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5. Supplementary Materials

5.1 A new algorithm to optimize the objective function (1)

The objective function

arg max
C,{Gc}

C∑
C=1

exp
[
log
{∑

(wi,j|ei,j ∈ Gc)
}
− λ0 log(|Ec|)

]
is non-convex and NP hard. We solve it in two steps.

Firstly, we optimize {Gc} with given C:

arg max
{Gc}

C∑
C=1

exp{log(
∑

(wi,j|ei,j ∈ Gc))− λ0 log(|Ec|)}

=arg max
{Gc}

C∑
C=1

(∑
(wi,j|ei,j ∈ Gc)

|Ec|

)λ0 (∑
(wi,j|ei,j ∈ Gc)

)1−λ0
.
=arg max

{Gc}

C∑
C=1

ρCC |Vc|, (λ0 = 1/2, ρCC =
∑

(wi,j|ei,j ∈ Gc)/|Ec|)

=arg max
{Gc}

∑
(wi,j|ei,j ∈ G)/|V | −

C∑
C=1

∑
C′ 6=C

ρCC′(|Vc|+ |VC′|)

⇔arg min
{Gc}

C∑
C=1

∑
C′ 6=C

ρCC′(|Vc|+ |VC′ |)

=arg min
{Gc}

C∑
C=1

∑
C′ 6=C

∑
(wi,j|i ∈ Gc, j ∈ GC′)

|Vc||VC′|
(|Vc|+ |VC′|)

=arg min
{Gc}

C∑
C=1

∑
(wi,j|i ∈ Gc, j /∈ GC)

|Vc|

(1)

We solve objective function 1 by using spectral clustering algorithm RatioCut (Chen et al ,

2015a).

Next, we select C by grid searching that maximizes the criteria:
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C∑
C=1

(∑
(wi,j|ei,j ∈ Gc)

|Ec|

)λ0 (∑
(wi,j|ei,j ∈ Gc)

)1−λ0
(2)

At this step, a larger λ0 often leads to detected subnetworks with higher proportion of

more informative edges and smaller sizes whereas a smaller λ0 often produces larger networks

including more informative edges in G. The iterations of the above two steps implement the

optimization of 1.

W matrix calculation

Let zi,j be the Fisher’s Z transformed correlation coefficient R̂i,j, for example. We can simply

let wi,j = zi,j or further transform it to the probability scale. Assume that sample correlation

coefficients for all edges follow a mixture distribution zi,j ∼ π0f0(zi,j)+π1f1(zi,j) where π0+π1 =

1 (Efron, 2004; Wu et al , 2006; Efron, 2007). f1 represents the distribution of correlations

corresponding to the component of connected edges zi,j|(δi,j = 1) ∼ f0(zi,j) , and f0 for the

unconnected edges zi,j|(δi,j = 0) ∼ f1(zi,j). We adopt the empirical Bayes method to obtain

π̂0, π̂1, f̂0, f̂1, (Efron, 2007) and then wi,j is the posterior probability that zi,j is from the non-null

component.

Convenient thresholding value calculation

We calculate the thresholding values for edges inside-networks or outside-networks separately,

and these cut-offs can be linked to the overall local fdr value. Therefore, the computation is

more straightforward by using the following cut-offs.

An edge inside networks zin is truly connected if fdrin(zin) 6 1/(T + 1), where T is the
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threshold. Equivalently if f1(z)
f0(z)

> T
πin
0

πin
1

, we consider the edge is connected by using the fact

below.

πin1 f1(z
in)

πin0 f0(z)
= (1− fdrin(zin))/fdrin(zin) > T

⇒ f1(z
in)

f0(zin)
> T

πin0
πin1

(3)

The above cut-off can be linked to fdrall(zin) by using the fact that

f1(z
in)

f0(zin)
> T

πin0
πin1

⇒f1(z
in)

f0(zin)

πall1

πall0

= (1− fdrall(zin))/fdrall(zin) > T
πin0
πin1

πall1

πall0

⇒fdrall(zin) =
1

T
πin
0

πin
1

πall
1

πall
0

+ 1

(4)

For example, if T = 4, π̂in0 /π̂
in
1 = 0.1 and π̂all1 /π̂all0 = 0.1, then fdrall(zin)=0.96 and many

edges inside networks are estimated as connected because the distribution of inside network

edges suggests that most edges inside are correlated.

Similarly, for edges outside networks

fdrall(zout) =
1

T
πout
0

πout
1

πall
1

πall
0

+ 1
.

Given T = 4, π̂out0 /π̂out1 = 40 and π̂all1 /π̂all0 = 0.1, then fdrall(out)=0.06 and most edges outside

the network are thresholded by using a more stringent cut-off.

In practice, we use the thresholds of 1/(T θ̂in/θ̂all + 1) and 1/(T θ̂outθ̂all + 1) for edges inside

and outside networks based on the overall local fdr value.

By using these overall fdr based thresholds, the computation is more efficient. In addition,

we can observe how topological structure and edge distributions can jointly impact the decision

making process of the correlation matrix thresholding. When the data shows no network struc-
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ture, for instance, πin0 /π
in
1 = πout0 /πout1 = 10 and πall1 /πall0 = 10, then fdrall(in) = fdrall(out) =

0.2. The network guided thresholding rule becomes the universal thresholding rule.

NICE algorithm

The detailed NICE algorithm is described in Algorithm 1.

Algorithm 1 NICE algorithm

1: procedure NICE–Algorithm
2: The weight matrix W = g(R̂);
3: Calculate the Laplacian matrix L=D-W
4: for cluster number C = 2 : |V | − 1 do
5: Compute the first C eigenvectors [u2, · · · , uC ] of L, with eigenvalues ranked from the

smallest;
6: Let U = [uT2 , · · · , uTC ] be a |V | × C matrix containing all C − 1 eigenvectors;
7: Perform K-means clustering algorithm on U with number of clusters of C to cluster
|V | nodes into C networks;

8: Calculate criterion 2 for each C.
9: end for

10: Select C that maximizes criterion 2 and perform permutation tests on the large
community networks.

11: Implement the topological structure oriented thresholding strategies for covariance
entries inside and outside networks (see details in 2.2)

12: end procedure

Proof of Theorem 1

Proof. Applying the universal decision rule with z0 as threshold:

E(#FP ) = m

∫ ∞
z0

π0f0(z)

f(z)
f(z)dz = mπ0F0(z0) = mωπin0 F0(z0) +m(1− ω)πout0 F0(z0) (5)

where
∫∞
z0
f = F (z0) and m is the total number of edges m = |E|.



Network Induced Large Correlation Matrix Estimation 5

For edges in communities:

Ein(#FP ) = ωm

∫ ∞
zin

πin0 f
in
0 (z)

f in(z)
f in(z)dz = ωmπin0 F

in
0 (zin) (6)

For edges outside communities:

Eout(#FP ) = (1− ω)m

∫ ∞
z0,out

πout0 f out0 (z)

f out(z)
f out(z)dz = (1− ω)mπout0 F out

0 (z0,out) (7)

where z0,in < z0 < z0,out, and F out
0 (z) = F in

0 (z) = F0(z). There we expect E(#FP ) (5)>

Ein(#FP ) + Eout(#FP ) (6 + 7) if

− ωmπin0 (F0(zin)− F0(z0)) + (1− ω)mπout0 (F0(z0)− F0(z0,out)) > 0,

⇔ F0(z0)− F0(z0,out)

F0(z0,in)− F0(z0)
>

ωπin0
(1− ω)πout0

(8)

We further calculate the expected number of true positive (TP) edges using universal thresh-

old and in/out communities to evaluate the power of our network based thresholding.

Applying the universal decision rule with z0 as threshold:

E(#TP ) = m

∫ ∞
z0

π1f1(z)

f(z)
f(z)dz = mπ1F0(z0) = mωπin1 F1(z0) +m(1− ω)πout1 F1(z0) (9)

For edges in communities:

Ein(# TP ) = ωm

∫ ∞
zin

πin1 f
in
1 (z)

f in(z)
f in(z)dz = ωmπin1 F

in
1 (zin) (10)

For edges outside communities:

Eout(# TP ) = (1− ω)m

∫ ∞
zout

πout1 f out1 (z)

f out(z)
f out(z)dz = (1− ω)mπout1 F out

1 (zout) (11)
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where z0,in < z1 < z0,out, and F out
1 (z) = F in

1 (z) = F1(z). There we expect E(#TP ) (9)<

Ein(#TP ) + Eout(#TP ) (10 + 11) (i.e. E(#FN) > Ein(#FN) + Eout(#FN) ) if

− ωmπin0 (F1(zin)− F1(z0)) + (1− ω)mπout1 (F1(z0)− F1(z0,out)) < 0,

⇔ F1(z0)− F1(z0,out)

F1(zin)− F1(z0)
<

ωπin1
(1− ω)πout1

(12)

Condition 1 is generally true and permutation tests ensure the communities have large propor-

tions of highly correlated edges. Numerous empirical experiments and results further verify this

assumption. If the assumption of network induced correlation matrix is true, the C selection

procedure chooses the parameter to optimize the objective function of step one that reduce

false positive findings and improve power simultaneously.

[Figure 1 about here.]
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Figure 1: Glasso results for Example Data 1: it shows that Glasso may false negatively
regularize edges to zero in networks (with the sparsity assumption).

(a) Correlation heatmap in the order of detected communities

(b) glasso results


