
Supplemental Materials: Proof of Theorem 1

In this section, we provide the proof of Theorem 1. First recall the outcome

Y is modeled as the linear model, Y = XΘB+E, where E = [ϵik] is n×K matrix

with ϵik i.i.d. ∼ N(0, σ2). Let Y = vec(Y ′), Θ = vec(Θ′) and ϵ = vec(E′). The

model can be written as,

Y = (X ⊗B′)Θ+ ϵ. (A.1)

It is convenient to centralize X. Let Xc = [X.1 − X̄.1, ..., X.P − X̄.P ], where X̄.p

is the mean of the p-th column of X. Then (A.1) can be written as the centered

form,

Y = (Xc ⊗B′)Θ[(J+1):(J(P+1))] + µY + ϵ, (A.2)

where Θ[(J+1):(J(P+1))] is the Θ deleting the first J components, and µY is the

mean vector which does not depend on Xc. Since it is enough to verify the

consistency and sparsistency under the centered model (A.2), we slightly abuse

the notation as follows. Denote Xc ⊗ B′ as X, and Θ[(J+1):(J(P+1))] as Θ. Let

Θ̂A, Θ̂I and Θ̂0 be the vectorized estimators without the intercept. And let

Θp = Θ′
p.. Θ̂

A
p , Θ̂

I
p and Θ̂0

p are defined similarly.

Proof. First consider the adaptive group lasso estimator Θ̂A. Since λn/n → 0,

according to standard theory of M -estimator, Θ̂A p→ Θ. So we only need to

prove the sparsistency.

Let P be the true nonzero set, i.e., P = {p : Θp ̸= 0}. Without loss of

generality, assume the first a groups ofΘ is truly nonzero, that is, P = {1, ..., a}.

Let XP and ΘP be the corresponding components of X and Θ indexed by the

nonzero groups, that is XP = Xc[1:n,1:a] ⊗B′, ΘP = Θ[1:(aJ)]. And define

Θ̃A
P = argmin ∥Y − XPΘP∥2 + λn

∑
p∈P

w(Θ̂0
p)∥Θp∥. (A.3)

1



Since λn/n → 0, we also have Θ̃A
P

p→ ΘP . Let

Σ̂XY =
1

n
X′Y,

Σ̂XX =
1

n
X′X,

Σ̂Xϵ =
1

n
X′ϵ.

Since (yi, xi1, ..., xip) are i.i.d. and have finite fourth moment, we have 1
nX

′
cXc =

Cov(x), where Cov(x) is the covariance matrix of (xi1, ..., xip). It can be seen

that each element of Σ̂XX is a linear combination of elements in Cov(x). There-

fore, E(Σ̂XX) exists and let ΣXX = E(Σ̂XX). We have

Σ̂XX = ΣXX +Op(n
−1/2),

Σ̂Xϵ = Op(n
−1/2).

With some simple algebra, it is easy to show that X′µY = 0. Therefore,

Σ̂XY =
1

n
X′(XΘ+ µY + ϵ) = Σ̂XXΘ+ Σ̂Xϵ

= (ΣXX +Op(n
−1/2))Θ+Op(n

−1/2) = ΣXXPΘP +Op(n
−1/2),

where ΣXXP are the sub-matrix of ΣXX with column index in nonzero groups,

that is, ΣXXP = E( 1nXXP). Furthermore, define ΣXPXP = E( 1nX
′
PXP), Pc =

{(a + 1), ..., P} and XPc = X[,(a+1):P ] ⊗ B′. Then ΣXPcXP , Σ̂XPXP , Σ̂XPcXP ,

Σ̂XXP , Σ̂XPY and Σ̂XPcY are similarly defined. Therefore,

Σ̂XY − Σ̂XXP Θ̃
A
P = ΣXXP (ΘP − Θ̃A

P) +Op(n
−1/2),

which implies

Σ̂XPY − Σ̂XPXP Θ̃
A
P = ΣXPXP (ΘP − Θ̃A

P) +Op(n
−1/2), (A.4)

Σ̂XPcY − Σ̂XPcXP Θ̃
A
P = ΣXPcXP (ΘP − Θ̃A

P) +Op(n
−1/2). (A.5)

Define Σ(Θ̃A
P) = diag

(
w(Θ̂0

1)

2∥Θ̃A
1 ∥

IJ , ...,
w(Θ̂0

d)

2∥Θ̃A
d ∥

IJ

)
. Taking derivative of (A.3) with

respect to Θp, we obtain the following condition,

Σ̂XPY − Σ̂XPXP Θ̃
A
P = n−1λnΣ(Θ̃

A
P)Θ̃

A
P . (A.6)
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Combining (A.4) and (A.6), we have

ΘP − Θ̃A
P = n−1λnΣ

−1
XPXP

Σ(Θ̃A
P)Θ̃

A
P +Op(n

−1/2).

Therefore, from (A.5),

Σ̂XPcY − Σ̂XPcXP Θ̃
A
P = ΣXPcXP (ΘP − Θ̃A

P) +Op(n
−1/2)

= n−1λnΣXPcXPΣ
−1
XPXP

Σ(Θ̃A
P)Θ̃

A
P +Op(n

−1/2). (A.7)

Since σn → 0, σn
√
n → ∞, Θ̂0 = Θ+Op(n

−1/2), we have

∥Θ̂0
p∥∞
σn

p→ ∞, w(Θ̂0
p)

p→ 0, for p ∈ P, (A.8)

∥Θ̂0
p∥∞
σn

p→ 0, w(Θ̂0
p)

p→ 1, for p ∈ Pc. (A.9)

Since λn/
√
n → ∞, for each p ∈ Pc, combining (A.7), (A.8) and (A.9),

n

w(Θ̂0
p)λn

∥Σ̂XpY − Σ̂XpXP Θ̃
A
P∥

p→ 0.

Therefore,

P{∀p ∈ Pc,
2n

w(Θ̂0
p)λn

∥Σ̂XpY − Σ̂XpXP Θ̃
A
P∥ ≤ 1} → 1. (A.10)

We define a PJ-length vector Θ̃A as the combination of Θ̃A
P and a (P − a)J-

length vector of zero. Since (A.6) and (A.10), with probability approaching to

1, Θ̃A satisfies

Σ̂XpY − Σ̂XpXΘ̃
A = n−1λn

w(Θ̂0
p)

2∥Θ̃A
p ∥

Θ̃A
p , for p ∈ P,

∥Σ̂XpY − Σ̂XpXΘ̃
A∥ ≤ (2n)−1λnw(Θ̂

0
p), for p ∈ Pc,

where Θ̃A
p is (p− 1)J +1 to pJ elements of Θ̃A

P . The above condition is exactly

the optimality condition for the adaptive group lasso (Yuan & Lin, 2006), which

justifies the sparsistency.

Now we consider integrative group lasso estimator Θ̂I . Similarly, according

to standard theory of M -estimator, Θ̂I p→ Θ. We only prove the sparsistency

below.
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Define

Θ̃I
P = argmin ∥Y − XPΘP∥2 + λn

∑
p∈P

w(Θp)∥Θp∥. (A.11)

Similarly to the previous proof, we have

Σ̂XPY − Σ̂XPXP Θ̃
I
P = ΣXPXP (ΘP − Θ̃I

P) +Op(n
−1/2), (A.12)

Σ̂XPcY − Σ̂XPcXP Θ̃
I
P = ΣXPcXP (ΘP − Θ̃I

P) +Op(n
−1/2). (A.13)

Define M = [mpj ] with

mpj =

 1
2w(Θ̃

I
p)(||Θ̃I

p||)−1θ̃Ip[j] if |θ̃Ip[j]| ̸= ∥Θ̃I
p∥∞,

1
2w(Θ̃

I
p)(||Θ̃I

p||)−1θ̃Ip[j] −
1

2σn
w(Θ̃I

p)||Θ̃I
p||sgn(θ̃Ip[j]) otherwise,

where θ̃Ip[j] is the j-th component of Θ̃I
p and Θ̃I

p is the (p−1)J+1 to pJ elements

of Θ̃I
P . Define M(Θ̃I

P) = vec(M ′). Taking derivative of (A.11) with respect to

ΘP , we obtain

Σ̂XPY − Σ̂XPXP Θ̃
I
P = n−1λnM(Θ̃I

P). (A.14)

From (A.12) and (A.14) we have

ΘP − Θ̃I
P = n−1λnΣ

−1
XPXP

M(Θ̃I
P) +Op(n

−1/2).

Following (A.13),

Σ̂XPcY − Σ̂XPcXP Θ̃
I
P = ΣXPcXP (ΘP − Θ̃I

P) +Op(n
−1/2)

= n−1λnΣXPcXPΣ
−1
XPXP

M(Θ̃I
P) +Op(n

−1/2).

Note that when σn → 0, M(Θ̃I
P)

p→ 0, where 0 is a zero vector of length aJ ,

since Θ̃I
P

p→ ΘP .

Therefore, since λn/
√
n → ∞, for p ∈ Pc,

n

λn
∥Σ̂XpY − Σ̂XpXP Θ̃

I
P∥

p→ 0.

We obtain,

P{∀p ∈ Pc,
2n

λn
∥Σ̂XpY − Σ̂XpXP Θ̃

I
P∥ ≤ 1} → 1.
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Define a PJ-length vector Θ̃I as the combination of Θ̃I
P and a (P − a)J length

vector of zeros. With probability approaching one, Θ̃I satisfies the following

conditions,

Σ̂XpY − Σ̂XpXΘ̃
I = n−1λnM

′
p., for p ∈ P, (A.15)

∥Σ̂XpY − Σ̂XpXΘ̃
I∥ ≤ (2n)−1λn, for p ∈ Pc. (A.16)

To finish the proof, we will show in the following that (A.15) and (A.16) are

equivalent to the optimality condition of the integrative group lasso. The proof

of (A.15) is trivial and omitted. So we only prove the second one in details.

The centered integrative group lasso criterion is

argmin ∥Y − XΘ∥2 + λn

∑
p

w(Θp)∥Θp∥. (A.17)

Taking derivative of (A.17) with respect to Θp at 0 in u direction,

d

dt

∣∣∣∣
t=0+

(Θ′Σ̂XXΘ− 2Σ̂′
XYΘ) = 2Σ̂XpXΘu′ − 2Σ̂XpYu′,

d

dt

∣∣∣∣
t=0+

(w(Θp)∥Θp∥) = lim
t→0

w(ut)∥ut∥
t

= lim
t→0

w(ut) = 1.

Θ̃I is the minimizer only if for any direction u, the directional derivative is

greater and equal to 0, which is equivalent to

min
u

(2Σ̂XpXΘ̃
Iu′ − 2Σ̂XpYu′ + n−1λn) ≥ 0. (A.18)

Since the left hand side of (A.18) is minimized as −2∥Σ̂XpY− Σ̂XpXΘ̃
I∥+n−1λn

when u = −(Σ̂XpXΘ̃
I−Σ̂XpY)/∥Σ̂XpXΘ̃

I−Σ̂XpY∥, (A.18) is equivalent to (A.16).
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