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In this work, a new signal processing method was proposed in order to predict externally
applied forces to human hands by deriving a relationship between the surface electromyo-
graphic (SEMG) signals and experimentally known forces. This relationship was investigated
by analyzing the spectral features of the SEMG signals. SEMG signals were recorded from
three subjects during isometric contraction and from another three subjects during ani-
sometric contraction. In order to determine force-SEMG signal relationship, higher order
frequency moments (HOFMs) of the signals were calculated and used as characterizing fea-
tures of SEMG signals. Subsequently, artificial neural networks (ANN) with backpropagation
algorithm were trained by using the HOFMs. Root mean square difference (RMSD) between
the actual and predicted forces was calculated to evaluate force prediction performance of
the ANN. In addition to RMSD, cross-correlation coefficients between actual and predicted
force time histories were also calculated for anisometric experiment results. The RMSD val-
ues ranged from 0.34 and 0.02 in the isometric contraction experiments. In the anisometric
contraction tests, RMSD results were between 0.23 and 0.09 and cross-correlation coeffi-
cients ranged from 0.91 to 0.98. In order to compare the performance of the HOFMs with a
widely used EMG signal processing technique, root-mean-squared (RMS) values of the EMG
signals were also calculated and used to train the ANN as another characterizing feature
of the signal. Predicted forces using HOFMs technique were in general closer to the actual
forces than those of obtained by using RMS values. The results indicated that the proposed
signal processing method showed an encouraging performance for predicting the forces
applied to the human hands, and the spectral features of the EMG signal might be used as
input parameter for the myoelectric controlled prostheses.

© 2009 Elsevier Ireland Ltd. All rights reserved.

nally applied forces to the human hand [2-4]. One of the

1. Introduction main reasons for determining this relationship is to predict

the forces exerted by human hand more accurately and hence
Numerous studies have investigated the relationship between improve the performance of myoelectric controlled prostheses
the surface electromyographic (SEMG) signals [1] and exter- and artificial limbs.
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Using EMG signals for controlling the prosthesis can
give natural movement abilities to the amputees. Therefore,
various EMG controlled prostheses and exoskeleton robots
were developed for people amputated from upper [5-9] and
lower extremities [10] to facilitate the activities of daily
living. Operating system principles of the myoelectric con-
trolled prostheses are generally based on the detection of
the amputee’s intended movement by using SEMG signal. In
order to convert the muscle activity levels of human subject
into the prosthetic actions, first SEMG stimulus is received by
sensors and then an appropriate movement orientation and
force production are regulated by a mechanical control system
[11]. EMG controlled prosthetic hands having multi-degrees of
freedom (DOF), which can distinguish the forearm motion pat-
terns from EMG signals using artificial neural networks (ANN),
have been developed in laboratory conditions [12,13]. However,
today only single DOF EMG controlled prostheses are generally
used in daily activities by amputees [5]. Morita et al. [6] pro-
posed a control method for a prosthetic hand, which could
estimate joint torque from the EMG signals using neural net-
works. Their proposed method provided output for the control
signal of each joint in parallel. They concluded that there was a
possibility to realize more complicated motions in comparison
with the conventional method classifying each motion pattern
discretely from EMG signals using the neural networks.

In addition to prosthesis control, much work has been done
concerning the EMG signal-force applications including mus-
culoskeletal modeling [14-20] and ergonomics [21]. Unlike our
research, the main goal of those musculoskeletal modeling
studies is to predict the individual muscle forces. Furthermore,
a lot of research on the estimation of elbow joint torques from
EMG signals was also carried out [22-25]. In some of these
studies, the ANN were used to derive a complex relationship
between EMG and force or joint torque [17,23,24]. It is deduced
from these studies that ANN might be used to predict forces
based on EMG signals.

Various techniques have been used to characterize EMG
signals in frequency domain [26-28]. Power spectral density
(PSD) of the EMG activity can be estimated using classical
methods (periodogram and Blackman-Tukey estimators) or
parametric model methods (autoregressive, moving average,
autoregressive moving average) [26]. The key issue to be taken
into account while processing a signal using above methods
is to avoid the distortion of the signal features, which involve
the functional properties of the corresponding muscle.

The present study describes a series of experiments where
we applied higher order statistical moments [29] of the PSD
of the SEMG activity to predict externally applied forces to
the human hands. In the experiments, SEMG signals were
recorded from the proximal muscles of the upper extrem-
ity during isometric and anisometric contractions. Higher
order frequency moments (HOFMs) of the signals were calcu-
lated as characterizing features. In the literature, probably the
most widely used signal processing method for EMG signal is
root-mean-squared (RMS) analysis [1]. Therefore, in order to
evaluate the characterizing performance of the HOFMs, RMS
values of the EMG signals were calculated. An artificial neural
network was trained and validated by using HOFMs and RMS
features separately. Finally, the forces predicted using these
two methods were compared with the actual forces.

2. Materials and methods

2.1. Experimental set-up and procedure

SEMG signal recordings were carried out during two types of
muscle contraction; isometric (also isotonic) and force-varying
anisometric contractions. Experiments were implemented by
six right-handed healthy male subjects ranging from ages 25
to 35. The SEMG signals were recorded from three subjects
during isometric contraction and from another three subjects
during anisometric contraction. The subjects were given suf-
ficient information about the experiments and their informed
consents were taken.

The control process of the myoelectric controlled pros-
theses must have on-line adaptation ability to a variety of
movement tasks of each human subject [8]. Since the EMG
signal is a biologically generated signal, it is difficult to obtain
the same EMG signal for the same motion even from the same
person. In addition to this, the level of the EMG signals might
be much different between subjects. These complex proper-
ties of the EMG signals require specific and individual control
process designs for each amputee’s prosthesis. Therefore, in
this study, instead of including a lot of subjects and making a
great effort to gather EMG signals from a large number of peo-
ple, it was preferred to collect many EMG data from a small
set of subjects. In this way, it was aimed to focus our attention
on consistent and reliable force estimation from EMG signals
specific to the individual.

A vast majority of patients who require upper limb pros-
thesis had undergone amputations from distal joints to elbow
[30]. The upper limb amputations from the level of elbow to
shoulder are at a very small rate of 7-8%. Therefore, most
amputated people can still control the muscles of the prox-
imal part of the upper body. Since the main motivation of
this study was to use the SEMG signals as an input for the
control process of myoelectric controlled prostheses, signals
were acquired simultaneously from the muscles of the proxi-
mal part of the upper body, i.e. biceps brachii, triceps brachii,
pectorialis major and trapezius. Considering the position of
the arm in the experiments, these four muscles were among
the most actively contracting muscles of the proximal part of
the upper body.

2.1.1. Isometric measurements

In order to evaluate the relationship between increasing forces
on the muscle activation, the following experiment was car-
ried out.

The right forearm was placed on a grass surfaced table par-
allel to the coronal plane, transverse plane and ground; also
it was stabilized at flexed position with 90° while the forces
were applied. The flexion and abduction angles of the right
upper arm were 45° and 0°, respectively. To decrease the dry
friction between the skin surface of the forearm and the table,
a special silk fabric with low dry friction was used. During iso-
metric contractions of the right arm 14 different force values
had to be reached. The forces were varied between 10N and
75N with 5 Nincrements and measurements were taken for3s
and repeated 50 times at each force level. In order to minimize
the effect of the muscle fatigue, which could negatively affect
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Fig. 1 - The positions of the subject’s shoulder and arm
from top view.

the classification of the signals, the subjects were asked to rest
along between the successive contractions. Subjects were put
on rest until the tremor activity seen on EMG, which is one of
the indicators of fatigue, disappeared and subjects felt them-
selves in non-fatiguing condition. Right forearm and hand
were held in a straight line by using a support brace wrapped
around wrist. Force was applied to human hand by means of a
pulley mechanism such that the direction of the force was per-
pendicular to the longitudinal axis of forearm. The positions
of the shoulder and arms during the experiments are shown
in Fig. 1.

The SEMG recording system used in the experiments was
Key Point version 5.03, Physiomed, Denmark (common mode
rejection ratio >100 dB, input impedance = 1000 M, signal-to-
noise ratio=0.6 wV). The electrodes used for recordings were
Ag/AgCl discs with 10mm diameter. In order to achieve a
good contact between the electrodes and muscles, alcohol was
applied to cleanse skin and a special conducting gel was used.
Recorded SEMG signals were applied to a bandpass filter with
20 Hzlower and 250 Hz upper frequency cut-offs. The sampling
frequency of the signals was 500 Hz.

2.1.2.  Anisometric measurements

The set-up used for carrying out the experiments for aniso-
metric measurements is shown in Fig. 2. The experimental
set-up consisted of a direct drive SCARA type robot manipu-
lator, which has three DOF. A handle bar was mounted at the
tip of the manipulator. Interaction forces between the human
hands and the handlebar and between the manipulator and
the handlebar were measured by two six-axis force/torque
sensors (NITTA Corporation, Japan, 500 Hz sample frequency)
with accuracy of +10g.

The robot manipulator consists of three links which were
all connected by rotational joints. The distance between the
robot base and the subject hand was set to 0.75m, a distance
enough for a comfortable workspace for both the subject and
the robot manipulator. The distance between the reference
point (point 1, Fig. 2) and the subject was 0.43m. The robot
arm tip was connected to a 40cm handlebar at its center by
a revolute joint. In this way the handlebar was coupled to the
robot arm and became its actively controlled third link. At the

Reference : 1

Targets : 2,3,4,5

Fig. 2 - Top view of the experimental set-up used to carry
out bi-manual manipulation.

reference position (1), the robot arm tip, hence the handlebar
was at static equilibrium which was maintained by controlling
the robot arm. The robot arm was controlled using task space
stiffness control. That is, as the handlebar is moved from ref-
erence point to the specified targets, the robot arm reacts to
the motion depending on the specified task space stiffness
parameters.

During the experiment the subject was seated in front of a
horizontal table and firmly grasped two handles on the han-
dlebar. Shoulder movement of the subject was restrained by
a harness. Wrists were immobilized by putting solid plates
around the wrists so that each arm can be treated as a two-
link manipulator consists of shoulder and elbow. Flexion angle
of the shoulder at the neutral position was 90° and abduc-
tion angle of the shoulder changed according to the length
of the forearm and upper arm of the subjects. The handlebar
has three degrees of motion freedom (two translations and a
rotation) and allows a floating motion in the horizontal plane
formed by the subject’s arms. Four different target sets, and a
reference position were specified on the table (Fig. 2). Two tar-
get sets were used for the motion along the anterior—posterior
axis and the other two were used for the motion along the
medio-lateral axis. These motions were named as:

1— 4:leftward,

1— 2:forward, 1— 3:rightward,

1 — 5:backward.

The subject was asked to move the handlebar from the
reference point to the specified target. Each motion from the
reference point to the specified target was divided into three
phases, i.e. proceed phase, maintain phase and retreat phase.
Using a metronome, the subject was instructed by a tone sig-
nal (a beep) to make an advancing motion of § = 50 mm towards
the visually guided desired target, and maintain the handlebar
there for 4 s until the next tone, and then make the retreating
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Fig. 3 - (a) Displacement-time profile of the revolute joint of the handle bar along 1 — 2 (forward phase) and (b) angle change
around revolute joint during pushing movement. Negative angle values denote rotation in the clockwise direction.

motion back to the reference position. In addition to the main-
tain phase, data were also collected for 2 s before the proceed
and after the retreat phases during which the subject relaxed.
Proceed and retreat phases of the motion were instantaneous
and the time elapsed during these phases was in general very
short. These motions were repeated 10 times for each subject.
The synchronization between EMG and force measurements
was done using IO signals between AD converter cards.

In the experiments, position and orientation of the robot
arm (robot handle) were measured by the optical encoders
mounted on its joints. The position and motion speed of
the handlebar were monitored using displacement-time data
obtained from these devices. Thus, a probable improper move-
ment pattern would be detected by this way. A representative
displacement-time profile of the revolute joint of the handle
bar along 1 — 2 direction (forward phase) and angle variation
around revolute joint are shown in Fig. 3a and b, respectively.
It can be deduced from Fig. 3 that the handlebar motion from
reference point to a target point was completed approximately
in 1s and angle variation around revolute joint of the handle
bar was less than 2°.

2.2. Signal processing

In this study, EMG signals with 3s (for isometric contrac-
tion) and 8 s (for anisometric contraction) time durations were
scanned via a sliding and overlapping Hamming window. An
EMG signal is generally assumed to be stationary for dura-
tion of 500 ms [26]. Hence our observed data were segmented
using overlapping windows of 500 ms width. The time interval
between the successive windows was 50 ms. Therefore, after
the scanning of the signals, 61 segments for isometric con-
tractions and 161 segments for anisometric contractions were
obtained.

The power spectra P(w)of EMG segments were estimated by
using periodogram approach [31]. The periodogram estimate
of the PSD of a discrete-time signal x(n); n=0, 1, ..., N— 1, with
N samples is given by
Plon) = | X(en)| wk:%k, R=0,1,....N-1, 1)

where wy, is discrete frequency and X(wy) denotes the Discrete
Fourier Transform (DFT) of x(n).

Power spectrum contains enough information to charac-
terize the EMG signal and it was also used in previous studies
[27,28]. However, for a signal of length N, it is required to calcu-
late an N sample power spectral estimate, which means higher
number of features and higher computational burden. Instead
of the whole power spectrum, using a few features extracted
from it will be a computational advantage [32]. In our proposed
method, after estimating the power spectrum for the over-
lapping segments of EMG signal, HOFMs up to fourth order
were calculated and used as the characterizing features of the
EMG activity. For a discrete-time signal x(n), HOFMs can be
calculated as follows:

W)=Y wP). j=0.1.... )

where, (a)k) is the jth order frequency moment.

In order to evaluate the characterizing performance of the
HOFMs, RMS of the windowed signal was also calculated. To
have a proper comparison of these analysis techniques oper-
ating on the same signal, same windowing features used in
HOFMs calculations were chosen for RMS feature calculations.

A representative signal, recorded during anisometric con-
traction, its RMS features, and one of the spectral moments of
this signal used for training, thatis, the second order moments
are presented together in Fig. 4. In order to make a proper com-
parison in the figure, EMG signal, RMS value, and frequency

1 T T T T
Full rectified EMG
— RMS
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Relative magnitudes
3

0.2

Time (s)

Fig. 4 - A representative EMG signal and its new forms, i.e.
RMS features and second order spectral moments.
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Fig. 5 — Artificial neural networks model.

moments were normalized by their respective maximum val-
ues.

2.3.  Artificial neural networks

The ANN were trained using spectral moments and RMS
values of the overlapping EMG segments separately for esti-
mating the applied forces. The ANN had one input layer, two
hidden layers, and one output layer (Fig. 5). Learning process
of the ANN occurs at the synaptic junctions between the neu-
rons of the input layer and the neurons of the output layer.
The input array, which represents values of categorical input
fields, was constituted from spectral moments up to fourth
order and RMS values; target was constituted from the forces
applied to human hands. In order to improve the learning per-
formance of the ANN, force values used in the target set were
normalized to a range between 0 and 1.

Half of the measurements of each subject were randomly
chosen and used to train the network and the other half was
fed into the ANN for validation. Then, training and test sets
were switched for cross-validation and performance test was
repeated.

In the network model, one input layer, two hidden layers,
and one output layer having 61, 10, 5, and 1 neurons were used
for isometric trials, respectively. The only difference between
network models used for the isometric and anisometric exper-
iments was the neuron number of the input layer, namely
161 neurons were used in anisometric trials. The number of
the neurons used in the hidden layers were determined adap-
tively, i.e. tuning the number of neurons by training the ANN
a few more times until obtaining the satisfactory ones [33].
Log-sigmoid transfer function was employed as the transfer
function, which is used for calculations between the neurons
during the training process. Backpropagation feedforward was
used as the training algorithm. Backpropagation algorithm is
an extension of the Least Mean Square learning algorithm
which is widely used in adaptive signal processing. In this
algorithm the weights are adjusted at each step to reduce the
gradient of the cost function that is the mean squared error
[34]. Number of the epoch was chosen 500 for the learning
stage of the network.

2.4.  Evaluation of force predictions
In order to evaluate the force predictions, the root mean

square difference (RMSD) and the cross-correlation coefficient
(v) between the actual and predicted forces, which are com-

monly used as evaluation criteria for the force prediction
applications, were calculated [23,35].

The RMSD between the actual fx(n) and predicted fy(n)
forces is obtained from the following equation [23]:

In our investigation, if the value of RMSD is 0.01, it means
that the predicted force has about 1% mean error from the
actual forces. Furthermore, the observed differences of RMSD
values of the HOFMs and RMS analyses were evaluated from
the viewpoint of statistics by means of ANOVA. The differ-
ences were evaluated at a level of significance of 0.05.

Cross-correlation coefficient y is a measure of the similarity
between two curves [35] and calculated as follows:

y= ny (0) (4)
Cix(0)/Cyy (0)

where Cyy(0) is the cross-covariance of fy and fy, Cxx(0) and
Cyy(0) are the autocovariance of fy and fy, respectively and the
lag is taken as 0. In our observation, if the cross-correlation
coefficient is 0, then it is deduced that the predicted and
actual forces are uncorrelated. Equivalent force data sets have
a cross-correlation coefficient of 1.

3. Results
3.1.  Force predictions in isometric contractions

For each applied force value, 50 SEMG signal samples were
taken, and the force was predicted by the proposed method
using each signal. Then the mean and standard deviations
(SD) were calculated by using the whole predicted force data.
The comparison of the mean and SD of the forces obtained by
RMS and HOFMs techniques, for all subjects in the isometric
contraction tests are presented in Fig. 6.

For a detailed quantitative evaluation of the force predic-
tion performance, RMSD values between the actual forces and
predicted forces are given in Table 1. It is seen from Table 1 that
the RMSD values obtained from HOFMs ranged between 0.34
and 0.02. Means of the RMSD values obtained from HOFMs for
all applied force levels were 0.07, 0.16 and 0.10 for subjects
I, Il and III, respectively. The RMSD values obtained from RMS
analysis ranged between 0.34 and 0.05; and means of the RMSD
values obtained from RMS analysis for all applied force levels
were 0.10, 0.16 and 0.11 for subjects I, II and III, respectively.

3.2 Force predictions in anisometric contractions

A typical example of the predicted force time history results
of a subject for the anisometric contraction experiments is
shown in Fig. 7. In the figure, predicted forces as well as the
actual forces are seen for the various target sets, i.e. the for-
ward, rightward, leftward and backward motions. These forces
are actually the reaction forces that the robot arm shows
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Fig. 6 - Mean and SD of the predicted forces for (a) subject I,
(b) subject II and (c) subject III. Light grey and dark grey
bars denote the predicted forces obtained by RMS and
HOFMs features, respectively.

against the motion. The force values depend on both the
specified task space stiffness parameters and the inherent
structural stiffness of the robot arm.

The RMSD values and cross-correlation coefficients (y)
are given for anisometric experiments in Tables 2 and 3.
Each value given in these tables shows the mean of the
test results obtained using RMS and HOFMs features, respec-
tively. The RMSD values and the cross-correlation coefficients
obtained using HOFMs features ranged from 0.23 to 0.09 and
from 0.91 and 0.98, respectively. The RMSD values and the
cross-correlation coefficients obtained using RMS features
ranged from 0.24 to 0.09 and from 0.93 and 0.99, respec-
tively.

4, Discussion

In this study, in order to predict the externally applied forces to
human hands, the SEMG signal-force relationship was investi-
gated by analyzing the spectral features of the SEMG activity.
To achieve this goal, SEMG signals were recorded from four
proximal muscles of the upper body during the isometric and
anisometric contractions of the muscles. Contractions during
experiments were non-fatiguing. Furthermore, motion capa-
bility of the arms was partly restricted.

In order to characterize SEMG signals, HOFMs of the sig-
nals up to fourth order were calculated. HOFMs enabled us
to use very few features instead of the whole frequency con-
tent of the signal and hence to decrease the computational
cost. Then, ANN were used to obtain a relationship between
the spectral features of the signals and externally applied
forces. The ANN provided force predictions from SEMG sig-
nals. The RMSD and the cross-correlation coefficients between
the actual and predicted forces were calculated to evaluate
the force prediction performance of the ANN. The RMSD val-
ues obtained in the isometric contraction experiments were
below 0.34. Especially, most of these values were below 0.10
for the large force values which were over 55N. Furthermore,
means of the RMSD values for all applied force levels were 0.07,
0.16 and 0.10 for subjects I, II and III, respectively. In addition
to isometric trials, an encouraging performance was achieved
in anisometric experiments such that, RMSD values ranged
from 0.09 to 0.23 and the cross-correlation coefficients ranged
between 0.91 and 0.98.

In order to test the performance of the HOFMs in terms
of capability of characterizing the EMG signal, RMS features
of the signal were also calculated and subjected to the same
ANN process used for the HOFMs. The maximum RMSD value
between the predicted and actual forces was 0.34 which was
equal to the one obtained using HOFMs in the isometric task
experiments. It is seen from Table 1 that most of the RMSD
values obtained using RMS features were higher than those
obtained from the HOFMs. The means of the RMSD values
obtained using RMS features were higher than those obtained
using HOFMs for subjects I and IIl. The means of the RMSD
values obtained using HOFMs and RMS features were equal
for subject II.

In the anisometric contraction experiments, it was found
that most of the error values of the HOFMs features were less
than those obtained by RMS features (Tables 2 and 3). In addi-
tion, comparing the cross-correlation coefficients of these two
features, it was realized that the characterization performance
of the HOFMs features was almost equal to one of the RMS fea-
tures. Despite HOFMs showed a slightly better performance
than RMS, a statistically significant difference between the
RMDS values of both techniques was found neither in the iso-
metric nor in the anisometric experiments for any subjects
(p>0.05).

Although the HOFMs showed promising performance in
characterization of EMG signals, the major contribution of this
study does not only stem from the prediction results. In this
study it was demonstrated that spectral features of a myo-
electric signal could also be used to analyze the force-signal
relationship. In Fig. 4 it can be observed that the time his-
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Fig. 7 - A sample result of a subject for comparison of the predicted forces with the actual forces for (a) 1 - 2 forward
motion, (b) 1 — 3 rightward motion, (c) 1 — 4 leftward motion and (d) 1 — 5 backward motion.

Table 1 - Force estimation performance results of both the RMS and HOFMs features for isometric contraction
experiments.

Forces Subject I Subject II Subject III
RMSD RMSD RMSD
RMS HOFMs RMS HOFMs RMS HOFMs

10N 0.09 0.07 0.25 0.29 0.20 0.24
15N 0.22 0.21 0.29 0.30 0.14 0.19
20N 0.10 0.08 0.34 0.34 0.07 0.05
25N 0.19 0.17 0.20 0.16 0.11 0.10
30N 0.09 0.06 0.20 0.21 0.22 0.21
35N 0.11 0.09 0.14 0.12 0.13 0.12
40N 0.10 0.07 0.22 0.21 0.12 0.10
45N 0.08 0.06 0.12 0.11 0.11 0.10
50N 0.08 0.07 0.14 0.14 0.13 0.10
55N 0.09 0.07 0.09 0.10 0.09 0.07
60N 0.08 0.06 0.09 0.10 0.07 0.06
65N 0.07 0.04 0.06 0.06 0.10 0.08
70N 0.06 0.04 0.12 0.11 0.09 0.07
75N 0.05 0.02 0.10 0.10 0.05 0.04

0.10 0.07 0.16 0.16 0.11 0.10

The last row indicates the mean values of the related columns.

Table 2 - Force estimation performance results of the RMS features for anisometric contraction experiments.

Subjects 1— 2 forward 1— 3 rightward 1— 4 leftward 1— 5 backward
RMSD v RMSD v RMSD ¥ RMSD v

Subject IV 0.12 0.98 0.14 0.98 0.16 0.97 0.16 0.97

Subject V 0.12 0.98 0.13 0.98 0.14 0.97 0.22 0.94

Subject VI 0.21 0.94 0.09 0.99 0.17 0.97 0.24 0.93
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Table 3 - Force estimation performance results of the HOFMs features for anisometric contraction experiments.

Subjects 1— 2 forward 1— 3 rightward 1— 4 leftward 1— 5 backward
RMSD v RMSD y RMSD v RMSD v
Subject IV 0.10 0.98 0.12 0.98 0.14 0.97 0.14 0.98
Subject V 0.11 0.98 0.11 0.98 0.17 0.96 0.21 0.94
Subject VI 0.23 0.91 0.09 0.98 0.17 0.96 0.21 0.94

tory profiles of the RMS and HOFMs features are similar for
the same signal. In literature, spectral analysis of the EMG
signal has in general been carried out to quantify muscle
fatigue [26,36,37]. However in this research, spectral analysis
was performed to predict the applied forces. In the light of
this study’s findings, one can consider combining the infor-
mation extracted from EMG signals in both frequency- and
time-domain for prosthesis control. Furthermore, using either
the RMS or the HOFMs as features of the EMG signal itself
has the advantage of reducing the data size that will be used
in the training of ANN, and thus reducing the computational
cost. For example in our anisometric contraction experiments,
for an EMG signal segment of 4000 samples, ANN with only
161 input neurons were sufficient whereas 4000 neuron would
have been used if we trained the whole EMG signal instead of
the features.

The validation performance of the ANN can be improved
by tuning the number of design variables such as the neurons,
layers and number of epochs. However, it is not possible to
propose a standard ANN design for training the EMG signal
efficiently.

The arm movements performed in the experiments cov-
ered a small range of possible movements observed in every
day arm activities. According to the von Tscharner and Nigg,
power spectra of EMG signal depends primarily on muscles
task [38]. Hence, a more comprehensive evaluation of the pro-
posed technique’s performance may be done by extending the
analysis to a larger range of experimental tasks to simulate all
possible arm movements.

5. Conclusions

It can be concluded from the prediction results that HOFMs
can be used to characterize the SEMG signals. The proposed
method enabled to predict the externally applied forces to the
human hands with a promising performance. In the light of
findings, HOFMs are recommended to use as input signals in
the control processes of active arm prostheses for patients
with amputated arms from the elbow. Furthermore, it is also
suggested that higher order joint time-frequency moments,
instead of power spectral moments, may also be used to clas-
sify SEMG signals which are non-stationary in nature. Thus,
time-varying properties of the signals may be tracked better,
which is considered in our ongoing research.
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