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a b s t r a c t

Maximumentropymodels, motivated by applications in neuron science, are natural gener-
alizations of the β-model to weighted graphs. Similar to the β-model, each vertex in max-
imum entropy models is assigned a potential parameter, and the degree sequence is the
natural sufficient statistic. Hillar and Wibisono (2013) have proved the consistency of the
maximum likelihood estimators. In this paper, we further establish the asymptotic normal-
ity for any finite number of the maximum likelihood estimators in the maximum entropy
models with three types of edge weights, when the total number of parameters goes to
infinity. Simulation studies are provided to illustrate the asymptotic results.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In neuron networks, neurons in one region of the brain may transmit a continuous signal using sequences of spikes to
a second receiver region. The coincidence detectors in the second region capture the absolute difference in spike times
between pairs of neurons projecting from the first region. There may be three possible types of timing differences: zero or
nonzero indicator; countable number of possible values; any nonnegative real value. Exploring how the transmitted signal
in the first region can be recovered by the second is a basic question in the analysis of neuron networks. Maximum entropy
models provide a possible solution to this question for the above three possible weighted edges. For detailed explanations,
see [11]; for their wide applications in the biological studies as well as other disciplines such as economics and physics,
see [11,8,1,23,25] and references therein. Maximum entropymodels (sometimes with different names) also appear in other
fields of network analysis, e.g., community detection and social network analysis. For example, see [7,2,3,16,26,18].

In the maximum entropy models, the degree sequence is the exclusively natural sufficient statistics on the exponential
family distributions and fully captures the information of an undirected graph. Its study primarily focuses on understanding
the generatingmechanisms of networks. When network edge takes dichotomous values (‘‘0’’ or ‘‘1’’), the maximum entropy
model becomes the β-model (a name given by Chatterjee, Diaconis and Sly [7]), an undirected version of the p1 model
for directed graphs by Holland and Leinhardt [12]. Rinaldo, Petrović and Fienberg [18] derived necessary and sufficient
conditions for the existence and uniqueness of the maximum likelihood estimate (MLE). As the number of parameters goes
to infinity, Chatterjee, Diaconis and Sly [7] proved that the MLE is uniformly consistent; Yan and Xu [24] further derived
its asymptotical normality. When the maximum entropy models involve the finite discrete, infinite discrete or continuous
weighted edges, Hillar andWibisono [11] have obtained the explicit conditions for the existence and uniqueness of the MLE
and proved that the MLE is uniformly consistent as the number of parameters goes to infinity.
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Statistical interests are involved with not only the consistency of estimators but also its asymptotic distributions.
The latter can be used to construct the confidence interval on parameters and performed the hypothesis testing. In the
asymptotic framework considered in this paper, the number of network vertices goes to infinity and the number of
parameter is identical to the dimension of networks (i.e., the number of vertices). Instead of studying a more complicated
situation on linear combinations of all MLEs, we describe the central limit theorems for the MLEs through the asymptotic
behavior of a finite number of the MLEs, although the total number of parameters goes to infinity. With this point, we aim
to establish the asymptotic normality of theMLEs when edges take three types of weights as in [11]. A key step in our proofs
applies a highly accurate approximate inverse of the Fisher information matrix by Yan and Xu [24].

The remainder of this article is organized as follows. In Section 2, we lay out the asymptotic distributions of the MLEs in
the maximum entropy models with the finite discrete, infinite discrete and continuous weighted edges in Sections 2.1–2.3,
respectively. Simulation studies are given in Section 3. Section 4 concludes with summary and discussion. All proofs are
relegated to Appendices.

2. Asymptotic normalities

We first give a brief description on the maximum entropy models. Consider an undirected graph G with no self-loops on
n vertices labeled by ‘‘1, . . . , n’’. Let aij be the weight of edge (i, j) taking values from the set Ω , where Ω could be a finite
discrete, infinite discrete or continuous set. Define di =


j≠i aij as the degree of vertex i, and d = (d1, . . . , dn)T is the degree

sequence of G. Let S be a σ -algebra over the set Ω of all possible values of aij, 1 ≤ i < j ≤ n. Assume there is a canonical
σ -finite probability measure ν on (Ω, S). Let ν( n

2 ) be the product measure onΩ( n
2 ). Themaximum entropymodels assume

that the density function of the symmetric adjacent matrix a = (aij)ni,j=1 with respective to ν( n
2 ) has the exponential form

with the degree sequence as natural sufficient statistics,1 i.e.,

pθ (a) = exp

−θTd − z(θ)


, (1)

where z(θ) is the normalizing constant,

z(θ) = log

S(

n
2 )

exp

−θTd


ν( n

2 )(da) = log


1≤i<j≤n


S
exp


−(θi + θj)aij


ν(daij),

and for fixed n, the parameter vector θ = (θ1, . . . , θn)
T belongs to the natural parameter space (p. 1, [5])

Θ = {θ ∈ Rn: z(θ) < ∞}.

The parameters θ1, . . . , θn can be interpreted as the strength of each vertex that determines how strongly the vertices are
connected to each other. The probability distribution (1) implies that the edges (i, j) for all 1 ≤ i < j ≤ n are mutually
independent. Since the sample is one realization of a graph, the density function in (1) is also the likelihood function. We
can see that the solution to −∇z(θ) = d is the maximum likelihood estimator (MLE) of θ .

We now consider the asymptotic distributions of the MLEs as the number of parameters goes to infinity. Let Vn =

(vij)i,j=1,...,n be the Fisher information matrix of the parameters θ1, . . . , θn. It can be written as

Vn =
∂2z(θ)

∂θ∂θT .

For three common types of weights as introduced in Section 1, Vn is the diagonal dominant matrix with nonnegative entries.
This property is crucially used in the proof of the central limit theorem on the MLE.

2.1. Finite discrete weights

When network edges take finite discrete weights, we assume Ω = {0, 1, . . . , q − 1} with q a fixed integer. In this case,
ν is the counting measure and the edge weights aij are independent multinomial random variables with the probability:

P(aij = a) =
ea(θi+θj)

q−1
k=0

ek(θi+θj)

, a = 0, 1, . . . , q − 1.

This model is a direct generalization of the β-model that only consider the dichotomous edges. The normalizing constant is

z(θ) =


1≤i<j≤n

log
q−1
a=0

e−(θi+θj)a,

1 Following Hillar and Wibisono [11], we use −θ in the parameterization (1) instead of the classical θ since it will simplify the notations in the later
presentation.
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and the parameter space is Θ = Rn. Letθ = (θ1, . . . , θn)
T be the MLE of θ = (θ1, . . . , θn)

T . The likelihood equations are

di =

n
j=1;j≠i

q−1
a=0

aea(θi+θj)
q−1
k=0

ek(θi+θj)
, i = 1, . . . , n, (2)

which is identical to the moment estimating equations. The fixed point iteration algorithm by Chatterjee et al. [7] or the
minorization–maximization algorithm by Hunter [13] can be used to solve the above system of equations or analogous
problems in the next two subsections. Following Hillar and Wibisono [11], we assume that max1≤i≤n |θi| is bounded by a
constantwhen considering the asymptotic distribution of theMLE. The central limit theorem for theMLE is stated as follows,
whose proof is given in Appendix A.

Theorem 1. In the case of finite discrete weights, the diagonal entries of Vn has the following representation:

vii =

n
j=1;j≠i


0≤k<l≤q−1

(k − l)2e(k+l)(θi+θj)

q−1
a=0

ea(θi+θj)

2 , i = 1, . . . , n.

Assume that max1≤i≤n |θi| is bounded by a fixed constant. Then for any fixed r ≥ 1, the vector (v
1/2
11 (θ̂1 − θ1), . . . , v

1/2
rr (θ̂r − θr))

is asymptotically standard multivariate normal as n → ∞.

Notice that θ̂1, . . . , θ̂r are asymptotically mutually independent by the above theorem. This is due to that the maximum
entropy models imply the mutually independent edges in a graph. It further implies that V−1

n is an approximate diagonal
matrix shown in Proposition 1 such that θ̂1, . . . , θ̂r are asymptotically mutually independent.

2.2. Continuous weights

When network edges take continuous weights, Ω = [0, ∞), ν is the Lebesgue measure on [0, ∞) and the normalizing
constant is

z(θ) = −


1≤i<j≤n

log(θi + θj).

Therefore, the corresponding natural parameter space is

Θ = {(θ1, . . . , θn) ∈ Rn: θi + θj > 0 for i ≠ j}.

The edge weights aij (1 ≤ i < j ≤ n) are independently distributed by exponential distributions with density

p(a) = (θi + θj) exp

−(θi + θj)a


, a > 0, 1 ≤ i < j ≤ n,

whose expectation is (θi + θj)
−1. The likelihood equations are

di =


j≠i

1

θ̂i + θ̂j
, i = 1, . . . , n.

The asymptotic distribution of the MLE is stated as follows, whose proof is given in Appendix B.

Theorem 2. Let Ln = mini≠j(θi + θj) > 0 and Mn = maxi≠j(θi + θj). In the case of continuous weights, the diagonal entries of
Vn are:

vii =

n
j=1,j≠i

1
(θi + θj)2

, i = 1, . . . , n.

If Mn/Ln = o{n1/16/(log n)1/8}, then for any fixed r ≥ 1, the vector (v
1/2
11 (θ̂1−θ1), . . . , v

1/2
rr (θ̂r −θr)) is asymptotically standard

multivariate normal as n → ∞.

2.3. Infinite discrete weights

When edges take infinite discrete weights, we assume that Ω = {0, 1, . . .}. In this case, ν is the counting measure, the
normalizing constant is

z(θ) =


1≤i<j≤n

log
∞
a=0

exp(−(θi + θj)a) =


1≤i<j≤n

− log

1 − exp(−(θi + θj))


,
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and the natural parameter space is

Θ = {(θ1, . . . , θn) ∈ Rn: θi + θj > 0 for i ≠ j}.

The edge weights aij are independent geometric random variables with probability mass function:

P∗(aij = a) =

1 − exp(−θi − θj)


exp


−(θi + θj)a


, 1 ≤ i < j ≤ n.

The likelihood equations are

di =


j≠i

1

exp(θ̂i + θ̂j) − 1
, i = 1, . . . , n,

which are identical to the moment estimating equations.

Theorem 3. Let Ln = mini≠j(θi + θj) > 0 and Mn = maxi≠j(θi + θj). In the case of infinite discrete weights, the diagonal entries
of Vn are

vii =

n
j=1;j≠i

eθi+θj

(eθi+θj − 1)2
, i = 1, . . . , n.

If e17Mn/L3n = o{n1/2/ log n}, then for any fixed r ≥ 1, the vector (v
1/2
11 (θ̂1 − θ1), . . . , v

1/2
rr (θ̂r − θr)) is asymptotically standard

multivariate normal as n → ∞.

Remark 1. By Theorems 1–3, we have: (1) for any fixed r, θ̂1, . . . , θ̂r are asymptotically independent; (2) as n → ∞, the
convergence rate of θ̂i is 1/v

1/2
ii . IfMn and Ln are constants, then this convergence rate is in themagnitude of n−1/2; otherwise

it is between O{1/(n1/2Ln)} and O{1/(n1/2Mn)} when edges take continuous weights, between O{(eMn − 1)/[n1/2e−Mn/2]}

and O{(eLn − 1)/[n1/2e−Ln/2]} when edges take infinite discrete weights. To compare with the convergence rate in the
continuous and infinite discrete cases, we consider a special case MnLn = 1. Since eMn/2(eMn − 1) ≫ Mn = L−1

n and
(eLn −1)eLn/2 ∼ Ln = M−1

n whenMn is large enough, the former is faster than the latter. This can be understood that a lower
convergence rate can be incurred if the parameter vector is more quickly close to the boundary of themean parameter space
by noting that E(di) =


j≠i(θi + θj)

−1 in the continuous case and E(di) =


j≠i(e
θi+θj − 1)−1 in the infinite discrete case.

Remark 2. In contrast with the conditions (i.e.,M2
n/Ln = o(n1/2/(log n)1/2) in the continuous case and e5Mn(eLn/2−1)−1/2

=

o(n1/2/(log n)1/2) in the infinite discrete case) guaranteeing the consistency of the MLE by Hillar and Wibisono [11], the
ones for asymptotic normality seems much more strict. The simulations in the next section suggest there may be space for
improvement. On the other hand, the consistency and asymptotic normality for the MLE in the finite discrete case requires
the assumption that all parameters are bounded by a constant. This assumptionmay not be best possible.Wewill investigate
these problems in the future.

Remark 3. The three theorems in this section only describe the joint asymptotic distribution of the first r estimators
θ̂1, . . . , θ̂r with a fixed constant r . Actually, the starting point of subscripts is not essential. These three theorems hold for any
fixed r MLEs. Since the usual counting subscript starts from 1, we only show the case presented in the theorems. Our proofs
can be directly extended to the case of any r fixed MLEs θ̂i1 , . . . , θ̂ir without any difficulty. Another interesting problem is
investigating the asymptotic distribution of the linear combination

n
i=1 ciθ̂i on all the MLEs or a linear combination with a

growing number of theMLEs as pointed by one referee. Are there results similar to Propositions 2–4(2)?Wewill investigate
this problem in future work.

Remark 4. According to Theorems 1–3, an approximate 100(1−α)% confidence interval for θi−θj is θ̂i− θ̂j±Z1−α/2(1/v̂ii+

1/v̂jj)
1/2, where v̂ii and v̂jj are the natural estimates of vii and vjj by replacing all θ1, . . . , θn by their MLEs, and Zβ denotes the

100β percentile point of the standard normal distribution. To test whether θi = θj at level α, the hypothesis can be rejected
if |θ̂i − θ̂j| > Z1−α/2(1/v̂ii + 1/v̂jj)

1/2. The confidence intervals for contrasts and the hypothesis test for the equality of two
parameters can be generalized to multiple parameters. For example, one can use the test statistic

(θ̂1 − θ̂2, θ̂2 − θ̂3, θ̂3 − θ̂4)


1

v̂11
+

1
v̂22

−1
v̂22

0

−1
v̂22

1
v̂22

+
1

v̂33

−1
v̂33

0
−1
v̂33

1
v̂33

+
1

v̂44



−1θ̂1 − θ̂2

θ̂2 − θ̂3

θ̂3 − θ̂4



to test whether θ1 = θ2 = θ3 = θ4, which asymptotically follows the chi-square distribution with the degree of freedom 3.
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3. Simulations

In this section,wewill evaluate the asymptotic results formaximumentropymodels onweighted graphswith continuous
and infinite discrete weights through numerical simulations. The simulation results for finite discrete weights are similar
to the binary case, which has been shown in [24], so we do not repeat it here. Firstly, we study the consistency of the
estimation. We plot the estimated θ̂ vs. θ to evaluate the accuracy. Secondly, by Theorems 2 and 3, v̂

1/2
ii (θ̂i − θi) and

(θ̂i + θ̂j − θi − θj)/(1/v̂ii + 1/vii)
1/2 are asymptotically normally distributed, where v̂ii is the estimator of vii by replacing θi

with θ̂i. The quantile–quantile (QQ) plots of v̂
1/2
ii (θ̂i−θi) are shown.We also report the 95% coverage probabilities for certain

θi − θj, as well as the probabilities that the maximum likelihood estimator does not exist in the case of discrete weights. The
parameter settings in simulation studies are listed as follows. For continuousweights, let θi = M+iM2/n, i = 1, . . . , n such
that Ln ≈ M, Mn ≈ M2 andMn/Ln ≈ M; for discreteweights, let θi = 0.1+iM/n, i = 1, . . . , n such that Ln ≈ 0.1, Mn ≈ M ,
and eMn/Ln ≈ 10eM . Here, we suppress the subscript n of M in order to conveniently display the notations in the figures. A
variety of M are chosen: M = 1, log(n), n1/2, n for continuous weights; M = 0, log(log n), (log n)1/2, log n for discrete
weights.

The plots of θ̂i vs. θi are shown in Fig. 1. We used M = 1 in this figure for the case of discrete weights instead of M = 0
in order to make θi vary (when M = 0, all the θi, 1 ≤ i ≤ n equal to 0.1). The red lines correspond to the case that
θ = θ̂ . For each sub-figure, the first and second rows represent n = 100 and n = 200, respectively. The first, second and
third columns represent M = 1, log(n), n1/2 for continuous weights and M = 1, log log(n), (log n)1/2 for discrete weights,
respectively. From this figure, we can see that as n increases, the estimators become more close to the true parameters. AsM increases, maxi |θ̂i − θi| becomes much larger, indicting that controlling the increasing rate of Mn (or decreasing rate of
Ln) is necessary. For continuous weights, when M = n1/2, maxi |θ̂i − θi| are very large, exceeding 30; for discrete weights,
when M = (log(n))1/2, the points of θ̂ vs. θ diverge, indicating that θ̂i may not be the consistent estimate of θi in this case.
Therefore, the conditions to guarantee the consistency results in Theorems 2 and 3 seem to be reasonable.

The QQ plots in Figs. 2 and 3 are based on 5000 repetitions for each scenario. The horizontal and vertical axes are the
empirical and theoretical quantiles, respectively. The red lines correspond to y = x. The coverage frequencies are reported
in Table 1. When M = log n, the MLEs for the case of discrete weights do not exist with 100% frequencies. Therefore, the
QQ plots for this case are not available. In Fig. 2, when M = 1, log n, n1/2, the sample quantiles coincide with the theoretical
ones very well (the plot of the case of M = 1 is similar to that of M = log n and is not shown here). On the other hand,
when M = n, the sample quantile of v̂

1/2
11 (θ̂1 − θ1) evidently deviates from the theoretical one. In this case, the estimated

variances v̂ii of di are very small, approaching to zero. For example, when n = 200 and M = n, the estimated v̂ii is in the
magnitude of 10−6

∼ 10−8, where the central limit theorem cannot be expected according to the classical large sample
theory. In Fig. 3, the approximation of asymptotic normality is good when M = 0 and log(log n); while there are notable
derivations for v̂

1/2
nn (θ̂n − θn) when M = (log n)1/2.

In both cases of continuous and discrete weights of Table 1, the length of estimated confidence intervals increases as M
becomes larger when n is fixed. In the case of continuous weights, when M = 1, log(n), the length of estimated confidence
intervals decreases as n increases; butwhenM = n1/2 and n, it instead becomes larger. This is because vii (between n(2M)−2

and n/(4M4)) goes to zero as n increases when M ≥ n1/2, leading to a larger confidence interval. In particular, whenM = n, some of them exceed 10000, indicating an extremely inaccurate estimate, although the corresponding coverage
probabilities are close to 95%. In the case of discrete weights, when M = 0, log(log n) and n ≥ 100, the coverage frequencies
are close to the nominal level; when M = (log n)1/2, the coverage frequencies of pair (n− 1, n) are higher than the nominal
level; when M = log n that greatly exceeds the condition of Theorem 3, the MLE almost does not exist. These phenomena
further suggest that controlling increasing rate ofMn or decreasing rate of Ln in Theorems 2 and 3 is necessary.

4. Summary and discussion

Investigating the asymptotic theories for the network models are open and challenging problems, especially when the
number of parameters increases with the size of network. One reason is that network data are not a standard type of data.
In a traditional statistical framework, the number of parameters is fixed and the number of samples goes to infinity. In
the asymptotic scenario considered in this paper, the sample is only one realization of a random graph and the number of
parameters is identical to that of vertices. However, the MLE in some simple undirected models with the degree sequence
as the exclusively natural sufficient statistics (i.e., the maximum entropy models) have been derived. As the number of
parameters goes to infinity, we obtain the asymptotic normality of the MLE in the maximum entropy models for a class of
weighted edges, the proofs of which are in help of the approximated inverses of the Fisher information matrix. We expect
that the methods of our proofs can be applied to other high-dimensional cases in which the Fisher information matrix
are nonnegative and diagonally dominant or other similar cases. For example, Perry and Wolfe [17] introduced a family
of null models for network data in which the entries of the upper triangle matrix of a are assumed independent Bernoulli
random variables with success probabilities exp[θi + θj + ε(θi, θj)] for 1 ≤ i < j ≤ n, where ε(θi, θj) are smooth functions
on parameters θi and θj. By making some assumptions of the second derivative of ε, the Fisher information matrix of the
parameters also shares the similar properties like those in the maximum entropy models.
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(a) Continuous weights.

(b) Discrete weights.

Fig. 1. The plots of θ̂i vs. θi for 1 ≤ i ≤ n based on 20 samples. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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(a) n = 100.

(b) n = 200.

Fig. 2. The QQ plots of v̂
1/2
ii (θ̂i − θi) in the case of continuous weights. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Finally,we shed some light onwhy the consistency and asymptotic normality of theMLE can be achieved in themaximum
entropy models, even though the dimension of parameters increases with the size of network and the sample is only one
realization of a random graph. First, in an undirected random graph, it lurks with n(n − 1)/2 random variables, which are
higher order than the number of parameters. Second, the Fisher information of each parameter are combinations of n − 1
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(a) n = 100.

(b) n = 200.

Fig. 3. The QQ plots of v̂1/2
ii (θ̂i − θi) in the case of discrete weights. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

variances of n − 1 random variables. Under some conditions, it goes to infinity as n increases. Third, the assumption of
independent edges avoid the degeneracy problem, unlike Markov dependent exponential random graphs [9]. The model
degeneracy problems of the exponential random graphs have received wide attention (e.g., [22,21,10,14,6,19]). Moreover,
considering the case that the number of parameters is fixed, Shalizi and Rinaldo [20] demonstrated that exponential random
graph models are projective in the sense of that the same parameters can be used for the full network and for any of its
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Table 1
Estimated coverage probabilities of θi − θj for pair (i, j) as well as the probabilities that the MLE does not exist (in parentheses), multiplied
by 100, and the length of confidence intervals (in square brackets).

Weighted random graphs with continuous weights

n (i, j) M = 1 M = log n M = n1/2 M = n

50 (1, 50) 95.55[2.00] 95.40[11.83] 95.62[28.08] 96.35[730.54]
(25, 26) 95.63[2.39] 95.15[17.93] 95.57[48.59] 95.95[1889.10]
(49, 50) 95.25[2.80] 95.64[24.03] 95.25[69.17] 96.15[2932.88]

100 (1, 100) 95.43[1.39] 95.25[9.84] 94.75[30.29] 95.45[1409.94]
(50, 51) 94.75[1.67] 95.60[16.20] 95.25[62.13] 95.05[5059.72]
(99, 100) 95.55[1.95] 94.85[22.29] 95.25[91.70] 96.45[8060.81]

200 (1, 200) 95.51[0.97] 95.45[8.21] 95.45[33.93] 95.35[2750.85]
(100, 101) 95.10[1.17] 95.05[14.28] 95.05[81.45] 95.35[13958.43]
(199, 200) 95.36[1.37] 94.67[20.10] 95.39[123.43] 95.59[22556.82]

Weighted random graphs with discrete weights

n (i, j) M = 0 M = log(log n) M = (log n)1/2 M = log(n)

50 (1, 50) 95.55[0.16](0) 94.37[0.56](1.35) 95.04[0.71](51.55) (100)
(25, 26) 95.10[0.16](0) 96.45[1.30](1.35) 97.27[2.01](51.55) (100)
(49, 50) 95.95[0.16](0) 97.52[2.23](1.35) 100.00[3.65](51.55) (100)

100 (1, 100) 95.17[0.11](0) 94.45[0.37](0.05) 95.46[0.46](16.75) (100)
(50, 51) 95.15[0.11](0) 95.75[0.99](0.05) 95.34[1.45](16.75) (100)
(99, 100) 94.95[0.11](0) 95.85[1.74](0.05) 98.91[3.00](16.75) (100)

200 (1, 200) 95.15[0.08](0) 94.68[0.26](0) 94.77[0.31](1.60) (100)
(100, 101) 94.85[0.08](0) 95.55[0.75](0) 95.57[1.09](1.60) (100)
(199, 200) 95.45[0.08](0) 95.62[1.33](0) 97.51[2.28](1.60) (100)

subnetworks simultaneously, essentially only for those models with the assumption of dyadic independence, under which
the consistency of the MLE is available.
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Appendix A

For fixed r , the central limit theorem for the vector (d1, . . . , dr) can be easily derived by noting that d1, . . . , dr are
asymptotically independent. In view of that di is the sufficient statistic on θi, θ̂i may be approximately represented as
a function of di. If this can be done, then the asymptotic distribution for the MLE may follow. In order to establish the
relationship between θ̂i and di, we will approximate the inverse of a class of matrices. We say an n × n matrix Vn = (vij)
belongs to a matrix class Ln(m,M) if Vn is a symmetric nonnegative matrix satisfying

vii =

n
j=1;j≠i

vij; M ≥ vij = vji ≥ m > 0, i ≠ j.

Yan and Xu [24] have proposed to use S̄n = diag(1/v11, . . . , 1/vnn) + v−1
.. 1n1′

n to approximate V−1
n , where 1n is a vector of

n entries whose values are all of 1 and v.. =
n

i=1 vii, and obtained an upper bound on the approximate errors. Here we use
a simpler matrix Sn = diag(1/v11, . . . , 1/vnn) to approximate V−1

n . Let ∥A∥ = maxi,j |aij| for a general matrix A = (aij). It is
clear that ∥A+ B∥ ≤ ∥A∥ + ∥B∥ for two matrices A and B, and ∥S̄n − Sn∥ = v−1

.. ≤ (mn(n− 1))−1. By Proposition A1 in [24],
we have:

Proposition 1. If Vn ∈ Ln(m,M), then for n ≥ 3, the following holds:

∥Wn := V−1
n − Sn∥ ≤ ∥V−1

n − S̄n∥ + ∥S̄n − Sn∥

≤
M(nM + (n − 2)m)

2m3(n − 2)(n − 1)2
+

1
2m(n − 1)2

+
1

mn(n − 1)
.
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Note that di =


j≠i aij are sums of n − 1 independent multinomial random variables. By the central limit theorem

for the bounded case ([15], p. 289), v−1/2
ii {di − E(di)} is asymptotically standard normal if vii diverges. Following Hillar

and Wibisono [11], we assume that maxi |θi| is bounded by a constant in this appendix. For convenience, we assume that
maxi |θi| ≤ L/2 with L a fixed constant. Thus, maxi,j |θi + θj| ≤ L. Since

e2k(θi+θj) ≤ e(k+(k−1))(θi+θj)+L, 1 ≤ k ≤ q − 1,

we have
q−1
k=0

e2k(θi+θj) ≤


0≤k≠l≤q−1

e(k+l)(θi+θj)eL.

Therefore,
1
2


k≠l

e(k+l)(θi+θj)

q−1
a=0

ea(θi+θj)

2 =

1
2


k≠l

e(k+l)(θi+θj)


k≠l

e(k+l)(θi+θj) +

q−1
k=0

e2k(θi+θj)

≥


k≠l

e(k+l)(θi+θj)

2(1 + eL)

k≠l

e(k+l)(θi+θj)
≥

1
2(1 + eL)

. (3)

Recall the definition of vii in Theorem 1. It shows that vii ≥ (n − 1)/(2(1 + eL)). If L is a constant, then vii → ∞ for
all i as n → ∞. If r is a fixed constant, one may replace the statistics d1, . . . , dr by the independent random variables
d̃i = di,r+1 + · · · + din, i = 1, . . . , r when considering the asymptotic behaviors of d1, . . . , dr . Therefore, we have the
following proposition.

Proposition 2. Assume that maxi |θi| ≤ L with L a constant. Then as n → ∞:

(1) For any fixed r ≥ 1, the components of (d1−E(d1), . . . , dr−E(dr)) are asymptotically independent and normally distributed
with variances v11, . . . , vrr , respectively.

(2) More generally,
n

i=1 ci(di − E(di))/
√

vii is asymptotically normally distributed with mean zero and variance


∞

i=1 c
2
i

whenever c1, c2, . . . are fixed constants and the latter sum is finite.

Part (2) follows from part (1) and the fact that

lim
r→∞

lim sup
t→∞

Var


n

k=r+1

ci
di − E(di)

√
vii


= 0

by Theorem 4.2 of Billingsley [4]. To prove the above equation, it suffices to show that the eigenvalues of the covariance
matrix of (di − E(di))/v

1/2
ii , i = r + 1, . . . , n are bounded by 2 (for all r < n). This comes from the well-known

Perron–Frobenius theory: ifA is a symmetric positive definitematrixwith diagonal elements equaling to 1, andwith negative
off-diagonal elements, then its largest eigenvalue is less than 2. We will only use part (1) to prove Theorem 1.

Before proving Theorem 1, we show three lemmas below. By direct calculations,

vij =


0≤k<l≤q−1

(k − l)2e(k+l)(θi+θj)

q−1
a=0

ea(θi+θj)

2 , i, j = 1, . . . , n; i ≠ j

and vii =


j≠i vij. On the other hand, it is easy to see that

1
2


k≠l

(k − l)2e(k+l)(αi+αj)

q−1
a=0

ea(αi+αj)

2 ≤
1
2
max
k≠l

(k − l)2 ≤
q2

2
. (4)

In view of inequality (3), if maxi,j |θi + θj| ≤ L with L a constant, then Vn ∈ Ln(m,M) with m and M constants. Applying
Proposition 1, we have



T. Yan et al. / Journal of Multivariate Analysis 133 (2015) 61–76 71

Lemma 1. Assume that maxi |θi| ≤ L/2 with L a fixed constant. If n is large enough, then

∥V−1
n − Sn∥ ≤ c1(n − 1)−2, (5)

where c1 is a constant only depending on L.

Lemma 2. Assume that maxi |θi| ≤ L/2 with L a fixed constant. Let Un = cov[Wn{d − E(d)}]. Then

∥Un∥ ≤ ∥V−1
n − Sn∥ + c2(n − 1)−2, (6)

where c2 is a constant only depending on L.

Proof. Note that

Un = WnVnW T
n = (V−1

n − Sn) − Sn(In − VnSn),

and

{Sn(In − VnSn)}i,j =
(δij − 1)vij

viivjj
.

By (3) and (4),

|{Sn(In − VnSn)}ij| ≤ c2(n − 1)−2,

where c2 is a constant. Thus,

∥Un∥ ≤ ∥V−1
n − Sn∥ + ∥Sn(In − VnSn)∥ ≤ ∥V−1

n − Sn∥ + c2(n − 1)−2. �

In order to prove the below lemma, we need one theorem due to Hillar and Wibisono [11].

Theorem 4. Assume that maxi |θi| ≤ L/2 with L > 0 a fixed constant. Then for sufficiently large n, with probability at least
1 − 2/n, the MLEθ exists and satisfies

max
i

|θ̂i − θi| ≤ c3


log n
n

where c3 is a constant that only depends on L.

Lemma 3. If maxi |θi| ≤ L/2 with L > 0 a fixed constant, then for i = 1, . . . , r with r a fixed constant,

θi − θ̂i = [V−1
n {d − E(d)}]i + op(n−1/2).

Proof. Let En be the event that the MLEθ exists and Fn be the event that λn := maxi |θ̂i − θi| ≤ c(log n)1/2/n1/2. Derivations
in what follows are on the event En


Fn. Let

µ(t) =

r−1
a=0

aeat

r−1
k=0

ekt
.

It is easy to verify that

µ′(t) =


0≤k<l≤r−1

(k − l)2e(k+l)t


r−1
a=0

eat
2

and

µ′′(t) =


1
2


k≠l,a

(k − l)2(k + l − 2a)e(k+l+a)t


r−1
a=0

eat
3

 ,

such that

|µ′′(t)| ≤ (r − 1)3. (7)
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Applying Taylor’s expansions to µ(θ̂i + θ̂j) at the point θi + θj, for i = 1, . . . , n, we have

di − E(di) =


j≠i

(µ(θ̂i + θ̂j) − µ(θi + θj))

=


j≠i

[µ′(θi + θj)(µ(θ̂i + θ̂j) − µ(θi + θj))] + hi,

where hi =
1
2


j≠i µ

′′(γ̂ij)[((θ̂i + θ̂j) − (θi + θj))]
2, and γ̂ij = tij(θi + θj) + (1 − tij)(θ̂i + θ̂j), 0 < tij < 1. Writing the above

expressions into a matrix, it yields,

d − E(d) = Vn(θ − θ) + h,

or equivalently,θ − θ = V−1
n (d − Ed) + V−1

n h, (8)

where h = (h1, . . . , hn)
T . By (7), |hi| ≤

1
2 (n − 1)(r − 1)3η̂2

ij , where η̂ij = (θ̂i + θ̂j) − (θi + θj). Therefore, by Lemma 1,

|(V−1
n h)i| = |(Snh)i| + |(Wnh)i|

≤ max
i

|hi|

vii
+ ∥W∥


i

|hi| = O

log n
n


.

By Theorem 4, P(En


Fn) → 1 as n → ∞. It shows (V−1h)i = op(n−1/2) for i = 1, . . . , r with r a fixed constant.
Consequently, we have θi − θ̂i = [V−1

n {d − E(d)}]i + op(n−1/2) for i = 1, . . . , r . �

Proof of Theorem 1. By (8),

(θ − θ̂)i = [Sn{d − E(d)}]i + [Wn{d − E(d)}]i + (V−1
n h)i.

By Lemmas 2 and 3, if maxi |θi| ≤ L/2 with L > 0 a fixed constant, then

(θ − θ̂)i =
di − E(di)

vii
+ op(n−1/2).

Theorem 1 follows directly from Proposition 2, part (1). �

Appendix B

In the case of continuous weights, the elements of Vn are

vii =


j≠i

1
(θi + θj)2

, i = 1, . . . , n; vij =
1

(θi + θj)2
, i ≠ j.

Note that Vn is also the covariance matrix of d. Recall that Ln := mini≠j(θi + θj) andMn := maxi≠j(θi + θj). Therefore,

1
M2

n
≤ vij ≤

1
L2n

, i ≠ j,
(n − 1)
M2

n
≤ vii ≤

(n − 1)
L2n

, i = 1, . . . , n. (9)

Applying Proposition 1, we have:

Lemma 4. If n is large enough, then

∥V−1
n − Sn∥ ≤

cM2
n

L3n(n − 1)2
, (10)

where c is a constant.

Note that di =


j≠i aij are sums of n − 1 independent exponential random variables. It is easy to show that the third
moment of the exponential random variable with rate parameter λ is 6λ−3. Then we have

j≠i
E(a3ij)

v
3/2
ii

=

6

j≠i

(θi + θj)
−1

v
1/2
ii

≤
6Mn/Ln

(n − 1)1/2
.

If Mn/Ln = o(n1/2), then the above expression goes to zero. This shows that the condition for the Lyapunov’s central limit
theorem, holds. Therefore, v−1/2

ii {di − E(di)} is asymptotically standard normal ifMn/Ln = o(n1/2). Similar to Proposition 2,
we have the proposition below.
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Proposition 3. If Mn/Ln = o(n1/2), then as n → ∞:

(1) For any fixed r ≥ 1, the components of (d1−E(d1), . . . , dr−E(dr)) are asymptotically independent and normally distributed
with variances v11, . . . , vrr , respectively.

(2) More generally,
n

i=1 ci(di − E(di))/
√

vii is asymptotically normally distributed with mean zero and variance


∞

i=1 c
2
i

whenever c1, c2, . . . are fixed constants and the latter sum is finite.

Before proving Theorem 2, we show the following two lemmas. The proof of Lemma 5 is similar to that of Lemma 2 and
we omit it.

Lemma 5. Let Un = cov[Wn{d − E(d)}]. Then

∥Un∥ ≤ ∥V−1
n − Sn∥ +

M2
n

L2n(n − 1)2
. (11)

In order to prove the lemma below, we need one theorem due to Hillar and Wibisono [11].

Theorem 5. Let k > 1 be fixed. Then for sufficiently large n, with probability at least 1− 3n−(k−1), the MLEθ exists and satisfies

∥θ − θ∥∞ ≤
150M2

n

Ln


k log n

n
.

Lemma 6. If Mn/Ln = o{n1/16/(log n)1/8}, then for i = 1, . . . , r with a fixed constant r,

θi − θ̂i = [V−1
n {d − E(d)}]i + op(n−1/2). (12)

Proof. By Theorem 5, ifMn/Ln = o{n1/16/(log n)1/8}, then

λn = max
1≤i≤n

|θ̂i − θi| = Op


M2

n

L2n


log n
n


. (13)

For i = 1, . . . , n, direct calculations give

di − E(di) =


j≠i


1

θ̂i + θ̂j
−

1
θi + θj


=


j≠i

θi − θ̂i + θj − θ̂j

(θ̂i + θ̂j)(θi + θj)

=


j≠i


θi − θ̂i + θj − θ̂j

(θi + θj)2


θi + θj

θ̂i + θ̂j
− 1


+

θi − θ̂i + θj − θ̂j

(θi + θj)2



=


j≠i


(θi − θ̂i + θj − θ̂j)

2

(θi + θj)2(θ̂i + θ̂j)
+

θi − θ̂i + θj − θ̂j

(θi + θj)2


.

Writing the above expression for i = 1, . . . , n into the form of a matrix, it yields

d − E(d) = Vn(θ − θ̂) + h,

where h = (h1, . . . , hn)
′ and

hi =


j≠i

(θi − θ̂i + θj − θ̂j)
2

(θi + θj)2(θ̂i + θ̂j)
:=


j≠i

hij.

Equivalently,

θ − θ̂ = V−1
n {d − E(d)} + V−1

n h. (14)

In view of (9) and (13), we have

|hij| ≤
2λ2

n

L2n(Ln − λn)
; |hi| ≤ n ×

2λ2
n

L2n(Ln − λn)
.

Note that (Snh)i = hi/vii and (V−1
n h)i = (Snh)i + (Wnh)i. By direct calculation, we have

|(Snh)i| ≤
2λ2

nM
2
n

L2n(Ln − λn)
,
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and, by Lemma 4,

|(Wnh)i| ≤ ∥Wn∥ × (nmax
i

|hi|) ≤ Op


M6

n

L8n
×

log n
n


.

IfMn/Ln = o{n1/16/(log n)1/8}, then |(V−1
n h)i| ≤ |(Snh)i| + |(Wnh)i| = op(n−1/2). This completes the proof. �

Proof of Theorem 2. By (14),

(θ − θ̂)i = [Sn{d − E(d)}]i + [Wn{d − E(d)}]i + (V−1
n h)i.

By Lemmas 5 and 6, ifMn/Ln = o{n1/16/(log n)1/8}, then

θi − θ̂i = (di − E(di))/vii + op(n−1/2).

Theorem 2 follows directly from Proposition 3, part (1). �

Appendix C

Note that di =


j≠i aij is a sum of n − 1 geometric random variables. Recall the definitions of Ln and Mn, we have

eMn

(eMn − 1)2
≤ vij =

eθi+θj

(eθi+θj − 1)2
≤

eLn

(eLn − 1)2
, 1 ≤ i < j ≤ n.

This shows Vn ∈ Ln(m,M) with m and M given by the lower and upper bounds in the above inequalities on vij. By the
moment-generating function of the geometric distribution, it is easy to verify that

E(a3ij) =
1 − pij
pij

+
6(1 − pij)

p2ij
+

6(1 − pij)2

p3ij
,

where pij = 1 − e−(θi+θj). By simple calculations, we have

E(a3ij) = vij


6 +

eθi+θj − 1
eθi+θj

+
6

eθi+θj − 1


.

It follows
j≠i

E(a3ij)

v
3/2
ii

≤
7 + 6(eLn − 1)−1

v
1/2
ii

≤
[7 + 6(eLn − 1)−1

](eMn − 1)
n1/2eMn/2

.

If eMn/2/Ln = o(n1/2), then the above expression goes to zero. This shows that the condition for the Lyapunov’s central
limit theorem holds. Therefore, v−1/2

ii {di −E(di)} is asymptotically standard normal under the condition eMn/2/Ln = o(n1/2).
Similar to Proposition 2, and Lemmas 1 and 2, we have the following proposition and Lemmas 7 and 8.

Proposition 4. If eMn/2/Ln = o(n1/2), then as n → ∞:

(1) For any fixed r ≥ 1, the components of (d1−E(d1), . . . , dr−E(dr)) are asymptotically independent and normally distributed
with variances v11, . . . , vrr , respectively.

(2) More generally,
n

i=1 ci(di − E(di))/
√

vii is asymptotically normally distributed with mean zero and variance


∞

i=1 c
2
i

whenever c1, c2, . . . are fixed constants and the latter sum is finite.

Lemma 7. If n is large enough, then

∥V−1
n − Sn∥ ≤

ce3Mn

L4n(n − 1)2
, (15)

where c is a constant.

Lemma 8. Let Un = cov[Wn{d − E(d)}]. Then

∥Un∥ ≤ ∥V−1
n − Sn∥ +

eLn(eMn − 1)4

(n − 1)2(eLn − 1)2e2Mn
. (16)

In order to prove the lemma below, we need one theorem due to Hillar and Wibisono [11].
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Theorem 6. If e5Mn/L1/2n = o{(n/ log n)1/2}, the MLEθ exists with probability approaching one and is uniformly consistent in
the sense that

∥θ − θ∥∞ ≤ Op


(exp(5Mn) − 1)2

exp(5Mn)


12

exp(Ln/2) − 1


2 log n

n


= op(1).

Lemma 9. If e17Mn/L3n = o{n1/2/ log n}, then for i = 1, . . . , r with a fixed constant r,

θi − θ̂i = [V−1
n {d − E(d)}]i + op(n−1/2). (17)

Proof. By Theorem 6, if e17Mn/L3n = o{n1/2/ log n}, then

λn = max
1≤i≤n

|θ̂i − θi| = Op

 (e5Mn − 1)2

e5Mn


log n

n(eLn/2 − 1)


.

Let γ̂ij = θi + θj − θ̂i − θ̂j. By Taylor’s expansion, for any i ≠ j,

1

eθ̂i+θ̂j − 1
−

1
eθi+θj − 1

=
eθi+θj

(eθi+θj − 1)2
γ̂ij + hij,

where

hij = −
eθi+θj+αijγ̂ij(1 + eθi+θj+αijγ̂ij)

(eθi+θj+αijγ̂ij − 1)3
γ̂ 2
ij ,

and 0 < αij < 1. It is easy to verify that

d − E(d) = Vn(θ − θ̂) + h,

where h = (h1, . . . , hn)
T and hi =


j≠i hij. Equivalently,

θ − θ̂ = V−1
n {d − E(d)} + V−1

n h. (18)

Since θi + θj > 0 and λn is sufficiently small, we have

|hij| ≤
e2(Mn+λn)(1 + e2(Mn+λn))

[e2(Ln−λn) − 1]3
λ2
n, |hi| ≤


j≠i

|hij| ≤ (n − 1)
e2(Mn+λn)(1 + e2(Mn+λn))

[e2(Ln−λn) − 1]3
λ2
n.

Note that (Snh)i = hi/vii and (V−1
n h)i = (Snh)i + (Wnh)i. By direct calculation, we have

|(Snh)i| ≤
(eMn − 1)2

eMn
×

e2(Mn+λn)(1 + e2(Mn+λn))

[e2(Ln−λn) − 1]3
λ2
n = O


e15Mn log n

nL3n


,

and, by Lemma 7,

|(Wnh)i| ≤ ∥Wn∥ × (nmax
i

|hi|) ≤ O

e17Mn log n

nL3n


.

If e17Mn/L3n = o{n1/2/ log n}, then |(V−1
n h)i| ≤ |(Snh)i| + |(Wnh)i| = o(n−1/2). This completes the proof. �

Proof of Theorem 3. By (18),

(θ − θ̂)i = [Sn{d − E(d)}]i + [Wn{d − E(d)}]i + (V−1
n h)i.

By Lemmas 8 and 9, if e17Mn/L3n = o{n1/2/ log n}, then

θ̂i − θi = (di − E(di))/vii + op(n−1/2).

Theorem 3 follows directly from Proposition 4. �
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