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ARTICLE INFO ABSTRACT
Article history: Myoelectric controlled human arm prosthetics have shown a promising performance with
Received 28 October 2016 regards to the supplementation of the basic manipulation requirements for amputated
Accepted 20 March 2017 people over recent years. However these assistive devices still have important restrictions in
Available online 31 March 2017 enabling amputated people to perform rather sophisticated or functional movements.
Surface electromyography (EMG) is used as the control signal to command such prosthetic
Keywords: devices to ensure the amputated people to compensate their fundamental movement
Electromyography patterns. The ability of extraction of clear and certain neural information from EMG signals
Prosthetics is a critical issue in fine control of hand prosthesis movements. Various signal processing
Feature methods have been employed for feature extraction from EMG signals. In this study, it was
Classification aimed to comparatively evaluate the widely used time domain EMG signal features, ie.,
Prediction integrated EMG (IEMG), root mean square (RMS), and waveform length (WL) in estimation of

externally applied forces to human hands. Once the signal features were extracted, classifi-
cation process was applied to predict the external forces using artificial neural networks
(ANN). EMG signals were recorded during two types of muscle contraction: (i) isometric and
isotonic, and (ii) anisotonic and anisometric contractions. Experiments were implemented
by six healthy subjects from the muscles that are proximal to the upper body, i.e., biceps
brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained
from the ANN were statistically evaluated and, merits and shortcomings of the features
were discussed. Findings of the study are expected to provide better insight regarding

control structure of the EMG-based motion assistive devices.
© 2017 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish
Academy of Sciences. Published by Elsevier B.V. All rights reserved.

the muscle performance associated with neuromuscular
activation during muscle contraction [1]. EMG is also a crucial
concept to understand the relationship between muscle
Electromyography (EMG) signal is the electrical manifestation activation and limb motions. Surface EMG signal is the non-
of a contracting muscle that is the most important indicator of invasively recorded form of muscle activity and has been
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widely applied to increase the motion capability of the human
arm prosthetics [2—4]. For the people subjected to the lower or
upper limb amputations such as transhumeral or transradial
ones, prostheses became one of the most critical issues in
terms of patients' vital functional requirements and cosmetic
concerns. EMG-based human arm prosthesis are developed to
compensate the lost function of amputated people by using
EMG data of residual limbs as control signals to perform a
corresponding motion for the prosthesis. Over the last three
decades, extensive research has been developed on the EMG
controlled prostheses for both upper-limb [5-8] and lower limb
[9-11] amputations. Dexterous control of powered human arm
prostheses highly depends upon a well-defined relationship
between EMG signals and externally exerted forces to execute a
variety of forces as performing different limb motions [12-14].

Feature extraction from biological signals is a process to
obtain the useful information from raw signal in a condensed
form which is intended to use for specific applications such as
prosthetic control, diseases diagnosis and motion pattern
recognition [15]. Since the main assumption of pattern
recognition of SEMG is that each task is characterized by a
set of signal features, which implies muscle activation [3], the
techniques used for obtaining features play a critical role in
representing the neuromuscular activity of muscles during
different kinds of contractions. EMG signal characteristics are
identified using features in time, frequency or time-frequency
domains [16]. To analyze and classify the user's motion
intention, the time domain features are commonly accepted
as usable properties [17,18]. Since time domain features do not
need any domain transformation due to raw EMG signal
recorded over time scale, the features evaluated in time
domain require remarkably less time for calculation, thereby
leading to faster online control of prosthetics [15,16,19].

For the position or force control of a prosthetic device,
extracted signal features are needed to be classified using
various machine learning systems. The recognized EMG
patterns are considered to reflect the users' motion intentions.
These reduced and classified signals are fed into the control
scheme of the prosthetics as command signal [16]. A
considerable amount of research has been published on pattern
recognition methods and applications which provide better
decoding of EMG signals [16,19-22]. A group of techniques has
been proposed for pattern recognition such as support vector
machines (SVM) [23-25], linear discriminant analysis (LDA)
[26,27], fuzzy logic [20,28,29] and artificial neural networks
(ANN) [19,30-32]. Due to the prominent performance in
classification of EMG features and the capability of predicting
time-varying targets, ANN was found the most extensive
application area among these techniques [2,6,19].

In pattern recognition process, previous studies highlighted
the success of neural networks to classify implementation of
tasks by taking advantage of the ability to represent both linear
and nonlinear relationships [16]. Hiraiwa et al. obtained motion
patterns of flexor digitorium superficialis performing neural
networks [33] and Hudgins et al. applied ANN to classify time
domain features for EMG based prostheses [19]. Prediction of
externally applied forces and torques using neural networks has
a key role to contribute artificial human limbs [5,13,14,34].
Morita et al. proposed a control method for human hand
prosthesis that could estimate joint torque from EMG signals [5].

The objective of the study was to establish a relationship
between EMG signals and externally applied forces which can
be used in force control scheme of the myoelectric based
prosthesis. To be able to achieve this goal, EMG signals were
recorded under different contractile and loading conditions,
and time domain features of these signals were extracted, i.e.,
root mean square (RMS), integrated EMG (IEMG) and waveform
length (WL). Obtained features were classified using ANN to
predict the externally applied forces to human hands. In final
stage, performance of the features in terms of representing the
user's force intensions was comparatively evaluated.

2. Materials and methods
2.1.  Experimental procedure and EMG signal acquisition

EMG signals supplied to pattern recognition process were
recorded during two different types of muscle contractions. A
series of experiments were performed to obtain the myoelec-
tric signals during (i) isometric and isotonic, and (ii) anisotonic
and anisometric contractions. Experiments were performed by
six healthy subjects who are right-handed and in a range of 25-
35 year-old aging. SEMG recording processes were carried out
for 3 subjects in isometric contraction, while for other 3
subjects in anisometric contraction. Before the signal record-
ing process, subjects were given sufficient information about
the experiments and their informed consents were taken. All
EMG measurement protocol was carried out recording to the
recommendation of SENIAM Project [35].

The basic idea of myoelectric controlled prosthesis is to
provide the control signal from the electrical activity of
residuals muscles residing in the proximal part of upper
human trunk. Therefore, in the experimental protocol,
SEMG data were recorded simultaneously from muscles
including biceps brachii, triceps brachii, pectorialis major
and trapezius.

Since the EMG signal is of a stochastic characteristics rather
than a deterministic behavior, and is highly sensitive to the
environmental effects, it is almost impossible to acquire the
same EMG signal for the same motion even from the same
subject under the same contractile conditions. The complex
structure of EMG signals requires subject-specific control
process designs for each amputee's myoelectric arm. There-
fore, in this study, instead of recruiting a high number of
subjects, which leads to a great burden of data set, it was
preferred to record many EMG data for different contractile
conditions from a condensed set of subjects. By doing so, we
were able to focus our attention on consistent and reliable
force prediction from EMG signals specific to the each
individual. In total, 350 different trials for isometric case
and 40 for anisometric case were performed by each subject.

2.2.  Isometric contraction experiments

As a first step for investigation of muscle activation, isometric
contraction experiments have been performed. The relation
between muscle activity at constant length and externally
applied forces were focused during the following experimental
procedures.
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Fig. 1 - Top view of experimental set-up for isometric
contractions.

The subject's right forearm positioned on a glass surfaced
table parallel to coronal plane and was stabilized at flexed
position of 90° while the forces were applied (Fig. 1). The
abduction and flexion angles of right upper arm were 0° and
45°, respectively. Furthermore, a special silk fabric with low dry
friction placed between the skin surface of the forearm and the
table, to reduce the dry friction. Different force amplitudes
from 10N to 70N with 10N increments were externally
applied to human hands during experiments. Each trial of
isometric contraction was taken for 3s and 50 trials were
recorded for each force level, that is, totally 50 x 70 = 350 trials
were recorded for each subject.

The position of shoulder and arm was stationary during
experiments. The force direction was perpendicular to the
longitudinal axis of the forearm (Fig. 1).

Furthermore, sufficient duration of time was allocated for
resting of subjects between each successive measurement to
avoid muscle fatigue that may potentially leads to uncertain-
ties on signal characterization [36].

EMG recording system used in the experiments is Key Point
version 5.03, Physiomed, Denmark (common mode rejection
ratio > 100 dB, input impedance: 1000 M, signal to noise

ratio = 0.6 V). Ag/AgCl disk electrodes with 10 mm diameter
were employed for EMG recordings. To reduce the motion
artifacts and to ensure a good contact between the electrodes
and skin surface, alcohol was used to clean the skin surface
and a special conducting gel was applied. The sampling
frequency of the signals was 500 Hz. A bandpass filter with
20 Hz lower and 250 Hz upper cut-off frequencies was applied.

2.3. Anisometric contraction experiments

Anisometric contraction experiments, which include length
change of muscles during exerting time-varying forces, were
performed according to following considerations. A SCARA
type robot with 3 degrees of freedom, consisting of three limbs
that are connected by rotational joints to each other, was
operated to supply resistive forces against human arm tips for
anisometric contractions (Fig. 2a). A handle bar at the tip of the
manipulator was kept by the subjects during experiments
(Fig. 2b). Furthermore, two six-axis force/torque sensors
(NITTA Corporation, Japan, 500 Hz sample frequency, accuracy
+10 g) were integrated to the handle to measure interaction
forces between subjects' hands and handle bar and also
between handle bar and the manipulator.

Three subjects seated in front of a horizontal table and the
robotic system, and grasped the bar by their two hands. Wrist
motions of subjects were restricted by two solid plates placing
around wrists to make motion of arms similar to two-link
manipulator. In the neutral position, the flexion angle of the
shoulder was 90°, as the abduction angle of the shoulder was
changing according to position of the handlebar. The handle
bar, which was driven to four different targets, was placed
to reference position (1) as shown in Fig. 2(b). As the handle bar
moves between two points, the robot arm reacts against to the
motion created by the subjects depending upon the specified
task space stiffness.

The distance between the robot base and the subject hand
was specified as 75 cm to ensure a convenient workspace for
experiments. The target sets were placed to horizontal plane of
the table. The displacement between reference position
(Position 1) and target positions (Positions 2, 3, 4, 5) are shown
in Table 1.

Using a metronome, the subjects were given a command to
drive the handle bar from the reference position to the

Fig. 2 - (a) SCARA type robot used in the experiments. (b) Top view of the experimental set-up for anisometric contractions.
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Table 1 - Directions and definitions of motion sets for
anisometric contraction.

Direction Definition Distance (mm)
1—2 Forward 50
1-3 Rightward 50
1-4 Leftward 50
1-5 Backward 50

specified target point. Each motion of handle bar performing
between the reference point and a target position was divided
into three phases including (i) proceed, (ii) maintain and (iii)
retreat phases. Once receiving a beep signal, the subjects were
directed to drive the handle bar to a specific target position.
After maintaining the handle bar position for 4 s at the target
point, subjects were directed to retreat the motion to the
reference position with the next beep signal (Fig. 3). Force data
were recorded for 2 s before proceed phase and 2 s after retreat
phase, besides for 4 s during maintain phase. Three phases of
the motion along rightward direction (1 — 3) were given in
Fig. 3. In order to overcome the potential recording errors, each
trial toward the same target point was repeated 10 times. By
taking the each motion direction into account, each subject
performed totally 40 trials.

Position and orientation of the handle bar were detected
and measured by means of the optical encoders placed on
joints, which ensured to observe time-displacement graph so
that a possible undesirable movement abnormalities could be
detected during the measurements.

2.4.  Signal processing and feature extraction

Recorded raw EMG signals were segmented in order to extract
the time domain features. Long segment length induces high
computation load, while a short one causes bias and variance
in signal feature extraction. On the other hand, a segment
larger than 200 ms requires overlapping to prevent failure in
real-time operation [26].

In the study, recorded EMG signals were segmented via
sliding windows having 500 ms time interval. Additionally,
time interval between the successive windows was defined as
50ms. Desired signal features were calculated for each
segmented window.

207
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Fig. 3 - Displacement-time profile of the joint of the handle
bar for rightward phase.

Feature extraction from EMG signal is a critical step in
pattern recognition studies. The rationale behind this process
is to extract useful information from a high amount of data
without loosing the main character of raw signal. Time
domain features are the main tools to determine the signal
patterns which are indented to use in the control of
prosthetics. In this study, the following time domain features
were extracted.

2.4.1. Integrated EMG (IEMG)

Numerically, integrated EMG (IEMG) implies the summation of
the EMG signal amplitude values for each segmented window.
As x,, denotes EMG signal in segment m and, N represents the
number of samples (in length), IEMG is defined as follow [15]

N
IEMG = > [Xm| (1)
m=1
2.4.2. Root mean square (RMS)

Root mean square (RMS) is one of the most commonly used
time domain features for EMG signal processing [15,27]. RMS is
the envelope of the signal and calculated as

24.3.
Waveform length (WL) implies the measure of complexity in
each segment of EMG signal [15,17] and calculated as

Waveform length (WL)

N
WL = |Axy| (3)
m=1
where AXp =Xm — Xm_1. WL is also cumulative length of the
waveform over time segment.

Feature selection is a critical issue for EMG-based myoelec-
tric prosthetic control, since the signal features are expected to
represent the activation characteristics of the related muscle
and are fed into the classification module to reflect the motor
outcome.

2.5.  Artificial neural networks

In the study, ANN that is a widely used approach for pattern
recognition and classification was employed to predict the
externally applied forces to each subject. The neural network
structure consisted of one input layer, two hidden layers, and
one output layer. The model created for the training of features
that belong to isometric contractions had the layers with 21,
30, 10, and 1 neurons. For the anisometric case, neural network
model had 30, 10 and 401 neurons. Log-sigmoid transfer
function was employed as the transfer function. Number of
the epoch was chosen 1000 for the training stage of the
network. Moreover, the force values used in target set were
normalized to the range between 0 and 1 to improve the
classification performance of the neural network. Further-
more, training and test data were adjusted so that to reach the
best fit train-test pairs for the current case. In order to carry out
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this, all the columns including data of different trials were
employed. Leave-one-out cross-validation (LOOCV) method,
which is a special kind of k-fold cross-validation, was
performed to train the network structure and to test the
accuracy of predicted results given by the same network. The
network was trained using all data except only one trial and the
prediction (or test) was made for that trial. In our study, LOOCV
method was repeated until all of trials were used to both in
training and test sessions. Accordingly, the average error was
calculated by arithmetic mean of all errors of each testing trial.

Number of neurons for hidden layers was determined by
trial and error approach up to obtaining the results with
sufficient accuracy and certainty. According to the back-
propagation feedforward approach, which was determined as
the training algorithm, the weights are adjusted for each step
to reduce the gradient of the cost function.

To observe if activation levels of all proximal muscles are
required to be introduced to the neural network to achieve
more accurate force prediction results than those obtained in
the case including only one muscle, the training sessions of
ANN were performed for two different variations so-called
Variation I and II. In Variation I, the features belonging to all
four muscles including biceps brachii, triceps brachii, pector-
ialis major and trapezius were used for training and testing
processes. In Variation II, the networks model was only trained
using EMG features of biceps brachii muscle.

A block diagram representing all process implemented
from signal recording to force prediction is given in Fig. 4.

2.6.  Assessment of the predicted force results

Force prediction results were evaluated using different
methods to be able to discuss the merits and pitfalls of the
characterizing performances of the features from different
aspects. For isometric contraction, mean and standard
deviation of predicted force values of the corresponding
features for two variations were calculated. Furthermore,
one-way ANOVA was implemented to determine whether the
performances of the different feature extraction methods are
statistically significant. The level of significance was regarded
as 0.05 (p < 0.05).

Force prediction results in anisometric contraction were
evaluated using the root mean square difference (RMSD) and
the Pearson Correlation Coefficient (PCC) parameters which
quantify the difference and consistency between predicted
and actual forces, respectively. RMSD of forces was calculated
as seen below.

S, () —f, ()’
S (f(m)?

where fy(n) and f,(n) represent the experimental and predicted
forces, respectively. The lower RMSD values means high accu-
racy in prediction, namely 0.01 value of RMSD implies predic-
tion with 1% mean error from experimental forces.

RMSD =

In order to measure similarity between two force-time
history traces, PCC value was considered. As C,,(0) is the
covariance, Cx(0) and C,,(0) are the autovariance of f, and f;,
respectively, the PCC is expressed as follows:

Ciy(0)
Cw(0),/C,y(0)

PCC = 5)

The PCC represents similarity between two data sets. If PCC
value is found between two data sets as 1, it means that these
two sets are completely equivalent, while 0 implies totally
nonequivalent.

3. Results
3.1 Prediction results of isometric contraction

The performance of different signal features in characterizing
the patients' force intentions were tested in two different data
sets, namely Variation I and Variation II. Means and standard
deviations (SD) of the predicted forces for the isometric case
were given in Fig. 5 for Variation I and in Fig. 6 for Variation II.

In order to quantitatively evaluate the performance of
features, average RMSD values between predicted and experi-
mental forces at each force level for both variations were given
in Tables 2 and 3.

Raw Filtered and
Force&EMG [ windowed
data Signal signals Feature
J processing N extraction
= |z
c B |Z
Force&EMG signal Q
recording
Predicted Signal features
forces

Artificial neural network model

Fig. 4 - Flow chart of the signal processing and classification phase of the study.
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Fig. 5 - Mean and SD of the estimated forces of Variation I for: (a) subject I; (b) subject II; and (c) subject III
Bars represent RMS, IEMG and WL features results for each force level, respectively.

Mean RMSD values of all predicted results obtained from all
subjects were given in Table 4. It can be observed from the
results that minimum average RMSD value was found in case
of RMS for Variation I and IEMG for Variation II (p < 0.05) on the
other hand, highest RMSD values were obtained by WL for both
variations (p < 0.05).

3.2 Prediction results of anisometric contraction

Representative force prediction results obtained from one of
the subjects for anisometric contraction case are given for
Variation Iin Fig. 7. The figure shows both externally applied
and predicted forces as results of pattern recognition
process of the features for Variation I in which data of four
muscles were used to train and test the neural network
structure. The figure also contains tendency of actual

applied force and predicted force results by RMS, WL and
IEMG features.

In order to assess the accuracy of results, RMSD and PCC
parameters were calculated for both of variations, as well.
Tables 5-7 show the performance of features in prediction of
forces for anisometric contractions.

It was observed from results that RMSD value was in arange
of 0.08 and 0.63, 0.06 and 0.73, and 0.08 and 0.60 for RMS, IEMG,
and WL features, respectively. Moreover, PCC was found in a
range of 0.40 and 0.98, 0.54 and 0.98, 0.41 and 0.97 for RMS,
IEMG, and WL features, respectively. Mean values of all
predicted results obtained from all subjects were given in
Table 8.1t can be observed from the table that minimum RMSD
value was obtained in case of WL for both Variation I and II
(p > 0.05). On the other hand, highest PCC was observed in
case of IEMG for both variations (p > 0.05).

Table 2 - RMSD results for isometric contraction experiments in Variation I.

Subject I Subject II Subject III

RMS IEMG WL RMS IEMG WL RMS IEMG WL
10N 0.09 0.07 0.12 0.02 0.02 0.11 0.02 0.06 0.02
20N 0.04 0.05 0.14 0.00 0.01 0.02 0.00 0.009 0.00
30N 0.06 0.07 0.11 0.01 0.05 0.09 0.08 0.04 0.02
40 N 0.04 0.04 0.08 0.01 0.04 0.05 0.02 0.01 0.03
50 N 0.07 0.07 0.09 0.00 0.02 0.04 0.00 0.01 0.05
60 N 0.09 0.08 0.03 0.04 0.04 0.02 0.02 0.02 0.02
70N 0.02 0.02 0.08 0.06 0.07 0.06 0.03 0.04 0.06
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Fig. 6 - Mean and SD of the estimated forces of Variation II for: (a) subject I; (b) subject II; and (c) subject III.
For each force levels, bars represent RMS, IEMG and WL features results, respectively.

Table 3 - RMSD results for isometric contraction experiments in Variation II.

Subject I Subject II Subject III

RMS IEMG WL RMS IEMG WL RMS IEMG WL
10N 0.02 0.02 0.06 0.12 0.17 0.80 0.15 0.07 0.36
20N 0.10 0.10 0.28 0.27 0.24 0.58 0.08 0.09 0.62
30N 0.09 0.10 0.22 0.29 0.26 0.44 0.23 0.21 0.63
40N 0.12 0.11 0.22 0.18 0.17 0.34 0.12 0.11 0.38
50N 0.09 0.09 0.18 0.17 0.17 0.30 0.14 0.14 0.26
60 N 0.08 0.09 0.18 0.08 0.07 0.19 0.09 0.08 0.18
70N 0.07 0.07 0.18 0.13 0.13 0.27 0.10 0.11 0.26

Table 4 - Mean RMSD values of the prediction results of features for all subjects in isometric case.

Variation I Variation II
RMS IEMG WL RMS IEMG WL
0.03 £ 0.02 0.04 £+ 0.02 0.06 + 0.04 0.13 £ 0.07 0.12 £+ 0.06 0.33 £0.19
. . and achieving a correct result), rationally (i.e., expediently and
4, Discussion g ) v ( P ¥

Nickolai Bernstein defined the dexterity as ““the ability to find a
motor solution for any external situation, that is, to adequately
solve any emerging motor problem correctly (i.e., adequately
and accurately), quickly (with respect to both decision making

economically), and resourcefully (i.e., quick-wittedly and
initiatively)” [37]. Many researches have been conducted to
reach a dexterous myoelectric controlled arm to ensure
amputees regain their some lost fundamental motion patterns
[18]. Although some encouraging and promising prosthetics
were invented by researches [34], we have not seen any
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Table 5 - Prediction performance of features for motions of subject I in anisometric case.

Motion Variation I Variation II

RMS IEMG WL RMS IEMG WL

RMSD PCC RMSD PCC RMSD PCC RMSD PCC RMSD PCC RMSD PCC

1-2 0.08 0.77 0.06 0.79 0.19 0.65 0.12 0.61 0.24 0.74 0.17 0.54
1—-3 0.32 0.76 0.37 0.77 0.18 0.83 0.33 0.79 0.25 0.79 0.27 0.76
1-4 0.23 0.61 0.35 0.74 0.24 0.63 0.32 0.76 0.39 0.79 0.35 0.71
1-5 0.09 0.87 0.31 0.65 0.24 0.86 0.16 0.79 0.18 0.82 0.16 0.70

Table 6 - Prediction performance of features for motions of subject II in anisometric case.

Motion Variation I Variation II

RMS IEMG WL RMS IEMG WL

RMSD PCC RMSD PCC RMSD PCC RMSD PCC RMSD PCC RMSD PCC

1-2 0.12 0.98 0.42 0.89 0.08 0.97 0.23 0.98 0.14 0.98 0.11 0.75
1-3 0.29 0.67 0.45 0.79 0.32 0.61 0.63 0.73 0.55 0.75 0.47 0.62
1-4 0.48 0.44 0.47 0.74 0.39 0.59 0.56 0.40 0.73 0.43 0.60 0.41
1-5 0.16 0.71 0.29 0.66 0.23 0.71 0.21 0.69 0.34 0.76 0.25 0.50

Table 7 - Prediction performance of features for motions of subject III in anisometric case.

Motion Variation I Variation II

RMS IEMG WL RMS IEMG WL

RMSD PCC RMSD PCC RMSD PCC RMSD PCC RMSD PCC RMSD PCC

1-2 0.30 0.77 0.16 0.74 0.31 0.60 0.33 0.62 0.31 0.62 0.43 0.72
1-3 0.39 0.62 0.24 0.54 0.28 0.68 0.29 0.85 0.30 0.70 0.30 0.67
1—-4 0.48 0.70 0.19 0.93 0.26 0.63 0.19 0.77 0.17 0.74 0.11 0.74
1-5 0.25 0.91 0.22 0.74 0.31 0.89 0.29 0.85 0.24 0.85 0.25 0.60

—EXP 15 Table 8 - Mean values of the prediction results of features
15 —RMS o~ for all subjects in anisometric case.
g 10 -~ IEMG P 10 Variation I Variation II
§ RMSD PCC RMSD PCC
o
o

RMS 0.27 £0.14 0.73+0.15 0.30+0.15 0.74+0.15
IEMG 0.29 +0.13 0.75 £0.10 0.32 +£0.17 0.75+0.13
WL 0.25 + 0.08 0.72 £0.13 0.29 £ 0.15 0.64 +£0.11

dexterous prosthetic arm that is highly functional, easy to use
and cost efficient. Beside the mechanical and spatial limita-
tions, one challenging problem researchers are also facing
with is that how to control intuitively such prosthetics with
accuracy. Human arm prostheses have limitations regarding

Time (s) Time (s) controlling §peciﬁc moti.on patterns consistently and seam-

(© (d) lessly. Sending control signals created from the own body of

the user to actuators to create any desired motion is still

Fig. 7 — A representative comparison of the actual and the mainly a critical issue. This kind of control highly depends
predicted forces created during a subject motion pattern for upon gathering the clear and usable outcome from classifier
Variation I: (a) forward: 1 — 2; (b) rightward: 1 — 3; (c) which uses myoelectric signal features and characteristics.
leftward: 1 — 4; and (d) backward: 1 — 5. Thus, selection of appropriate EMG feature classification and
EXP: experimental, RMS: root mean square, pattern recognition techniques plays an important role in

IEMG: integrated EMG, WL: waveform length. dexterous control of human arm prostheses.
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For isometric contraction, by taking average RMSD values
into accountit can be observed that RMS and IEMG are superior
to WL (Table 4) for Variation I (p < 0.05) and II (p < 0.05). If each
force level is considered individually it can be deduced that
nearly for half of the all force levels, there is significant
difference between WL and RMS/IEMG prediction results
(Figs. 5 and 6). Additionally, considering RMSD results for
isometric contraction in Tables 2 and 3, maximum number of
predictions, which is the closest to the actual force levels, is
provided by RMS feature. Besides the fact that RMS seems to be
successful in estimation of forces, the performance of IEMG is
not negligible due to the fact that, for both of variations, there
are many predictions that RMS and IEMG provide the similar
results. For most of the force levels, significant difference
between RMS and IEMG results were not found. However, RMS
provided more numbers of accurate results in terms of
quantification. Back to WL performance, for two variations,
the feature showed a worse prediction outputs than other two
features which suggests that WL feature is not preferable for
force estimation for isometric contractions. As for comparison
of the variations, Variation I includes more accurate results
than Variation II for all features (p < 0.05). Despite more data
increased the complexity of networks and resulted in more
computational burden, it seems that the variation including
data of four muscles ensured a more successful prediction of
the forces than the one including only one muscle. The
rationale behind this finding could be explained by the
proposition which suggests that the motion generation or
resistances of muscles are driven by various combinations of
the synergistic effects among the activated muscles. Also, co-
contraction of muscles is another mechanism that specifies
the inherent muscle coordination during performing some
certain motor tasks.

For anisometric contractions, prediction results of both
variations show that actual time-varying force trends could be
reached by performing time domain features. According to
mean RMSD results presented in Table 8, WL provided slightly
more accurate results than RMS and IEMG (p > 0.05). Average
RMSD values of prediction results of RMS and IEMG are very
close to each others, as 0.27, and 0.31 obtained from RMS for
variationIand variation II, respectively, and for the same cases
0.29 and 0.32 were obtained by IEMG. On the other hand, PCCis
another critical parameter to measure and evaluate the
performance of a signal feature. Considering mean PCC results
of anisometric case shown in Table 8, IEMG showed a better
force prediction characterization than RMS and WL (p > 0.05).
Mean PCC values of RMS and IEMG were found as 0.73, and
0.75, respectively, for Variation I, and 0.74 and 0.75 for
Variation II. It is clear that RMS and IEMG showed a satisfactory
performance in terms of both RMSD and PCC parameters. It
can be claimed that both features provided reasonable
prediction accuracy. In terms of mean PCC values, especially
for Variation II, WL feature predicted force results with less
accuracy than those made by RMS and IEMG (p > 0.05).
Therefore, it can be deduced that WL feature showed limited
performance for anisometric case in terms of the illustrating
the similarity to the experimental force-time history.

Although the prediction results demonstrate an acceptable
performance in terms of characterizing the force generation
intentions of the subjects, to create a set of rules regarding

establishing an optimum ANN structure is still a challenging
tasks [38]. Empirical nature of model development is one of the
most important disadvantages of neural networks. Structure
of input data and labeling of target set are also influential on
the classification results due to clear and meaningful selection
of data is closely related to the prediction performance of the
classifier. The trade off between accuracy and computational
cost, which affects closely the duration of the analysis, should
also be taken into account for each case. Moreover, designing
complex networks structure does not guarantee obtaining
accurate prediction results due to proneness to overfitting.

5. Conclusion

In this study, different widely used time domain features of
EMG signalsincluding root mean square (RMS), integrated EMG
(IEMG), and waveform length (WL) were comparatively
evaluated for the prediction of externally applied forces to
human hands. Extracted features from EMG signals were
classified using artificial neural networks (ANN) to predict the
targeted forces. For this scope, an ANN structure was built and
trained with EMG feature data set to reach experimentally
applied force values. It was concluded that RMS and IEMG
features shows a consistent and satisfactory signal character-
ization performance. In addition, for RMS and IEMG features, it
was not found considerable difference between the prediction
results of Variation I and II which suggests that an equivalent
performance can be achieved with less number of muscles
instead of recruiting many EMG data from many muscles.
Hence, motor intentions of amputees may be reflected with
limited number of muscles in prosthetic limbs. The present
study is expected to be useful for further studies for
investigation and evaluation of the relationships between
different signal features and various motion patterns. The
obtained results are anticipated to contribute to the classifica-
tion process of EMG signal and motion control approaches
of powered human arm prosthetics.
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