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In this study, we introduced a novel cost function for the prediction of individual muscle forces

for a one degree-of-freedom musculoskeletal system. Unlike previous models, the new approach

incorporates the instantaneous contractile conditions represented by the force-length and
force-velocity relationships and accounts for physiological properties such as ¯ber type distri-

bution and physiological cross-sectional area (PCSA) in the cost function. Using this cost

function, it is possible to predict experimentally observed features of force-sharing among

synergistic muscles that cannot be predicted using the classical approaches. Speci¯cally, the new
approach allows for predictions of force-sharing loops of agonistic muscles in one degree-of-

freedom systems and for simultaneous increases in force in one muscle and decreases in a

corresponding agonist. We concluded that the incorporation of the contractile conditions in the
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weighting of cost functions provides a natural way to incorporate observed force-sharing fea-
tures in synergistic muscles that have eluded satisfactory description.

Keywords: Muscle force prediction; static optimization; contractile conditions.

1. Introduction

The accurate prediction of individual muscle forces during human movement is a

prime area of research in biomechanics (for reviews, see Refs. 1�4). Theoretical

calculation of individual muscle forces depends on solving the redundancy problem,

which arises because the number of muscles crossing a joint typically exceeds the

number of rotational degrees-of-freedom.1 One common approach to this problem is

to formulate a static optimization strategy.5�13 In static optimization, a cost func-

tion is optimized independently for each time point of interest.14 Typical cost

functions take the form of a weighted sum of muscle forces raised to some non-linear

power (>1.0). Often, this weighting is done using the physiological cross-sectional

area (PCSA), the ¯ber type distribution, or the maximal isometric force of the

synergistic target muscles.15 However during movement, the contractile conditions of

muscles change continuously, thereby altering the ability of muscles to contribute to

movements, which becomes particularly important when predicting muscles forces

across a wide range of movement conditions.

The purposes of this study were (1) to design a cost function for the prediction of

individual muscle forces that is sensitive to changes in contractile conditions of

muscles and (2) to compare the corresponding force predictions with experimentally

measured muscle forces across a variety of tasks.

2. Methods

2.1. Experimental procedure

The experimentally determined individual muscle forces used for comparison with

theoretical muscle force predictions were obtained from the cat hind limb for a wide

range of locomotor conditions. The detailed explanation of the experimental protocol

can be found in Ref. 16. A brief summary is given below.

Five cats were trained to walk on a walkway set at di®erent slopes (30�, 45�, and
60� up-slope) and to walk and run on a motor-driven treadmill at di®erent speeds

(0.8�1.2m/s). All procedures were approved by the Life Sciences Animal Ethics

Committee of the University of Calgary.

2.1.1. Muscle force measurements

In order to measure the forces produced by soleus (SOL) and medial gastrocnemius

(MG) muscles during the locomotion tasks, \E"-shaped, stainless steel tendon force

transducers, which were surgically implanted onto the separated tendons of the SOL

and MG, were used.17 Measurements were conducted one week following surgery,

which allowed for complete recovery.18
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2.1.2. Joint angle measurements

In order to obtain knee, ankle, and metatarsophalangeal (MP) joint angles, ¯ve

re°ective markers were placed over the hip, knee, ankle, MP joint, and toe of the

instrumented hind limb. Three-dimensional positions of these markers were recorded

using a motion analysis system (60Hz; VP310, Motion Analysis Cooperation, Santa

Rosa, CA, USA). Ground reaction forces of the instrumented hind limb were

recorded using two force platforms located in the center of the walkway (DRMC36,

AMTI, Newton, MA, USA). Ground reaction forces were stored simultaneously with

the muscle forces.

2.2. Muscle length and muscle velocity analysis

In this study, only the stance phase of the step cycle was analyzed since SOL and MG

are not active during swing.17 The stance phase was identi¯ed using the ground

reaction forces, when available, or the high-speed video images. Muscle�tendon

lengths of MG and SOL were calculated using the joint kinematics and the tendon

travel technique.19 Changes in muscle lengths were calculated as the ¯rst time de-

rivative of muscle�tendon length using a quintic spline function.20

2.3. Model of the musculoskeletal system

A two-dimensional musculoskeletal model with one rotational degree-of-freedom for

the cat ankle (°exion/extension) was developed (Fig. 1). The lines of action of SOL

and MGmuscles were modeled as straight lines crossing the ankle joint. In the model,

f1; f2, and h denote the muscle forces of SOL and MG and the ankle joint moment,

respectively. It was assumed that the moment arms of SOL and MG about the ankle

were constant for walking and trotting.21

medial 
gastrocnemius 

soleus 

ankle 

(a)

h

f1 
f2 

(b)

Fig. 1. (a) Anatomical and (b) musculoskeletal model of the cat foot, shank, and ankle.
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2.4. Optimal design problem

The static optimization problem for solving for individual muscle forces was

formulated as follows:

Minimize f�ðf Þg; �ðf Þ ¼
Xn
i

ðfiviÞ2 þ !ðfiliÞ2
FiðviÞFiðliÞSi

ð1Þ

subject to

h�
Xn
i¼1

df T ¼ 0; fi � 0; i ¼ 1; 2: ð2Þ

Here, �ðf Þ, fi, FiðviÞ, FiðliÞ, and Si denote the objective function, unknown

muscle forces, maximal muscle forces at instantaneous muscle contraction velocity vi,

maximal muscle force at instantaneous muscle length li, and the percentage of slow-

twitch muscle ¯bers, respectively. ! was assumed constant and equal to 1 (in unit of

1/s2Þ. In the constraint Eq. (2), d represents the moment arm vector at the ankle.

The resultant ankle moment h was calculated using experimentally measured muscle

forces.

The maximal muscle force at an instantaneous muscle contraction velocity FiðviÞ
is given by the following equations22:

FiðviÞ ¼

0; v0i < vi

F0ibi � aivi
vi þ bi

; 0 < vi � v0i

1:5F0i � 0:5
F0i

bi
2 þ aivi

�vi þ bi
2

; � v0i
2

< vi � 0

1:5F0i; vi � � v0i
2

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

Here, F0i is the maximal isometric force a muscle can exert, v0i is the maximal

shortening velocity at which point force is zero, and ai and bi are Hill's thermody-

namic constants for the ith muscle which were chosen as 0.25/F0i and 0.25/v0i,

respectively.22,23

The maximal muscle force at an instantaneous muscle length FiðliÞ was calculated
as:

FiðliÞ ¼ FiacðliÞ þ FipasðliÞ: ð4Þ
The maximal active muscle force FiacðliÞ, was calculated from the relationship

between force and length at the muscle level. The passive muscle force FipasðliÞ was
obtained from24:

FipasðliÞ ¼ 1:3F0i arctan 0:1
li
l0

� 0:22

� �10� �
; ð5Þ
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where l0 denotes the optimal muscle length at which active force is maximal. All the

muscle parameters used in the study are given in Appendix (Table A.1).

Minimizing the proposed objective function favors muscles with favorable con-

tractile conditions and punishes muscles with poor contractile conditions. Contrac-

tile conditions of muscles have a profound e®ect on force-sharing among synergistic

muscles, which becomes particularly apparent when some muscles in a synergistic

group are driven to their contractile limits.25,26 By incorporating FiðviÞ and FiðliÞ as
weighting factors into the cost function, the force�velocity and force�length prop-

erties of the synergistic muscles become crucial determinants in the determination of

the unknown muscle forces.27 FiðviÞ and FiðliÞ partly depend on the PCSA; thus,

PCSA was included in the cost function in an indirect manner. The percentage of

slow-twitch muscle ¯ber Si, which re°ects muscle endurance, was incorporated into

Eq. (1) as a weighting factor.6

The proposed cost function was solved analytically using the Karush�
Kuhn�Tucker theorem.28 Applying this theorem to Eq. (1) gives the following:

fi ¼
di
dj

FiðviÞ
FjðvjÞ

FiðliÞ
FjðljÞ

Si

Sj

v2j þ l2j
v2i þ l2i

 !
fj: ð6Þ

The unknown muscle forces fi, fj can be determined by solving Eq. (6) with the

moment equilibrium condition (Eq. (2)).

Prilutsky et al.29 compared theoretically obtained muscle forces, which were

calculated by six di®erent cost functions with experimentally measured cat muscle

forces, and they showed that the cost function proposed by Dul et al.6 predicted

unknown muscle forces better than the others. Schappacher-Tilp et al.27 improved

the cost function by Dul et al.6 by replacing maximal isometric force with the

maximal force as a function of the speed of shortening as the weighting factor. The

cost function proposed by Schappacher-Tilp et al.27 is given by

Minimize max
1

qi
100

fi
FiðviÞ

� ��pi
� �� �

subject to Eq: ð2Þ;
ð7Þ

where pi and qi are functions of the percentage of slow-twitch ¯bers and are de¯ned

by Dul et al.6 Hereafter, the cost function proposed in this study will be referred to as

Cost Function I and the cost function proposed by Schappacher-Tilp et al.27 as Cost

Function II. In order to evaluate Cost Function I, force predictions of Cost Func-

tion I were compared to those of Cost Function II.

2.5. Error analysis

The number of step cycles used for error analysis (n ¼ 5 cats), and the di®erent

walking and trotting conditions are given in Table 1. Null cells of Table 1 denote

conditions that a cat did not perform. A total of 188 step cycles were used to analyze

the force predictions of Cost Functions I and II.
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In order to evaluate the individual muscle force prediction quantitatively, root

mean square di®erences (RMSD) and Pearson correlation coe±cients (PCC) were

calculated between the experimentally measured and the theoretically predicted

force-time histories.30,31 In our case, RMSD and PCC measure the similarity in

magnitude and shape between predicted and actual force-time histories, respectively.

A RMSD value of 0.01 means that the predicted forces have a 1% mean error from

the measured forces. A PCC value of 0 indicates that the predicted and measured

forces are uncorrelated, while a PCC value of 1.0 indicates that the predicted and

measured forces are perfectly correlated. Furthermore, ANOVA was used to analyze

statistically signi¯cant di®erences in average RMSD (e) and average PCC (r)

obtained from Cost Functions I and II. The level of signi¯cance was set at p ¼ 0:05

for all statistical testing.

3. Results

Comparison of the typical patterns of muscle forces obtained using Cost Functions I

and II with the experimentally measured forces are depicted for 45� upslope and level

walking in Fig. 2. Moreover, typical patterns of predicted and measured force-sharing

loops for SOL and MG are shown in Fig. 3. Arrows indicate the direction of loop

formation.

For a quantitative error analysis, RMSD and PCC values between predicted and

measured force-time histories were calculated for each step cycle and the corre-

sponding averages of RMDS and PCC values (e and r , respectively) for each case

(16 di®erent cases) are presented in Table 2. Final average values of e and r, along

with the results of the statistical analysis, are presented in Fig. 4.

Values for e obtained from Cost Function I ranged between 0.31 and 0.82 for

SOL, and between 0.03 and 0.79 for MG (Table 2). Values for r obtained from Cost

Function I ranged between 0.515 and 0.884 for SOL and between 0.940 and 0.998 for

MG. For Cost Function II, e values ranged between 0.575 and 1.847 for SOL, and

between 0.06 and 0.56 for MG. Values for r obtained using Cost Function II ranged

between 0.246 and 0.870 for SOL and between 0.948 and 0.993 for MG.

Cost Function I showed better SOL force predictions than Cost Function II in 12

of the 16 cases according to the e values and in 14 of the 16 cases according to the r

values (Table 2). Cost Function I performed statistically signi¯cantly better than

Table 1. Number of step cycles.

Condition Cat 1 Cat 2 Cat 3 Cat 4 Cat 5

60� upslope 14 5 4 4 ���
45� upslope 11 4 9 29 13

30� upslope 17 7 8 11 15
level 9 ��� ��� ��� 28

Total step cycle 51 16 21 44 56

Y. Z. Arslan et al.
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Fig. 3. Typical force-sharing patterns between SOL and MG muscles for (a) 45� up-slope walking on
walkway and (b) level walking on treadmill.
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Fig. 2. Comparison of the experimentally measured SOL and MG forces with theoretically predicted
forces obtained from Cost Function I and II for (a), (b) 45� up-slope walking on walkway and (c), (d) level

walking on treadmill.
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Cost Function II for SOL (Figs. 4(a) and 4(b)). MG force predictions with Cost

Function I gave smaller e values than those obtained with Cost Function II in 12 of

the 16 cases (Table 2). In addition, Cost Function I gave better predictions (r) of

force�time histories in all of the 16 cases than Cost Function II. Moreover, forces

predicted using Cost Function I had equal average e values to and higher average r

values than forces predicted using Cost Function II (Figs. 4(c) and 4(d)).

4. Discussion

Individual muscle force measurements in the cat hind limb have shown that force-

sharing between synergistic muscles is highly task-dependent and cannot be captured

with a constant weighting factor in the cost function.16,17 For example, peak SOL

forces are consistently greater than peak MG forces during slow and medium speeds

(0.4�0.8m/s) level walking,29 while peak MG forces become much greater than SOL

forces for running, jumping, and up-slope walking. During quiet standing, cat SOL
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Fig. 4. Mean (� sd) values for e and r for 16 experimental conditions, *p < 0:05, **p < 0:01.
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muscles produce up to 50% of their maximum isometric forces, while MG is

completely silent.25 The exact opposite occurs during scratching or paw-shaking

where MG is highly activated and produces substantial forces, while SOL is often not

activated and its contribution is purely passive.32�34 One of the explanations for this

dramatic di®erence in task-dependent force production between SOL and MG is the

di®erence in the composition of ¯bre types ��� 98% slow-twitch for SOL and about

37% slow-twitch for MG,35�37 and the associated di®erences in force-length and

force-velocity properties.21,38 Therefore, force predictions for these muscles using

static optimization have been bad, as traditional cost functions with constant

weighting factors1,6,8,15,18,29,39 cannot predict some of the most basic observations,

for example a loop-type force-sharing behavior between synergistic muscles in a one

degree-of-freedom model, or the increase in force in one agonist with a simultaneous

decrease in force in another agonist.

Schappacher-Tilp et al.27 introduced a conceptually new set of cost functions that

overcame the problems of previous static optimization approaches by formulating a

cost function with a variable weighting factor, based on the force-velocity relation-

ship, but neglecting other mechanical properties such as the force-length relation-

ship. Also, Schappacher-Tilp et al.27 demonstrated the increased °exibility of these

types of cost functions, but there was no attempt at comparing the results to actual

muscle forces measured during unrestrained movements.

Here, we demonstrated that the proposed cost function that includes the in-

stantaneous contractile conditions of the target muscles, along with the physiological

properties of muscular contraction, gives satisfactory results in predicting cat SOL

and MG force-time histories and their associated force-sharing loops. Since tradi-

tional cost functions cannot predict loop-type force-sharing behavior for the system

studied here, and cannot predict decreasing SOL forces with increasing MG forces27

as observed experimentally in this study, it is obvious, and has been argued previ-

ously, that classical cost functions of the type introduced ¯rst by Crowninshield and

Brand1,15 and used more than any other cost functions6,8,12,39�42 cannot be used to

make accurate force predictions for individual muscles during unrestrained move-

ments. Therefore, we suggest that accurate individual muscle force predictions are

possible when accounting for the instantaneous contractile conditions and knowing

their force-length and force-velocity properties.

Needless to say that we realize that such properties remain unknown for most

human muscles and measuring the instantaneous contractile conditions of skeletal

muscles has been impossible, except for constrained movements in laboratory

settings43�45 and for isolated muscles only.46,47 Therefore, although the proposed cost

function can probably be used to formulate more accurate predictions of individual

muscle forces than the traditionally used cost functions, it cannot compete with the

simplicity of the traditional cost functions, which do not require contractile informa-

tion about the target muscles,48 but rely on minimal information such as the muscles'

PCSA1,15 or the percentage of slow-twitch ¯bers.6 The simplicity of the traditional cost

functions has likely been the major factor contributing to their extensive use.

Y. Z. Arslan et al.
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5. Conclusion

The cost function proposed here accounts for the instantaneous contractile condi-

tions and incorporates the basic mechanical properties of muscles. For this reason, it

can predict experimentally observed force-sharing behavior, such as force-sharing

loops and simultaneous increase in force in one agonist and decrease in another,

which cannot be predicted with traditional cost functions. However, the cost func-

tion proposed here requires information for implementation and evaluation that can

presently only be obtained using invasive approaches in animal models of force-

sharing and thus, will likely not be readily available in the near future for human

force predictions.
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Appendix

Table A.1. Muscle parameters used in the
study.

Parameters SOL MG

d (m) 0.016 0.019

PCSA (cm2Þ 0.91 4.01

F0 (N) 20.8 96.5
v0 (m/s) 0.176 0.258

l0 (m) 0.102 0.120

S (%) 98 37
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