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1. Additional Simulation Results.Here we show results for the simu-
lation of two pure communities with no background, comparing
extraction, partition by modularity, and the block model fitted by
Markov chain Monte Carlo. Specifically, we generate a network
from the block model with K ¼ 2, P11 ¼ 0.5, P22 ¼ 0.4, and P12 ¼
0.05 and vary the block sizes (n1 ¼ 100, 200, 300, n2 ¼ 1;000 − n).
Fig. S1 shows the box plots of the adjusted Rand index for the
three methods. For n1 ¼ 100, the block model does best (which
is expected because the data are in fact generated by the block
model), closely followed by modularity and extraction, which
does a little worse because of “losing” some of the lower degree
nodes in the tighter community and extracting a slightly smaller
“core.” For the more balanced communities (n1 ¼ 200 and 300),
all three methods do perfectly.

2. A Hypothesis Test for Determining the Number of Communities.
Here we give more details on the proposed hypothesis test under
the block model for determining the number of communities. The
null hypothesis is that the subgraph under consideration is a ran-
dom realization from the Erdos–Renyi model. To test this hypoth-
esis, we need to be able to simulate graphs from this distribution
that “match” the observed subgraph in a suitable way. If the graph
is unweighted, the simulation is trivial: We can simply generate N
independent random Erdos–Renyi graphs with the same number
of nodes n as the subgraph to be tested, and the same number of
edges placed independently at random. If the graph is weighted,
we first generate the same number of edges between randomly
chosen pairs without weights, and then assign the weights from
the original graph at random. Once theN random graphs are gen-
erated, we maximize the value of ~W for each one of them. Then, if
the value of ~W for the proposed split on the real graph is higher
than the 100ð1 − αÞth percentile of the N simulated values, we
can reject the null hypothesis at level α and proceed with the split.

Although we have not yet been able to obtain the analytical
form of this distribution, we note that the critical values depend
only on n and p. As a rough guide, we provide an estimate of
the 5% critical values for several values of p as a function of n
in Fig. S2.

In addition, we also computed these critical values for the
karate club (Table S1) and the school network data (Table 2).
The karate club has a clear first split and very weak subsequent
splits. For the school data, all six splits are significant (corre-
sponding to the six grades), with the first four being particularly
strong. The seventh split (not shown in the paper to facilitate
comparison to the grouping into six grades) is not significant even
at the 10% significance level.

3. Proofs.

Proof of Theorem 1: From assumption 3 and Rðs;cÞ→P R,
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Thus (a) holds by the dominated convergence theorem.
It is straightforward to show that (a) implies

W ðSÞ→P f ðR;PÞ ¼ 1
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−
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n−2 ~W ðSÞ→P ~f ðR;PÞ ¼ ðr11 þ r12Þðr21 þ r22Þf ðR;PÞ:

To maximize f under the constraint 1TR ¼ ðπ;1 − πÞ, we apply
the transformation t1 ¼ r11∕ðr11 þ r12Þ, t2 ¼ r22∕ðr21 þ r22Þ and
obtain
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It is easy to verify that the function gðt1;t2Þ ¼ t1ðt1 þ t2 − 1Þ−
ðt1 þ t2Þ∕2 has two maximizers, t1 ¼ 1;t2 ¼ 1 and t1 ¼ 0;t2 ¼ 0.
Thus under the condition P11 − 2P12 þ P22 > 0;P11 > P22, the
unique maximizer of f is t1 ¼ 1;t2 ¼ 1, or equivalently,
R ¼ diagðπ;1 − πÞ.

For ~f , applying the same transformation, we obtain
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where ðt1;t2Þ ∈ ½0;π� × ½0;1 − π�∪½π;1� × ½1 − π;1�. The only inter-
ior point t� that potentially satisfies ∇f ðt�Þ ¼ 0 is

t�1 ¼
P22 − P12

P11 þ P22 − 2P12

t�2 ¼
P11 − P12

P11 þ P22 − 2P12

:

However, because t�1 þ t�2 ¼ 1, the only intersection with the
feasible region is at t�1 ¼ π, t�2 ¼ 1 − π, and thus ~f can be maxi-
mized only on the boundary of the feasible region. Because all
functions involved are monotone and convex, it is easy to check
the boundary values; comparing all possible solutions shows that
the unique maximizer of ~f is t1 ¼ 1;t2 ¼ 1, or equivalently,
r11 ¼ π;r22 ¼ 1 − π. This completes the proof of (b).
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To prove Theorem 2, we first state a simpler version of the
main theorem of Bickel and Chen from ref. 1. The theorem holds
for a general K but to simplify notation we state it only for K ¼ 2.
This theorem allows ρn ¼ P½Aij ¼ 1� → 0. Letting μn ¼ n2ρn, we
can write W and ~W (up to a multiplicative factor) in the form

Qðs;AÞ ¼ F
�
Oðs;AÞ
μn

;gðsÞ
�
:

Further, following the proof of Theorem 1, it is easy to verify that

EðOðs;AÞjcÞ
μn

¼ Rðs;cÞPRTðs;cÞ;

where P ¼ Pn∕ρn. Thus the population version of Q
is FðRPRT;R1Þ.

Theorem A1. Suppose F, P, and π satisfy the following conditions:

• (C1) FðRPRT;R1Þ is uniquely maximized over R ¼ fR∶R ≥ 0;
RT1 ¼ ðπ;1 − πÞ0g by R ¼ DðπÞ≡ diagðπ;1 − πÞ, for all ðπ;PÞ in
an open set Θ.

• (C2) P has no identical columns.
• (C3) (a) F is Lipschitz in its arguments; (b) let

W ¼ DðπÞPDðπÞ. The directional derivatives ∂2F
∂ϵ2 ðM0 þ ϵðM1−

M0Þ;t1 þ ϵðt1 − t0ÞÞjϵ¼0þ are continuous in ðM1;t1Þ for all
ðM0;t0Þ in a neighborhood of ðW ;CðπÞÞ, where CðπÞ ¼
ðπ;1 − πÞT ; (c) let GðR;PÞ ¼ FðRPRT;R1Þ. Then on R,
∂Gðð1−ϵÞDðπÞþϵR;PÞ

∂ϵ jϵ¼0þ < −C < 0 for all ðπ;PÞ ∈ Θ.

If ĉðnÞ is the maximizer of Qðs;AÞ and λn
log n → ∞, then, for all

ðπ;PÞ ∈ Θ,

limsup
n→∞

PðĉðnÞ ≠ cÞ
λn

≤ −sQðπ;PÞ < 0.

Proof of Theorem 2. Condition (C1) has already been checked in
the proof of Theorem 1(b), condition (C2) holds trivially, and it
is entirely straightforward to check condition (C3). Thus Theorem 2
follows from Theorem A1.

1. . Hoff PD, Raftery AE, Handcock MS (2002) Latent space approaches to social network
analysis. J Am Stat Assoc 97:1090–1098.
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Fig. S1. Results for two communities with no background.
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Fig. S2. Critical values for testing the hypothesis of an Erdos–Renyi graph.

Table S1. Critical values for the karate club

Split 1 2 3 4

Test statistic 108.7 60.7 40.8 26.0

1% 94.7 66.7 38.8 28.0
5% 88.0 62.4 37.0 23.0
10% 84.0 59.4 35.0 19.5

The first nonsignificant test at each level is shown in boldface.

Table S2. Critical values for the school friendship network

Split 1 2 3 4 5 6 7

Test statistic 651.9 423.8 318.4 196.3 136.8 93.9 48.0

1% 368.7 305.0 236.6 170.8 137.0 98.6 66.0
5% 352.8 290.5 220.0 157.8 127.5 92.0 56.7
10% 343.9 280.3 216.2 151.8 122.0 89.0 54.0

The first nonsignificant test at each level is shown in boldface.
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