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Analysis of networks and in particular discovering communities
within networks has been a focus of recent work in several fields
and has diverse applications. Most community detection methods
focus on partitioning the entire network into communities, with
the expectation of many ties within communities and few ties
between. However, many networks contain nodes that do not
fit in with any of the communities, and forcing every node into a
community can distort results. Here we propose a new framework
that extracts one community at a time, allowing for arbitrary struc-
ture in the remainder of the network, which can include weakly
connected nodes. The main idea is that the strength of a commu-
nity should depend on ties between its members and ties to the
outside world, but not on ties between nonmembers. The pro-
posed extraction criterion has a natural probabilistic interpretation
in a wide class of models and performs well on simulated and real
networks. For the case of the block model, we establish asymptotic
consistency of estimated node labels and propose a hypothesis test
for determining the number of communities.

Understanding and modeling network structures have been a
focus of attention in a number of diverse fields, including

physics, biology, computer science, statistics, and social sciences.
Applications of network analysis include friendship and social
networks, marketing and recommender systems, the World Wide
Web, disease models, and food webs, among others. A fundamen-
tal problem in the study of networks is community detection
(see refs. 1–3 for comprehensive recent reviews). We focus here
on undirected networks N ¼ ðV;EÞ, where V is the set of nodes
and E is the set of edges, possibly weighted. The community
detection problem is typically formulated as finding the partition
V ¼ V 1∪…∪VK , which gives the “best” communities in some
suitable sense. The node sets V 1;…;VK are usually taken to be
disjoint, although there is some recent work on detecting over-
lapping communities (4, 5).

The extensive physics and computer science literature on
networks typically thinks of communities as tightly knit groups
with many connections between the group members and rela-
tively few connections between groups. Thus detection methods
focus on maximizing links within communities while minimizing
links between communities. This can be achieved either implicitly
through an algorithmic approach (6) or explicitly by optimizing a
criterion that measures the quality of a proposed partition over all
possible partitions. These criteria include ratio cuts (7), normal-
ized cuts (8), spectral clustering (9), andmodularity (10); see ref. 3
for a review. All of these are symmetric criteria, in the sense that
all potential communities play the same role. There are many
examples of networks where such a requirement makes sense,
for example, the college football games network (11), and yet
some commonly studied networks clearly do not fit this frame-
work. One such example is when there are nodes without strong
connections to any communities, such as in the high school
friendship network of ref. 12 discussed later in the paper. In such
cases, the partitioning methods typically split up weakly con-
nected nodes and group them together with tighter communities.
There is not much work in the networks literature focusing on
such a structure, even though in traditional multivariate cluster-
ing there are methods that allow for a diffuse “background” clus-
ter [e.g., DBSCAN (13) and DenClue (14)].

Another class of community detection methods relies on a
statistical model for the network to estimate the partition, typi-
cally by maximizing some form of the likelihood directly or
employing Gibbs sampling. The models used for partitioning
include the stochastic block model (15–17), a mixture model (18),
univariate (19) and multivariate (20) latent variable models, and
latent feature models (21); for a comprehensive review of statis-
tical models of networks, see ref. 2. In particular, the stochastic
block model, described in detail later in the paper, allows for any
density of connections within communities and can in principle
handle any combination of sparse and tight communities. The
block model assumes a uniform distribution of edges within a
block, and an extension was recently proposed to accommodate
arbitrary degree distributions within the blocks [the degree-
corrected block model (22)].

In this paper, we propose a framework for community extrac-
tion that looks for one community at a time. Intuitively, our
extraction criterion, like other partition methods, looks for a
“tight” group with more links within itself than to the rest of
the network; but, unlike partition methods, it allows for the rest
of the network to include an arbitrary mixture of tight and weak
communities or sparsely connected background nodes. Mathe-
matically, our criterion matches the definition of community in
a large class of probability models on networks, outlined below,
which can be thought of as a generalization of the block model
with some parameter constraints. Our goal is to extract the tight-
est community, which we do by focusing on the edges within the
candidate community and edges connecting it to the rest of the
network, and ignoring edges within the rest of the network. The
key feature of the extraction criterion is that it is not symmetric in
the two sets into which we are splitting the network. In practice,
such extraction can be used on its own or in conjunction with
graph partitioning, for example, to identify community cores.

As an illustration, consider this toy example: Out of n ¼ 60
nodes, 15 belong to a community where links between members
form independently with probability 0.5. The links between mem-
bers and the other 45 nodes and links between the other 45 nodes
all form independently with probability 0.1. A partition into two
communities using modularity and our community extraction
method are shown in Fig. 1. Modularity has to balance tightness
of the two communities, and as a result includes a number of
background nodes in the community. Extraction, on the other
hand, separates out the true community perfectly.

Finally, we briefly mention other related work. The core-
periphery partition methods (23, 24) use a different criterion to
separate a tight “core” from a sparse “periphery,” whereas our
criterion is designed to extract the tightest community regardless
of whether the rest of the network is sparse or contains other
communities. Local community detection (25, 26) looks for the
tightest community around a given node, but not the globally
tightest community. Finally, the hierarchical network model
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based on ensembles of trees proposed in ref. 27 also has the
feature that the strength of a community does not depend on
unrelated nodes.

The Community Extraction Framework
First we introduce basic notation. A network N ¼ ðV;EÞ with
jV j ¼ n nodes can be represented by an n × n adjacency matrix
A ¼ ½Aij�, where Aij > 0 if there is an edge between nodes i
and j andAij ¼ 0 otherwise. If the edges have weights, the positive
Aij’s are the weights; if not, they are set to 1. For undirected
networks, A is symmetric.

For simplicity, we start with partitioning into two sets V 1, V 2,
where V 1 ∩ V 2 ¼ ∅ and V ¼ V 1∪V 2. A naive way to partition
a network is to minimize the total weight R of edges connecting
V 1 and V 2 (the min-cut method), R ¼ ∑i∈V 1;j∈V 2

Aij. However,
minimizing R yields a trivial solution of V 1 ¼ V , so various
adjustments have been proposed. For example, the ratio cut (7)
avoids the trivial solution by minimizing R∕ðjV 1j · jV 2jÞ, where
jV 1j and jV 2j are the sizes of the two groups. The important point
for us here is that in all these criteria the sets V 1 and V 2 can be
interchanged.

The criterion we propose extracts one community at a time by
looking for a set with a large number of links within itself and a
small number of links to the rest of the network. The links within
the complement of this set do not affect the value of the criterion.
To emphasize the lack of symmetry, we denote the community
to be extracted by S and its complement by Sc (rather than V 1

and V 2). Then we maximize the following extraction criterion
over all possible S:

W ðSÞ ¼ OðSÞ
jSj2 −

BðSÞ
jSjjScj ; [1]

where

OðSÞ ¼ ∑
i;j∈S

Aij; BðSÞ ¼ ∑
i∈S;j∈Sc

Aij:

The term OðSÞ is twice the weight of the edges within S, and BðSÞ
represents connections between S and the rest of the network.
Each term is normalized by the total number of possible edges
in each case, which gives these quantities a natural interpretation
as probability estimates, discussed further below. Note that we
normalize the first term by jSj2 rather than jSjðjSj − 1Þ, thus
not explicitly excluding self-loops in order to be consistent with
the probability models discussed below, but in practice this makes
little difference. Subject to this small difference, our criterion can
be described as the intracluster density minus the intercluster
density; it is also related to conductance (3).

Criterion 1, like the graph min-cut, does not explicitly guard
against splitting off small communities. The trivial solution does
not maximize W , but in a large sparse network a very small com-
munity can give a high value of W , because the second term will
be made negligible by the large jScj. To avoid this situation, we

make an adjustment in the spirit of the ratio cut and maximize
the following criterion instead:

~W ðSÞ ¼ jSjjScj
�
OðSÞ
jSj2 −

BðSÞ
jSjjScj

�
: [2]

Because jSjjScj is maximized at jSj ¼ n∕2, this factor penalizes
very small and very large communities and produces more ba-
lanced solutions. Empirically, we found the adjustment helps in
sparse networks, but plays no role in dense networks. Later
we show that asymptotically both criteria are consistent under
an appropriate probability model.

Probabilistic Interpretation. The criterion (Eq. 1) is motivated by
the intuitive definition of community as a tightly knit group rather
than by fitting a probability model to the network. However, it
has a clear interpretation in the context of probability models
on graphs. Consider a probability distribution P on symmetric
adjacency matrices A that satisfies the following assumptions:

1. Each node i is associated with latent variables ci and θi, where
ci is the community label and θi can contain any other node
information. The labels ci are independent and have a multi-
nomial distribution with parameter π ¼ ðπ1;…;πKÞT .

2. For any pair ði;jÞ and ði0;j0Þ that have no nodes in common,
Aij and Ai0 j0 are independent given the labels c.

3. EðAijjcÞ ¼ Pcicj for all i, j.

Assumption 1 is similar to the block model, except it allows
for additional latent variables θi. An assumption related to as-
sumption 2 was proposed in ref. 28, stipulating independence
conditional on other edges. In assumption 3, the expectation
integrates out θ, so the left-hand side is always a function of c;
the assumption stipulates that it can depend only on the two
labels ci and cj, as in the block model.

Let s be an arbitrary label assignment, let OabðsÞ ¼
∑ijAijIðsi ¼ a;sj ¼ bÞ, and Rabðs;cÞ ¼ n−1 ∑n

i¼1 Iðsi ¼ a;ci ¼ bÞ.
Suppose Rðs;cÞ→P R as n → ∞. Note that R satisfies 1TR ¼ π. Then
the following holds:

Theorem 1. (a) Under assumptions 1–3, as n → ∞,

OabðsÞ
n2

→
P ðRPRTÞab:

(b) Assume that K ¼ 2, and, without loss of generality, P11 ≥ P22.

Then W ðSÞ→P f ðR;PÞ, n−2 ~W ðSÞ→P ~f ðR;PÞ. Further, if P11 þ P22 >
2P12, then both f and ~f are maximized by R ¼ diagðπÞ, under
the constraint 1TR ¼ π.The proof and the expressions for func-
tions f and ~f can be found in the SI Text. The theorem establishes
that our extraction criterion is a natural data-based approxima-
tion to a population criterion that is maximized by the correct
label assignment. Note that even though in part (b) we have K ¼
2 because it applies to a single extraction step, this does not mean
that extraction fails if K > 2 (see more on this in Example 4).
Next, we give several examples of models that satisfy our con-
ditions.

Example 1: The stochastic block model corresponds to θi ¼ const
and independent edges. Under the block model, each node is first
assigned to one of the K blocks independently of other nodes.
Then, conditional on c, edges are generated independently with
probabilities P½Aij ¼ 1jci ¼ a;cj ¼ b� ¼ Pab, which evidently satis-
fies assumptions 2 and 3. The block model is fully specified by its

Fig. 1. Toy example: shapes represent the truth and colors represent results
using our extraction method (Left) and modularity (Right).
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parameters π and the K × K symmetric matrix P. Thus part (a) of
the theorem applies. Part (b) applies if we additionally assume
K ¼ 2 and P11 þ P22 > 2P12.

Example 2:The degree-corrected block model. This generalization
of the block model has been recently introduced to allow for dif-
ferent expected node degrees within blocks (22). There the labels
c are treated as fixed and fixed node-specific parameters θ are
introduced to reflect the nodes’ individual tendencies to form
ties. We use exactly the same model but treat c and θ as random,
with c satisfying our assumption 1. Conditional on c and θ, Aij are
independent Poisson random variables with mean θiθjPcicj . The
relaxation of the Bernoulli distribution to the Poisson is primarily
for ease of technical derivations in ref. 22 and has few practical
consequences. In either distributional form, the model satisfies
assumptions 1–3 and part (a) holds. The model can be further
constrained to satisfy conditions for (b).

Example 3: General exchangeable distributions. It is well known
that any probability distribution invariant to node permutations
on the matrix A can be written in the form Aij ¼ hðμ;ξi;ξj;λijÞ,
where μ, ξi’s, and λij are independent and identically distributed
(i.i.d.), and h is symmetric in its second and third arguments (for
details, see, e.g., ref. 29). The equivalent of i.i.d. sequences in this
class has the form Aij ¼ hðξi;ξj;λijÞ. Let ξi ¼ ðci;θiÞ, where ci is the
class label, and θi is other node information that can be correlated
with ci. If the distribution of i.i.d. pairs ðci;θiÞ is such that the mar-
ginal distribution of c is multinomial, this model satisfies condi-
tions 1–3. One concrete example of such a model is the latent
position cluster model of ref. 20. Again, the general model can
be further constrained to satisfy (b).

Example 4: Consider a block model with true K ¼ 3 where two
blocks have been merged under one label. Let ci (merged labels)
take values 1 and 2 with probabilities πc and 1 − πc, and let θi
(true labels) have the distr ibut ion Pðθi ¼ 1jci ¼ 1Þ ¼ 1,
Pðθi ¼ 2jci ¼ 2Þ ¼ πθ, and Pðθi ¼ 3jci ¼ 2Þ ¼ 1 − πθ. If Q is the
3 × 3 matrix corresponding to the true block model, and Π is
the 2 × 3matrix giving the joint probability distribution of the pair
ðc;θÞ, let P ¼ ΠQΠT . Then the population version of our criterion
is maximized by extracting the first community as long as P11 >
P12, P11 > P22, P11 þ P22 > 2P12, which ensures the condition of
part (b) holds. This is true, for example, if Q11 > Qij for all ði;jÞ ≠
ð1;1Þ and Qij ≥ Q1k for all 1 < i;j;k ≤ 3. In other words, if the ties
within the first community are stronger than its ties to the mixture
of second and third, the criterion will extract it correctly. Note
that this is exactly the situation in the counterexample to consis-
tency of modularity given by ref. 29. In that example, both profile
likelihood and extraction (in two stages) are consistent, but
modularity is not.

Maximizing the Extraction Criterion. To maximize the extraction
criteria, we use a local optimization technique based on label
switching known as tabu search (30, 31). The key idea of tabu
search is that once a node label has been switched, it cannot
be switched again for the next T iterations (the node has “tabu”
status) This guards against being trapped in a local maximum.
The algorithm starts from an initial value and examines all cur-
rent nontabu nodes in order. If the current value of the global
maximum can be improved, the node label is switched, its status
changed to tabu, and the algorithm returns to node 1. If no node
can be switched to improve the global maximum, the node that
gives the largest increase in the current criterion value is
switched, and if no increase is possible, the node that gives the
smallest decrease is switched. The algorithm is run for a pre-
scribed number of iterations, and the best solution seen in the
course of these iterations is taken to be the final solution. Note

that the value of ~W can be updated efficiently in OðnÞ operations
for a single label switch. To help guard against local maxima, we
run the algorithm for a number of random starting values and
random orderings of nodes. Each run will converge to a local
maximum, and although the algorithm is not guaranteed to find
the global maximum, we have not encountered any problems with
local maxima in either simulations or real data examples.

The Stochastic Block Model Case
If we focus on the special case of the stochastic block model, we
can obtain additional results on the properties of the extraction
criterion. First, we show that the estimated node labels are
asymptotically consistent, using the recent results of ref. 29. Sec-
ond, we describe a hypothesis test that can be performed at every
sequential split to determine whether the remainder after extrac-
tion contains any more communities.

Asymptotic Consistency. We consider asymptotic consistency of
label assignments by the extraction method as the number of
nodes n → ∞. If P does not change with n, the network becomes
very dense as n grows, so we allow Pn to depend on n and write
Pn ¼ ρnP, where ρn ¼ P½Aij ¼ 1� → 0 is the probability of an edge
between arbitrary nodes i and j. The expected node degree λn ¼
nρn becomes the natural parameter to control as n → ∞.

Bickel and Chen (29) developed a general framework for
checking whether a community-finding criterion can recover
the true node labels as n → ∞, under the assumptions of the
block model and λn∕ log n → ∞. The latter may not be universally
applicable, but in many examples the degree does grow with n,
and faster than logarithmic growth is a very mild requirement.
Further details are given in SI Text; briefly, the main condition
is that the proposed criterion is maximized by the true label
assignment when all the sample quantities in the criterion are
replaced by their population equivalents. This can be viewed as
a special case of the theory of minimum contrast estimation (32).

We focus on checking one-step consistency for the case K ¼ 2
(one extracted community plus the rest of the network). The
matrix P is 2 × 2 with three unique parameters P11, P22, P12,
and the vector of class probabilities fπ;1 − πg is determined by
the single parameter π. Let ĉðnÞ be the maximizer of criterion 1,
and ~cðnÞ of criterion 2. It turns out that the adjustment factor
of jSjjScj has no effect in the limit, and both criteria are asymp-
totically consistent, as shown in the following theorem:

Theorem 2. Suppose λn∕ log n → ∞, P11 > P12, P11 > P22 and
P11 þ P22 > 2P12, and c are the true labels. Then

P½ĉðnÞ ¼ c� → 1 and P½~cðnÞ ¼ c� → 1.

Note that the simplest case of our toy example (one community
with other weakly connected nodes, P12 ¼ P22 ¼ p) is covered by
the theorem as long as P11 > p. The proof is given in SI Text.

Determining the Number of Communities. The full extraction proce-
dure consists of sequentially applying criterion 2: We extract a
community and apply the extraction again to its complement.
Ideally, the user would have information on the true or desired
number of communities K to be extracted. In the absence of such
prior information, determining the number of communities in
a network is an open problem, and a rigorous solution would
require fully specifying a statistical model. Here we propose a
hypothesis test that can be used under the assumption of the
block model. In this case, we need to test the null hypothesis H0∶
K ¼ 1 against the alternative Ha∶K ≥ 2 for the subgraph
induced by the nodes in the remainder. H0 means that the
remainder is an Erdos–Renyi (ER) graph, where all edges form
independently with the same probability. This approach has an
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analogue in clustering (33). Deriving the null distribution of
our criterion analytically is difficult (currently work in progress);
however, the test can always be conducted by simulation, in the
manner of a permutation test. Specifically, we simulate N ER
graphs with the probability of an edge matching that of the graph
being tested, and maximize the criterion ~W for each graph. The
empirical distribution of these N values of ~W approximates the
distribution of ~W under the null hypothesis. If the value of ~W for
the proposed split on the real graph is larger than 100ð1 − αÞth
percentile of these N values for some standard choice of α, we
reject the null hypothesis and apply extraction to the remainder;
if not, we stop. Note that this procedure is an analogue of back-
ward elimination in classical linear regression. As with backward
elimination, it is more important to look for a gap in p values than
at the exact levels of significance; however, if those are of interest,
the overall family error rate can be controlled with a multiple
testing correction. For example, the Bonferroni correction, which
is conservative, guarantees the overall error rate of no more than
α0 if each test is conducted at the level α0∕Tmax, where Tmax is
the maximum number of tests allowed. Note that this approach
generalizes easily to the degree-corrected block model from
Example 2, and specific applications may suggest other appropri-
ate null models. SI Text gives further details.

Numerical Evaluation
We compare our extraction criterion ~W to modularity, fitting the
block model via Markov chain Monte Carlo (MCMC) using
the BLOCKS program of ref. 17, and the latent position cluster
model of ref. 20 using the R package latentnet. In this section, we
compare performance of extraction, modularity, and MCMC for
several simulated scenarios. The latentnet package cannot handle
networks of the size used in simulations, but we do include it
in comparisons on real data in the next section. The modularity
partition into two communities is computed from the approxi-
mate eigenvector solution described in ref. 34. For partitioning
into more than two communities, we follow the sequential split-
ting approach in ref. 1. Following the code kindly shared with us
by Mark Newman (University of Michigan, Ann Arbor, MI), we
use only the eigendecomposition-based approximation for subse-
quent splits as an initial value for a search, which substantially
improves performance. For MCMC, we run 105 iterations for
burn-in and another 105 until convergence; for real data, which
has fewer nodes, the number of iterations is reduced by half.
BLOCKS does not assign a class to a node if its label varies
too much across MCMC runs; those nodes were excluded from
analysis. We compare the methods using the adjusted Rand index
(35), a widely used measure for comparing partitions. The adjust-
ment is done so that the expected value of the index is 0 for com-
paring two random partitions, and higher values indicate better
agreement. The results in this section are presented via boxplots
of the adjusted Rand index from 50 replications of each simulated
scenario. All simulations are performed with n ¼ 1;000 nodes.

First, we check the standard case of a network consisting of two
tight communities. Briefly, all methods do well here, except when
community sizes are very unbalanced, in which case the block
model fitted by MCMC does best, closely followed by modularity
and extraction (see SI Text).

Next, we consider a network consisting of one community and
weakly connected background, generated from the block model
with P12 ¼ P22 ¼ 0.05. We consider community sizes n1 ¼ 100
and 200, and P11 ¼ 0.15 and 0.2. Fig. 2 shows that in this scenario
extraction does best in all cases, but as P11 and n1 increase, mod-
ularity and the MCMC fit to the block model improve.

A more interesting situation is two tight communities with
similar densities and a weakly connected background. We gener-
ate this from a block model with K ¼ 3, and P31 ¼ P32 ¼
P33 ¼ 0.05. We consider balanced (n1 ¼ n2 ¼ 200) and unba-
lanced (n1 ¼ 100;n2 ¼ 200Þ communities, and two levels of com-

munity strength (P11 ¼ 0.15, P22 ¼ 0.12, and P11 ¼ 0.20,
P22 ¼ 0.16). For a fair comparison, we extract two communities
by our method, but partition into three parts by modularity to
allow for background, and fit the block model with K ¼ 3. The
results are presented in Fig. 3, Top. Extraction performs the best,
with MCMC catching up as the signal gets stronger. Modularity
improves slightly for denser communities, but even though it
usually separates the two communities correctly, it tends to add
the background nodes to them, resulting in poor overall Rand
index.

Our final simulation is designed to test the methods in the pre-
sence of “hubs,” a phenomenon present in many datasets, for
example, in the karate club dataset described in the next section.
For ease of comparison, we use the same setup as in the previous
simulation, except in each community we double the degrees
of the 10 highest-degree nodes by adding edges to randomly
selected nodes within the community and delete the same num-
ber of edges at random from all other edges within the commu-
nity, thus keeping the total number of edges within the
community constant. Comparing the results for this case (Fig. 3,
Bottom) with those for the block model (Top), we see that results
for modularity are virtually unchanged and for extraction just
slightly worse, whereas the MCMC-fitted block model deterio-
rates substantially. This is because in many cases (though not
all, which explains high variance) it groups all high-degree nodes
together into a single block. This agrees with other empirical
observations on the block model in the presence of hubs (22, 29).
We conjecture that the additional constraint P11 > P12 that
extraction enforces explains its relative robustness in this case.
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Fig. 2. Adjusted Rand index for one community with background. M: Mod-
ularity; B: Block model fitted via MCMC; E: Extraction.
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Fig. 3. Box plots of adjusted Rand index for two communities with back-
ground. M: Modularity; B: Block model fitted via MCMC; E: Extraction.
(Top) Data generated from the block model; (Bottom) doubling the degree
for the highest-degree nodes.

7324 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1006642108 Zhao et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006642108/-/DCSupplemental/pnas.1006642108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006642108/-/DCSupplemental/pnas.1006642108_SI.pdf?targetid=STXT


Examples
The Karate Club Network. Our first example is a well-known
network representing friendships between 34 members of a
karate club (36). This club later split into two parts following a
disagreement between an instructor (node 0) and an administra-
tor (node 33), and these two groups are used as the “ground
truth” communities in benchmark studies. Modularity partitions
this network into exactly the true factions (1). The extraction
approach can be used to supplement this division with more
information by identifying the “cores” of each faction. Fig. 4
shows the first three extracted communities—the cores of two
factions, and a small tight subcommunity. Note that the members
of the two factions are never grouped together. The hypothesis
test under the block model suggests that the first extraction split is
strongly significant, and the second is marginal (see SI Text). The
block model fitted with MCMC with K ¼ 2 puts four nodes
with the highest degrees into one block, and everything else into
another block, a result independently obtained in ref. 29 using
profile likelihood. The latent position cluster model splits one of
the communities into what might be described as core and per-
iphery, and groups the core together with the other community.

The Political Books Network.The nodes in this network (34) are 105
recent political books with links representing pairs of books
reported by Amazon as “frequently bought together.” Following
ref. 34, we show the modularity solution with node colors repre-
senting the components of the leading principal vector of the
modularity matrix in Fig. 5A. These values result from relaxing
the labels from �1 to real-valued, and the modularity partition
is computed from their signs. The node colors can be interpreted
to represent a book’s position on the political spectrum, with blue
being the most liberal and red the most conservative (34). Fig. 5
shows that in addition to a few clear “red” and “blue” books,
many nodes are in fact “purple” and may not clearly belong to
either the Left or the Right. From the colors alone (i.e., compo-
nent magnitudes), it is not clear how to separate out the blue and
the red from the more centrist purple. Fig. 5 shows the first two
extracted communities, which clearly correspond to the cores of
the Left and the Right. The block model and the latent position
cluster model were fitted with K ¼ 3 (to allow for purple) and do
reasonably well in this case, although the partitions are not nearly

as clean as the one obtained by extraction; also, the block model
left some nodes unclassified (shown in light blue) due to lack of
agreement between MCMC runs.

The School Friendship Network. This dataset is a school friendship
network compiled from the National Longitudinal Study of
Adolescent Health (see ref. 12 for more information). The direc-
ted links in this dataset connect students to their self-reported
friends, with weights representing friendship strength. Here we
analyze the network of school 1 from this dataset, converting the
data to an undirected network by averaging the weights on the
two edges connecting each pair of nodes. The resulting network
with 71 nodes is shown in Fig. 6, with colors representing grades,
along with results of extraction, modularity, the block model, and
the latent position cluster model, all with six groups to match the
number of grades. Modularity and extraction agree fairly well
with each other and with the grades, but extraction has the ability
to leave out sparsely connected nodes, including the two isolated
nodes. The block model and the latent position cluster model
partly agree with the grades, but also produce some communities
that consist of disjoint parts.

Summary and Discussion
We have proposed a previously undescribed framework for
analysis of social networks, which extracts tight communities
out of the network one at a time, allowing for complex structures
in the remainder of the network. In the examples we considered,
it offers an additional insight into the network structure and can
be used as either an alternative or a complement to network
partitioning. The probabilistic interpretation of extraction shows
that it is applicable to a wide range of models. Although we have
obtained good results with the tabu search, we would like to be
able to formulate the extraction criterion as an eigenvalue pro-
blem, which is work in progress. More analytical work is needed
on the stopping criterion outside of the block model case,
although this is a general question common to all community
detection methods. A related issue is assessing the quality of a
proposed extraction/partition; one solution based on robustness
to perturbations was proposed in ref. 37, which can be applied to
extraction as well. Extensions to networks with more complex
community structures, such as overlapping communities or disas-
sortative networks, are also a topic for future work.
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Fig. 4. Results for the karate club network: (A) extraction, (B) modularity, (C) the block model fitted via MCMC, and (D) the latent position cluster model.

A B C D

Fig. 5. Results for the political books network: (A) extraction, (B) modularity, (C) the block model fitted via MCMC, and (D) the latent position cluster model.
For modularity, node colors represent the components of the principal eigenvector of the modularity matrix, and node shapes represent the partition.
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