The Steam Whisperer’s “How To” Guide to Better Steam Heating

How to Check the Capacity of your Boiler

- To determine the maximum size of the boiler you need to measure the radiators, count the sections and look them up in special tables to determine their “Equivalent Direct Radiation” (EDR) (the tables are attached).
- Take this EDR and multiply by 320 and this should be about the output in BTU/Hr of your boiler.
- Usually the existing boiler is sized about 60% to 80% too big or more. Many systems can use even smaller boilers, if the system is adapted.

How to Check the Capacity of your Steam Main Vents

- Get a stopwatch. Run boiler for about 30 minutes to get system warmed up. While waiting find the longest pipe from the boiler to the farthest radiator.
- Let system cool down for about 10 minutes.
- Start boiler. When pipe coming out of boiler is steam hot, start a stop watch.
- Follow the steam main pipe from boiler to the farthest radiator connection.
- This pipe should get steam hot in about 2 minutes or less. If not, your steam main vents probably don’t have enough venting capacity.

For those that have a float type Low Water Cut Off.....

How to Complete the Weekly Maintenance

- Fire up the boiler
- Follow the pipe from the bottom of the control to its open end
- Put a bucket here to catch water
- Stand clear of the drain pipe (the water can be very hot) and open the valve for a few seconds
- Dirty water should come out rapidly and the boiler should shut off

If water does not come out rapidly or the boiler does not shut off right away

- Shut down the boiler and rebuild the control immediately!
- Do not use the boiler under any circumstances until it is repaired
• This is a very dangerous condition that can destroy the boiler and injure or kill people.

How To Check for Leaks

Turn the thermostat way up for an hour or more and check the radiators with a simple room-by-room walk-through
• Look at every radiator and every valve for leaking water and steam, or stains, corrosion etc.
• Look at the steam pipes and boiler too for leaks
• Fix Leaks ASAP

How to Fine Tune Your Thermostat

If you have the old fashioned round thermostat……
• Take the ring around the clear plastic center off.
• Lightly blow out any dust.
• Find the stamped metal scale usually at the bottom of the thermostat.
• Slide the pointer all the way to the longer position (higher numbers)
• Monitor the heat. If the temperature swings up and down a lot between each heat on and heat off cycle, move the pointer a little to the shorter side (lower numbers). Continue this until the temperature is stable near the thermostat from on to off cycles.

If you have a digital thermostat……

• Find the installation manual (often different from the user’s manual). If you don’t have it, find the model number of the thermostat and look it up online.
• Somewhere in the installation manual it will talk about temperature swing or cycles per hour or adjusting for different system types (forced air, heat pump, hot water, steam, etc)
• Your thermostat should be set for the recommended steam settings. Some thermostats lump steam and hot water under a hydronic setting. If yours does, I’d suggest getting a different thermostat that allows you to tune it just for steam.
• On Honeywell thermostats you set the Cycles per hour setting (CPH). For steam I suggest starting at 1 and if the temperature is unstable, then reset it to 2.

Typically the boiler will fire up and run about 15 to 20 minutes at a time when the thermostat is tuned properly
Radiator Ratings
(All dimensions and ratings are approximate)

Types:
1. Old Style Column
2. Tube Style
3. Thin Tube Style

To identify the style of a radiator, count the number of tubes or columns. Then check below on the width. When you have identified the style 1, 2 or 3, read the radiation per section on opposite page directly in line with the radiator style. Example:
Radiator sketched at the right is a 4 tube-8 section-7" wide-20" high (2-1/4 sq. ft./per sect.)

Sketch at left shows relative sizes of radiator styles. All are 4 tube (column) D section radiators—Each rating is different.

<table>
<thead>
<tr>
<th>Columns or Tubes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Style Column Radiators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>4-9"</td>
<td>11-5/8"</td>
<td>12-1/2"</td>
<td>12-1/2"</td>
<td>12-1/2"</td>
<td>12-1/2"</td>
<td>12-1/2"</td>
</tr>
<tr>
<td>Height</td>
<td>20"</td>
<td>20"</td>
<td>20"</td>
<td>20"</td>
<td>20"</td>
<td>20"</td>
<td>20"</td>
</tr>
<tr>
<td>Tube Type Radiators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>5"</td>
<td>7"</td>
<td>8-1/4"</td>
<td>9-1/4"</td>
<td>10-1/2"</td>
<td>12-1/2"</td>
<td>12-1/2"</td>
</tr>
<tr>
<td>Thin Tube Radiators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>4"</td>
<td>4-3/4"</td>
<td>4-3/4"</td>
<td>4-3/4"</td>
<td>4-3/4"</td>
<td>4-3/4"</td>
<td>4-3/4"</td>
</tr>
</tbody>
</table>

These radiators are also used as wall type (without legs).
These radiators are so used as wall type (without legs).
Radiator Ratings

Types:
1. Old Style Column
2. Tube Style
3. Thin Tube Style

To identify the style of a radiator, count the number of tubes or columns. Then check below on the width. When you have identified the style 1, 2 or 3, read the radiation per section on opposite page directly in line with the radiator style. **Example:**

Radiator sketched at the right is a 4 tube-8 section-7" wide-20" high (2-1/4 sq. ft./per sect.)

Sketch at left shows relative sizes of radiator styles. All are 4 tube (column) 0 section radiators. Each rating is different.

<table>
<thead>
<tr>
<th>Columns or Tubes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Style Column Radiators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2½"/section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thin Tube Radiators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3½"/section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Old Style Column Radiators are also used as wall type (without legs).
- Thin Tube Radiators are also used as wall type (without legs).
DIMENSIONS AND RATINGS ARE APPROXIMATE.

WALL TYPE

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SQ. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13(\frac{1}{2}) x 17(\times) 3(\prime)</td>
<td>5</td>
</tr>
<tr>
<td>13(\frac{1}{2}) x 21(\prime) x 3(\prime)</td>
<td>6</td>
</tr>
<tr>
<td>13(\frac{1}{2}) x 22(\prime) x 3(\prime)</td>
<td>7</td>
</tr>
<tr>
<td>13(\frac{1}{2}) x 29(\prime) x 3(\prime)</td>
<td>9</td>
</tr>
</tbody>
</table>

SECTIONAL WALL TYPE

<table>
<thead>
<tr>
<th>HEIGHT</th>
<th>37(\prime)</th>
<th>26(\frac{1}{2})</th>
<th>21(\frac{1}{2})</th>
<th>16(\prime)</th>
<th>13(\frac{1}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQUARE FEET RADIATION PER SECTION</td>
<td>2(\frac{1}{2})</td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{2})</td>
<td>1</td>
<td>3/4</td>
</tr>
</tbody>
</table>

CHARTS BELOW GIVE THE SQUARE FEET OF RADIATION PER SECTION

<table>
<thead>
<tr>
<th>HEIGHT</th>
<th>45(\times)</th>
<th>38(\times)</th>
<th>32(\times)</th>
<th>26(\times)</th>
<th>23(\times)</th>
<th>22(\times)</th>
<th>20(\times)</th>
<th>18(\times)</th>
<th>17(\times)</th>
<th>16(\times)</th>
<th>15(\times)</th>
<th>14(\times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLUMN</td>
<td>[\frac{1}{2}]</td>
<td>3</td>
<td>3(\frac{1}{2})</td>
<td>2(\frac{3}{4})</td>
<td>2(\frac{1}{2})</td>
<td>2(\frac{1}{4})</td>
<td>2(\frac{1}{2})</td>
<td>3(\frac{1}{4})</td>
<td>3(\frac{1}{2})</td>
<td>4(\frac{1}{2})</td>
<td>4</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>COLUMN</td>
<td>3</td>
<td>3(\frac{1}{2})</td>
<td>3</td>
<td>2(\frac{3}{4})</td>
<td>2(\frac{1}{2})</td>
<td>2(\frac{1}{4})</td>
<td>2(\frac{1}{2})</td>
<td>3(\frac{1}{4})</td>
<td>3(\frac{1}{3})</td>
<td>4(\frac{1}{2})</td>
<td>4</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>COLUMN</td>
<td>4</td>
<td>4(\frac{1}{2})</td>
<td>4(\frac{1}{4})</td>
<td>3(\frac{1}{2})</td>
<td>3(\frac{1}{4})</td>
<td>3(\frac{1}{2})</td>
<td>4(\frac{1}{4})</td>
<td>4 (\frac{3}{4})</td>
<td>3 (\frac{1}{3})</td>
<td>2 (\frac{1}{4})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMN</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4(\frac{1}{4})</td>
<td>4(\frac{1}{4})</td>
<td>4 (\frac{3}{4})</td>
<td>3 (\frac{1}{4})</td>
<td>3 (\frac{1}{3})</td>
<td>2 (\frac{1}{4})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMN</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4 (\frac{3}{4})</td>
<td>5</td>
<td>4 (\frac{3}{4})</td>
<td>3 (\frac{1}{3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMN</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4 (\frac{3}{4})</td>
<td>5</td>
<td>4 (\frac{3}{4})</td>
<td>3 (\frac{1}{3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TUBE

<table>
<thead>
<tr>
<th>THICKNESS</th>
<th>3(\frac{1}{2}) (\times)</th>
<th>2(\frac{1}{4}) (\times)</th>
<th>2(\frac{1}{2}) (\times)</th>
<th>2(\frac{3}{4}) (\times)</th>
<th>3 (\frac{1}{2}) (\times)</th>
<th>3</th>
<th>3 (\frac{1}{2})</th>
<th>3</th>
<th>3 (\frac{1}{4})</th>
<th>3</th>
<th>3 (\frac{1}{4})</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>THICKNESS</td>
<td>2(\frac{1}{2})</td>
<td>2 (\frac{1}{4})</td>
<td>2</td>
<td>2 (\frac{1}{4})</td>
<td>2</td>
<td>1 (\frac{1}{4})</td>
<td>1</td>
<td>1 (\frac{1}{4})</td>
<td>1 (\frac{1}{4})</td>
<td>1 (\frac{1}{4})</td>
<td>1 (\frac{1}{4})</td>
<td>1 (\frac{1}{4})</td>
</tr>
<tr>
<td>THICKNESS</td>
<td>3</td>
<td>2 (\frac{1}{4})</td>
<td>2</td>
<td>2 (\frac{1}{4})</td>
<td>2</td>
<td>1 (\frac{1}{4})</td>
<td>1</td>
<td>1 (\frac{1}{4})</td>
<td>1 (\frac{1}{4})</td>
<td>1 (\frac{1}{4})</td>
<td>1 (\frac{1}{4})</td>
<td>1 (\frac{1}{4})</td>
</tr>
<tr>
<td>THICKNESS</td>
<td>4</td>
<td>4</td>
<td>3 (\frac{1}{2})</td>
<td>2 (\frac{1}{2})</td>
<td>2 (\frac{1}{4})</td>
<td>2 (\frac{1}{4})</td>
<td>2</td>
<td>1 (\frac{1}{2})</td>
<td>1 (\frac{1}{2})</td>
<td>1</td>
<td>1 (\frac{1}{2})</td>
<td>1 (\frac{1}{2})</td>
</tr>
<tr>
<td>THICKNESS</td>
<td>5</td>
<td>5</td>
<td>4 (\frac{1}{2})</td>
<td>3 (\frac{1}{2})</td>
<td>3 (\frac{1}{2})</td>
<td>3 (\frac{1}{2})</td>
<td>4 (\frac{1}{4})</td>
<td>3 (\frac{1}{4})</td>
<td>3 (\frac{1}{4})</td>
<td>3 (\frac{1}{4})</td>
<td>3 (\frac{1}{4})</td>
<td>3 (\frac{1}{4})</td>
</tr>
<tr>
<td>THICKNESS</td>
<td>6</td>
<td>6</td>
<td>5 (\frac{1}{4})</td>
<td>4 (\frac{1}{2})</td>
<td>4 (\frac{1}{2})</td>
<td>4 (\frac{1}{2})</td>
<td>5 (\frac{1}{2})</td>
<td>4 (\frac{1}{2})</td>
<td>4 (\frac{1}{2})</td>
<td>4 (\frac{1}{2})</td>
<td>4 (\frac{1}{2})</td>
<td>4 (\frac{1}{2})</td>
</tr>
</tbody>
</table>

HEAT EMISSIONS CHART (Based on Room Temperature of 70\(\times\)F.)

<table>
<thead>
<tr>
<th>Average water temperature in radiators F.</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
<th>210</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat emission BTU/Hr. per sq. ft.</td>
<td>110</td>
<td>130</td>
<td>150</td>
<td>170</td>
<td>190</td>
<td>210</td>
<td>230</td>
<td>240</td>
</tr>
</tbody>
</table>
The Steam Whisperer’s

The Even Heat System

Step Up To The Best

The Even Heat System can be retrofitted to most two pipe steam heating systems. It addresses the two most common issues in two pipe steam systems...uneven heating and expensive and inconvenient radiator trap replacement. In addition it allows the system to be upgraded to one of the most efficient heating plant configurations available.

The Even Heat System can be implemented in steps to address the limitations of budgets.

The typical two pipe steam system has a trap failure rate of 30% or higher, causing widespread issues such as uneven heating and banging. Since these failures cost owners thousands of dollars in wasted heat, most buildings are at the optimum point for upgrading to the Even Heat System.

The other optimum time to implement The Even Heat System is when the boiler is replaced. The Even Heat System allows a lower capacity boiler (typically about ½ the existing capacity) to be installed, allowing the funds that would normally be spent on a much larger boiler to be directed towards installing The Even Heat System.

Repairing failed traps has two distinct disadvantages. First is that it is difficult to find all the bad traps in a system in a single trap testing survey of the building. During a series of trap testing surveys at University of Notre Dame and using the most advanced trap testing equipment, it was found that at least 1/3 of the failed traps were not detected on the first pass of trap testing and repairs. A second round of testing and repairs was required to bring the overall failure rate down to a suspected 11% rate. The industry gold standard is a failure rate of about 5%. Repairing just traps that test bad after a single test will still leave a very large number of bad traps in use that will continue to waste energy and cause comfort problems.

The second disadvantage is that even if you were to complete multiple rounds of testing and repairs, you would still have a large number of traps that were on the edge of failure, so the failure rate would immediately begin rising after you completed extensive and disruptive repairs. Even the new traps are expected to fail within 7 to 10 years.

Repairing failed traps is like trying to bail out a sinking ship with a coffee cup.

Step 1

The first step is best implemented when a building is requiring extensive radiator trap repairs or is being upgraded to room by room temperature control. It allows the resources spent on repairing radiator traps to be redirected to a permanent solution to radiator trap repairs. However, it can be implemented at any time, though working on the system when it is in its summer shut down is best.

The Even Heat System addresses the tangle of problems of radiator trap repairs by addressing all the radiators the first time with a permanent solution.

A preliminary review of the heating plant, building usage, and sample spaces and their radiators’ is made to determine the applicability of upgrading to the Even Heat System. If these results come out positive
(they usually do), then a full building radiator survey is completed (very similar to the required trap survey). Once this is completed, the new Even Heat System components are custom designed to your system's needs.

With materials on hand, the retrofit of the radiators takes just slightly longer than just replacing traps. Typically a two man crew can retrofit 30 radiators per day or more, depending on installation conditions. While this is work is completed, some simple changes are made to the heating plant controls to ensure the system works together smoothly. Often the existing control settings only need to be changed, without requiring any additional expense of replacing controls.

Finally, after all work is complete, the system is started up, and all new work is checked for leaks just like replacing steam traps.

The first winter there are sometimes a few simple adjustments that need to be made to a few radiators to optimize the operation.

This first step typically yields dramatic improvements in comfort levels and fuel bills and can stand alone without completing further steps until the time is right.

In buildings where both The Even Heat System and room by room thermostatic control were installed, fuel savings or 15% to 20% have been recorded and dramatically better comfort achieved, according to nearly all unit owners. In a recent building where just The Even Heat System was installed we have seen gas usage drop by 40%, the best we have recorded so far.

After step one, there is no longer any need to enter all the living spaces. Only a few may need to be entered for Step 3.

Step 2

This step takes advantage of one of the unique characteristics of The Even Heat System, the ability to operate a steam system with a much lower capacity boiler than other typical systems. Operating a lower capacity boiler is less costly than operating a larger boiler.

For many systems, the existing boiler can be retuned to operate at lower capacity. This will often increase the overall seasonal efficiency of the boiler, reduce wear on the boiler and system and provide another step up in comfort for the occupants. Heat losses also can be reduced by providing more stable temperatures.

In some systems, however, replacement of the boiler or burner is necessary to complete this step. Depending on the condition of the current boiler and the current operating costs, this step may be delayed to when a boiler or burner replacement is eminent. This step is often combined with and is related to Step 3.

Step 3

This final step brings the system to best in comfort and efficiency. In this step the burner of the boiler is either changed or modified to allow the boiler output to be modulated based on the heating needs of the building. This is a long proven strategy to improve boiler performance that is easily accomplished with The Even Heat System.

In operation, The Even Heat boiler controller monitors the outdoor temperature and automatically reduces the boiler output in warm weather (light heating needs) and increases it in cold weather (heavy heating needs). By operating the boiler nearly continuously throughout the heating season, but at a variable input, the boiler stand by losses are nearly eliminated, yearly heat transfer efficiency rises, and heat is delivered to spaces at almost the same rate as it is lost. Radiators stay warm continuously providing gentle and stable radiant heating to maximize comfort and reduce wasteful hot air stratification.

As part of this potential burner replacement upgrade, The Steam Whisperer offers a unique radiant design burner that has shown dramatic savings in energy over typical commercial burners. In our beta test in a Circa 1920's boiler that had a modern properly tuned conventional burner, the burner, with a primitive modulating control, reduced fuel usage over 30% over the previous winter, when adjusting for different outdoor temperatures.

You have now stepped up to one of the most efficient and comfortable heating systems available.
Services Offered

System Assessments/ Consulting

Stage One Assessment

We believe that this should be the first step before beginning to make improvements or repairs to a steam system. The information that this assessment provides can be used as a road map for determining what should be done first and what the long term plans are for the system. It helps ensure resources are directed to the most productive upgrades and repairs first and helps ensure that work done today will integrate properly with ultimate goals for the system. It avoids the common problem of investing in improvements only to discover later that they need to be changed to integrate with the whole system plan.

This is an eyes on review of the system foundations. The focus is on:

1. The boiler
2. The near boiler piping
3. The system and boiler controls
4. The system piping
5. The system air venting
6. The original system design operational requirements
7. Potential for upgrades to system and heating plant
8. Available rebates and funding for improvements.

For most buildings our time is chiefly spent in the basement, so all basement areas and garden units need to be accessible for inspection. The foundations have to be in proper order before any work in the living spaces is completed above.

Stage Two Assessment

Once many of the foundational issues are addressed, often most of the problems in the living units disappear. However, some may persist and this is the next step to address the additional problems.

In addition, this assessment may include reviewing the system for further upgrades to the control and distribution of heating and the upgrades to the heating plant.

Some of the items that may be focused on include:

1. Room by room radiator survey to determine necessary repairs
2. Survey and collect data and conduct heat load calculations to determine the application of The Steam Whisperer's "Even Heat System".
3. Complete calculations/testing to determine optimum boiler capacity.
4. Explore upgrades for heating plant including burner replacement.
5. Trap condition assessments.

Boiler Maintenance/upgrades

Our technicians are available for nearly all types of boiler maintenance, including

1. Full service of water side controls and piping.
2. Cleaning, tuning and repairs of power burners.
4. Control replacements.
5. Burner Replacements.

System Maintenance /upgrades

Our technicians also work outside the boiler room

1. Pipe Insulation
2. Trap Rebuilding/ Replacement
3. Radiator trap elimination
4. Installation of “Even Heat System” to eliminate traps and balance heating
5. Piping repairs.
6. One pipe steam heating balancing
7. Room by room temperature controls for one and two pipe steam
8. Vacuum pump installation
9. Radiator valve repairs
10. Radiator replacements

New Steam Heat System Design and Installation

1. Expansion of existing steam heating systems.
2. Installation of new conventional steam heating systems for new construction.
3. Installation of compact “Steam Mini-tube” systems for new construction.
4. Conversion of conventional steam systems to new Mini-tube systems to open up basement headroom for basement renovations.
5. Retrofit installation of steam heating to replace primitive, inefficient forced air furnace heating.

If it has anything to do with Steam Heating, we can probably take care of it.