure amongst the most common symptoms in general medical practice and alternatives to HRT are of growing interest. Sage has been traditionally used to treat menopausal symptoms. In this study including 71 women aged 50 – 65, menopausal since at least half a year, with a minimum of 5 flushes daily, a proprietary Sage mono-product (Salvia offic., Jolum rec., T., spissum, extract, DER 1:17) applied once daily during 8 weeks proved to be well tolerated and efficacious in reducing intensity and frequency of hot flushes and menopausal symptoms assessed via patient diary and Menopause Rating Scale (MRS), respectively. The decrease over the treatment period of 8 weeks was statistically significant for the global MRS Score and each of the related Sub-scores: MRS by about 6.4 ±0.9 score points, and Somato-vegetative, Psychological and Urogenital subscale by about 3.3 ±0.4, 2.7 ±0.5, and 0.3 ±0.1 score points, respectively. The total score of the mean number of hot flushes (TSNMH) decreased significantly compared to the previous week from week 1 to week 8. Tolerability was rated as very good or good by 87.3% of the physicians and by 87.3% of the patients. The evaluation of the safety laboratory parameters also demonstrated a high degree of safety and tolerability. In this clinical trial Sage tablets clearly demonstrated good clinical value in terms of efficacy, safety and tolerability in the treatment of menopausal hot flushes and climacteric symptoms. Overall, the results suggest that Sage tablets are a promising herbal treatment alternative for menopausal women with climacteric complaints and a safe and effective herbal approach for the treatment of hot flushes in menopause.

PJ160

Antibacterial activity of *Terminalia catappa* extract against bacteria isolated from infected burn wounds

Attarpour Yazdi MM1,2
1Medicine Plant Research Center, Shahed University, No.117, Kargar Northern Ave., Engelab Square, Tehran, Iran; 2Department of Microbiology, Faculty of Medicine, Shahed University, No.29, Dehkhadeh St., Keshavarz Blvd., 1415635111 Tehran, Iran

Burn wound is suitable site for incidence of resistant infections. Thus, the research for finding of effective drugs against this problem is necessary. Medicinal herbs with antimicrobial activity have been important role in traditional medicine. The purpose of this study was to determine of antibacterial activity of methanol extract from fruit of *Terminalia catappa* against bacteria isolated from burn wound infections and comparison with effects of selective antibiotics. In vitro, first, a sample of methanol extract of the plant fruit (1 mg: 5 ml) by maceration method was prepared and then its antibacterial activity against bacteria isolated from infected burn wounds was tested for the determination of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). The results demonstrated that *Terminalia catappa* extract had been effective against

PJ161

Antibacterial activity of extract *Curcuma amoda* against *Staphylococcus aureus*

Attarpour Yazdi MM
Department of Microbiology, Faculty of Medicine, Shahed University, No.29, Dehkhadeh St., Keshavarz Blvd., 1415635111 Tehran, Iran

Staphylococcus aureus is an important pathogen and produce widespread infections. Increasing of antibiotic usage for *S. aureus* infections, created antibiotic resistance and subsequently to produce new antibiotics. Medicinal herbs with antimicrobial activity have been important role in traditional medicine. The purpose of this study was to determine the antibacterial activity of hydroalcoholic extract from root of *Curcuma amoda* against *S. aureus* (25923 ATCC). The roots of *C. amoda* were collected from India and its hydroalcoholic extract (1 mg: 5 ml) by maceration method was prepared and then its antibacterial activity against *S. aureus* was evaluated by disk diffusion and broth serial dilution methods (0.039, 0.078, 0.156, 0.312, 0.625, 1.25, 2.5, 5, 10, 20, 40) for determination of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). The antibacterial tests demonstrated that *C. amoda* hydroalcoholic extract had been effected against *S. aureus*. The MIC and MBC of the extract against the *S. aureus* were 2.5 and 5 mg/ml, respectively. This study demonstrated that hydroalcoholic extract of *C. amoda* have excellent antibacterial activities against *S. aureus* and are beneficial to human health. They have the potential to be used for medical purposes and to be utilized as antibacterial additives in making paper products. However, we need more investigation in vitro and in vivo.

PJ162

Chromatographic analysis of phenolic acids from *Iris* species. Comparison of different methods of extraction

Michalka-Gadz A, Skalica-Woźniak K, Claownik K
Medical University of Lublin, Department of Pharmacognosy with Medical Plant Unit, 1 Chodzki Str., 20 – 093 Lublin, Poland

Phenolic acids have been reported to possess important biological and pharmacological properties, especially antioxidant activity, which have been widely described in the literature. The aim of this study was the quantification of phenolic acids in extracts obtained with different extraction techniques from several *Iris* species. A pressurized liquid extraction (PLE) was performed in an ASE 100 apparatus from the solvent extracts (Dionex, USA) at 100 °C using 80% and 100% methanol. To compare the effectiveness of PLE, the ultrasound-assisted extraction (UAE) procedure was also carried out, as well as traditional Soxhlet extraction (SX). To purify the PLE, UAE, SX extracts, the well-known solid phase extraction (SPE) technique was applied. Next, SPE eluates were qualitatively and quantitatively analyzed using an Agilent 1100 liquid chromatograph with UV-visible diode-array detector (DAD). As the result of the study, seven phenolic acids were identified by SPE-RP-HPLC: vanillic, caffeic, chlorogenic, protocatechuic, ferulic, p-coumaric and gallic acids. The calibration curves for all standards were linear (R2> 0.999, n = 3) in a concentration range of 0.01 – 2.00 mg 10 ml-1. For most acids (vanillic, protocatechuic, p-coumaric, gallic, ferulic) isolated from the investigated *Iris* species, the highest yield was achieved by ASE at 100 °C repeated three times with 80% methanol as a solvent, while the worst results were obtained by ultrasound-assisted extraction (UAE). A relatively high yield of caffeic acid was also obtained with a Soxhlet apparatus (11.10 mg/100 g dry wt. in aerial parts of *Iris barbata* Maxim.). Acknowledgments: This work was financially supported by grant no N N 405 374833 from The Polish Ministry of Science and Higher Education.

PJ163

A novel traditional use of *Jovibarba heuffelii* leaves in Romanian ethno botanical veterinary practice in S-W Carpathians

Stanciu A, Nicolae M, Arbune A2
1Caral Davila University of Medicine and Pharmacy Bucharest, Blvd. Eroii Sanitari, nr. 8, S. 5, cod 050461 RO; 2AGAVE - HI IQ Solutions, Rahmanov str.19 Bucharest 30 52 RO

Romanian medicinal plant *Jovibarba heuffelii* (Sutt) A&D Love (= *JH*) is a characteristic carpato-balcanic perennial monocarpic crassulacean; native to mounts of the N Greek peninsula, the Balkans and throughout
the Romanian S-E Carpathian Mountains; thriving in arid, rocky habitats [1,2,3]. They are an enjoyed food ingredient in some Romanian regions [3,4]. Traditionally planted on tile-roofs they are highly prized ornamental plants also in graveyards. We hereby report novel traditional uses of JH leaves in Romanian ethno-botanical veterinary practice discovered by us in S-W Carpathians, together with some biochemical and ecological considerations with regard to biotic and abiotic factors involved in its use. Data were gathered from locals with a semi-structured questionnaire about the occurrence, traditional knowledge and uses for the Semprevivum s.l. spp in Mehedinti Mountains, SW Romania, were complemented by a literature survey. In 1998, 1 informant from Gornești, com. Podeni, Mehedinti county, reported a novel and surprising traditional use of JH leaves in households in the region. Positive plant ID was done by indicating live specimens in cult. and in situ. Data obtained document a novel traditional use by Romanian locals from SW Romanian JH leaves for chicken feeding with the aim to increase egg quality/production, and a probable vitaminizing effect. This use is not mentioned in any region or neighbouring countries, nor in other parts of Europe or Turkey where Semprevivum spp. is widely used, nor even for this closely related genus. Second, it is worth mentioning the preserved knowledge by the local peasants of the taxonomy, cultural, organoleptic and pharmaco-biological characteristics of JH and S. marmoreum - a very similar species co inhabiting the region, but accurately distinguished by them from JH. References: [1] Barca, V. and Niculce, M. (2005) Contr. Bot. Cluj. XL: 28 – 39. [2] Barca, V. and Niculce, M. (2006). Contr. Bot. Cluj.XLI: 223 – 233. [3] Ravarut, M. (1953) Flora RPR, Crassulaceae, Edit. Acad RPR, Bucharest.

Abstract: Myrtus communis L. is an evergreen aromatic plant growing wild in Iran. Essential oil constituents of leaves from two origin and two developmental stages [1]. Major oil components of two origins at flowering stage were α-piene (3.8 - 23.0%), 1,8-cineole (9.9 - 20.3%), limonene (5.5 - 17.8%), linalool (12.3 - 17.6%) and α-terpinyl acetate (1.8 - 7.0%). Oil composition at fruit ripening stage was highly similar to flowering stage. Concentrations of major oil components were 1,8-cineole (24.0%), α-piene (22.1%), limonene (17.6%), linalool (11.4%), linalyl acetate (4.5%), α-terpinyl acetate (2.2%), and geranyl acetate (1.2%). Major constituents of fruit oil were α-piene (28.6%), 1,8-cineole (28.7%), limonene (18.0%), α-terpinyl acetate (5.4%), linalyl acetate (3.4%) and linalool (2.3%). Reference: [1] Pellizzon CH, 4, 3, Paulo, Brazil; 3Universidade Estadual Paulista, Instituto de Biologia, Depto. de Fisiologia e Biofísica, Campinas, São Paulo, Brazil; 1Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Dept. de Farmacologia, Campinas, São Paulo, Brazil; 2Universidade Estadual de Campinas, Instituto de Biologia, Dept. de Fisiologia e Biofísica, Campinas, São Paulo, Brazil; 3Bharati Vidyapeeth Homoeopathic Medical College and Hospital, Pune, India; 4Bharati Vidyapeeth Homoeopathic Medical College and Hospital, Pune, India

Role of SOD in the protection of Rhizophora mangle on gastric injury induced by ethanol, ischaemia-reperfusion and acetic acid in rats

Method

<table>
<thead>
<tr>
<th>Treatment</th>
<th>SOD Activity (Units per mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline 0.9%</td>
<td>2.43 € 1.375</td>
</tr>
<tr>
<td>Lansoprazole 30 mg Kg</td>
<td>28.82 € 2.888**</td>
</tr>
<tr>
<td>BuOH-Fr 0.5 mg Kg</td>
<td>21.87 € 3.314**</td>
</tr>
<tr>
<td>Saline 0.9%</td>
<td>10.61 € 0.3043</td>
</tr>
<tr>
<td>Lansoprazole 30 mg Kg</td>
<td>13.42 € 1.987</td>
</tr>
<tr>
<td>BuOH-Fr 0.5 mg Kg</td>
<td>18.48 € 1.882**</td>
</tr>
</tbody>
</table>

Results expressed by the mean ± standard deviation. ANOVA followed by Dunnett’s t test, *P < 0.05 and ***P < 0.001.

Acknowledgements: FAPESP

Evaluation of anti-inflammatory and radical scavenging activity of an aqueous extract of Barleria cristata leaves

**Gambhire M 1, Juvekar M 2, Juvekar A 1, Wankhede S 1, Sakat S 3
1University Institute of Chemical Technology (UITC), Mumbai (E), Nathal Parikh Marg, Mumbai-400019, India; 2Bharati Vidyapeeth Homoeopathic Medical College and Homoeopathic hospital, Pune, India

**Barleria cristata Linn (family Acanthaceae) has been used traditionally for the treatment of variety of diseases including anemia, toothache and inflammatory disorders [1]. Due to lack of sufficient scientific evidence indicating the utility of this plant in the treatment of inflammation, the present study was aimed at investigating the potential anti-inflammatory and free radical scavenging activity of the plant in different experimental screening methods. Anti-inflammatory activity of BCW at dose of 125, 250 and 500 mg/kg was evaluated in acute inflammatory model, against carrageenan induced paw edema in rats and prostaglandins inhibitory activity in mice. Radical scavenging activity of BCW was evaluated by in vitro methods by DPPH (1,1-diphenyl-2-picryl-hydrazyl) and NO (Nitric oxide) (IC50= 206.61 mg/ml) and NO (Nitric oxide) (IC50= 289.01 μg/ml) radicals. Experiment was performed in triplicate to minimize the errors. When evaluated in vivo in the acute inflammation, BCW significantly inhibited edema induced by carrageenan in rats and showed significant prostaglandins inhibitory activity in mice. Ascorbic acid and Indomethacin (10 mg/kg) was used as a positive control. Results were analyzed by One-way ANOVA followed by Dunnett’s test p < 0.05 and considered significant as compared to control. It is concluded that, methanol extract of Barleria cristata Linn leaves exhibited significant anti-inflammatory and radical scavenging activity. Reference: [1] Khare, C.P. (2009), Indian Medicinal Plants: An Illustrated Dictionary. 1st ed, Springer Verlag.

Ameliorative effect of Psoralea corylifolia seeds against experimental myocardial oxidative stress-induced injury in rats

**Juvekar M 1, Juvekar A 2, Wakea A 2, Wankhede S 2
1Bharati Vidyapeeth Homoeopathic Medical College and Homoeopathic hospital, Pune, India; 2University Institute of Chemical Technology (UITC), Mumbai (E), Nathal Parikh Marg, Mumbai-400019, India

The effect of methanolic extract of Psoralea corylifolia seeds (PCM) was assessed using isoprotorenol-induced myocardial infarction model in rats. PCM was administered orally to Wistar rats (150 – 200 g) in two different doses, by gastric gavage (250 mg/kg, 500 mg/kg) for 21 days followed by subcutaneous administration of isoprotorenol (85 mg/kg). Isoprotorenol administration resulted in significant increase in lipid peroxides (MDA) levels in heart tissue as a result of oxidative stress. A significant decrease was observed in the activity of the myocardial marker enzymes viz. alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH) and creatine kinase (CK) with a concomitant increase in their activity in serum in isoprotorenol treated rats. Isoprotorenol administration also had a significant effect on lipid profile as evidenced by increased triglycerides, total cholesterol, LDL-cholesterol and VLDL-cholesterol levels with a significant decrease in HDL-cholesterol levels. These levels were significantly ameliorated by treatment with PCM. Activities of heart antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR) and...
reduced glutathione (GSH) were significantly lowered owing to myocardial infarction in isoprotrofen treated rats. PCM pretreatment was found to ameliorate the effect of isoprotrofen on lipid peroxide formation and retained the activity of marker enzymes. It also prevents the isoprotrofen-induced decrease in antioxidant enzymes in heart and improved lipid profile. The results indicated that pretreatment with Psoralea corylifolia prevents the damage induced by isoprotrofen in rat heart.

The present work aimed to give the detailed description of phytochemistry and pharmacological profile of isolated constituents from the leaves of C. guianensis resulted in the isolation of three compounds. Petroleum-ether extract of the plant was chromatographed over silica gel G and the column was eluted with pet-ether (50 – 80 °C), benzene, chloroform and ethanol in succession. Eluted fractions were subjected to rechromatography. Pet-ether eluted fraction gave compound 1, mp 79 – 81 °C. Phytochemical and spectral studies on compound 1 revealed it to be alcoholic hydrocyanide. The chromatography of benzene and ethanolic extract gave two more compounds. Compound 2, mp 95 – 97 °C was obtained in small yields and further work was not possible. Compound 3, mp 273 – 275 °C, was isolated in crystalline form and characterized as a triterpene alcohol on the basis of physicochemical and spectral data. Lipid soluble compound 3 was evaluated for psychopharmacological activity in animal models. Antidepressant activity studies using tail-suspension test and despair swim test in mice, revealed its antidepressant potential. In conclusion, phytochemical and pharmacological studies on the leaves of C. guianensis resulted in the isolation of a novel constituent, compound 3, a triterpene alcohol, possessing antidepressant potential.

Antibacterial activity of unifloral honeys against clinical isolates of methicillin-resistant Staphylococcus aureus

Hannan A, Hussain MB, Absar M
Department of Microbiology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore-54600, Pakistan

Wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) is getting more difficult and expensive to treat as drug resistance is widespread and the incidence of MRSA in the community increases [1]. Approval of medical grade Manuka and Medihoney impregnated dressings by European countries and Food and Drug administration of USA as therapeutic agents for the treatment of such infections [2] has led to the search for new honeys with high medicinal values which are locally produced and affordable. Therefore, this study had main aim has led to the search for new honeys with high medicinal values which are locally produced and affordable. Therefore, this study had main aim has led to the search for new honeys with high medicinal values which are locally produced and affordable. Therefore, this study had main aim. The aim of this study was to evaluate the antibacterial effects of propolis from our region on 35 clinical isolates of pigmented anaerobic periodontal pathogens. Included were Porphyromonas asaccharolytica (n = 9), Porphyromonas gingivalis (n = 13), Prevotella intermedia (n = 9), Prevotella melanogenica (n = 4). Minimum inhibitory concentration (MIC) to antibiotics was obtained by Etest method. All strains were sensitive to amoxicillin plus clavulanic acid and metronidazole but 100% of P. asaccharolytica and P. melanogenica strains displayed intermediate resistance to tetracycline while 69.2% P. gingivalis and 100% P. intermedia strains exhibited complete resistance to tetracycline. Screening for antibacterial activity of propolis extract was done by agar well diffusion assay and sensitive to ethanolic extract of propolis. MIC was obtained by agar incorporation technique with values ranging from 0.064 to 0.512 mg/ml. It was also noticed that percentage yield of ethanolic extract of propolis prepared from ultrasonic extraction method was significantly higher compared to extract obtained with maceration. These results indicate that propolis from our region has potent antimicrobial activity against pigmented anaerobic periodontal pathogens. Taking into consideration the increasing resistance in anaerobic bacteria, this effective antimicrobial activity of propolis gives hope in the treatment of oral cavity diseases. Acknowledgements: We are grateful to University of Health Sciences for providing the research project and special thanks to Dr. Waseem Ahmed Gillani of National Agricultural Research Council, Islamabad, Pakistan and Dr. Nasreen Muzaffar of Punjab University Lahore, Pakistan for donating propolis. References: 1. Loeches, W.J., Grossman, N.S. (2001). Clin. Microbiol. Rev. 14: 752 – 753. 2. Gebauer, E.C., et al. (2002) Braz. J. Microbiol. 33:365 – 369. 3. Kori, O. et al. (2007) Anaerobe 13:140 – 145.

Anti-typhoid potential of Punica granatum (pomegranate) – An in vitro study

Hannan A1, Rashid M2, Shabbir A1, Bhaarkat M1, Salam S1, Hafeez A1
1Department of Microbiology; 2Department of Pharmacology; 3Department of Immunology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore-54600, Pakistan

Typhoid fever remains a significant clinical problem all over the world, especially in the third world [1]. Emergence of antimicrobial resistance especially to the fluoroquinolones has led to difficulties in the management of typhoid fever [2]. Plants containing alkaloids, flavonoids and polyphenols are reported to exhibit several biological properties [3]. The pomegranate plant possesses an immense therapeutic value. Antimicrobial activity of pomegranate peel has been tested against only one strain of S. typhi. Besides, no comparative study regarding the different parts of pomegranate against S. typhi has been done yet. The aim of this study was to evaluate the anti-bacterial potential of pomegranate against Salmonella typhi. Ethanolic extracts of pomegranate's different parts; peel, pericarp and fruit were screened for anti-bacterial activity against "Multi-Drug Resistance" (MDR) strain (UHS-14) by agar well diffusion method. 6% phenol was used as positive control. The peel extract had the largest inhibitory zone of 22.73 ± 0.26 mm against Salmonella typhi followed by pericarp (22.47 ± 0.36 mm) and fruit (15.55 ± 0.29 mm) extracts at neat concentration. The peel, pericarp and fruit extracts were further evaluated for minimum inhibitory concentration (MIC) against forty five clinical isolates of Salmonella typhi. The peel extract showed MIC of 22 mg/ml; followed by pericarp (MIC 24 mg/ml) and fruit extract (64 mg/ml). Ethan-

Evaluation of anti-mycobacterial activity of garlic (Allium sativum) against clinical isolates of non-MDR and MDR Mycobacterium tuberculosis

Hannan A, Kramullah M, Qayum A, Shah KA, Arshad U, Hussain S
Department of Microbiology, University of Health Sciences, Khayaban-e-Jamia Lahore, Punjab-54600, Pakistan

Tuberculosis (TB) continues to be the disease of public health problem [1]. Emergence of multi-drug resistant (MDR) and extensively drug resistant (XDR) TB throughout the developing world is very disturbing in the present scenario of TB management [2]. Therefore there is an urgent need to develop alternative anti-TB agents. Garlic (*Allium sativum*) has been shown to possess antibacterial, antifungal and antiviral properties [3]. We evaluated garlic for its antibacterial activity against non-MDR and MDR strains of TB. Ethanolic extract of garlic was prepared by maceration method and minimum inhibitory concentration (MIC) was performed by using 7H9 middle brook broth dilution technique to evaluate its anti-mycobacterial activity against non-MDR (n = 5) and MDR (n = 15) strains of MTB. All the test organisms were inhibited by the garlic at MIC range of 1.0 – 3.0 mg/ml. The results of present study support the use of garlic extract as supplement against TB along with conventional anti-TB drugs. Therefore, complementary and substitute medicines practices with plant extracts including garlic as a means of decreasing the burden of drug resistance and reducing the cost of management of diseases would be of public health importance. Acknowledgments: We are grateful to University of Health Sciences for providing finances for this research project and sincerely thanks to Dr. Barakaat Hussain and Mr. Faisal Nadeem, University of Health Sciences, Lahore, Pakistan. References: [1] WHO Report 2008, [cited 06 – 04 – 09]; Available from: URL: http://www.who.int/tb/publications/global_report/2008/en/index.html [2] Granich, R.M. et al. (2005) *JAMA* 293:2732 – 2739. [3] Iwalokun, B.A. et al. (2004). J. Med. Food. 7:327 – 333.

Hypericum perforatum L., known as St. John's wort (SJW) is indicated as a phytotherapeutic agent for the treatment of mild to moderate forms of depression. Data from literature suggest the hypothesis that chronic stress is a major risk factor for psychiatric illnesses. The aim of the present study was to evaluate the effect of SJW extract (STW3-VI; 250 and 500 mg/kg; p.o. and fluoxetine (10 mg/kg, p.o.) on genes involved in the pathogenesis of depression using a chronic restraint stress (CRS) model in juvenile rats (1 h for 6 consecutive days). Hypericin and hippocampal tissues were analyzed using the Affymetrix gene chip Rat Genome 230 2.0 Array, which comprises more than 30,000 rat transcripts. Limma analysis and PANTHER database were used to evaluate the microarray data. Our first results show that chronic stress for 21 days differentially regulated 256 genes in the control group, whereas treatment with fluoxetine in stressed animals influenced 43 genes in the hippocampus. However, in stressed animals treated with 250 mg/kg of the SJW extract 140 genes were altered and 223 genes in the 500 mg/kg group. In all groups several pathways were identified which provide a link between stress and depression. Gene expression profiles for hypotalamic tissues will provide additional information about brain circuits involved in depression.

Estrogenic and cytotoxic p450 enzyme inhibitory effects of Salvia officinalis tincture and its subextracts

Rahe S, Suter A, Kortenkamp A, Tasdemir D
1School of Pharmacy, University of London, 29 – 39 Brunswick Square, London WC1N 1AX, United Kingdom; 2Bioforce AG, Grauenaustrasse, CH-9325 Roggwil, Switzerland

Herbal medicinal products (HMPs) are widely used as an alternative to common hormone replacement therapy for the relief of menopausal symptoms [1]. It has been reported that menopausal women experienced a significant reduction of hot flushes during treatment with a HMP containing *Salvia officinalis* [2], but the mechanism underlying this effect has remained unknown. In order to obtain mechanistic insights into this biological effect, we investigated estrogenicity as a possible mode of action of a 66% ethanolic *S. officinalis* tincture as well three subextracts (n-hexane, CHCl3, and aqueous-EtOH) obtained by solvent partition of this tincture. Estrogenicity was evaluated using a reporter gene construct in the human breast cancer cell line (T47D-Kbuc) with luminescence as the endpoint [3]. While the tincture and their isolated compounds as antibacterial. The ethanolic extract of the sweet pea were conducted using disc diffusion assay against *Staphylococcus aureus*, *Escherichia coli*, *Bacillus subtilis*, *Aspergillus niger*, and the human pathogenic yeast, *Candida albicans* [2]. The total anthocyanins of pale red type was the most potent one as anti-bacterial, anti-yeast, anti-fungal followed by the total anthocyanins of dark red type and dark pink type. The total anthocyanins of the three types were more potent than their isolated compounds as antibacterial. The ethanolic extract of the concrete showed the lowest effect as anti-bacterial and yeast but showed the highest effect as anti-fungal. In conclusion, anthocyanins of sweet pea flowers might be valuable as antimicrobial agent that can inhibit CYP3A4 moderately, whereas no CYP inhibition activity was detected with the ethanolic aqueous-EtOH tincture at concentrations under 70 µg/ml. Although estrogenicity could not be identified in the *S. officinalis* tincture, the activity found in the aqueous EtOH subextract may contribute to the overall effects of the tincture for amelioration of menopausal symptoms. Acknowledgements: Funding from Bioforce AG Switzerland is gratefully acknowledged. References: [1] Keller, S. et al. (2005) J. Womens Health 14:634 – 649. [2] De Leo, V. et al. (1998) Minerva Ginecol. 50:207 – 211. [3] Wilson, V. et al. (2004) Toxicol. Sci. 81:67 – 77. [4] Crespi, C. et al. (1997) Anal. Biochem. 248:188 – 190.
Inhibitory effect of panduratin A on the expression of matrix metalloproteinase-2 in Porphyromonas gingivalis supernatant-treated human gingival fibroblasts

Yanti, Hwang
1Department of Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120 – 740, Korea; 2School of Biotechnology, Atma Jaya Catholic University, Jl Jenderal Sudirman 51, Jakarta 12930, Indonesia

Porphyromonas gingivalis, a type of Gram-negative periodontobacteria, causes periodontal disease by activating intracellular signaling pathways that produce excessive inflammatory responses such as matrix metalloproteinases (MMPs). Panduratin A, a chalcone compound isolated from Kaempferia pandurata Roxb., has been found to possess anti-biofilm activity and MMP-9 inhibitor for treatment of periodontal disease [1,2]. In this study, we investigated the molecular mechanism by examining signaling pathways that are likely to be involved in the downstream effects of panduratin A on MMP-2 expression in P. gingivalis supernatant-stimulated human gingival fibroblast (HGF-1) cells by performing gelatin zymography, Western blotting, and reverse transcription-PCR. Our results demonstrated that exposure of HGF-1 cells to P. gingivalis supernatant significantly up-regulated MMP-2 expression. Specific MAPK inhibitors (U0126, SB203580, and SP600125) effectively blocked MMP-2 expression, indicating that MAPK signalings contributed to the induction of MMP-2 expression in HGF-1 cells in response to P. gingivalis supernatant. Panduratin A was found to partially attenuate the expression of MMP-2 in HGF-1 cells in response to P. gingivalis supernatant-stimulated HGF-1 cells. These findings strongly suggest that a decrease of MMP-2 expression by panduratin A in HGF-1 cells in response to P. gingivalis supernatant can be mediated by the inhibition of MAPKs- and CREB-dependent signaling pathways. References: [1] Yanti, et al. (2009). Oral Sci. 51:87 – 95. [2] Yanti, et al. (2009). Biol. Pharm. Bull. 32:110 – 115.

References:
Effect of summer savory (Satureja hortensis L.) density on essential oil yield to Persian clover (Trifolium resupinatum L.) intercropping
Khozei HR, Koocheki A, Hasanadeh F
Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

In order to evaluate intercropping of summer savory (Satureja hortensis L.) and Persian clover (Trifolium resupinatum L.), an experiment was conducted in the Agricultural Research Station of Ferdowsi University of Mashhad in 2004 growing season. Treatments were: sole crop of Persian clover (eight rows), double-row intercropping of Persian clover and summer savory with 27 plant.m⁻², 40 plant.m⁻² and 80 plant.m⁻² (eight rows), sole crop of summer savory with 27 plant.m⁻², 40 plant.m⁻² and 80 plant.m⁻² (eight rows). For this purpose a complete randomized block design with 7 treatments and 4 replications was used. Effect of different treatments on essential oil percentage was not significant but on essential oil yield was significant. essential oil yield of summer savory in sole crop treatments were significantly higher than in intercrop (P < 0.05). Highest of essential oil yield was in sole crop of summer savory with 40 plant.m⁻² and lowest was in intercropping of summer savory with 27 plant.m⁻² and Persian clover. In intercropping treatments, this parameter increased by increasing plant density. The result of this increasing, plant dry weight was highest by increasing plant density. In sole crop savory treatments, essential oil yield in 27 plant.m⁻², 40 plant.m⁻² and 80 plant.m⁻² density was 55, 59/7 and 58/2 kg/h. References: [1] Baher, Z.F. et al. (2002) Flavour Frag. J. 17:257 – 277. [2] Evans, P.M. et al. (2005) Aust. J. Exp. Agric. 42:135 – 141.

Metabolite profiling of plant extracts by ultra-high pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry
Guillarme D, Glauser E, Grata E, Veuveuy JL, Rudaz S, Wolfender JL
School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva 4, Switzerland

Detailed metabolite profiling of crude plant extracts, mandatory for both quality control and metabolomics purposes, requires high-resolution separation and sensitive detection with a reasonable sample throughput. In this respect, the use of ultra-high pressure liquid chromatography working at high temperature and coupled to time-of-flight mass spectrometry (HT-UHPLC-TOF-MS) was evaluated in terms of achievable peak capacity for a given analysis time. In a first step, it was shown that the longest column does not compulsory provide the maximal peak capacity for a given analysis time in UHPLC, using representative natural products. From a theoretical point of view, a 150 mm column should be preferentially selected for gradient lengths up to 60 min at 30 °C, while longer columns are attractive only for higher analysis times. Compared to 30 °C, peak capacities were increased by about 20 – 30% for a constant gradient length at 90 °C and gradient time decreased by 2-fold for an identical peak capacity [1]. In a second step, profiling of natural crude sample, as example of complex mixtures, was evaluated. Extracts from the model plant Arabidopsis thaliana and from a Ginkgo biloba phyto-preparation were analyzed. For metabolites spread over a large polarity range (e.g., methanolic extract of Arabidopsis thaliana) the use of high temperature (HT) was found beneficial with similar improvements as those recorded with the standard mixture. On the other hand, for the analysis of extracts containing more polar analytes (e.g., Ginkgo biloba), HT was found detrimental and causes a decrease in retention and thus resolving power [2]. Stability under HT conditions was evaluated and no apparent degradation was evidenced for both standard mixtures and crude extract analyses [2]. HT represents thus an additional parameter that can be considered for improving high-resolution profiling of extracts with metabolites spread over a large polarity range. References: [1] Guillarme, D. et al. (2009).J. Chromatogr. A 1216:3232 – 3243. [2] Grata, E. et al. (2009).J. Chromatogr. A, submitted.

Distribution of Huperzine A in Malaysia Lycopodiaceae
Choo CY, Hazriza H, NorShahida S, Latiff M, Razali JF
MedChem Herbal Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; 2Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

Alzheimer’s disease is a neurodegenerative disorder affecting the elderly population throughout the world. Huperzine A found in the genera Lycopodiaceae is a potent, reversible and selective acetylcholinesterase inhibitor and is a promising drug for treatment of symptoms of Alzheimer’s disease. The content of Huperzine A in the Lycopodium species collected from the sub tropics in Malaysia was evaluated. The dried Lycopodium species were dried, pulverized and macerated in 70% aqueous methanol. After five cycles of extraction, the pooled methanol extract was dried under reduced pressure with a rotary evaporator. The dried methanol extract was dissolved in methanol before subjecting for further analysis. A high performance liquid chromatography system with a diode array detector connected to a reverse phase column was developed to evaluate the content of huperzine A in the Lycopodium species. The separation was achieved with a gradient mobile phase system with an increasing amount (20 – 70%) of methanol in 0.01% trifluoroacetic acid for 30 minutes monitored from 200 to 500 nm. The peak area was linear (R²=0.998) from 5 to 100 μg/mL and has a repeatability between 0.4 to 1.4% relative standard deviation within five replicate chromatograms. The evaluated Lycopodium species collected in Malaysia contained Huperzine A ranging from 0.00 to 0.04% of the crude plant.
PJ183

sec-o-Abietane diterpenoids, a phenylethanoid derivative, and antitubercular constituents from *Callicarpa pilosissea*

Chen JY, *Wu HM*, *Peng CP*, *Chen IS*, *Hung MC*
1Graduate Institute of Pharmaceutical Technology & Department of Pharmacy, Tainan University, Pingtung 907, Taiwan; 2Department of Medical Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; 3Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan

Callicarpa pilosissea (Verbenaceae) is an endemic evergreen shrub that grows in low- to medium-altitude forests throughout Taiwan. Diterpenoids [1], lignanoids [2], flavones [3], and their derivatives are widely distributed in plants of the genus *Callicarpa*. Many of these compounds exhibit cytotoxic [1], and fish-killing [3] activities. In our studies on the antitubercular constituents of Formosan plants, many species have been screened for in vitro antibacterial activity, and *C. pilosissea* has been found to be an active species. Investigation of the EtOAc-soluble fraction of the leaves and twigs of *C. pilosissea* led to the isolation of six new compounds, including five sec-o-abietane diterpenoids, 12-deoxy-sec-o-hinokiol methyl ester (1), 12-deoxy-11,12-dihydro-sec-o-hinokiol methyl ester (2), callicaric acid A (3), 5\(\alpha\)-hydroxycallicaric acid A (4), and callicaric acid B (5), and a phenylethanoid derivative, 4-hydroxyprenylhetethedracone (6), along with 14 known compounds (7-20). 12-Deoxy-11,12-dihydro-sec-o-hinokiol methyl ester (2), callicaric acid B (5), and \(\alpha\)-tocopherol trimmer B (15) exhibit antibacterial activities (MICs < 63.6 \(\mu\)M) against *Mycobacterium tuberculosis H\(\text{37Rv}\)* in vitro. This work describes the structural elucidation of 1-6 and the antibactericidal activities of the isolates. *Acknowledgements*: This work was supported by the National Science Council of the Republic of China. *References*: [1] Jones, W.P. et al. (2007). Nat. Prod. 70:372 – 377. [2] Shao, Y. et al. (2007). Acta. 89:64 – 72. [3] Nagai, M. et al. (1975). Yakugaku Zasshi 93:1087 – 1088.

PJ185

Anti-inflammatory study and phytochemical analysis of *Hyphaene thebaica* (Doum plant)

Elniyey EM, *Abdalla AA*, *Ibotami MS*
1P.O. Box 7994, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan; 2P.O. Box 1224, National Center for Research, Khartoum, Sudan

The anti-inflammatory study (*in vivo*) was carried out on the different extracts (100 g/kg) of *Doum* plant parts in comparison with Aspirin (100 g/kg). High activity was found in the chloroform and ethanol extracts of the seeds (27%, 22%), roots (24%, 20%), and leaves (25%, 20%), respectively. The chloroform extract of the seeds was the most active (27%). The anti-inflammatory study (*in vitro*) of the seed extracts was monitored using atropinized rat fundus strip by induced inflammations with kidney homogenate. The kidney homogenate (0.5 ml) stimulate rat fundus strip contraction up to 20 mm for 3 min. Pre-incubation of the kidney homogenate in indomethacin (as standard, 5 \(\mu\)g/ml) completely (100%) inhibited their stimulant effect. Whereas pre-incubation of the kidney homogenate in *Doum* chloroform extract of the seeds (5 ng/ml) markedly inhibited the stimulant effect by 80%. Pharmacological studies (*in vitro*) of *Doum* seeds extracts on the isolated smooth muscles showed that chloroform extract of the seeds inhibit the spontaneously contracting rabbit jejunum by 40% for 0.8 min at a concentration of 5 \(\mu\)g/ml. However the seeds cold aqueous extract increase the contraction of rabbit jejunum by 110% for 1 min. Meanwhile, the hot aqueous extract stimulates the same tissue by 150% for 2 min. In comparison the acetylcholine (50 ng/ml) showed 120% increase. The chloroform extract of the seeds (100 ng/ml) possessed no effect on the aortic strip whereas the aqueous extract (cold & hot) stimulant *Mycobacterium tuberculosis H*\(\text{37Rv}\) in vitro. This work describes the structural elucidation of 1-6 and the antibacterial activities of the isolates. *Acknowledgements*: This work was supported by a grant from the National Science Council of the Republic of China. *References*: [1] Portchhezan, E., and Ansari, H. (1993) Rutaceae in Flora of Taiwan. 2nd edition. Editorial University, Kaohsiung 807, Taiwan; 2Department of Medical Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; 3Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.

PJ187

Analgesic activity of fractions of Stereospermum kuhnianum stem bark
Ching FP1, Okpo SO2, Fahudan A3, Omogbai EKI3
1Department of Pharmacology & Toxicology; 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Nigeria

PJ188

Cytotoxic effects of hydroalcoholic extracts of Cucurbita pepo and Solanum nigrum compared with hydroalcoholic extract of Taxus baccata and cisplatin on normal and cancer cell lines
Shokrzadeh M1, Azadbakht M2, Ahangar N3, Naderi H4, Saeedi Saravi SS5
1Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, sari; Department of HSE, faculty of HSE, Shaheed Beheshti University of Medical Sciences, 48187 861 Sari, Iran; 2Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48187 861 Sari, Iran; 3Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48187 861 Sari, Iran; 4Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48187 861 Sari, Iran; 5Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48187 861 Sari, Iran; 6Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48187 861 Sari, Iran; 7Mazandaran University of Medical Sciences, 48187 861 Sari, Iran; 8Faculty of Pharmacy, Mazandaran University of Medical Sciences, Young Researchers Club, Quemshahr Islamic Azad University, 48187 861 Sari, Iran

In recent years, there has been a global trend toward the use of natural substances present in fruits, vegetables, oils, and herbs as antioxidants and functional foods. Also, isolation and identification of some potent anti-tumor compounds from medicinal plants, has motivated researchers to screen different parts of plant species for determination of anti-tumor effects. Zataria multiflora (vernacular name of Avishan Shirazi) has traditionally used as antiasthetic, antiasthmatic and antisipmascotic drug. On the other hand, this plant is extensively used as flavor in Iranian food. The main constituents of its essential oil are phenolic compounds, such as vanillic and thymol. Also, inhibitory effects of essential oil of Z. multiflora on Salmonella typhimurium and Staphylococcus aureus were reported. In this study cytotoxic effects and IC50 of specific concentrations of hydroalcoholic extract leaves of Zataria multiflora were compared with hydroalcoholic extract of bark of Taxus baccata and cisplatin, as well known anticancer compounds on normal cell lines (CHO and mice fibroblast) and cancer cell lines (HepG2 and SKOV3). Hydroalcoholic extracts of the plant were prepared by percolation. The cytotoxic effects and IC50 of the extract on the cell lines were studied following colomony agar assay after 72 hours incubation. The results showed that IC50 of Zataria multiflora extract was significantly higher than the extract of Taxus baccata and cisplatin on all 4 normal and cancer cell lines (< 0.05). As a result, it is concluded that the extract of Z. multiflora has almost similar cytotoxicity with the extract of Taxus baccata on cancer cells.

PJ189

Comparison of artemisinin levels in Artemisia annua L. cultivated at three distinct geographic regions in Rwanda
Mukazayire MJ1,2, Bigendako MJ3, Ingabire G2, Nyetera P2, Siévigny C4, Dicz P1
1Université Libre de Bruxelles (ULB), Laboratory of Pharmacognosy, Bromatology and Human Nutrition, CP 205 – 9, B-1050 Brussels, Belgium; 2Institute of Scientific and Technological Research (I.R.S.T.), Center of Research in Phytochemistry and life Science, B.P. 227 Butare, Rwanda

Artemisia annua L. (Asteraceae) is listed in the Chinese pharmacopoeia as a remedy for various fevers including that caused by malaria. The plant contains the well-established antimalarial compound artemisinin [1]. A hybrid (Artemis) of A. annua was successfully cultivated in Rwanda, one of the malaria-endemic regions. We performed HPTLC-densitometric analysis of aerial parts of A. annua grown at distinct geographic regions under different climatic conditions (Mukoni, Rwabuye and Ruhengeri). Of special interest was the influence of soil and altitude on the production of artemisinin. The artemisinin concentration estimated in n-hexane extracts was 0.46 – 1.17% per dry weight of aerial plant material. The plants grown at higher altitude between 1800 m and 2000 m in the southern province, on sandy soil (Mukoni) or marshy soil (Rwabuye) were richer in artemisinin (1.17% or 1.11%, respectively) than plants cultivated at altitude between 1500 m and 1650 m in the western province on volcanic soil (0.46%). These results suggest an influence of the factors altitude and soil on the artemisinin content in Artemisia annua hybrids. Acknowledgement: The Rwandese Government and the Institute of Scientific and Technological Research are gratefully acknowledged for the grant to Marie Jeanne MUKAZAYIRE. Reference: [1] Mueller, M.S. et al. (2000). Ethnopharmacol. 73:487 – 493.

PJ190

Chemical constituents of Angelica lucida fruits Widielia1,2, Popova M3, Graikou K4, Chinnou I5
1Medical University of Lublin, Department of Pharmacognosy, Chodzki 1,20 – 093 Lublin; 2Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.5, 1113 Sofia, Bulgaria; 3University of Athens, School of Pharmacy, Division of Pharmacognosy and Chemistry of Natural Products, Zografou Campus, 15771, Athens, Greece

The genus Angelica is well documented for the presence of coumarins, which are known for a broad spectrum of pharmacological properties. In the framework of our research concerning chemical composition of different Umbelliferae plants, we report in this study the chemical composition of the fruits of Angelica lucida L. Tender parts of the plant have been used as food, analgesic and tonic against common colds by Eskimos. The roots as well as the young stems of the plant have been taken as a preventative medicine [1]. In this study, from the petroleum ether and the methanolic extract of the fruits of the plant, five known coumarins have been isolated (imperatorin, isoimperatorin, heracelenol, heracelen and oxyxypeucedan hydrate). Their structure elucidation was performed by modern spectral means (1D- and 2D-NMR) and literature data [2]. These compounds have been also isolated from other species of the genus Angelica [2, 3] but for the first time from A. lucida. Biological activities (antimicrobial and cytotoxic activities) of all isolated compounds are also under investigation. References: [1] Lawrence, B.M. and Morton, J.K. (1974) Phytochemistry 13:528. [2] Harkar, S. et al. (1984) Phytochemistry 23:419 – 426. [3] Bergendorff, O. et al. (1997) Phytochemistry 44:1121 – 1124.
Comparative effects of fructose, glucose and sucrose on growth and atropine production in \textit{Datura metel} callus culture

Tork Iddam A, Ashgar G, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran

\textit{Datura metel} is regarded as an important source of atropine. Evaluating of variable factors in callus growth and atropine production in cultured cells of \textit{Datura metel} is considered a very interesting research subject. It is known that different sugar and concentration can affect metabolite production in plant cell culture. The aim of this research is to examine the influence of sucrose, glucose and fructose on growth and atropine production in \textit{Datura metel} callus culture. Callus culture of \textit{Datura metel} was established by transferring seedlings on solidified Murashig & Skoog medium containing 2.4-dichlorophenoxyacetic acid and kinetin as plant regulators. Calluses were subcultured to medium supplemented with 1.5%, 3% and 6% of sucrose, glucose and fructose separately. After 28 days callus were collected and their fresh and dry weight were recorded. Atropine was extracted from dried and aerial parts of \textit{Datura metel} callus using methanol and Acetonitrile, and finally the marc was extracted using petroleum ether, chloroform and ethyl acetate. \textit{Datura metel} callus was subjected to repeated extraction with different sugar concentrations

Susceptibility of oral pathogenic microorganisms to Brazilian medicinal plants extracts

Santos VR, Pereira EMR, Nunes LS, Freire NR, Costa G, Brandão MHR, Aguiar EC

1Laboratory of Microbiology and Biomaterials- Dentistry School; 2Laboratory of Pharmacognosy, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil

The plants have been used in the popular medicine for treatment of diverse diseases. However, only recently, its pharmacology, toxicity and effectiveness against oral microorganisms have been scientifically studied. The objective of this study was to verify Candida albicans, \textit{Streptococcus mutans}, \textit{Staphylococcus aureus} and \textit{Aggregatibacter actinomycetemcomitans} sensitivity to the \textit{Eugenia molleoides} Marchand (aroeira) (Air), \textit{Stryphnodendron bartabim} Mart. (barbatimão) (Bb), \textit{Dejanira} (Dj), \textit{L. pacari} (pacari) (PC), \textit{Croton campestris} A. St. Hil./velame (VL), \textit{Anacardium humile} A. St. Hil. (cajuinhos do campo) to Brazilian native plants extracts. Records of antibiosis had been tested with 20 µL of each extract and distributed on the agar surfaces previously sown with 1.5 x 10^8 UFC/mL and cultured at 37°C during 24-48 hours, obeying the norms of the CLSI. After that, the inhibition zones had been measured and the averages and shunting lines standards had been price. Records contend nystatin and vancomycin served as positive inhibition controls for \textit{C. albicans} and bacteria, respectively. The statistical analysis Kruskal-Wallis tests had been evaluated. The results demonstrated that all the tested extracts had inhibited the in vitro growth of the microorganisms. The continuity of these studies, through clinical assays in patients, will be important to confirm the antimicrobial effectiveness of extracts. Acknowledgements (italic): FAPEMIG – Fundação de Apoio a Pesquisa do Estado de Minas Gerais; CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico; CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Antimicrobial activity of bioactive glass associated to Brazilian red and green propolis

Bonfim RA1, Chitarras VR1, Gomes RTP2, Zucarás RD1, Santos VR3, Vasconcelos WA3

1Laboratório de Microbiologia e Biomateriais – Faculdade de Odontologia – Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; 2Departamento de Química – ICEx – Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; 3Universidade Federal dos Vales do Jequitinhonha e Mucuri – Diamantina, Brazil

Bioactive glasses are a group of surface reactive glass-ceramics and are able to induce the formation of mineralized tissue in vivo, maxillofacial and periodontal repair. In this work we are studying the 58S glass type produced in the UFMG Biomaterials Laboratory using the sol-gel process comprising SiO2 (46.1 mol%), PO43- (4 mol%) and CaO (26.9 mol%) associated with green propolis originated by \textit{Baccharis dracunculifolia} (GP), red propolis originated by \textit{Dalbergia ecastophylum} (RP) and \textit{tetracyclin} (TC) and shaped in 6.0 mm diameter discs. The antimicrobial activity test for the different discs was conducted according to CLSI (2007) guidelines. 1.0 x 10^6 CFU/mL of Enterococcus faecalis, \textit{Streptococcus mutants}, \textit{Staphylococcus aureus} were plated on Mueller-Hinton agar. The discs were placed on the agar surface and incubated at 37°C during 48 h. TC standardized discs 30 mg, RP and GP 20 µL of each extract, bioglass without propolis and TC were used as controls. After incubation, the inhibition zones were measured and reported as mean ± standard deviation. Kruskal-Wallis test: p < 0.5 was considered significant. All tests were made in triplicate. The results show that GP was more efficient and equal against three microorganisms (22.5 ± 0.0 mm) whereas GP showed 15 mm (S. aureus), 12 mm (E. faecalis), 19 mm (S. mutans). The GP and RP extracts had shown similar effectiveness. The bioglass associated with red Propolis demonstrated to greater antimicrobial activity that observed for tetracylin and other controls. Acknowledgments: FAPEMIG – Fundação de Apoio a Pesquisa do Estado de Minas Gerais; CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico; CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Pharm. Dra. Sheila Rago Lemos Abreu (Pharmaceutar- Belo Horizonte- Brazil); Coordenação dos Cursos de Pós-Graduação da Faculdade de Odontologia da UFMG.
Propolis has been shown to exhibit in vitro antimicrobial activity against periodontal pathogens. The aim of this study was to evaluate the efficacy of Brazilian Green Propolis Murcoadherent Gel (BGP/MG) for the treatment of patients diagnosed with gingivitis and Chronic Periodontitis (CP). Six patients, 2 males (36/42 years old) and 4 females (42, 46, 49/51 years old) with dental calculus, gingivitis, oedema, bleeding, gingival recession, pocket depths, attachment loss, suppuration, tooth mobility and alveolar bone loss were submitted at BCGP 10% treatment. Dental arches were divided in the following quadrants: Superior Right (SR) – BGPG irrigation; Superior Left (SL) – scraping/smoothing dental root (RAR) and BGP irrigation inside the periodontal pocket; Inferior Right (IR) – RAR; Inferior Left (IL)-control. Dental brushing with BGPG and washing mouth with propolis solution daily was carried through during the treatment. BCGPMG was applied in each periodontal pocket once a week, during 4 weeks, having used barrier dismissable syringe. The results showed a regression of 95% gingivitis and suppuration in all the teeth irrigated with BCGPMG, as well as a pocket depths reduction in all unsubmitted and submitted teeth previously to the RAR. It was not observed alveolar bone reorganization. Increase of gingival contraction and dental mobility reduction was noted. In this clinical study, the patient treated with the BCGPMG showed periodontitis/gingivitis regression. The results suggest that 10% BGPG could be used as an adjuvant therapeutic method assigned for the treatment of CP. Other studies need to be conducted with more significant number of patients in order to establish this treatment as the extent and severity of the injury of colon shown by scores of macroscopic damage and prevented body weight loss observed in dextran sulphate sodium (DSS)-treated mice.

Comparative botanical – pharmaceutical and pharmacognoery research of species of genus Potentilla L. (P. anserina L., P. reptans L. and P. palustris L.) from Bosnia and Herzegovina (Western Balkan) Redzic S1,2, Barudanovic S1, Trakic S1

Center of Ecology and Natural Resources, Faculty of Science University of Sarajevo, 71 000 Sarajevo, Bosnia & Herzegovina; 2 Academy of Sciences and Arts of BiH, 71 000 Sarajevo, Bosnia and Herzegovina.

Many species of order Potentillata L. at the area of Dinarides (W. Balkans) have distinguished ethno botanical role [1]. Considering their phylegetic affinity with currently known medicine and edible plants in this genus, we could expect similar biological – chemical characteristics and similar use. In this research we conducted basic comparative research of microscope – botanical identification, concentration of basic metabolites, dominant secondary metabolite and anti-microbial activity of three species of genus Potentilla. Material was gathered on natural biotopes in Sarajevo surrounding, while rare specie P. palustris was gathered on Kupres field in 2007. Microscopic analysis in accordance with Ph Eur IV determined value of stomata index (25 for P. reptans and P. anserina and 15 for P. palustris). In acetone dissolution of leaves, using spectro photometry, determined was different concentration of plant pigments. Chlorophyll a was between 0.58 mg/l (P. reptans) and 9.745 mg/l (P. palustris). Chlorophyll b is contained in amount of 24.140 mg/l in leaves of P. palustris, which indicates distinguished anti-oxidant activity [2]. Methods of thin-layer and planar chromatography in ethanol extract of subsurface parts of all researched species, determined tannin (UV – 254 nm), and in ethanol extract determined was flavonoids (UV – 366 nm). Lowest level of tannin was discovered in above surface parts of P. palustris which could indicate different chemical – taxonomic affiliation of this species in relation to other species in this genus, since many species of Potentilla palustris are separated in different taxa of Comarum palustre [3]. References: [1] Redzic, S.S. (2007) Collegium Antropologicum, 31, 869 – 890. [2] Redzic, S. et al. (2007) Planta Med. 73:887. [3] Tomczyk, M., Latté, K.L. (2009). Ethnopharmacol. 122:184 – 204.

A new facile and efficient synthesis of trans-(-)-sobrerol by biotransformation of a-pinene using extremophiles microorganisms

Vlasoua LA1, Quillagren O2

1 Centro de Tecnología Agroindustrial, Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Cochabamba, Bolivia; 2 Centro de Biotecnología, Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Cochabamba, Bolivia; 1 Department of Organic Chemistry, University of Lund, Sweden

Trans-(-)-sobrerol is a hydroxyl containing monocyclic terpenoid resulting from the autooxidation of a-pinene in presence of air and water. It presents pharmacological properties as mucolytic agent and clinical trials have confirmed its efficacy in relieving obstructive symptoms in patients suffering from chronic bronchitics [1]. Synthetic pathways have been established to obtain trans-(-)-sobrerol but in general they consist of several steps and the overall yields are low with poor stereoselectivity [2]. Essential oils are rich mixtures of natural products, mainly terpenoids, and are obtained from aromatic plants by steam distillation or hydrodistillation. Some terpenes are very useful starting materials for the synthesis of more complex molecules [3]. a-Pinene, a hydrocarbon monoterpene present in several essential oils, can be easily obtained by rectification. It has been transformed in products of more added value by chemical reactions but also by biotransformation using fungi species, resulting in complex mixtures of oxygenated compounds [4]. In this work, we report for the first time the use of extremophiles microorganisms for the biotransformation of a-pinene. This terpene was transformed by a halophilic bacterial strain belonging to the genus Jeot- gallicus after cultivation in liquid medium under aerobic conditions at 30°C for 48 h. GC analyses of the reaction mixture, after extraction in ethyl acetate, showed the presence of few components. The component present in the highest concentration was isolated and identified as trans-(-)-sobrerol by NMR spectroscopy. Acknowledgements: We are grateful to SIDA-SAREC (Sweden) for financial support. References: [1] Braga, P.C. et al. (1987) Int. J. Clin. Pharmacol. Res. 7:381 – 400. [2] Wang, Q. et al. (2003) Synth. Comm. 33:2125 – 2134. [3] Monteiro, J.L.F., Veloso, P. et al. (2004) Synth. Comm. 33:2125 – 2134.
Eight Egyptian traditional plants belonging to four families were tested for their bioactivities: Curcuma cyperi L. and Forsicolatum vulgare Mill. (Aipiacceae), Raphanus sativus L. (Brassicaceae), Ocimum basilicum L. (Lamiaceae), Cassia fistula L. (Leguminosae). These plants are collected from local herbal market. Methylene chloride/methanol (Me2Cl2/MeOH) extracts of each species were separately prepared prior to be examined against eleven micro-organisms include six bacteria; Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella typhimurium, two fungi (Candida albicans and Aspergillus niger) and three viruses; Herpes simplex-1, Poliovirus type-1 and Vesicular stomatitis. Antibacterial and anti-fungi activities are determined by using micro-titer dilution method to calculate MIC, MBC and MFC [1] while anti-viral activity is evaluated by means of end point titration technique (EPTT) to calculate the reduction factor of each extract [2]. The results revealed that Salvia palatina, and Rosmarinus officinalis possess bactericidal effect against B. cereus (MIC: 31.25 μg/ml and MBC: 125 μg/ml) and have inhibitory effect against S. aureus at MIC: 31.25 and 62.5 μg/ml, respectively. In addition, Origanum majorana are found to possess an inhibitory effect against B. cereus at MIC 500 μg/ml. References: [1] Vanden Bergha, D.A., Vlentić, A.J. (1991) Methods in Plant Biochemistry, Academic Press London. [2] Vanden Bergha, D.A. et al. (1986) BJ Pasteur 84: 101 – 147.

Imupret modulates the innate and adaptive immune system parameters in vitro

Pahl A

Department of Pharmacology, University of Erlangen, Fahrstr. 11, 91054 Erlangen, Germany

Imupret is an alcoholic-aqueous extract of seven different herbal drugs. It is used for the treatment of recurrent infections of the respiratory tract, especially tonsillitis. We hypothesized that immunomodulatory actions of Imupret correlate with its clinical effects. The aim of the study was the assessment of the influence of Imupret on immune parameters in vitro, i.e. by analysing possible effects of Imupret on immune cells from healthy subjects. The effect of Imupret on the phagocytic activity of macrophages and polymorphonuclear granulocytes was determined by using micro-titer dilution method to calculate MIC, MBC and MFC [1] while anti-viral activity is evaluated by means of end point titration technique (EPTT) to calculate the reduction factor of each extract [2]. The results revealed that Salvia palatina, and Rosmarinus officinalis possess bactericidal effect against B. cereus (MIC: 31.25 μg/ml and MBC: 125 μg/ml) and have inhibitory effect against S. aureus at MIC: 31.25 and 62.5 μg/ml, respectively. In addition, Origanum majorana are found to possess an inhibitory effect against B. cereus at MIC 500 μg/ml. References: [1] Vanden Bergha, D.A., Vlentić, A.J. (1991) Methods in Plant Biochemistry, Academic Press London. [2] Vanden Bergha, D.A. et al. (1986) BJ Pasteur 84: 101 – 147.

**Pain management is a concern in many diseases. A survey was conducted on various medicinal plants used in management of pain in Jos, North-central, Nigeria. Five of the commonly used plants; Amaranthus viridis Linn (seeds) (Amaranthaceae) [AV], Paulinia pinnata Linn (stem bark) (Sapindaceae) [PP], Solanum incanum Linn (whole plant) (Solanaeae) [SI], Ximenia americana Linn (stem bark) (Oleaceae) [XA] and Fagopyrum esculentum Schwein. (leaves) (Rubiacae) [FA] were evaluated for analgesic activity (acetic acid- induced writhing assay [1] and hot-plate method [2]) in mice and compared with standard drugs (aspirin and morphine). Phytochemical screening [3] of the various plants showed tannins, flavonoids, alkaloids, steroids, anthraquinones and cardiac glycosides. Only tannins and flavonoids were common to all the plants. Ethanolic extracts of the plants at 100 and 200 mg/kg were administered orally and compared with standard drugs. In the acetic acid-induced writhing assay the order of activity was XA>AV>PP>SI>FA. Activity of XA, AV and PP was significant (P < 0.05) compared to aspirin. On the other hand, in the hot-plate method, the order of activity was PP>XA>AV>SI>FA. Similarly to the acetic acid assay, the activity of XA, AV and PP was significant (P < 0.05) compared to morphine. These findings support the traditional use of these plants in pain management in Jos, Nigeria. References: [1] Tijssen, A., Berge, O. G., et al. (1992) Pain. 51:5, [2] Turner, R.A. (1965) Screening methods in Pharmacology. Academic press, New York, p 158. [3] Sofowora, A. (1993) Standardization of herbal medicine. In: medicinal plants and traditional medicine in Africa. Spectrum Book Limited, Lagos, Nigeria. pp. 56 – 61.
Development of clinical trial guideline for Diabetes Mellitus on traditional Korean medicines

This study was conducted to establish “Clinical trial Guideline for Diabetes Mellitus on Traditional Korean Medicines (TKM)”. With the tremendous expansion in the use of traditional medicines worldwide, safety and efficacy as well as quality control have become important issues. Researchers and pharmaceutical manufacturers were increasingly requesting KFDA to provide standards and information on these concerns. This guideline was carefully developed through the various experts’ opinions and guidelines of KFDA, WHO, EMEA, FDA, NCI, TGA and ICH related to clinical trial. The methodologies are composed of basic principles, investigational product, inclusion and exclusion criteria, control groups, safety and efficacy assessment, dosage and durations, interaction between drugs, evaluation of quality of life, traditional medicinal diagnosis and other issues related to clinical trials. It would link TKM with Western medicine for Diabetes Mellitus clinical trial. This is intended to provide necessary recommendations for the development of TKM to researchers in medical and pharmaceutical industry, and to facilitate new drug development through its practical application on clinical trials for Diabetes Mellitus.

Australasian Huperzina as potential sources of Huperzine A and B

Lim WH1, Googder JQC1, Field AR1, Holtum JAM2, Woodrow JB3

1School of Botany, The University of Melbourne, Victoria 3010, Australia; 2School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia

The alkaloids, Huperzine A (HupA) and Huperzine B (HupB), have been reported to be highly selective, potent and reversible inhibitors of acetylcholine esterase. Clinical trials in both China and USA have demonstrated HupA to be of therapeutic benefit for patients suffering from major depressive disorders such as Alzheimer’s disease. It is synthesising isomerically pure HupA have yet to be optimised and to date all pharmaceutical production of HupA has been from the Chinese club moss Huperzia serrata which contains on average only 0.18 mg g⁻¹ DW HupA. As a consequence, H. serrata has been listed as endangered in China. A potential solution to this problem would be to establish commercial Huperzia plantations to supply the ever growing need for HupA. Identifying species or individuals with larger biomass and/or higher HupA concentrations would be critical in establishing such large scale plantations. As little is known about the huperzine concentrations of Australasian Huperzia species, this study examined sixteen Australasian Huperzina, including three undescribed species, for their HupA and HupB contents. Concentrations of HupA and HupB were observed to vary substantially both inter- and intra-specifically, with the highest yield of HupA (1.01 mg g⁻¹ DW) and HupB (0.34 mg g⁻¹ DW) observed in one of the yet to be classified Huperzia samples originating from the Philippines.

The plant Catharanthus roseus (L.) G.Don. (Apocynaceae), a perennial and self-pollinated plant, is of immense medicinal value due to antineoplastic activities of its leaf alkaloids. A mutation breeding programme was carried out to design a physiologically and chemically efficient plant type with increased production of secondary metabolites. This paper describes the morphological and inheritance of such mutants, which were produced by physical and chemical mutagens. Induced mutagenesis with gamma rays and EMS in Catharanthus roseus produced six distinct mutants that differ in their growth habit and plant morphology. These mutants were dwarf mutants with obovate leaf (dwb), medium tall mutants with small leaf area (mtsl), nontrichomeous mutants (nt), upright oriented elliptical leaf mutants (upe), spoon shape leaf mutants (sp) and variegated leaf mutant (vg). Among them, dwb and mtsl mutants exhibited digenic recessive inheritance. The vg and uple leaf mutants were monogenic recessive and sp leaf mutant supports complementary gene action. Effect of mutation has positive response to the alkaloid content of Catharanthus but it varies in different mutants.

Studies on leaf epidermal micromorphology, wood element characters and physicochemical screening of three medicinal plants of Convulaceae

Mandal S, Chowdhury S, Rahaman CH

Department of Botany, Visva-Bharati University, Santiniketan - 731235, India

The scientific evaluation of ethnomedicinally important plants is now being done thoroughly covering various aspects of study like efficacy of the crude drugs, chemistry of active principles, different pharmacognostic parameters, etc. The use of micromorphology and anatomy is now a recognised tool in the field of plant systematics. Therefore, in this investigation the micromorphology of leaf epidermis, stem xylem element characters and phsyicochemical screening of three ethnomedicinally important members of the family Convulaceae namely Evolvulus alsinoides, Evolulus nummularius and Ipomoea cairica have been studied. The epidermal cells are found to be irregular in shape and the outlines of the cells are wavy in every species. Stomata are amphistomatic and mainly of paracytic type except in Evolulus nummularius. Tracheids are glandular and non-glandular, unicellular or multicellular, straight or curved. The range of stomatal index varies from 11.40 to 20.00. Paliade ratio ranges from 6.2 to 9.8. The vessel element length ranges from 60.71 um to 357.10 um and the diameter varies from 21.78 um to 66.06 um. Perforation plate is simple and transverse or obliquely placed. Fibres are typical libriform, very long and diameter ranges from 10.71 um to 16.78 um. In every case, tracheids are long with spiral to condensed spiral of sidewall thickening and diameter is from 07.14 um to 16.07. The active compounds are identified by the chemical colour reactions tests belonging to the phytochemical groups of amino acids, alkaloids, reducing sugars, flavonoids, saponins, steroids and triterpenoids, tannins, etc. The findings will be a useful marker for identification of the crude drugs obtained from the selected taxa. The purpose of the study is to know the leaf epidermal micromorphology, wood element characters and phytochemical screening of the above mentioned three medicinal plants of the family Convulaceae as it has not been properly worked out. These micromorphological features and phytochemical screening will be very helpful in proper identification of respective crude drugs obtained from these three members of Convulaceae and also to determine the identity of drug adulterants. Thus, it will be a tool in maintaining the quality of the drug obtained from these three plant species.

Expression profiling and network-based analysis for the effect of curcumin on pancreatic cancer cells

Youns M1, Bauer A1, Reichling J2, Effert F1, Hoheisel JD3

1Functional Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; 2Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; 3Pharmaceutical Biology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany

Pancreatic cancer is one of the most aggressive human malignancies with an extremely poor prognosis. The paucity of curative therapies has translated into an overall 5-year survival rate of less than 5%, under-scoring a desperate need for improved therapeutic options. Over-expression of cyclooxygenase-2 (COX-2) enzyme in human tumors is associated with poor prognosis. Therefore, COX-2 is considered as one of the crucial targets for cancer therapy. A dietary compound curcumin hardwires to multiple cellular processes, with suppression of cell proliferation, induction of apoptosis, and inhibition of metastasis considered as the major mechanisms underlying its anticancer properties. Here, we undertook a gene expression profiling study to identify novel molecular targets of curcumin in pancreatic cancer cells. Our data demonstrated that curcumin inhibited cell growth and induced apoptosis...
in pancreatic cancer cell lines through COX-2 dependent and independent mechanisms of action. Moreover, Using the Ingenuity Pathway Analysis tool, we distributed the differentially expressed genes into biological networks and evaluated their functional significance. In addition, we identified several pathways affected by curcumin including cell cycle and apoptosis. Furthermore, we identified that the effect of curcumin is mediated through modulation of multiple signaling pathways. The present analysis is a starting point for the generation of hypotheses on candidate genes and for a more detailed dissection of the functional role of individual genes for the activity of curcumin in cancer.
Authors' Index

A
Abad MJ 984
Abd El Halim FM 891
Abd El-Hamid SR 983
Abd El-Mohsen M 958
Abd El-Wahab A 990, 1043
Abdalla AA 1076
Abdallah DM 1034
Abdel-Aziz H 1044, 1065, 1052
Abdel-Mohsen M 1043
Abdolrahimzade M 1068
Abdou MAA 1069
Abdul Hamid R 1061
Abebe Wube A 946
Abeer YI 983
Abezg B 886
Abel G 996, 1055
Aberham A 999
Abbohasani M 1011
Abou Eleid H 1017
Abou Zeid AH 927
Aboukouittoo M 1067
Abraham G 953, 1045
Abraham Z 1029
Absar M 1072
Abu Bakar MF 972
Açkızgozulu AB 986
Acosta M 990
Adams A 1018
Adams J 888
Adams M 947, 948
Addapelli V 997
Adedejo A 960
Adeneeye AA 1016
Adeniyi BA 990
Adeyemi AA 935
Adeyemi OA 1016, 1019
Ainehband A 1068
Afolayan AJ 960
Afonso CAM 1012
Afroziany A 1043
Afsar A 1008
Afsb K 899
Agostinho A 946
Agostinho AB 886
Aguiar EC 895, 1078
Aguiar-Santelises L 1042
Agunu A 920, 952, 1080
Ahangama D 919
Ahangar N 986, 1077
Ahmad R 909, 911, 1009
Ahmad Z 1061
Ahmadu AA 920, 952
Ahmat N 911, 962, 1009
Amed Naima B 1017
Amed Oi 1078
Amede M 1015
Ahn KS 1032
Ahlan U 1072
Aigner Z 980, 981
Aiyelagbe OO 990
Ajose OI 952, 1030
Akah PA 1005
Akao Y 961
Akgün IH 980
Akın M 1057
Akın N 986
Al Safa Lucky S 1014
Alam J 1015
Alania M 960
Alanku-Çalıṣkan Ö 978, 1053, 1054, 1055, 1056
Albuquerque CL 955, 1015, 1016
Albuquerque S 945
Alcântara JH 946
Alekouyeh Z 938
Alemeji JA 1005
Alexa E 1003, 1024
Alexis MN 1067
Ali Najib M 902
Ali HA 1076, 1078
Alijanian N 907, 915, 918, 926, 978, 1050
Alipour F 1013
Alfaz-Akbari N 1012
Al-Marzoqui AH 983
Almeida ACA 925, 955, 1016, 1071
Alonge PO 1018
Alonso-Castro AJ 1064, 1065
Al-Rehaili AJ 891
Altansetseg S 1056, 1057
Altmann KH 887, 905, 991, 1069
Alvarez AL 990
Ally AH 981
Amar Y 1017
Amaral L 986
Amaral T 942
Ambaye R 1072
Amin G 984
Amir H 1026
Amoozegar Z 1023
Amoozegar H 1023
Anasori P 1038
Andersson RGG 1030
André P 1019, 1020
Andriniadiso 1044
Andrije 1002
Andrija I 1064, 1079
Angelis A 978
Ankli A 1003
Antal DS 908
Antheaume C 939, 940, 1020
Antunes MD 1060
Anvari M 1025, 1026, 1029
Ayoggi Y 968
Aparicio Garcia Cortez D 1012
Akers S 900, 904, 924, 967, 993, 1005
Apetrei C 1061
Appa Rao AVN 889
Aprostolois AC 933
Arana I 1046
Arbaz A 979
Arbune A 937, 1070
Archambault JC 1019, 1020
Arcoari C 1027
Arifah AK 1012
Armbreuster N 902
Arnason JT 1008
Arnold NA 905
Arribas B 1015, 1016
Arsenak M 984
Arshad U 1073
Arsi I 985
Arslan I 958, 962, 1018
Arslan N 890
Arulmozhi S 925
Arvanitidou M 1066
Asea A 885
Asgari Nematin M 936, 937
Asgaris T 984
Ashghari G 1021, 1038, 1078
Ashour M 979
Asim M 1008
Aslan M 890, 1010, 1014
Assaf MH 891
Assimopoulou AN 913
Astar A 989
Atanackovic M 943
Atanasov A 1048
Atanasov AG 909
Atay I 904
Atilla P 919
Attri M 936, 937, 938
Attapour Yazdi MM 1069, 1070
Augustin M 1023
Aulton B 890
Awad NE 974, 986
Awad S 983
Awang K 971
Awang K 912
Aydos S 923
Ayinde BA 1018
Azadbalkhi M 986, 1077
Azam NK 958
Azmieh Y 1012
Azizi E 984
Azizyan MP 1012
B
Babu ARS 1041
Babar J 889
Bachtar A 879
Baciokova A 1002
Bae YS 922
Baek JH 1081
Baek NI 1041
Bahtiaharya S 937
Bai N 897
Bailleul F 1037
Balibé E 1015, 1016
Balog K 1018
Balogh Á 921
Baliharzai L von 1069
Banerjee A 896
Banerji P 997
Bang CV 1024, 1025
Bankova V 906
Banziger-Tobler N 908
Barbasteofano V 1071
Barthie Y 1006
Barca V 937, 1070
Barkin A 1046
Baricic D 883
Barkaat M 1072
Barman T 997
Barroso JC 928, 929, 1060
Bartholomeusz TA 900, 916
Bartovska L 1023
Barudanovic S 902, 938, 1079
Barzezgar R 1006
Basar S 1065
Baser KHC 888
Basic H 902, 938
Basilin S 911
Bassukas I 912
Bastos J 945, 949
Basudan OA 891
Batista T 942
Batkhulu J 1058
Baub M 1063
Bauer A 1081
Bauer R 901, 910, 914, 946, 969, 981, 1035, 1045, 1047
Baugh S 1003
Baumgartner I 909
Bawankule DU 923
Bea I 1018
Bedir E 918, 919, 921, 978, 980, 1053, 1054, 1055, 1056
Begum S 899
Beidler T 897, 1051
Bellingeri V 921
Belmokhtar Z 1017
Benedek B 992, 1009
Benhaddou-Andaloussi A 1008
Bensani M 937
Ben-Shabat S 1058
Berci I 1060
Berger F 941
<table>
<thead>
<tr>
<th>Authors’ Index</th>
<th>57th International Congress and Annual Meeting of the GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Haasbach E 884</td>
</tr>
<tr>
<td></td>
<td>Habtemariam S 885</td>
</tr>
<tr>
<td></td>
<td>Habvinia H 1013</td>
</tr>
<tr>
<td></td>
<td>Haddad P 1017</td>
</tr>
<tr>
<td></td>
<td>Haddad PS 1008</td>
</tr>
<tr>
<td></td>
<td>Hadi A 912</td>
</tr>
<tr>
<td></td>
<td>Hadian J 1071</td>
</tr>
<tr>
<td></td>
<td>Hadjia khoondi A 964, 984, 1013, 1052</td>
</tr>
<tr>
<td></td>
<td>Hadzifejzovic N 1039</td>
</tr>
<tr>
<td></td>
<td>Hafeez A 1072</td>
</tr>
<tr>
<td></td>
<td>Hafezi W 884, 989</td>
</tr>
<tr>
<td></td>
<td>Hager E 909</td>
</tr>
<tr>
<td></td>
<td>Hagg S 1030</td>
</tr>
<tr>
<td></td>
<td>Haggag W 1017</td>
</tr>
<tr>
<td></td>
<td>Hagimehdipoor H 1052</td>
</tr>
<tr>
<td></td>
<td>Hajdu J 971, 989</td>
</tr>
<tr>
<td></td>
<td>Hajnos ML 938</td>
</tr>
<tr>
<td></td>
<td>Hajse daghian S 1026</td>
</tr>
<tr>
<td></td>
<td>Halabalaki M 914, 1067</td>
</tr>
<tr>
<td></td>
<td>Halamova K 947, 1059</td>
</tr>
<tr>
<td></td>
<td>Halkes SBA 903</td>
</tr>
<tr>
<td></td>
<td>Hall R 1002</td>
</tr>
<tr>
<td></td>
<td>Ham I 1045</td>
</tr>
<tr>
<td></td>
<td>Hamburger M 889, 908, 947, 948, 1034, 1037</td>
</tr>
<tr>
<td></td>
<td>Hamdan D 979</td>
</tr>
<tr>
<td></td>
<td>Hames-Kocabaj E 918</td>
</tr>
<tr>
<td></td>
<td>Hamid A 912</td>
</tr>
<tr>
<td></td>
<td>Hammadou F 958</td>
</tr>
<tr>
<td></td>
<td>Hamy F 879</td>
</tr>
<tr>
<td></td>
<td>Hamza AA 1011</td>
</tr>
<tr>
<td></td>
<td>Han JP 936, 971</td>
</tr>
<tr>
<td></td>
<td>Hanscianu M 930, 933, 1001, 1011</td>
</tr>
<tr>
<td></td>
<td>Hannan A 1072, 1073</td>
</tr>
<tr>
<td></td>
<td>Hanskulp P 977</td>
</tr>
<tr>
<td></td>
<td>Harkenthal M 988</td>
</tr>
<tr>
<td></td>
<td>Haramaha J 904, 905, 906</td>
</tr>
<tr>
<td></td>
<td>Harue Endo E 1012</td>
</tr>
<tr>
<td></td>
<td>Hasan N 954</td>
</tr>
<tr>
<td></td>
<td>Hasanzadeh F 1075</td>
</tr>
<tr>
<td></td>
<td>Hashem F 1014</td>
</tr>
<tr>
<td></td>
<td>Hashemi M 1035</td>
</tr>
<tr>
<td></td>
<td>Hashim MH 1009</td>
</tr>
<tr>
<td></td>
<td>Hassan AH 983</td>
</tr>
<tr>
<td></td>
<td>Hassan EM 964</td>
</tr>
<tr>
<td></td>
<td>Hauck B 900</td>
</tr>
<tr>
<td></td>
<td>Havlik J 908, 1044, 1054</td>
</tr>
<tr>
<td></td>
<td>Hawrelak J 992</td>
</tr>
<tr>
<td></td>
<td>Hay AE 894, 912, 928</td>
</tr>
<tr>
<td></td>
<td>Hazrira H 1075</td>
</tr>
<tr>
<td></td>
<td>He K 897</td>
</tr>
<tr>
<td></td>
<td>Heck M 1034</td>
</tr>
<tr>
<td></td>
<td>Heig N 996</td>
</tr>
<tr>
<td></td>
<td>Heilmann J 898, 977, 1003, 1037</td>
</tr>
<tr>
<td></td>
<td>Heine H 1015</td>
</tr>
<tr>
<td></td>
<td>Heinrich M 888, 915, 971, 998</td>
</tr>
<tr>
<td></td>
<td>Heiss E 1048</td>
</tr>
<tr>
<td></td>
<td>Heiss EH 1013</td>
</tr>
<tr>
<td></td>
<td>Helebuez HJ 1041</td>
</tr>
<tr>
<td></td>
<td>Hellerbrand C 977</td>
</tr>
<tr>
<td></td>
<td>Hellwell K 882</td>
</tr>
<tr>
<td></td>
<td>Hemicinachi A 931</td>
</tr>
<tr>
<td></td>
<td>Hendawey SF 983, 1068</td>
</tr>
<tr>
<td></td>
<td>Hendrawati O 968</td>
</tr>
<tr>
<td></td>
<td>Heneka B 882</td>
</tr>
<tr>
<td></td>
<td>Hennebelle T 1037</td>
</tr>
<tr>
<td></td>
<td>HenneIon J 890</td>
</tr>
<tr>
<td></td>
<td>Hensell D 1017</td>
</tr>
<tr>
<td></td>
<td>Hensel A 884, 888, 897, 941, 984, 993, 1030, 1033, 1036, 1051</td>
</tr>
<tr>
<td></td>
<td>Herathl H 919</td>
</tr>
<tr>
<td></td>
<td>Herbette G 972</td>
</tr>
<tr>
<td></td>
<td>Herrin H 899</td>
</tr>
<tr>
<td></td>
<td>Herken En 958</td>
</tr>
<tr>
<td></td>
<td>Hernández Ortega Y 924</td>
</tr>
<tr>
<td></td>
<td>Herrmann S 940</td>
</tr>
<tr>
<td></td>
<td>Herr tampf T 883</td>
</tr>
<tr>
<td></td>
<td>Heuberger H 1047</td>
</tr>
<tr>
<td></td>
<td>Hifnawy M 958</td>
</tr>
<tr>
<td></td>
<td>Hifnawy MS 927</td>
</tr>
<tr>
<td></td>
<td>Hillhorst HW 1002</td>
</tr>
<tr>
<td></td>
<td>Hiltunen R 929</td>
</tr>
<tr>
<td></td>
<td>Hiruma-Lima C 934, 943</td>
</tr>
<tr>
<td></td>
<td>Hiruma-Lima CA 932, 933, 1024, 1063</td>
</tr>
<tr>
<td></td>
<td>Ho R 920, 1050</td>
</tr>
<tr>
<td></td>
<td>Hodi G 1047</td>
</tr>
<tr>
<td></td>
<td>Hoekstra B 1003</td>
</tr>
<tr>
<td></td>
<td>Hofmann T 1033</td>
</tr>
<tr>
<td></td>
<td>Hoga C 937, 1070</td>
</tr>
<tr>
<td></td>
<td>Hoheisel JD 1081</td>
</tr>
<tr>
<td></td>
<td>Hofmann J 910, 921, 971, 981</td>
</tr>
<tr>
<td></td>
<td>Holm Y 929</td>
</tr>
<tr>
<td></td>
<td>Holtum JAM 1081</td>
</tr>
<tr>
<td></td>
<td>Hom-utai S 950</td>
</tr>
<tr>
<td></td>
<td>Honda N 934</td>
</tr>
<tr>
<td></td>
<td>Horo I 1053</td>
</tr>
<tr>
<td></td>
<td>Horbas S 1010</td>
</tr>
<tr>
<td></td>
<td>Hoseiny Zarea A 899</td>
</tr>
<tr>
<td></td>
<td>Hoser S 957</td>
</tr>
<tr>
<td></td>
<td>Hossan S 954, 959, 960, 961, 987, 1017</td>
</tr>
<tr>
<td></td>
<td>Hosssein SM 982, 1026, 1029</td>
</tr>
<tr>
<td></td>
<td>Hossinezhadeh H 899, 1008, 1038</td>
</tr>
<tr>
<td></td>
<td>Hostanska K 976</td>
</tr>
<tr>
<td></td>
<td>Hostetthmann K 894, 900, 912, 916, 920, 928, 950, 952, 1042, 1050</td>
</tr>
<tr>
<td></td>
<td>Houghtoadn PJ 1009</td>
</tr>
<tr>
<td></td>
<td>Hovorka S 1023</td>
</tr>
<tr>
<td></td>
<td>Howard C 1000</td>
</tr>
<tr>
<td></td>
<td>Howes MIR 880</td>
</tr>
<tr>
<td></td>
<td>Hoye TR 952</td>
</tr>
<tr>
<td></td>
<td>Hradecky M 1029</td>
</tr>
<tr>
<td></td>
<td>Hravat A 955, 966</td>
</tr>
<tr>
<td></td>
<td>Hsu A 885</td>
</tr>
<tr>
<td></td>
<td>Hu ZH 1033</td>
</tr>
<tr>
<td></td>
<td>Huang DJ 885</td>
</tr>
<tr>
<td></td>
<td>Huang HY 987</td>
</tr>
<tr>
<td></td>
<td>Huang LQ 996</td>
</tr>
<tr>
<td></td>
<td>Huang WT 1075</td>
</tr>
<tr>
<td></td>
<td>Huang YT 896, 1034, 1042</td>
</tr>
<tr>
<td></td>
<td>Huck CW 889, 996</td>
</tr>
<tr>
<td></td>
<td>Hüfner A 946</td>
</tr>
<tr>
<td></td>
<td>Hui LF 943</td>
</tr>
<tr>
<td></td>
<td>Hule A 895</td>
</tr>
<tr>
<td></td>
<td>Huleheilm H 1058</td>
</tr>
<tr>
<td></td>
<td>Hung MC 1076</td>
</tr>
<tr>
<td></td>
<td>Hurst A 913</td>
</tr>
<tr>
<td></td>
<td>Huseinovic S 955</td>
</tr>
<tr>
<td></td>
<td>Hussain MB 1072</td>
</tr>
<tr>
<td></td>
<td>Hussain S 1073</td>
</tr>
<tr>
<td></td>
<td>Hussein A 958</td>
</tr>
<tr>
<td></td>
<td>Hussein AA 899</td>
</tr>
<tr>
<td></td>
<td>Hutter I 939</td>
</tr>
<tr>
<td></td>
<td>Hwang JK 893, 1074</td>
</tr>
<tr>
<td></td>
<td>Hwang JS 1081</td>
</tr>
<tr>
<td></td>
<td>Hwang SJ 1028</td>
</tr>
<tr>
<td></td>
<td>Hwang TL 1075, 1076</td>
</tr>
<tr>
<td></td>
<td>Hyun JW 922</td>
</tr>
</tbody>
</table>

Authors’ Index Planta Med 2009; 75: 877–1094 Georg Thieme Verlag KG Stuttgart · New York · ISSN 0032-0943
Melzig MF 903, 1000
Menichini F 967, 1012, 1030
Mencan N 958, 962
Meffert I 1021
Mertens M 1047
Meska K 993
Mesquita ASS 1037
Messori L 885, 953, 954
Mets J 984
Mexia N 912
Meyer M 893
Meyer U 1029
Mezzitza S 1046
Micali N 921
Michael S 957
Michaelsen TE 947
Michaelska K 936
Michelangeli F 984
Miguel MG 1060
Mihailović V 1055, 1060
Miháns M 1060
Mijatovic JR 913
Milenković M 1039, 1049
Militaru AV 1003, 1024
Miljkovic D 903
Milica-Dukić N 1018
Mikael J H 983
Mín J 909
Mín SW 1041
Mingozzi M 1042
Mingpakanee R 1009
Mins R 1047
Mitra-Mazumder P 925
Mirzayi M 986
Mladenović M 1055
Mladenović M 1055
Mladenovic M 1055
Mladenovic S 903
Mocumbi AO 886
Modarai M 998
Moghaddam B 975
Mohamed M 972
Mohamed SM 937, 964, 1073
Mohamed SS 962
Mohamed TK 962
Mohammadi P 982
Mohammad-Poor AH 1023
Mohammed RS 927
Moisuc L 1061
Mojic M 903
Molac B 879
Mollazadeh K 964
Moller F 883
Mollik AH 954, 958, 959, 960, 961, 987, 1014, 1015, 1017
Molnár J 896, 971, 975, 976
Molberger A 883
Momo NEC 1007
Monaco P 924
Mondal A 925
Mondello MR 1055
Monforte MT 1055
Monteagudo Romero U 999
Moody JS 935
Moon BC 1050
Moore N 1044
Moorees A 913
Mor M 890, 1014
Moradi H 982
Moradi-Afropoli F 964
Moraes ACG 949
Moraes RM 913
Moraes TM 943, 1024
Morais DR 949
Morel AF 979
Morel S 949
Moreno Júnior MA 949
Morlacchi P 1042
Moroeanu V 965
Mosca S 1064
Mostaei A 987
Mostageran A 1021
Mostajer Haghighi A 938
Mota-Filipe H 1009
Motawea H 1014
Mothanka DM 963
Motyl M 977
Mozammel Haq W 1015
Mroczek T 900, 1057
Mroueh M 1004
Mueller C 884
Mužič E 955
Mukazayire MJ 1028, 1077
Mukherjee D 911
Mukherjee PK 895, 911, 997
Mulabegović N 1063
Munhoz S 896, 975, 976
Muller J 939, 940
Müller J 898
Müller MH 1046
Munkazau I 961
Muğdoy O 900, 916
Muğdoy RA 901
Muntean L 934
Muntean LS 934
Muntean S 934
Muradics S 955
Murata H 961
Muresan A 981
Muroi E 1042
Mustagh MY 1002
Mustovic F 955
N
Nada SA 1014, 1017
Nada SN 1066
Naderi H 986, 1077
Nadżafi F 967
Naghhib F 969
Nahrevanian H 944
Nahrstedt A 976, 1039
Najafi M 1043
Najari N 980
Najman S 1047
Nakamura CV 946, 948, 951, 990
Nakatsugawa C 968
Nakormchaj S 944
Nalbantoglu S 978
Nalbantosy A 918
Nanayakkara NPD 949
Nanayakkara rasam Masachchige Chandrika
Nanayakkara N 1042
Nandhasri P 907, 999
Nanzad T 1056, 1057
Napoli EM 1028
Naruszewicz M 1013
Nasimullah Qureshi M 996
Nasrin D 958, 1017
Navarra M 973
Nazaimon WMW 917
Naziari F 958, 959, 983
Naziemiyeh H 1035, 1043
Ndjoko Josek K 894, 952
Nduku FO 951
Neagu E 965
Nechifor G 965
Necula R 930, 931
Nedorostova L 1062
Nejad Ebrahimi S 958, 980, 983, 1038
Nelson D 952
Nestor L 1008
Neuber H 1034, 1052
Neumann K 1021
Neuner A 988
Nevens B 942
Newman DJ 979
Ngassapa O 907
Ngohanna J 952
Ngom S 939, 940
Ngumutisa F 991
Ngwoko K 915, 957
Niciforovic N 1055, 1060
Nicoletti M 967
Niculăe M 917, 1051, 1070
Niebler K 941, 953, 957, 1045, 1073
Niehues M 888, 1030, 1033
Nieto-Angel R 1042
Nievergelt A 1069
Niketic M 1039
Nikolic D 1039
Nikolic G 1049
Nima S 957
Nishihaema C 934
Njamen D 1016, 1067
Noor MZ 1009
Norcini M 915
Normohamadi G 1068
Noronha CC 1019
NorShahida S 1075
Norstedt G 985
Now P 1058
Noysang C 981
Nozawa Y 961
Nunes LS 1078
Nunes S 1060
Nunez CV 1037
Nytereta P 1077
Nyongbela KD 952
O
Oben EJ 1007
Obmann A 1000
Oboliskiy D 915
Obutor EM 973
Odeleye OM 963, 1007
Odontuya G 1058
Odoyo OA 952, 960, 1030
Oehme S 953, 1045
Ogawa Y 957
Ogbolu DO 935
Ogbonnaya SO 1019
Ogundaini AO 973
Oguntaise BJ 990
Oh SR 1032
Okanlawn OA 1019
Okefio E 880
Okhale S 894
Okogun J 894
Okoye FBC 924, 1027
Okoye NN 1027
Okpako L 894
Okpo SO 1018, 1077
Oku H 957
Oladimeji Hakeem O 985
Olgun A 941, 1044
Oliveras ABS 990
Oliveras AV 1060
Olurunnmolu FO 1027
Olsson EMG 1080
Olteanu Z 1060
Olympiou C 980
Omar EA 1014, 1017, 1065
Omar EN 1006
Omeje EO 925
Omer EA 893, 937, 1069
Omgboh EK 1077
Onalo MU 952, 1030
Onalufayoye B 957
Onanuga A 920, 952
Onbasliar J 919
O’Neill-Johnson M 885

Authors’ Index | 57th International Congress and Annual Meeting of the GA 1089

Georg Thieme Verlag KG Stuttgart · New York · ISSN 0032-0943
Oniga I 932
Ontl V 1058
Onur MA 1034
Oussan AN 929, 930, 932
Oppamayun Y 998
Oprean I 932
Orabi KY 892
Orafai H 1023
Ozçev D 1018
Orhan N 1010
Orisdipe A 894
Orruolo M 1046
Orsak M 940
Osadebe PO 924, 925, 1027
Osman CP 909
Ostad SN 984
Ostrow G 1073
Ottersbach P 992
Ouazzani J 971
Oude Elferink SJWH 1013
Oyama M 961
Oyedee AO 965
Oyunjargal T 1058
Ozcan S 890
Ozek G 888
Ozel MZ 958
Ozgökçe F 1053
Ožkan T 911, 923
Ozurtık G 923
P
Pacifio S 924
Pâduruariu C 1060
Pahl A 1080
Pak SC 1028
Pal A 923
Paineteucu D 937, 1070
Pananto W 977
Panek D 898
Pang XH 933
Panchayupakaranant P 950, 1035
Panossian A 885, 891
Panossian AG 1080
Pantrianaen R 977
Panzeri S 1042
Papapopoulou C 1040, 1066
Papageorgiou VP 913
Papapyyridi LM 946
Pappas P 912
Paradowska K 943
Parahos A 942, 1040
Parachos S 1040
Paracki J 1058
Parra F 990
Parreira NA 949
Parveen I 900
Pasam MA 1064
Passalacqua NG 1012
Patarapanich C 1009
Pathak G 1008
Patil P 931
Patil UK 939, 988
Pauelli PM 949
Pauelli A 1009
Paulsen BS 947
Paun Roman G 965
Pavela R 1053
Pavelescu M 1011
Pavelioglu I 1039
Pavlioglu S 1005
Pecher V 1024
Pedro LG 928, 929, 1060
Peep C 979, 980, 1003, 1024
Peixoto JA 945
Pelacani CR 1002
Pellati F 991
Pellizzon CH 933, 1063, 1071
Pellatier P 1021
Peng CF 1076
Penguie A 991
Penman K 890
Pereira Junior OS 945
Pereira AC 945
Pereira E 946
Pereira EMR 1078
Pereira RC 951
Pérez FJA 970
Pérez-Rosés R 1021
Pergolizzi S 1013
Perrone A 1053, 1054
Perry E 880
Persson IAL 1030
Persson K 1030
Pestorić M 927
Petereit F 1031, 1036
Petrov M 1044
Petrović A 943
Petrović S 1039
Petter CH 996
Pevjuvicha P 944
Pezhmanmehr M 1071
Pfisterer PH 969
Phadogoonsombat N 957
Phan NQ 1023
Phan TT 911
Phanirungruengang A 974, 975
Phrompol R 1038
Piacente S 1053, 1054, 1055, 1056
Piao MJ 922
Piccinelli A 990
Picket P 1048
Pierri V 996
Pierreclos M 1042
Pioters L 900, 904, 924, 967, 993, 1005
Pietro RCLR 926
Pietrosoiu A 906
Pihlaja K 927
Pilipovic S 1007
Pimpão RC 923
Piozzi F 905, 910
Piri KH 987
Pitchel I 1009
Pitavkongsaporn P 1022
Pitathyanukul P 991, 1022
Pititporn S 1025
Planz O 884
Pleszczyńska M 1061
Plitko I 948
Polat E 1054
Polesna L 940
Pollet LA 1079
Pollier J 900
Pol C 943
Ponglimanont C 914
Pontes V 924
Poompachee K 970
Pop DA 1003, 1024
Pop G 1003, 1024
Popescu R 970
Popova M 906, 1077
Popovici M 932
Popp M 996
Poracova J 956, 982
Portmann C 886
Pothitirat W 991, 1022
Potthoff E 1022
Potter A 908, 1034
Pousette A 985
Prado Dias Filho B 1012
Prayon E 1008
Reber MCH 996
Replin G 939
René E 985
René M 1024
Resende DO 949
Réthy B 971
Reuter J 1021
Reza Sahjhi H 982
Reznicek G 889, 909, 966, 1048
Rhumais S 912
Richomme P 912, 931, 949, 1017, 1041
Ridtrit W 935
Rigano D 905
Righesi C 1004
Rigibello MP 885
Rindt I 1051
Rinner B 969