
Encyclopedia of 
Information Science 
and Technology, Fourth 
Edition
Mehdi Khosrow-Pour
Information Resources Management Association, USA



Published in the United States of America by
IGI Global
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax:  717-533-8661 
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2018 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in 
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or 
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
			   Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the 
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.�

Names: Khosrow-Pour, Mehdi, 1951- editor.
Title: Encyclopedia of information science and technology / Mehdi  
   Khosrow-Pour, editor. 
Description: Fourth edition. | Hershey, PA : Information Science Reference,  
   [2018] | Includes bibliographical references and index. 
Identifiers: LCCN 2017000834| ISBN 9781522522553 (set : hardcover) | ISBN  
   9781522522560 (ebook) 
Subjects: LCSH: Information science--Encyclopedias. | Information  
   technology--Encyclopedias. 
Classification: LCC Z1006 .E566 2018 | DDC 020.3--dc23 LC record available at https://lccn.loc.gov/2017000834 
 



Category: Systems and Software Engineering

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

7470

DOI: 10.4018/978-1-5225-2255-3.ch650

Object-Oriented Programming 
in Computer Science

INTRODUCTION

In computer science, a program is composed of a 
series of commands, which runs within a computer 
or an electronic circuit, producing information for 
users. Programming is a that can help programmers 
while writing a program. Computer programming 
is the process of writing an algorithm and, it is 
also the encoding of the algorithm into a notation 
that can produce and provide information to the 
users. It can be classified into two groups, that is, 
system programming and application program-
ming. System programming is a sub branch of the 
general programming that is composed of low level 
instructions which are used to operate and handle 
computer hardware. Application programming is 
considered as the improved version of the computer 
programs which can perform specific tasks for 
the users. One of the application programming 
types is the object oriented programming (OOP) 
which is about how information is represented in 
human mind.

As a computer programming approach, OOP 
is useful such that it provides easy modeling in 
designing and developing real entities. This ap-
proach is intended to model the entities and, also, 
the relationships existing between them. OOP al-
lows programmers to define the required classes 

to create the objects and to apply modifications 
(manipulations) on them. It can also supply inheri-
tance, polymorphism and encapsulation features 
to the developers. With these capabilities, the pro-
cessed data can be isolated from other redundant 
applications. Because of its abilities that are readily 
available to the users, OOP is preferred much more 
than other available programming languages. The 
inherent properties of OOP, which do not exist 
in other application programming, can be stated 
as modularity, extensibility and reusability. This 
chapter provides a substantial survey of OOP in 
computer science.

In this chapter, we have highlighted a number 
of explanations and reviews that are generally ac-
cepted and are in common use in OOP. We explain 
the heart of this chapter OOP concept in section 1, 
Object Oriented Programming Features, making 
up the largest section. Main topic of OOP which are 
included Inheritance, Polymorphism, Abstraction 
and Encapsulation titles are explained with details 
in the subtitles of section 1. In section 2, you can 
find an example of OOP implementation in Java. 
There are many kinds of OOP languages in use but 
in this study, Java was given as a strong example 
to OOP language (Harel, Marron, & Weiss, 2010). 
The following section is Future Research Direc-
tions which include future works related OOP. The 

Rahime Yilmaz
Istanbul University, Turkey

Anil Sezgin
Yildiz Technical University, Turkey

Sefer Kurnaz
Istanbul Esenyurt University, Turkey

Yunus Ziya Arslan
Istanbul University, Turkey



 S

Category: Systems and Software Engineering

7471

chapter ends with Conclusion section that gives 
a brief information about this study.

BACKGROUND

Programming paradigm is a fundamental style 
of computer programming which classifies pro-
gramming languages. Different programming 
paradigms were developed by considering the 
concepts and abstraction which are used to rep-
resent the elements of a program, and steps that 
compose a computation. Some of the programming 
languages are designed to support one paradigm 
and some of them support multiple paradigms. 
Before OOP languages, there are also some other 
paradigms such as classic programming, modular 
programming and structural programming (Bista, 
Bajracharya, & Dongol, 2015). These program-
ming technics were helped the programmers while 
solving their problems. Depending on improving 
technology, new structure of OOP has emerged 
so one of these paradigms is OOP which changed 
radically the programming paradigm continued 
until the day it appeared. Software methodology 
used before OOP referred to by the name of the 
procedural programming. This methodology was 
based on advancing codes in a particular direction 
and calling the common function that is used to 
reduce the workload. This methodology, used 
in the software world for a long time, has some 
difficulties. First of all, application of the proce-
dural programming developed as a whole cannot 
be divided. So, each developer working on the 
application has to know almost every building 
of application. Due to its building as a whole, it 
is hard to make changes on the application. The 
reason of these difficulties is that procedural pro-
gramming is an abstract that is not able to model 
the real world. The real world can be simulated 
by programmers thanks to OOP by using objects 
and classes. Object-oriented approach enables to 
divide a complex system into smaller parts and 
manageable modules which makes development 
process easier to grasp and share among members 

of a developer team and easier to communicate to 
users who are needed to provide requirements and 
confirm how well the system meets the require-
ments throughout the process (Dennis, Wixom, & 
Tegarden, 2015). Thus, OOP enables modularity 
and abstraction with increased code understand-
ing, maintenance and expansion. OOP is formed 
by the collection of objects which communicate 
with each other in order to perform tasks. This 
communication is based on messages in OOP, 
and objects are created from classes.

Class is a blueprint which is used to define 
objects describing the contents of the objects 
itself. It is a user-defined prototype for an ob-
ject that defines a set of attributes and methods 
which characterize any object of the class. These 
attributes are data members or variables (static 
attributes), and methods are dynamic behaviors, 
also called member functions. Data members and 
member functions are called class members. At-
tributes, which are attached to the classes, store 
information about the object (Robson, 1981). Data 
member has a name and a type; it holds a value of 
that type. Member function receives parameters 
from the caller (if it’s required), performs the 
tasks which are defined in the function body and 
returns result or void to the caller.

In most of the programming languages, class 
keyword is used to define a class. Class declara-
tion must contain the name of the class which 
programmer declares. Basic class declaration 
looks like this:

Class NameofClass { 

... 

}

The other term, object, helps users to under-
stand the object oriented notion. Objects, also 
called instances of a class, are modeled on real 
world entities. All the instances of a class have 
similar properties. Basically, objects have 2 charac-
teristics, state and behavior. State is a well-defined 
condition of an item which captures the relevant 
aspects of an object. Behavior is the observable 



Object-Oriented Programming in Computer Science

7472

effects of an operation or event. For example, a 
software object that modeled real world cat would 
have variables that indicated the cat’s current state:

•	 Its breed is Cymric
•	 Its color is Yellow
•	 Its age is 3.

These variables are formally known as instance 
variables because they contain the state for a par-
ticular cat object, and in the object oriented termi-
nology, a particular object is called an instance. 
In addition to its variables, the software cat would 
also have methods from real cat’s behaviors: to 
meow, to wag the tail, play the ball etc. Figure 1 
shows three different method of cat object.

A class may contain a variable that is shared by 
all instances of class. These variables are defined 
within a class. Programmer can create new objects 
which can inherit the number of characteristics 
from one of the existing objects. Objects can com-
municate with each other by passing message. A 

message is a method call from sender object to 
a receiver object. Object responds to a message 
by executing one of its methods (Legdarg, 1996). 
Additional information, along with the called argu-
ments, may accompany a method call. A message 
includes three components. These components 
are object identifier which indicates the message 
receiver, method name, and arguments which can 
be required for the execution of the method. In 
the example of cat.play (cp), cat is an object and 
the receiver of the message, play is the method, 
and cp is the argument of play.

The basic implementation of ‘cat’ example is 
given in program 2 of Implementation of OOP 
Design in Java Programming section and this 
example is illustrated in Figure 2 with detail which 
include a diagram of cat class, cat class to address 
issues regarding the states, methods, attributes, 
etc. used in OOP.

1. OBJECT ORIENTED 
PROGRAMMING FEATURES

OOP has many features that make it usable includ-
ing the followings:

•	 Inheritance
•	 Polymorphism
•	 Abstraction
•	 Encapsulation

Figure 1. A cat object and its methods

Figure 2. Illustration of cat object



 S

Category: Systems and Software Engineering

7473

1.1. Inheritance

This concept points code reuse without repeating 
or rewriting the code. It includes the creation of 
new classes from existing classes, and these new 
classes are called derived class or sub class. The 
existing class is called the base class or parent class 
or super class. The derived class reuses the base 
class members, moreover it can add and alter them. 
So programmers can avoid rewriting and testing 
of code that already exist. The goal of inheritance 
is to support refinement of classes into derived 
classes or subclasses. There are many advantages 
of using inheritance concept in programming 
language. Direct modeling of such hierarchies 
makes the conceptual structure of programs easier 
to comprehend, inheritance supports that common 
properties of classes factorized that is described 
once and reused when needed (Wirfs-Brock & 
Johnson, 1990). This results in modularity and 
makes complicated programs easier to compre-
hend and maintain, since description is avoided. 
Inheritance hierarchies support a technique where 
the most general classes containing common 
properties of different classes. These classes are 
designed and verified first, and then, specialized 
classes are developed by adding more details to 
existing classes (Thomsen, 1986).

Inheritance implements the “Is-A” relationship. 
In OOP, Is-A relationship means that one object 

is type of another one. For example, student is a 
person, car is a vehicle etc.

A class inherits instance variable declarations 
as well as methods from its base class. By adding 
new instance variables and new methods, and by 
overriding base class methods, the derived class’s 
attributes may be redefined. A derived class cannot 
access the private members of its base class; oth-
erwise this situation would be against the concept 
of encapsulation. A derived class has access to the 
public and protected members of its base class. 
They are both inheritable and visible to users.

There are different types of inheritance that 
depends on programming language. i) Single 
Inheritance: A derived class, which is inherited 
properties and behaviors from a single base class, 
is called single inheritance. ii) Multi-Level Inheri-
tance: If a class is derived from another derived 
class, it is called multi-level inheritance. iii) Hi-
erarchical Inheritance: If more than one class is 
derived from a base class, it is called hierarchical 
inheritance. iv) Hybrid Inheritance: It is a combine 
form of single and multiple inheritance. v) Multiple 
Inheritance: If a class is derived from more than 
one class, it is called multiple inheritance.

1.2. Polymorphism

Dictionary definition of polymorphism is the 
property of something having many forms. In com-

Figure 3. A real world example of inheritance



Object-Oriented Programming in Computer Science

7474

puter science, polymorphism refers to the ability 
of a programming language to describe objects 
in different ways based on their class or data type 
(Gamma, Helm, Johnson, & Vlissides, 1994). It 
can be allowed to talk to an object even if it is not 
known exactly what the object is. Thanks to the 
polymorphism, size of programming applications 
can be made smaller. In addition, understanding 
these applications is easier than those of others. If 
polymorphism does not exist, programmers have 
to check the objects one by one to determine which 
type and method are called according the object 
type. Polymorphism is activated in such situations 
that frees the designer from this inconvenience and 
allows flexibility. To better understand the concept 
of polymorphism, it is needed to comprehend the 
inheritance well. Polymorphism is tied closely 
to the concept of inheritance in OOP languages. 
There is a simple rule that is called as “is-a”, to 
know whether or not inheritance is the right design 
for user’s data. This rule states that every object 
of the subclass is an object of the superclass. To 
explain the relationship between inheritance and 
polymorphism, an example is given in Figure 3. 
The figure represents a transportation class with 
subclasses including corresponding modes (sea, 
road, air, rail) and vehicles. For example, all the 
road vehicles are a vehicle type. Thus, it makes 
sense for the road vehicle class to be a subclass 
of the vehicle class. Naturally, the opposite is not 
true since not every vehicle is a road vehicle. All 
cars and bikes are road vehicles, so they can be 
grouped as a subclass of road vehicle class. Race 
car and normal car that are not shown in the figure 
are indicated subclasses of car class as seen below 
example. The most general concept of inheritance 
can be explained in this way:

Common features of race car and normal car:

•	 They are road vehicles
•	 They have an engine.
•	 They are designed to carry persons.
•	 They consume the fuel.
•	 They need a driver.

There are common features of car and bike:

•	 They are road vehicle
•	 They are designed to carry persons.
•	 They need a driver.

There are common features of road vehicle 
and sea vehicle:

•	 They are designed to carry persons.
•	 They need a driver.

As seen in the example, information just 
like “to carry persons” and “to need a driver” 
are repeated more than one. Each category of 
information does not need to be saved in these 
classes, because inheritance provides it directly. 
If common features are defined in vehicle class, 
all subclasses can take that information from only 
one class. By this way, if it is necessary to update 
the system, only one change related to the concept 
in vehicle class can be enough. And this is called 
polymorphism.

Polymorphism is also related to “overloading” 
and “overriding”. Overloading is a compile time 
polymorphism method that has the same name with 
different parameters. Overloading is a feature that 
enables a class to possess two or more methods 
having same name. Unless return type of method 
is same, error will occur.

Overriding is a run time polymorphism method 
that the implementation given in the base class is 
replaced with that in subclass. Override method 
can be added by rewrite the method that inherited 
from the base class. In this way, it provides the 
use of inherited class method. In this case, the 
software allows the flexibility that can make a 
different job by using the same method.

1.3. Abstraction

The word abstract means dissociated from any 
specific instance. Abstraction is to develop models 
in terms of interface and functionality instead of 



 S

Category: Systems and Software Engineering

7475

implementation details. So it is related to encap-
sulation and data hiding (Yourdon, Whitehead, 
Thomann, & Oppel, 1995). Abstraction is ap-
plied to the model by considering the process of 
identifying object. It is used to reduce complexity 
of the design and implementation that focuses on 
the meaning of behaviors to avoid specification. 
Thanks to the abstraction, class internals are pro-
tected from user-level errors which breaks state 
of the objects (Wegner, 1987).

Abstract class is a parent class, which allows 
inheritance, containing abstract members. These 
members are only declared, not implemented. 
Implementation of abstract members is done 
within the derived class. Another type of a mem-
ber is virtual member. Unlike abstract member, 
virtual members are implemented in parent class. 
To declare an abstract class, abstract keyword is 
used. Abstract member functions and properties 
are also declared with this keyword.

1.4. Encapsulation

From the user’s point of view, a number of fea-
tures are packaged in a capsule to form an entity. 
This entity offers a number of services in the 
form of interfaces by hiding the implementation 
details (Canning, Cook, Hill, & Olthoff, 1989). 
The encapsulation term is used to describe the 
hiding of the implementation details. The advan-
tages of encapsulation are information hiding and 
implementation independence. Local variables 
are hidden in functions and private members 
are hidden in classes. Therefore, external direct 
access is prevented. If user does not know the 
implementation details, it is called information 
hiding. If user’s interface is not affected by chang-
ing the implementation mechanics, it is called 
implementation independence (Booch, Maksim-
chuk, Young, Conallen & Houston, 2007). Class 
encapsulates the static attributes and the dynamic 
behaviors into the limited area to isolate and reuse 
when necessary. These operations cannot be done 
in the traditional programming languages. Private 
access control modifier hides data member of a 

class from outside world. Access to these private 
data members is provided via public assessor 
functions. Objects do not have permission to 
know the implementation details of others. The 
implementation details are hidden within the class.

2. OOP DESIGN

People tell the daily concept with using spoken 
language. Programmers try to express the concept 
and the entity that is related to the problem, to 
computer with using programming languages. To 
do this, during the design phase, models provid-
ing an expression are created. Object-oriented 
method provides the creation of these models and 
(if necessary) updating the system.

In section 2.1 we have developed an object-
oriented design for our cat system and in section 
2.2 we implemented our object-oriented design in 
Java and showed how to convert class diagrams 
to Java code.

2.1. OOP Design with 
the UML Diagrams

Unified Modeling Language (UML) diagrams are 
used to describe the structure of systems. It is a 
standard for modeling object-oriented systems 
which defines sets of rules and vocabulary for 
conceptual and physical representation of system 
(Mallick & Das, 2013). It includes graphical nota-
tion to create visual model of the system (Booch, 
Rumbaugh, & Jacobson, 2005) which has well-
defined semantics. UML in development process 
is used for object-oriented analysis and design. 
There are different diagramming techniques which 
is used to model a system. These diagrams can 
be grouped into 2 which are called structure and 
behavior diagrams. Structure diagram shows the 
static relationships and represents the data in a 
system which includes class, object, package, 
deployment, component, composite structure and 
profile diagrams. Behavior diagram shows the 
dynamic relationships between the instances or ob-



Object-Oriented Programming in Computer Science

7476

jects. It includes use-case, sequence, statechart and 
activity diagrams. First of these diagrams called 
use case diagram is used to capture the require-
ments of the system and shows the relationships 
between the system and environment. Sequence 
diagram is a form of interaction diagram which is 
used to model the behavior of objects by focusing 
on time-based ordering of an activity. Statechart 
diagram shows the behavior of the classes. Activ-
ity diagram illustrates the flow of activities in a 
use case (Booch, Rumbaugh, & Jacobson, 2005).

It has developed an object-oriented design with 
UML class diagram for pets as shown in Figure 4.

Figure 4 is the class diagram that models 
generalization of superclass Pet and subclasses 
Cat and Dog. The following section 2.2, it is 
implemented our object-oriented design in Java 
and showed how to convert class diagrams to Java 
code (Deitel & Deitel, 2012).

2.2. Implementation of OOP 
Design in Java Programming

A university system can be given as an example, 
and this system is implemented by java program-
ming language. The Java source code for the Person 
class is shown in Listing 1.

In this example, there is a base class which is 
called Person. This class includes basic informa-

tion, which people have, and there are 3 derived 
classes which inherit data and functions from the 
base class. These derived classes have their own 
methods and data members, and also they have 
methods and data members of Person class.

Keyword public is an accessibility modifier 
which refers the calling members or methods from 
external locations like other classes (Lea, 1999). 
AcademicPersonnel, administrativePersonnel and 
student classes call methods from Person class. 
Derived class methods are declared public because, 
they should be accessed from Main() method 
which Test class has. AcademicPersonnel class 
has a method called checkAcademicPersonnel(), 
this method is declared private. Private access 
specifier refers hiding data members and meth-
ods from other classes. Every class can access its 
own private data members and methods. If we 
try to reach this private checkAcademicPerson-
nel() method from Test class, it is going to fail. 
deliverCourse() method, which is declared public, 
can reach this private method because, they are 
in the same class.

Last class is called Test, which is developed to 
test other classes, it only has one method called 
Main. We create 3 different objects from 3 differ-
ent derived class. Object academicPersonnel1 is 
created from academicPersonnel class which has 
deliverCourse() method on its own scope but, this 

Figure 4. Class diagram modeling generalization of superclass Pet and subclasses Cat and Dog



 S

Category: Systems and Software Engineering

7477

Listing 1.

1. public class Person
2. { 

3.  public void printPersonalInformation(String id, String fName, String lName)
4.  { 

5.  System.out.println(id+” “+fName+” “+lName);
6.  } 

7.  } 

8.  class academicPersonnel extends Person
9.  { 

10.  private boolean checkAcademicPersonnel()
11.  { 

12.  return true; 

13.  } 

14.  public void deliverCourse(String courseCode, String courseName)
15.  { 

16.  if(checkAcademicPersonnel())
17.  { 

18.  System.out.println(”Academic Personnel”);
19.  System.out.println(”Course: “+courseCode+ “ “+ courseName);
20.  } 

21.  } 

22.  } 

23.  class student extends Person
24.  { 

25.  void takeCourse(String courseCode, String courseName)
26.  { 

27.  System.out.println(”Course: “+courseCode+” “+courseName
28.  } 

29.  } 

30. 

31.  class administrativePersonnel extends Person
32.  { 

33.  boolean checkStudentInformation()
34.  { 

35.  return true; 

36.  } 

37.  } 

38.  class Test
39.  { 

40.  public static void main(String[] args)
41.  { 

42.  academicPersonnel academicPersonnel1 = new academicPersonnel();

continued on following page



Object-Oriented Programming in Computer Science

7478

object can also reach printPersonalInformation() 
method on Person class. Object student1 is created 
from student class, which has takeCourse() method 
on its own scope, and same as academicPersonnel 
class, student class is derived from Person class, 
so this object can reach base class methods. Third 
object is created from administrativePersonnel 
class which is derived from same base class.

For another example of the Java source code 
for the pet class is shown in Listing 2.

This example shows using abstract class. Ab-
stract class is used to create a base template for 
derived classes. Pet class is the abstract base class 
which includes an abstract method called wag(). 
This method has no implementation, therefore it is 
declared abstract. There are two classes called dog 
and cat which are derived from pet class. These 
two derived classes provide an override method 
by using override keyword. Cat and Dog classes 
override wag() method, dog1.wag() invokes the 
wag() method declared in dog class, cat1.wag() 
invokes the wag() method declared in cat class.

FUTURE RESEARCH DIRECTIONS

To create (write) a program in any languages needs 
detailed training. That means a programmer have 
to be trained highly in the programming language 
that programmers wants to use. In the real life, 

even if any person do not know any languages, 
they could write a computer program. Namely, 
untrained people can also create the program 
without using any programming languages. We 
can ask how it can be done. Instead of teaching 
a programming languages to a person, we can 
teach how to draw flow charts. When a correct 
flow chart is drawn, a case at the background of 
the flow chart can create a program source code 
by using the flow chart. If these kinds of cases 
can be created, an untrained person can write 
his program by using flow chart and produce his 
programming code. First of this, the basic flow 
chart symbols are taught and combination of this 
basic elements are told to the training people 
who wants to implement their problem by us-
ing flow chart. And then, it is expected to solve 
their problem. This solves the dependency of a 
programming language problem to implement a 
computer software.

CONCLUSION

The programming languages before OOP concept 
were not easy and friendly. Large and complex 
problems were solved by dividing into small sys-
tems. The real world modeling was not implement-
ed by procedural programming. Creation of the 
real simulation of problems can be implemented 

43.  student student1 = new student();
44.  administrativePersonnel administrativePersonnel1 = new  administrativeP-
ersonnel(); 

45.  academicPersonnel1.printPersonalInformation((”100305044”,”Rahime”,”Yilm
az”);
46.  academicPersonnel1.deliverCourse(”CENG101”, “Algorithms and Programming 
I”);
47.  student1.printPersonalInformation((”214700560”, “Anil”, “Sezgin”);
48.  student1.takeCourse(”CENG102”, “Algorithms and Programming II”);
49.  administrativePersonnel1.checkStudentInformation(); 

50.  } 

51.  }

Listing 1. Continued



 S

Category: Systems and Software Engineering

7479

by the OOP. The functional programming shows 
more tendency for losing data while running 
according to OOP. The system requirements 
of data structure and data are more flexible in 
OOP than those in other models. The modifica-
tion of all systems is more complicated than the 
object oriented system, since OOP system has 
a modular structure. All processes are done by 
using functions in former languages but in OOP, 
everything is processed by using objects methods. 

The data is transferred by using messages among 
objects. By this way, objects can communicate 
among themselves. Data hiding properties of 
OOP attempt to protect the data from the outside 
modification request.

As a conclusion, the features of OOP, such as 
encapsulation, abstraction, polymorphism and 
inheritance help us to model the real life entities 
on computers. A more qualified and effective 
software can be created by using OOP.

Listing 2.

1.  public abstract class pet
2.  { 

3.  public abstract void wag();
4.  } 

5.  class cat extends pet
6.  { 

7.  @Override 

8.  public void wag()
9.  { 

10.  System.out.println(“Cat wags tail.”);
11.  } 

12.  } 

13.  class dog extends pet
14.  { 

15.  @Override 

16.  public void wag()
17.  { 

18.  System.out.println(“Dog wags tail.”);
19.  } 

20.  } 

21.  class Test1
22.  { 

23.  public static void main(String[] args)
24.  { 

25.  dog dog1 = new dog();
26.  cat cat1 = new cat();
27.  dog1.wag(); 

28.  cat1.wag(); 

29.  } 

30.  }



Object-Oriented Programming in Computer Science

7480

REFERENCES

Bista, R., Bajracharya, L., & Dongol, D. (2015). A 
New Approach To Enhance Efficiency of Object 
Oriented Programming. Technia, 8(1), 1058.

Booch, G., Maksimchuk, R. A., Engle, M. W., 
Young, B. J., Conallen, J., & Houston, K. A. 
(2007). Object-Oriented Analysis and Design with 
Applications (3rd ed.). Boston, MA: Addison-
Wesley Professional.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005, 
May). The Unified Modeling Language User 
Guide. Addison-Wesley.

Canning, P. S., Cook, W. R., Hill, W. L., & 
Olthoff, W. G. (1989). Interfaces for Strongly-
Typed Object-Oriented Programming. Paper 
presented at OOPSLA ‘89, New York, NY. 
doi:10.1145/74877.74924

Deitel, P., & Deitel, H. (2012). Java How to 
Program (9th ed.). Pearson Education Limited.

Dennis, A., Wixom, B. H., & Tegarden, D. 
(2015, April). System Analysis & Design: An 
Object-Oriented Approach with UML (5th ed.). 
Academic Press.

Gamma, E., Helm, R., Johnson, R., & Vlissides, 
J. (1994). Design Patterns: Elements of Reusable 
Object-Oriented Software. Boston, MA: Addison-
Wesley Professional.

Harel, D., Marron, A., & Weiss, G. (2010, June). 
Programming coordinated behavior in java. In Eu-
ropean Conference on Object-Oriented Program-
ming (pp. 250-274). Springer Berlin Heidelberg.

Lea, D. (1999). Concurrent Programming in Java: 
Design Principles and Patterns. Boston, MA: 
Addison-Wesley Professional.

Ledgard, H. F. (1996). The Little Book of Object-
Oriented Programming. Upper Saddle River, NJ: 
Prentice Hall.

Mallick, B., & Das, N. (2013, November). An 
Approach to Extended Class Diagram Model 
of UML for Object Oriented Software Design. 
International Journal of Innovative Technology 
& Adaptive Management, 1.

Robson, D. (1981). Object-Oriented Software 
Systems. Byte., 6(8), 74–86.

Thomsen K., S. (1986). Multiple Inheritance, a 
Structuring Mechanism for Data, Processes and 
Procedures. Aarhus Universitet, Matematisk 
Institut, Datalogisk Afdeling.

Wegner, P. (1987). Dimensions of Object-Based 
Language Design. Paper presented at OOPSLA 
‘87, New York, NY. doi:10.1145/38765.38823

Wirfs-Brock, R. J., & Johnson, R. E. (1990). 
Surveying Current Research in Object-Oriented 
Design. Communications of the ACM, 33.

Yourdon, E., Whitehead, K., Thomann, J., & Op-
pel, K. (1995). Mainstream Objects: An Analysis 
and Design Approach for Business (1st ed.). Upper 
Saddle River, NJ: Prentice Hall.

KEY TERMS AND DEFINITIONS

Class: Used to define the objects and to de-
scribe the contents of the objects.

Java: A high level programming language that 
is based on object oriented design which was first 
released by Sun Microsystems in 1995.

Message: Communication type among meth-
ods.

Method: Called a function or a procedure that 
is used to operate on the data.

Object: Instance occurrence of a same class 
that models real-world items.

Object Oriented: A technique for program-
ming that is based on the objects and on the 
relationship between those objects.

Programming: A mathematical methodology 
that helps programmers while writing a program.


