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1. Additional Simulation Results. Here we show results for the simu-
lation of two pure communities with no background, comparing
extraction, partition by modularity, and the block model fitted by
Markov chain Monte Carlo. Specifically, we generate a network
from the block model with K = 2, P;; = 0.5, P, = 0.4,and P}, =
0.05 and vary the block sizes (n; = 100, 200, 300, n, = 1,000 — n).
Fig. S1 shows the box plots of the adjusted Rand index for the
three methods. For n; = 100, the block model does best (which
is expected because the data are in fact generated by the block
model), closely followed by modularity and extraction, which
does a little worse because of “losing” some of the lower degree
nodes in the tighter community and extracting a slightly smaller
“core.” For the more balanced communities (r; = 200 and 300),
all three methods do perfectly.

2. A Hypothesis Test for Determining the Number of Communities.
Here we give more details on the proposed hypothesis test under
the block model for determining the number of communities. The
null hypothesis is that the subgraph under consideration is a ran-
dom realization from the Erdos—Renyi model. To test this hypoth-
esis, we need to be able to simulate graphs from this distribution
that “match” the observed subgraph in a suitable way. If the graph
is unweighted, the simulation is trivial: We can simply generate N
independent random Erdos—Renyi graphs with the same number
of nodes n as the subgraph to be tested, and the same number of
edges placed independently at random. If the graph is weighted,
we first generate the same number of edges between randomly
chosen pairs without weights, and then assign the weights from
the original graph at random. Once the N random graphs are gen-
erated, we maximize the value of W for each one of them. Then, if
the value of W for the proposed split on the real graph is higher
than the 100(1 — a)th percentile of the N simulated values, we
can reject the null hypothesis at level @ and proceed with the split.

Although we have not yet been able to obtain the analytical
form of this distribution, we note that the critical values depend
only on n and p. As a rough guide, we provide an estimate of
the 5% critical values for several values of p as a function of n
in Fig. S2.

In addition, we also computed these critical values for the
karate club (Table S1) and the school network data (Table 2).
The karate club has a clear first split and very weak subsequent
splits. For the school data, all six splits are significant (corre-
sponding to the six grades), with the first four being particularly
strong. The seventh split (not shown in the paper to facilitate
comparison to the grouping into six grades) is not significant even
at the 10% significance level.

3. Proofs.

Proof of Theorem 1: From assumption 3 and R(s,c)iR,
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From assumption 2, we have
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Thus (a) holds by the dominated convergence theorem.
It is straightforward to show that (a) implies

P
W(S)=f(R.P) = (P11 + 2r1r10P1y +13,P2)

(ru +r)?
1
(rig +r12)(ra1 +r2)

+ 11701 Piy + 1100 Pas),

”_ZW(S)E’J;(R»P) = (ri +r12)(r2 +r)f(RP).

(rira Py +rirnPr

To maximize f under the constraint 1”R = (r,1 — z), we apply
the transformation ¢, =ry/(r;, +712), ty =rpn/(ry +72) and
obtain

1
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1
+§(P1| = Pp)(t +1).
It is easy to verify that the function g(t,t,) =¢#(t; +t, — 1)—
(t; +t,)/2 has two maximizers, t; = 1./, =1 and ¢, = 0,f, = 0.
Thus under the condition P,; — 2Py, + Py, > 0,P;; > Py, the
unique maximizer of f is ¢, =1t =1, or equivalently,
R = diag(n,1 — x).

For f, applying the same transformation, we obtain
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where (¢,,t,) € [0,z] X [0,1 — z]U[x,1] X [1 — z,1]. The only inter-
ior point #* that potentially satisfies Vf(t*) = 0 is

Py - Py,
Py + Py = 2Py,
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However, because #; + ¢ = 1, the only intersection with the
feasible region is at f; =z, t5 = 1 —z, and thus f can be maxi-
mized only on the boundary of the feasible region. Because all
functions involved are monotone and convex, it is easy to check
the boundary values; comparing all possible solutions shows that
the unique maximizer of f is t; = 1,5, = 1, or equivalently,
riy = mry = 1 —z. This completes the proof of (b).
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To prove Theorem 2, we first state a simpler version of the
main theorem of Bickel and Chen from ref. 1. The theorem holds
for a general K but to simplify notation we state it only for K = 2.
This theorem allows p, = P|4; = 1] = 0. Letting p, = n2p,, we
can write W and W (up to a multiplicative factor) in the form

&),

Further, following the proof of Theorem 1, it is easy to verify that

0(sut) = (22
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where P =P,/p,. Thus

is F(RPR R1).

the population version of Q

Theorem A1. Suppose F, P, and = satisfy the following conditions:
* (C1) F(RPRT R1) is uniquely maximized over & = {R:R > 0,

R™1 = (7,1 — z)'} by R = D(r) = diag(x,1 — x), for all (z,P) in
an open set ©.

1.. Hoff PD, Raftery AE, Handcock MS (2002) Latent space approaches to social network
analysis. J/ Am Stat Assoc 97:1090-1098.

* (C2) P has no identical columns.

* (C3) (a) F is Lipschitz in its arguments; (b) let
W = D(x)PD(x). The directional derivatives ';275 My +eM,—
M)t +e(t, —t))|.—o, are continuous in (M t;) for all
(My.£0) in a neighborhood of (W,C(r)), where C(z) =
(m,1 = 2)T; (c) let G(R,P)=F(RPRT R1). Then on 2,

W=D tRP)| . < ~C <0 for all (z,P) € ©.

If ¢* is the maximizer of Q(s.4) and 1<j§n — oo, then, for all
(z,P) € 0,
. P(e
hmsupM < —sp(n.P) < 0.
n—oo n

Proof of Theorem 2. Condition (C1) has already been checked in
the proof of Theorem 1(b), condition (C2) holds trivially, and it
is entirely straightforward to check condition (C3). Thus Theorem 2
follows from Theorem Al.
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Results for two communities with no background.
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Fig. S2. Critical values for testing the hypothesis of an Erdos—Renyi graph.

Table S1. Critical values for the karate club

Split 1 2 3 4

Test statistic 108.7 60.7 40.8 26.0
1% 94.7 66.7 38.8 28.0
5% 88.0 62.4 37.0 23.0
10% 84.0 59.4 35.0 19.5

The first nonsignificant test at each level is shown in boldface.

Table S2. Critical values for the school friendship network

Split 1 2 3 4 5 6 7

Test statistic  651.9 423.8 3184 1963 1368 939 480
1% 3687 3050 2366 1708 137.0 98.6 66.0
5% 352.8 2905 2200 157.8 1275 92.0 56.7
10% 3439 2803 2162 1518 122.0 89.0 54.0

The first nonsignificant test at each level is shown in boldface.
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